TWI729252B - 最小脈寬保證技術 - Google Patents

最小脈寬保證技術 Download PDF

Info

Publication number
TWI729252B
TWI729252B TW106144887A TW106144887A TWI729252B TW I729252 B TWI729252 B TW I729252B TW 106144887 A TW106144887 A TW 106144887A TW 106144887 A TW106144887 A TW 106144887A TW I729252 B TWI729252 B TW I729252B
Authority
TW
Taiwan
Prior art keywords
circuit
pulse width
output terminal
shot
filter
Prior art date
Application number
TW106144887A
Other languages
English (en)
Other versions
TW201838334A (zh
Inventor
貝里 S. 阿爾貝特
Original Assignee
新加坡商西拉娜亞洲私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/389,361 external-priority patent/US9838000B1/en
Application filed by 新加坡商西拉娜亞洲私人有限公司 filed Critical 新加坡商西拉娜亞洲私人有限公司
Publication of TW201838334A publication Critical patent/TW201838334A/zh
Application granted granted Critical
Publication of TWI729252B publication Critical patent/TWI729252B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
    • H03K5/1565Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • H03K5/06Shaping pulses by increasing duration; by decreasing duration by the use of delay lines or other analogue delay elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本發明揭示涉及脈衝信號之各種方法及裝置。一示例性最小脈寬(MPW)電路包含一第一邏輯電路及一第二邏輯電路。該第一邏輯電路之一第一輸入端連接至該MPW電路之一輸入端。該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端。該MPW電路亦包含:一MPW濾波器電路,其通信地耦合至該第二邏輯電路之一輸出端;一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之一輸出端且位於一第一回饋路徑上;以及另一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端且位於一第二回饋路徑上。該第一邏輯電路之一第二輸入端在該第一回饋路徑上。該第二邏輯電路之一第二輸入端在該第二回饋路徑上。

Description

最小脈寬保證技術
本申請案主張2017年12月4日申請之美國非臨時申請案第15/831,047號之權益,該美國非臨時申請案為2016年12月22日申請之美國非暫時申請案第15/389,361號之接續案,該兩個美國非暫時申請案之全文皆以引用之方式併入本文中。
本發明係有關於最小脈寬保證技術。
許多電子系統需要脈衝信號,其中電子信號在再次返回至第一值之前自第一值暫時轉變至第二值。舉例而言,某些功率轉換器利用脈寬調變器來控制在兩種不同功率狀態之間流動之電荷量。作為另一示例,鎖相環通常利用電荷泵來追蹤兩個脈衝流,以便調整引入至信號之相移程度,以對該信號進行鎖相。若脈衝之長度過短,則下游電路區塊有可能不記錄脈衝。換言之,若轉變至第二值且再次轉變回發生得過快,則系統可能不會注意到脈衝曾存在。
錯過脈衝之問題可能係有問題的。系統之準確性或功率效率可能由於錯過之脈衝而降級。在更嚴重之情況下,錯過之脈衝可能會將電路驅動至設計人員未預期之不希望的狀態。舉例而言,錯過之脈衝可使得鎖存器無法讀取適當輸入,且可能儲存不正確之狀態。
藉由在給定設計中建立誤差裕度,可避免最小脈衝,以便最壞情況下之誤差仍然可將脈衝之寬度維持在特定臨限值以上。此臨限值可設定為下游電路之最壞情況回應時間。然而,此種方法可能係有問題的,因為誤差裕度可導致系統之效率較低。舉例而言,一些切換模式功率轉換器被設計為僅允許在每個切換週期中將一個脈衝遞送至功率電晶體,即使在允許更頻繁之脈衝且允許更快地穩定至另一狀態中將為有利的瞬態條件期間亦如此。在每個週期中允許多於一個脈衝而無進入不穩定狀態之危險的方法將導致具有極佳效能之更高效的裝置。
在一個實施例中,揭示一種最小脈寬保證電路。該最小脈寬電路包含一第一邏輯電路。該第一邏輯電路之一第一輸入端連接至一脈衝電路之一輸出端。該最小脈寬電路亦包含一第二邏輯電路。該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端。該最小脈寬電路亦包含通信地耦合至該第二邏輯電路之一輸出端之一最小脈寬濾波器電路。該最小脈寬電路亦包含通信地耦合至該最小脈寬濾波器電路之一輸出端且位於一第一回饋路徑上之一第一單觸發電路。該最小脈寬電路亦包含通信地耦合至該最小脈寬濾波器電路之該輸出端且位於一第二回饋路徑上之一第二單觸發電路。該第一邏輯電路之一第二輸入端在該第一回饋路徑上。該第二邏輯電路之一第二輸入端在該第二回饋路徑上。
在另一實施例中,揭示一種功率轉換器。該功率轉換器包含:一功率電晶體,其具有一電路節點;一閘極驅動器,其將一控制信號提供至該閘極節點;一脈寬調變器比較器,其產生用於該閘極驅動器之一脈寬調變信號;一最小脈寬電路,其將該脈寬調變器比較器耦合至該閘極驅動器;以及一緩衝器。該最小脈寬保證電路包括:一第一邏輯電路;一第二邏輯電路;一最小脈寬濾波器電路,其通信地耦合至該第二邏輯電路之一輸出端;一緩衝器;一第一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之一輸出端且位於一第一回饋路徑上;以及一第二單觸發電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端且位於一第二回饋路徑上。該第一邏輯電路之一第一輸入端連接至一脈寬電路之一輸出端。該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端。該第一邏輯電路之一第二輸入端在該第一回饋路徑上。該第二邏輯電路之一第二輸入端在該第二回饋路徑上。該緩衝器連接至該最小脈寬濾波器電路之該輸出端。該第一邏輯電路之一第三輸入端通信地耦合至一功率轉換器中之一脈寬調變器空白信號源。該脈寬電路之該輸入端通信地耦合至該脈寬調變器比較器。該緩衝器之該輸出端通信地耦合至該閘極驅動器。
若在該第一裝置或電路節點處接收之一信號的資訊內容自通信耦合路徑之一端完全保留至另一端而無電力供應之改變,則兩個裝置或電路節點通信地耦合。舉例而言,可將緩衝器、位準移位器或反相器置放在兩個元件之間的耦合路徑上,但彼等兩個元件仍然通信地耦合,此係因為互連電路並不改變信號之資訊內容。若一個裝置在其間提供電子連接,則其用以耦合另外兩個物件。耦合意謂以克希荷夫(Kirchhoff)電流路徑之方式進行電連接。連接係指兩個電路節點之間的實體連接。
現將詳細參考所揭示發明之實施例,附圖中說明其一個或多個示例。每個示例皆為對本技術之解釋而提供,而非作為對本技術之限制。實際上,對於熟習此項技術者而言顯而易見,在不脫離本技術之範疇的情況下,可對本技術進行修改及變化。舉例而言,作為一個實施例之部分而說明或描述之特徵可與另一實施例一起使用以產生又一個實施例。因此,希望本發明之主題涵蓋所附申請專利範圍及其等效物的範疇內之所有此等修改及變化。
可使用對稱滯後來保持穿過最小脈寬保證電路之脈衝的寬度。最小脈寬保證電路可經組態以保證低至高之脈衝及高至低之脈衝皆能恰當處理,以將任何一種脈衝之脈寬擴展至所需之最小值。該電路可經組態以擴展此等脈衝,以取決於應用來分離出保證之最小值。脈寬由電路「保證」,此係因為電路不會產生寬度小於所需最小值之脈衝。
可應用最小脈寬保證電路之特定應用為開關功率轉換器之控制迴路。某些開關功率轉換器利用一系列脈衝來控制一個或多個功率電晶體,該一個或多個功率電晶體控制輸入功率狀態與輸出功率狀態之間的電荷流動。在設定之開關頻率下之脈衝串之工作循環可設定功率自輸入功率狀態轉換至輸出功率狀態之程度。另外,功率轉換器可能經歷與穩定狀態之偏差,其需要控制功率電晶體之多個脈衝,而不考慮切換頻率處之穩態工作循環。在此等情況中之任何一種情況下,可能都需要保證傳過控制迴路且最終遞送至功率電晶體之脈衝維持最小脈寬。
圖1說明最小脈寬保證電路100。脈寬保證電路100之組件組合地工作,以濾除突波且保證任一極性之脈衝具有最小脈寬。該電路藉由擴展脈衝之寬度來保證最小脈寬,否則該等脈衝之寬度會比最小脈寬窄。該電路藉由最小脈寬濾波器電路101之動作濾除突波。圖1中之所有區塊及任何特定方塊圖可由形成於單個積體電路中之電路來實施,且可進一步藉由形成於積體電路上之單個基板中之電路來實施。然而,在其他方法中,各種區塊可在單獨元件中實施,諸如共同封裝或在單獨封裝中之離散被動裝置及不同之積體電路。
在理想情況下,可用三種不同之方式用最小脈寬濾波器處理自最小脈寬保證電路之輸入端傳遞至輸出端之信號。第一,提供至輸入端之具有極小寬度之信號被視為突波且被濾除。此等信號之脈衝的寬度過窄,不能提供可靠之操作。此等信號不以任何形式提供在輸出端上。第二,提供至輸入端之寬度大於第一類(即,小寬度脈衝)但小於最小脈寬之信號將由電路擴展其脈寬。此等信號在輸出端以最小脈寬提供,但其不會被電路以其他方式修改至可觀之程度。第三,提供至輸入端之脈寬大於最小脈寬之信號不會被脈寬保證電路明顯影響。本段中之描述旨在解釋具有最小脈寬濾波器之最小脈寬保證電路之理想效能,且不意欲限制本發明之範疇。在特定實施中,非理想性可能係顯著的,且其對處理信號之影響可能係可觀的。詳言之,若最小脈寬濾波器電路101不理想,則輸入信號會受到影響,使得其在最小脈寬保證電路之輸出端上的脈寬小於其在輸入端上之脈寬。然而,電路仍然可根據本文之揭示內容來設計,以保證脈衝減小之脈寬仍然超過所需之最小脈寬。
最小脈寬保證電路可保證任一極性之脈衝在電路輸出端展現最小脈寬。如圖1所說明,最小脈寬保證電路100包括兩個回饋路徑:第一回饋路徑102及第二回饋路徑103。兩個回饋路徑各自分別與給定極性之擴展脈衝相關聯。另一回饋路徑有效地忽略相反極性之脈衝。最小脈寬保證電路100以足夠高之通用性程度提供,使得第一回饋路徑102或第二回饋路徑103可負責擴展任一極性之脈衝,只要各自被指派給相反極性之脈衝即可。第一回饋路徑102處置之脈衝極性由單觸發電路104及邏輯電路105之特性設定。第二回饋路徑103處置之脈衝極性由單觸發電路106及邏輯電路107之特性設定。
圖1提供最小脈寬保證電路之示例拓撲。最小脈寬保證電路100之拓撲包括具有連接至最小脈寬保證電路100之輸入端之第一輸入端的邏輯電路105。邏輯電路107之第一輸入端通信地耦合至邏輯電路105之輸出端。該等邏輯電路對其輸入進行邏輯運算以基於此產生輸出。舉例而言,邏輯電路可進行邏輯及運算(AND operation)、或運算(OR operation)、異或運算(XOR operation)或任何其他形式之邏輯以在其輸出端上產生輸出信號。如稍後將描述,可結合相應單觸發電路之特性來選擇所進行之邏輯運算之種類,以解決給定極性之脈衝。
最小脈寬保證電路100之拓撲亦包括通信地耦合至第二邏輯電路之輸出端之最小脈寬濾波器電路101。最小脈寬濾波器電路101之輸出端通信地耦合至單觸發電路104及單觸發電路106。自最小脈寬濾波器電路101延伸至兩個單觸發電路中的每一個的方塊圖之此等單獨分支為兩個單獨之回饋路徑102及103之部分。單觸發電路104在回饋路徑102上,而單觸發電路106在回饋路徑103上。回饋路徑發散處之節點亦含有最小脈寬保證電路輸出信號。此信號在作為整個電路之輸出之前可被緩衝。在圖1之示例中,緩衝器108緩衝輸出信號,且將其遞送至下游電路區塊。
在根據本文揭示之一些最小脈寬保證電路之拓撲中,每個回饋路徑環回至其中一個邏輯電路之輸入端。取決於由邏輯電路進行之邏輯運算之類型,環回至邏輯電路之輸入端允許單觸發電路控制邏輯電路之輸出,使得邏輯電路忽略其他輸入。在圖1之示例中,邏輯電路105之第二輸入端在回饋路徑102上,且邏輯電路107之第二輸入端在回饋路徑103上。如圖所示,兩個邏輯電路105及107之第二輸入端皆分別通信地耦合至其對應之單觸發電路104及106之輸出端。
單觸發電路可對不同極性之脈衝邊緣作出回應。結果,某些揭示之最小脈寬保證電路能夠擴展自低轉變至高且轉變回低之脈衝及自高轉變至低且轉變回高之脈衝。貫穿本揭示內容,脈衝自低轉變至高且轉變回低之脈衝稱為上升、高、低至高或正脈衝,而自高轉變至低且轉變回高之脈衝稱為下降、低、高至低或負脈衝。單觸發電路可回應於偵測到特定邊緣類型而暫時改變其輸出狀態,且以保證給定脈衝類型之最小脈寬之方式影響回饋路徑。
單觸發電路可為單穩態多諧振盪器電路區塊。單穩態多諧振盪器電路區塊可回應於偵測到其輸入端上之特定脈衝邊緣而自穩定狀態轉變至不穩定(即,瞬變)狀態。舉例而言,單觸發電路104可回應於由接收到上升邊緣所指示之上升脈衝而轉變至不穩定狀態,而單觸發電路106可回應於由下降邊緣指示之下降脈衝而自穩定狀態轉變至不穩定狀態。單觸發電路可接著在經過由其內部特性設定之一段時間之後轉變回至其穩定狀態。結果因此將為回應於偵測到之邊緣而暫時改變其狀態之回饋路徑上之信號。在圖1之示例中,暫時改變其狀態之信號被遞送至邏輯電路輸入端,在該等輸入端處,其能夠暫時控制邏輯電路之輸出。
在一特定實施中,單觸發104可經組態以對上升邊緣作出回應,且單觸發106可經組態以對下降邊緣作出回應。在此種方法中,單觸發電路104回應於最小脈寬濾波器電路101之輸出端上之低至高之轉變而進入不穩定狀態。第二單觸發電路106回應於在最小脈寬濾波器電路101之輸出端上之高至低之轉變而進入不穩定狀態。結果,單觸發電路104將高脈衝擴展至第一最小寬度,而單觸發電路106將低脈衝擴展至第二最小寬度。
在另一特定實施中,單觸發電路104可經組態以對下降邊緣作出回應,且單觸發106可經組態以對上升邊緣作出回應。在此種方法中,單觸發電路104回應於最小脈寬濾波器電路區塊之輸出端上的高至低之轉變而進入不穩定狀態。第二單觸發電路106回應於最小脈寬濾波器電路101之輸出端上的低至高之轉變而進入不穩定狀態。結果,單觸發電路104將低脈衝擴展至第一最小值寬度,而單觸發電路106將高脈衝擴展至第二最小寬度。
在特定方法中,在單觸發電路之前使用最小脈寬濾波器,以便濾除對於下游電路而言過窄以致不能處置之突波。舉例而言,單穩態多諧振盪器需要持續時間最短之觸發脈衝來正常工作。最小脈寬濾波器移除過窄以致不能被下游電路處理之脈衝。在圖1之示例中,若不使用最小脈寬濾波器101,則對於單觸發電路104及106而言過窄以致不能經由其相關聯之回饋路徑作出回應之脈衝可能將系統設定為非吾人所樂見之振盪或亞穩態。可參考圖2及圖3描述最小脈寬濾波器電路之更特定示例。
圖2包括最小脈寬保證電路200,其中相同組件用與圖1中相同之參考數字標記。在圖2中,最小脈寬濾波器電路101已被R-C (電阻器-電容器)濾波器201及斯密特觸發器電路202替換。最小脈寬濾波器電路可包含通信地耦合至邏輯電路107之輸出端之任何低通濾波器。最小脈寬濾波器電路亦可包含任何種類之具有滯後之放大器,其通信地耦合至低通濾波器電路。在圖2之特定示例中,低通濾波器電路為R-C濾波器。電阻器及電容器可為與方塊圖中之其他組件形成於同一積體電路上之被動裝置,或可為單獨之離散組件。如圖所示,R-C濾波器201包括濾波電阻器203,其將第二邏輯電路107之輸出端耦合至斯密特觸發器電路202之輸入端。R-C濾波器201之電抗組件為濾波電容器204,其將斯密特觸發器電路202之輸入端耦合至DC偏電壓(說明為接地)。注意,在整個說明書及附圖中,術語「接地」或接地符號之使用應被廣義地解釋為涵蓋DC偏電壓。換言之,術語「接地」在本文中用於指為零之特定DC偏電壓。在圖2之特定示例中,斯密特觸發器電路202耦合至R-C濾波器201之輸出端。斯密特觸發器電路之輸出端為圖2之最小脈寬濾波器電路之輸出端,其可經由緩衝器108緩衝。
在操作中,低通濾波器將篩選出自一個狀態過快地改變至另一狀態且再次返回之脈衝。舉例而言,低通濾波器將篩選出極短之低脈衝及高脈衝。同時,若斯密特觸發器之觸發器跳脫點關於中點邏輯電壓係對稱的,則連接至低通濾波器之輸出端之具有滯後之放大器(諸如斯密特觸發器202)可接著將在低通濾波器中殘存之脈衝恢復為接近其原始脈寬的脈衝。因此,組合之最小脈寬濾波器電路可經設計以篩選出短脈衝,但對大於所需最小值之脈衝無明顯影響。
圖3A及圖3B說明根據圖2之方法的兩組波形301及302連同樣本最小脈寬濾波器電路之方塊圖300。方塊圖300之三個節點被標記為「A」、「B」及「C」。在波形組301及302之下可發現類似標記,以回應於此等波形組所說明之兩個不同情況而說明出現在每個彼等節點上之信號。波形組301展示濾波器電路對寬度變化之一組低至高之脈衝的回應。波形組302展示濾波器電路對寬度變化之一組高至低之脈衝的回應。如在節點A與B處之波形比較中所看到,低通濾波器201之濾波電阻器及濾波電容器使提供至輸入端之脈衝的脈衝邊緣平滑。此外,如在節點B與節點C之比較中可看出,斯密特觸發器電路使得至少與最小可允許脈衝一樣寬之脈衝的脈衝邊緣銳化。
在波形組301中,節點A上之脈衝不具有足夠寬度,且被最小脈寬濾波器電路期望地篩選掉。標記為VLTH 之散列線指示斯密特觸發器電路202之低跳脫點,而標記為VHTH 之散列線指示斯密特觸發器電路202之高跳脫點。如在波形組301中之節點B之曲線圖上所看到,R-C濾波器201防止節點B上的信號在由最小脈衝之寬度設定的時間內充電超過高跳脫點。結果,斯密特觸發器電路確實對波形組301中之脈衝邊緣作出回應,且不跳脫。因此,波形組301之節點C上之輸出保持不變。波形組302說明同一電路如何工作以篩選具有相反極性之脈衝(即,高至低之脈衝)。如所看到,波形組302中之節點A處之最小脈衝不夠寬以允許節點B放電,且波形組302之節點C上之輸出保持不變。然而,較寬之脈衝確實會在輸出節點C上產生脈衝。
選擇圖3中之示例以說明輸入脈衝幾乎不在濾波動作兩側之最小脈寬濾波器電路的操作。如所看到,斯密特觸發器電路之跳變點、濾波電阻器之大小及濾波電容器之大小均界定將通過脈寬濾波器之最小寬度脈衝。在一些應用中,最小脈寬濾波器電路將用於藉由不允許過短以致可能使下游電路進入亞穩狀態之脈衝通過來自電路篩選出突波。因此,可將相對不變地傳過脈寬濾波器之脈衝之最小寬度稱為最小脈寬濾波器之去突波週期。舉例而言,對於實施為單穩態多諧振盪器之單觸發電路104,可能需要去突波週期以回應於上升邊緣脈衝而進入不穩定狀態。因此,在單觸發電路之狀態被設定之前,去突波週期將保證至單觸發電路之輸入信號不改變。
最小脈寬保證電路之單觸發電路可採取多種形式。單觸發電路可為經設計以暫時自其穩定狀態轉變至其不穩定狀態,且在設定之一段時間過後恢復至其穩定狀態的單穩態多諧振盪器電路。單觸發電路對脈衝邊緣作出回應。在任何給定之最小脈寬保證電路中使用之兩個單觸發電路可對具有相反極性之脈衝作出回應。單脈衝電路可能需要在脈衝邊緣之後的去突波時間週期,以保證整個電路之正常功能。舉例而言,單穩態多諧振盪器電路自穩定狀態轉變至不穩定狀態所花費之時間可被稱為轉變週期,且整個電路將經設計以保證短於轉變週期之脈衝不被遞送至單觸發電路。一種此類設計方法為設計最小脈寬濾波器,以使得短於去突波週期之脈衝不會到達單觸發電路之輸入端。
單觸發電路可經設計以使得不需要時脈、設定、重設或其他控制輸入。若電路不需要數位鎖存器或數位信號,則其可能展現出比其他方法更少之佈線挑戰,且會對其所屬之晶片的控制系統施加更少之約束。實際上,若利用諸如圖2所解釋之最小脈寬濾波器,且適當地選擇單觸發電路,則在作為整體的最小脈寬保證電路中不需要數位鎖存器。
圖4說明可與本文揭示之最小脈寬保證電路一起使用之單觸發電路的可能實施。如所說明,單觸發電路104已被替換為更特定實施。單觸發電路106亦可用對不同脈衝邊緣極性作出回應之類似電路來替換,或其可用完全不同之單觸發電路替換。此外,回饋路徑102保證低脈衝之最小寬度。然而,改變邏輯電路105及單觸發電路104之特性將允許回饋路徑102保證最小高脈衝之寬度,而回饋路徑103保證最小低脈衝之寬度。
圖4說明可與本文揭示之最小脈寬保證電路一起使用之單觸發電路的一個可能組態。如所說明,在最小脈寬保證電路400中,單觸發電路104已經被電阻器、電容器及二極體電路替換。所說明之單觸發電路與及閘401一起工作以保證低脈衝之最小脈寬。圖4之單觸發電路包括連接至最小脈寬濾波器電路101之輸出端之二極體402及單觸發電路節點403。單觸發電路亦包括電阻器404 (連接至最小脈寬濾波器電路101之輸出端及單觸發電路節點403)及電容器405 (將單觸發電路節點403耦合至接地節點)。單觸發電路亦包括通信地耦合至單觸發電路節點403之邏輯電路406。如所說明,邏輯電路406為反相器,其可為斯密特觸發器反相器,且將輸出提供至邏輯電路407之輸入端。實施具有滯後之反相器406可提供某些益處,因為在給定電容器405充電所花費之時間的情況下,節點403上之輸入可能緩慢地改變。邏輯電路407為輸入端耦合至邏輯電路406之輸出端及最小脈寬濾波器電路101之輸出端的或閘。邏輯電路406及邏輯電路407之輸出端在第一回饋路徑102上。在圖4之示例中,單觸發電路節點403亦可被稱為充電節點,因為其耦合至之電容器回應於單觸發電路經組態以回應的特定脈衝邊緣而充電。如稍後將描述,充電節點之充電時間與整個電路保證之最小脈寬有關。
圖5提供單觸發電路600之方塊圖,且上覆有信號轉變以描述電路在整個最小脈寬保證電路之範圍內的操作。單觸發電路600為電阻器、電容器及二極體電路,且用於保證高脈衝之最小寬度。返回參考圖1,可使用單觸發電路600來替換邏輯電路107為邏輯或閘之單觸發電路106。單觸發電路600包括二極體601、電阻器602及電容器603。單觸發電路600亦包括可為斯密特觸發器反相器之反相器604及及閘605。
由於單觸發電路600用來保證高脈衝之最小寬度,所以其經組態以對脈衝之上升邊緣作出回應。此上升邊緣由在節點606上指示之自0至1之轉變來表示。回應於此上升邊緣,出現轉變A,其中及閘605之輸出自0轉變至1。至及閘605之另一輸入已經處於邏輯1,因為此係當節點606處於邏輯0時電路所重設之值。如上所述,邏輯閘107為邏輯或閘,且具有通信地耦合至及閘605之輸出端之輸入端。因此,當及閘605之輸出自0轉變至1時,單觸發電路600有效地經由轉變B將節點606鎖定在1,而不管在最小脈寬保證電路之輸入端處發生什麼。換言之,輸入信號可轉變為低,且電路之輸出將保持為高。此動作精確地為將脈衝之寬度擴展至所需最小值所需要的。在一些實施中,在節點606上轉變以實現轉變A及B所花費之時間可設定最小脈寬濾波器101所需之最小去突波週期。
單觸發電路600將脈衝維持在高狀態之週期部分地由電容器603充電所花費之時間來設定。此轉變由轉變C說明,其中在給定時間週期之後,電容器603被充電,且至反相器604之輸入轉變為高。轉變D說明反相器604之跳脫,使得至及閘605之輸入中的一個轉變為低。此後為及閘605之輸出轉變回至低之轉變E。再次,由於及閘605之輸出被回饋至圖1中之邏輯電路107,所以轉變E有效地釋放對來自單觸發電路600之電路之主信號路徑的控制。提供至替換圖1中之邏輯電路107而使用的或閘之另一信號將控制該邏輯閘之輸出,而無關於由及閘605提供之低值。結果,當脈寬保證電路之輸入轉變為低時,節點606若尚未轉變至低值則將轉變至低值。單觸發電路600將藉由此轉變而被重設,因為電容器603上之所有電荷可快速地流過二極體601且使單觸發電路600之充電節點返回至低,此將經由反相器604傳播以將高值提供至及閘605之第二輸入端,以使得其準備好進行下一循環。
如所提及,單觸發電路104及106以及邏輯電路105及107之多個可能組態係可能的。使用單觸發電路600結合作為邏輯電路107之或閘用作一個示例,但多種其他組態係可能的。邏輯電路105可為及閘,而邏輯電路107為或閘,或反之亦然。在任何一種情況下,可使用或閘代替邏輯電路105或107來保證高脈衝之最小寬度,因為提供至或閘之高值主導其他輸入且使輸出為高。在任何一種情況下,可使用及閘代替邏輯電路105或107來保證低脈衝之最小寬度,因為提供至及閘之低值主導其他輸入且使輸出為低。使用其他邏輯閘亦可能保證最小脈寬。參考圖4及圖5描述之電阻器、電容器及二極體單觸發電路之邏輯閘可為用於保證高脈衝之寬度的或閘或用於保證低脈衝之寬度的及閘。
圖6說明功率轉換器700之方塊圖。所示之功率轉換器為切換轉換器之示例。此種轉換器利用開關之快速切換來以受控方式將電力自連接至其輸入端之電源傳輸至連接至其輸出端之負載。此等功率轉換器通常被稱為切換調節器或切換模式調節器。功率轉換器700為降壓轉換器形式之切換調節器之一個示例。當功率轉換器之輸入電壓高於輸出電壓時,利用降壓拓撲。如所說明,電壓VIN 高於電壓VOUT 。負載電流iOUT 經由包含電感器701及電容器702之輸出濾波器提供至負載703。開關704及705由驅動器電路706及回饋電路707控制,該回饋電路接收關於負載及/或功率轉換器在節點708上的狀態之資訊。開關704及705可為具有閘極節點之功率電晶體。驅動器電路706可包括將控制信號提供至彼等閘極節點之閘極驅動器。
回饋電路707通常經設計以包括脈寬調變器或PWM,其為產生具有變化寬度之脈衝之PWM信號的電路。在穩態操作期間,每個切換頻率週期可產生一次脈衝。脈寬設定功率轉換器之工作循環,且與開關704及705中之一個在給定切換週期期間導通之時間大致成比例。在正常操作期間,開關704及705交替地將電流自輸入端VIN 提供至相節點709 (亦稱為開關節點),且將相節點709耦合至接地。由此,脈寬設定自輸入端遞送至輸出端之功率量。在極高或極低之工作循環下,脈衝可能看起來為極短之高脈衝或極短之低脈衝。詳言之,在瞬態其間,當負載之狀態急劇變化時,回饋電路之輸出端可能正傳輸寬度小之脈衝。
過短之脈衝可能會導致功率轉換器中之突波及其他有害效應。另外,用於保證脈衝具有足夠寬度之其他技術涉及使用可能將脈衝擴展地超過所需長度之鎖存器。在切換調節器之情況下,基於鎖存器之電路可防止控制電路每個時脈循環產生多於一個之脈衝。為防止突波,同時仍維持每個時脈循環具有多個脈衝之能力,可添加最小脈寬保證電路710以將回饋電路707之PWM耦合至驅動器電路706。參考圖1,此將涉及緩衝器108之輸出端通信地耦合至閘驅動器706,且最小脈寬保證電路之輸入端通信地耦合至回饋電路707之PWM比較器。
圖7說明與圖1之電路類似之最小脈寬保證電路800之方塊圖,但其已經特定地修改為在具有PWM調變器之切換調節器中操作。如所說明,電路800中之第一邏輯閘為及閘801,其接收PWM信號形式之輸入及已經由反相器802反相之PWM空白信號形式之另一輸入。該電路將提供與先前電路提供之輸出信號一致的輸出信號。然而,當PWM空白信號為高時,亦可將輸出設定為零。注意,類似之方法可應用於或閘在反相器802已被移除之電路中作為第一邏輯閘之最小脈寬保證電路。PWM空白信號可用來使PWM比較器之輸出變空白。PWM空白信號可有利地在啟動或重設過程中用以保證PWM比較器不會產生錯誤輸出。
圖8說明利用上文揭示之方法之組合的最小脈寬保證電路900之特定拓撲之方塊圖。在此方法中,單觸發電路皆由電阻器、電容器及二極體電路901及902來實施。單觸發電阻器、電容器及二極體電路901與回饋路徑102相關聯,且將輸出信號提供至及閘903。單觸發電阻器、電容器及二極體電路902與回饋路徑103相關聯,且將輸出信號提供至或閘904。如所說明,最小脈寬濾波器905採用圖2中揭示之最小脈寬濾波器之形式。在最小脈寬保證電路900中,利用回饋路徑102來保證低脈衝展現最小寬度,而利用回饋路徑103來保證高脈衝展現最小寬度。選擇被最小脈寬濾波器905濾除之脈衝的寬度,以使得信號可傳播經過單觸發電路且經由邏輯閘903及904返回。舉例而言,由最小脈寬濾波器905濾除之脈寬可能為約幾百皮秒。
雖然已參考本發明之特定實施例詳細描述本說明書,但將瞭解,熟習此項技術者在獲得對前述內容之理解時可容易地想到此等實施例之更改、變化及等效物。儘管本發明中之示例係針對將固定電壓提供至調節狀態之切換功率轉換器,但相同之方法可應用於將固定電流提供至調節狀態之功率轉換器。在所提供之示例中,參考、接地及信號承載電壓之極性可全部或部分地切換以達成類似之結果。舉例而言,若在系統中添加額外反相器或提供整個系統之切換,則可切換邏輯低及邏輯高。此外,儘管本發明中之示例係針對切換轉換器,但本文揭示之方法適用於在操作模式之間轉變且包括使用脈衝信號之控制迴路之任何功率轉換器方案。此外,儘管提供在功率轉換器中使用之特定示例,但本文揭示之最小脈寬保證電路同等地適用於脈衝必須保持寬於所需值之任何具有脈衝之應用。在不脫離本發明之範疇的情況下,熟習此項技術者可實踐本發明之此等及其他修改及變化,本發明之範疇在所附申請專利範圍中更特定地闡述。
100、200、400、710、800、900‧‧‧最小脈寬保證電路101‧‧‧最小脈寬濾波器電路102、103‧‧‧回饋路徑104、106、600‧‧‧單觸發電路105、107、407‧‧‧邏輯電路108‧‧‧緩衝器201‧‧‧R-C(電阻器-電容器)濾波器202‧‧‧斯密特觸發器電路203‧‧‧濾波電阻器204‧‧‧濾波電容器300‧‧‧方塊圖301、302‧‧‧波形組401、605‧‧‧閘402、601‧‧‧二極體403‧‧‧單觸發電路節點404、602‧‧‧電阻器405、603、702‧‧‧電容器406‧‧‧邏輯電路;反相器604、802‧‧‧反相器606、708、A、B、C、D、E‧‧‧節點700‧‧‧功率轉換器701‧‧‧電感器703‧‧‧負載704、705‧‧‧開關706‧‧‧驅動器電路707‧‧‧回饋電路709‧‧‧相節點801‧‧‧第一邏輯閘為及閘901、902‧‧‧電容器及二極體電路903、904‧‧‧邏輯閘905‧‧‧最小脈寬濾波器
圖1為最小脈寬保證電路之方塊圖。
圖2為使用低通濾波器及斯密特觸發器作為最小脈寬濾波器電路之最小脈寬保證電路之方塊圖。
圖3A為圖2中使用之最小脈寬濾波器電路的方塊圖及用於描述最小脈寬濾波器電路如何濾除低至高之突波的一組波形。
圖3B為圖2中使用之最小脈寬濾波器電路的方塊圖及用於描述最小脈寬濾波器電路如何濾除高至低之突波的一組波形。
圖4為使用電阻器、電容器及二極體電路作為第一回饋路徑之單觸發定時器電路之最小脈寬保證電路的方塊圖。
圖5為圖4之下部單觸發電路之方塊圖,其標記有邏輯轉變以描述電路如何保證給定極性之脈衝的最小脈寬。
圖6為使用位於脈寬調變器比較器與閘極驅動器電路之間的最小脈寬保證電路之功率轉換器之方塊圖。
圖7為圖6中使用的最小脈寬保證電路之方塊圖。
圖8為使用單觸發定時器電阻器、電容器及二極體電路用於第一回饋路徑及第二回饋路徑兩者之最小脈寬保證電路的方塊圖。
100‧‧‧最小脈寬保證電路
101‧‧‧最小脈寬濾波器電路
102、103‧‧‧回饋路徑
104、106‧‧‧單觸發電路
105、107‧‧‧邏輯電路
108‧‧‧緩衝器

Claims (37)

  1. 一種最小脈寬保證電路,其包含: 一第一邏輯電路,其中該第一邏輯電路之一第一輸入端連接至該最小脈寬保證電路之一輸入端; 一第二邏輯電路,其中該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端; 一最小脈寬濾波器電路,其通信地耦合至該第二邏輯電路之一輸出端; 一第一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之一輸出端且位於一第一回饋路徑上;以及 一第二單觸發電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端且位於一第二回饋路徑上; 其中該第一邏輯電路之一第二輸入端在該第一回饋路徑上;且 其中該第二邏輯電路之一第二輸入端在該第二回饋路徑上。
  2. 如申請專利範圍第1項之最小脈寬保證電路,其中該最小脈寬濾波器電路包含: 一低通濾波器,其通信地耦合至該第二邏輯電路之一輸出端;以及 一斯密特觸發器電路,其耦合至該低通濾波器之一輸出端; 其中該斯密特觸發器電路之一輸出端為該最小脈寬濾波器電路之該輸出端。
  3. 如申請專利範圍第2項之最小脈寬保證電路,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之一輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓節點; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最小可允許脈衝之一脈衝邊緣平滑; 其中該斯密特觸發器電路使該最小可允許脈衝之該脈衝邊緣銳化; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最大可濾除脈衝之一脈衝邊緣平滑;且 其中該斯密特觸發器電路不對該最大可濾除脈衝之該脈衝邊緣作出回應。
  4. 如申請專利範圍第3項之最小脈寬保證電路,其中該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之一輸出端及一單觸發電路節點; 一電阻器,其連接至該最小脈寬濾波器電路之一輸出端及該單觸發電路節點; 一電容器,其將該單觸發電路節點耦合至一DC偏電壓節點;以及 一第三邏輯電路,其通信地耦合至該單觸發電路節點; 其中該第一單觸發電路之該第三邏輯電路之一輸出端在該第一回饋路徑上;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端在該第二回饋路徑上。
  5. 如申請專利範圍第1項之最小脈寬保證電路,其中: 該最小脈寬保證電路不包括數位鎖存器;且 該第一單觸發電路及該第二單觸發電路不使用一時脈信號。
  6. 如申請專利範圍第1項之最小脈寬保證電路,其中: 該第一單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一高至低之轉變而在一第一單觸發電路輸出端上輸出一脈衝; 該第二單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一低至高之轉變而在一第二單觸發電路輸出端上輸出一脈衝; 該第一單觸發電路將一低脈衝延伸至一第一最小寬度;且 該第二單觸發電路將一高脈衝延伸至一第二最小寬度。
  7. 如申請專利範圍第1項之最小脈寬保證電路,其中: 該第一單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一低至高之轉變而在一第一單觸發電路輸出端上輸出一脈衝; 該第二單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一高至低之轉變而在一第二單觸發電路輸出端上輸出一脈衝; 該第一單觸發電路將一高脈衝延伸至一第一最小寬度;且 該第二單觸發電路將一低脈衝延伸至一第二最小寬度。
  8. 如申請專利範圍第1項之最小脈寬保證電路,其中該最小脈寬保證電路將一脈寬調變器比較器通信地耦合至一功率轉換器中之一閘極驅動器。
  9. 如申請專利範圍第8項之最小脈寬保證電路,其進一步包含: 一緩衝器,其連接至該最小脈寬濾波器電路之該輸出端;以及 該第一邏輯電路之一第三輸入端,其通信地耦合至一脈寬調變器空白信號源; 其中該最小脈寬保證電路之該輸入端連接至該脈寬調變器比較器;且 其中該緩衝器之一輸出端通信地耦合至該閘極驅動器。
  10. 如申請專利範圍第2項之最小脈寬保證電路,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之一輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓節點; 其中該斯密特觸發器電路、該濾波電阻器及該濾波電容器界定一去突波週期;且 其中該第一單觸發電路在該去突波週期內被觸發。
  11. 如申請專利範圍第1項之最小脈寬保證電路,其中該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之一輸出端及一單觸發電路節點; 一電阻器,其連接至該最小脈寬濾波器電路之一輸出端及該單觸發電路節點; 一電容器,其將該單觸發電路節點耦合至一DC偏電壓節點; 一反相器,其通信地耦合至該單觸發電路節點;以及 一第三邏輯電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端及該反相器之一輸出端; 其中該第一單觸發電路之該第三邏輯電路之一輸出端在該第一回饋路徑上;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端在該第二回饋路徑上。
  12. 如申請專利範圍第11項之最小脈寬保證電路,其中: 該第一邏輯電路為一及閘; 該第二邏輯電路為一或閘; 該第一單觸發電路之該第三邏輯電路為一或閘;且 該第二單觸發電路之該第三邏輯電路為一及閘。
  13. 一種最小脈寬保證電路,其包含: 一第一邏輯電路,其中該第一邏輯電路之一第一輸入端連接至該最小脈寬保證電路之一輸入端; 一第二邏輯電路,其中該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端; 一最小脈寬濾波器電路,其通信地耦合至該第二邏輯電路之一輸出端; 一第一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之一輸出端;以及 一第二單觸發電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端; 其中該第一邏輯電路之一第二輸入端耦合至該第一單觸發電路之一輸出端;且 其中該第二邏輯電路之一第二輸入端耦合至該第二單觸發電路之一輸出端。
  14. 如申請專利範圍第13項之最小脈寬保證電路,其中該最小脈寬濾波器電路包含: 一低通濾波器,其通信地耦合至該第二邏輯電路之一輸出端;以及 一斯密特觸發器電路,其耦合至該低通濾波器之一輸出端; 其中該斯密特觸發器電路之一輸出端為該最小脈寬濾波器電路之該輸出端。
  15. 如申請專利範圍第14項之最小脈寬保證電路,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之一輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓節點; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最小可允許脈衝之一脈衝邊緣平滑; 其中該斯密特觸發器電路使該最小可允許脈衝之該脈衝邊緣銳化; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最大可濾除脈衝之一脈衝邊緣平滑;且 其中該斯密特觸發器電路不對該最大可濾除脈衝之該脈衝邊緣作出回應。
  16. 如申請專利範圍第15項之最小脈寬保證電路,該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之一輸出端及一單觸發電路節點; 一電阻器,其連接至該最小脈寬濾波器電路之一輸出端及該單觸發電路節點; 一電容器,其將該單觸發電路節點耦合至一DC偏電壓節點;以及 一第三邏輯電路,其通信地耦合至該單觸發電路節點; 其中該第一單觸發電路之該第三邏輯電路之一輸出端為該第一單觸發電路之該輸出端;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端為該第二單觸發電路之該輸出端。
  17. 如申請專利範圍第13項之最小脈寬保證電路,其中: 該最小脈寬保證電路不包括數位鎖存器;且 該第一單觸發電路及該第二單觸發電路為類比電路。
  18. 如申請專利範圍第13項之最小脈寬保證電路,其中: 該第一單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一高至低之轉變而在一第一單觸發電路輸出端上輸出一脈衝; 該第二單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一低至高之轉變而在一第二單觸發電路輸出端上輸出一脈衝; 該第一單觸發電路將一低脈衝延伸至一第一最小寬度;且 該第二單觸發電路將一高脈衝延伸至一第二最小寬度。
  19. 如申請專利範圍第13項之最小脈寬保證電路,其中: 該第一單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一低至高之轉變而在一第一單觸發電路輸出端上輸出一脈衝; 該第二單觸發電路回應於該最小脈寬濾波器電路之該輸出端上的一高至低之轉變而在一第二單觸發電路輸出端上輸出一脈衝; 該第一單觸發電路將一高脈衝延伸至一第一最小寬度;且 該第二單觸發電路將一低脈衝延伸至一第二最小寬度。
  20. 如申請專利範圍第13項之最小脈寬保證電路,其中該最小脈寬保證電路將一脈寬調變器比較器通信地耦合至一功率轉換器中之一閘極驅動器。
  21. 如申請專利範圍第20項之最小脈寬保證電路,其進一步包含: 一緩衝器,其連接至該最小脈寬濾波器電路之該輸出端;以及 該第一邏輯電路之一第三輸入端,其通信地耦合至一脈寬調變器空白信號源; 其中該最小脈寬保證電路之該輸入端連接至該脈寬調變器比較器;且 其中該緩衝器之一輸出端通信地耦合至該閘極驅動器。
  22. 如申請專利範圍第15項之最小脈寬保證電路,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之一輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓; 其中該斯密特觸發器電路、該濾波電阻器及該濾波電容器界定一去突波週期;且 其中該第一單觸發電路在該去突波週期內被觸發。
  23. 如申請專利範圍第14項之最小脈寬保證電路,該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之一輸出端及一充電節點; 一電阻器,其連接至該最小脈寬濾波器電路之一輸出端及該充電節點; 一電容器,其將該充電節點耦合至一DC偏電壓節點; 一反相器,其通信地耦合至該充電節點;以及 一第三邏輯電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端及該反相器之一輸出端; 其中該第一單觸發電路之該第三邏輯電路之一輸出端為該第一單觸發電路之該輸出端;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端為該第二單觸發電路之該輸出端。
  24. 如申請專利範圍第23項之最小脈寬保證電路,其中: 該第一邏輯電路為一及閘; 該第二邏輯電路為一或閘; 該第一單觸發電路之該第三邏輯電路為一或閘;且 該第二單觸發電路之該第三邏輯電路為一及閘。
  25. 一種功率轉換器,其包含: 一功率電晶體,其具有一閘極節點; 一閘極驅動器,其將一控制信號提供至該閘極節點; 一脈寬調變器比較器,其產生用於該閘極驅動器之一脈寬調變信號;以及 一最小脈寬保證電路,其將該脈寬調變器比較器耦合至該閘極驅動器; 其中該最小脈寬保證電路包括: 一第一邏輯電路,其中該第一邏輯電路之一第一輸入端連接至該最小脈寬保證電路之一輸入端; 一第二邏輯電路,其中該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之一輸出端; 一最小脈寬濾波器電路,其通信地耦合至該第二邏輯電路之一輸出端; 一第一單觸發電路,其通信地耦合至該最小脈寬濾波器電路之一輸出端且位於一第一回饋路徑上,其中該第一邏輯電路之一第二輸入端在該第一回饋路徑上;以及 一第二單觸發電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端且位於一第二回饋路徑上,其中該第二邏輯電路之一第二輸入端在該第二回饋路徑上; 其中該最小脈寬保證電路之該輸入端通信地耦合至該脈寬調變器比較器;且 其中該最小脈寬保證電路之一輸出端通信地耦合至該閘極驅動器。
  26. 如申請專利範圍第25項之功率轉換器,其中該最小脈寬濾波器電路包含: 一低通濾波器,其通信地耦合至該第二邏輯電路之一輸出端;以及 一斯密特觸發器電路,其耦合至該低通濾波器之一輸出端; 其中該斯密特觸發器電路之一輸出端為該最小脈寬濾波器電路之該輸出端。
  27. 如申請專利範圍第26項之功率轉換器,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之一輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓節點; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最小可允許脈衝之一脈衝邊緣平滑; 其中該斯密特觸發器電路使該最小可允許脈衝之該脈衝邊緣銳化; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最大可濾除脈衝之一脈衝邊緣平滑;且 其中該斯密特觸發器電路不對該最大可濾除脈衝之該脈衝邊緣作出回應。
  28. 如申請專利範圍第25項之功率轉換器,其中該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之一輸出端及一單觸發電路節點; 一電阻器,其連接至該最小脈寬濾波器電路之一輸出端及該單觸發電路節點; 一電容器,其將該單觸發電路節點耦合至一DC偏電壓節點; 一反相器,其通信地耦合至該單觸發電路節點;以及 一第三邏輯電路,其通信地耦合至該最小脈寬濾波器電路之該輸出端及該反相器之一輸出端; 其中該第一單觸發電路之該第三邏輯電路之一輸出端在該第一回饋路徑上;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端在該第二回饋路徑上。
  29. 如申請專利範圍第28項之功率轉換器,其中: 該第一邏輯電路為一及閘; 該第二邏輯電路為一或閘; 該第一單觸發電路之該第三邏輯電路為一或閘;且 該第二單觸發電路之該第三邏輯電路為一及閘。
  30. 一種用於使用一最小脈寬保證電路保證一最小脈寬之方法,該方法包含: 在一第一邏輯電路之一第一輸入端接收一第一信號,其中該第一邏輯電路之該第一輸入端連接至該最小脈寬保證電路之一輸入端; 自該第一邏輯電路之一輸出端輸出一第二信號,該第二信號係由該第一邏輯電路對該第一信號及在該第一邏輯電路之一第二輸入端接收之一信號執行之一邏輯運算產生; 在一第二邏輯電路處接收該第二信號,其中該第二邏輯電路之一第一輸入端通信地耦合至該第一邏輯電路之該輸出端; 自該第二邏輯電路之一輸出端輸出一第三信號,該第三信號係由該第二邏輯電路對該第二信號及在該第二邏輯電路之一第二輸入端接收之一信號執行之一邏輯運算產生; 在一最小脈寬濾波器電路之一輸入端接收該第三信號,該最小脈寬濾波器電路之該輸入端通信地耦合至該第二邏輯電路之該輸出端; 自該最小脈寬濾波器電路之一輸出端輸出一第四信號,若該第三信號之一脈寬小於一最大可濾除脈衝之一寬度,則該第四信號不包含脈衝,且若該第三信號之一脈寬大於一最小可允許脈衝之一寬度,則該第四信號包含一脈衝; 在一第一單觸發電路之一輸入端接收該第四信號,該第一單觸發電路之該輸入端通信地耦合至該最小脈寬濾波器電路之該輸出端; 在一第二單觸發電路之一輸入端接收該第四信號,該第二單觸發電路之該輸入端通信地耦合至該最小脈寬濾波器電路之該輸出端; 自該第一單觸發電路之一輸出端輸出一第五信號,該第一單觸發電路之該輸出端耦合至該第一邏輯電路之一第二輸入端,若該第四信號包含一高至低之轉變,則該第五信號包含一脈衝; 自該第二單觸發電路之一輸出端輸出一第六信號,該第二單觸發電路之該輸出端耦合至該第二邏輯電路之一第二輸入端,若該第四信號包含一低至高之轉變,則該第六信號包含一脈衝; 在該第一邏輯電路之該第二輸入端接收該第五信號;以及 在該第二邏輯電路之該第二輸入端接收該第六信號。
  31. 如申請專利範圍第30項之方法,其中該最小脈寬濾波器電路包含: 一低通濾波器,其通信地耦合至該第二邏輯電路之該輸出端;以及 一斯密特觸發器電路,其耦合至該低通濾波器之一輸出端; 其中該斯密特觸發器電路之一輸出端為該最小脈寬濾波器電路之該輸出端。
  32. 如申請專利範圍第31項之方法,其中該低通濾波器包含: 一濾波電阻器,其將該第二邏輯電路之該輸出端耦合至該斯密特觸發器電路之一輸入端;以及 一濾波電容器,其將該斯密特觸發器電路之該輸入端耦合至一DC偏電壓節點; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最小可允許脈衝之一脈衝邊緣平滑; 其中該斯密特觸發器電路使該最小可允許脈衝之該脈衝邊緣銳化; 其中該濾波電阻器及該濾波電容器使提供至該低通濾波器之一最大可濾除脈衝之一脈衝邊緣平滑;且 其中該斯密特觸發器電路不對該最大可濾除脈衝之該脈衝邊緣作出回應。
  33. 如申請專利範圍第30項之方法,其中該第一單觸發電路及該第二單觸發電路各自個別地包含: 一二極體,其連接至該最小脈寬濾波器電路之該輸出端及一單觸發電路節點; 一電阻器,其連接至該最小脈寬濾波器電路之該輸出端及該單觸發電路節點; 一電容器,其將該單觸發電路節點耦合至一DC偏電壓節點;以及 一第三邏輯電路,其通信地耦合至該單觸發電路節點; 其中該第一單觸發電路之該第三邏輯電路之一輸出端為該第一單觸發電路之該輸出端;且 其中該第二單觸發電路之該第三邏輯電路之一輸出端為該第二單觸發電路之該輸出端。
  34. 如申請專利範圍第33項之方法,其中: 該第一邏輯電路為一及閘; 該第二邏輯電路為一或閘; 該第一單觸發電路之該第三邏輯電路為一或閘;且 該第二單觸發電路之該第三邏輯電路為一及閘。
  35. 如申請專利範圍第30項之方法,其中: 該第一單觸發電路將該第四信號之一低脈衝延伸至一第一最小寬度;且 該第二單觸發電路將該第四信號之一高脈衝延伸至一第二最小寬度。
  36. 如申請專利範圍第30項之方法,其中該最小脈寬保證電路將一脈寬調變器比較器通信地耦合至一功率轉換器中之一閘極驅動器。
  37. 如申請專利範圍第36項之方法,其中該最小脈寬保證電路進一步包含: 一緩衝器,其連接至該最小脈寬濾波器電路之該輸出端;以及 該第一邏輯電路之一第三輸入端,其通信地耦合至一脈寬調變器空白信號源; 其中該最小脈寬保證電路之該輸入端連接至該脈寬調變器比較器;且 其中該緩衝器之一輸出端通信地耦合至該閘極驅動器。
TW106144887A 2016-12-22 2017-12-20 最小脈寬保證技術 TWI729252B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/389,361 US9838000B1 (en) 2016-12-22 2016-12-22 Minimum pulse-width assurance
US15/389,361 2016-12-22
US15/831,047 US10033366B2 (en) 2016-12-22 2017-12-04 Minimum pulse-width assurance
US15/831,047 2017-12-04

Publications (2)

Publication Number Publication Date
TW201838334A TW201838334A (zh) 2018-10-16
TWI729252B true TWI729252B (zh) 2021-06-01

Family

ID=62626005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144887A TWI729252B (zh) 2016-12-22 2017-12-20 最小脈寬保證技術

Country Status (5)

Country Link
US (2) US10033366B2 (zh)
KR (1) KR102469269B1 (zh)
CN (1) CN110089034B (zh)
TW (1) TWI729252B (zh)
WO (1) WO2018116109A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223343B2 (en) * 2020-04-14 2022-01-11 Nxp Usa, Inc. Noise suppression circuit for digital signals
JP7492926B2 (ja) 2021-02-04 2024-05-30 日立グローバルライフソリューションズ株式会社 インバータ装置、モータ駆動装置、並びに冷凍機器
CN113938009B (zh) * 2021-09-23 2023-10-13 南京工业大学 一种自适应高带宽包络线跟踪电源及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW425551B (en) * 1998-04-13 2001-03-11 Nippon Electric Co Pulse duration changer for stably generating output pulse signal from high-frequency input pulse signal and method used therein
US20020093391A1 (en) * 2000-10-03 2002-07-18 Seiji Ishida Pulse width modulation method, pulse width modulator and power converter
TW200301042A (en) * 2001-12-12 2003-06-16 Etron Technology Inc A minimum pulse width detection and regeneration circuit
US20070145961A1 (en) * 2005-12-26 2007-06-28 Fujitsu Limited DC-DC converter and control circuit for DC-DC converter
CN101160714A (zh) * 2006-02-09 2008-04-09 埃派克森微电子有限公司 D类放大中的信号调制方法及其电路
CN101438623A (zh) * 2006-03-13 2009-05-20 线形技术公司 增加最大脉宽调制调光率和避免发光二极管闪烁的发光二极管调光控制技术
US7646240B2 (en) * 2003-11-06 2010-01-12 Marvell World Trade Ltd. Class D amplifier
US20100164456A1 (en) * 2008-12-26 2010-07-01 Rohm Co., Ltd. Control circuit and control method for switching regulator
TWI342103B (zh) * 2005-09-13 2011-05-11 Toshiba Carrier Corp
US7961120B1 (en) * 2006-12-12 2011-06-14 Marvell International Ltd. Truncation for three-level digital amplifier

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013939A (en) 1974-12-30 1977-03-22 Trw Inc. Multiple feedback control apparatus for power conditioning equipment
US5077540A (en) 1990-06-14 1991-12-31 University Of Virginia Patents Foundation Minimum pulse width switching power amplifier
US5365181A (en) 1993-03-15 1994-11-15 Texas Instruments Incorporated Frequency doubler having adaptive biasing
TW357944U (en) * 1997-03-24 1999-05-01 Advance Reality Technology Inc Wave width controller
US6906499B2 (en) 2003-06-27 2005-06-14 Seagate Technology Llc Current mode bang-bang controller in a switching voltage regulator
ITVA20040059A1 (it) 2004-12-10 2005-03-10 St Microelectronics Srl Metodo e circuito di filtraggio di glitch
KR100588334B1 (ko) 2005-03-29 2006-06-09 삼성전자주식회사 슈도 슈미트 트리거 회로를 이용한 디시-디시 컨버터 및펄스 폭 변조방법
GB2429351B (en) 2005-08-17 2009-07-08 Wolfson Microelectronics Plc Feedback controller for PWM amplifier
US7568117B1 (en) 2005-10-03 2009-07-28 Zilker Labs, Inc. Adaptive thresholding technique for power supplies during margining events
DE102006006083B4 (de) 2006-02-09 2014-09-04 Infineon Technologies Ag Vorrichtung und Verfahren zur Pulsweitenmodulation
US7457140B2 (en) 2006-08-18 2008-11-25 Fairchild Semiconductor Corporation Power converter with hysteretic control
US7646185B2 (en) * 2006-08-25 2010-01-12 Micrel, Inc. Automatic external switch detection in synchronous switching regulator controller
US7777587B2 (en) 2008-08-06 2010-08-17 International Rectifier Corporation Minimum pulse width for pulse width modulation control
US20100090739A1 (en) 2008-10-15 2010-04-15 Tellabs Petaluma, Inc. Method and Apparatus for Removing Narrow Pulses from a Clock Waveform
JP2011061887A (ja) 2009-09-07 2011-03-24 Mitsubishi Electric Corp 電力変換装置、電力変換装置の制御方法、および空気調和機
CN102195466B (zh) 2010-03-02 2014-09-17 登丰微电子股份有限公司 抗噪声切换式转换电路及其控制器
KR101171561B1 (ko) * 2010-09-29 2012-08-06 삼성전기주식회사 펄스 폭에 따라 동작하는 슈미트 트리거 회로
US8203359B2 (en) * 2010-09-28 2012-06-19 Intersil Americas Inc. System and method for open loop modulation to detect narrow PWM pulse
JP5768475B2 (ja) 2011-04-28 2015-08-26 ミツミ電機株式会社 スイッチング電源装置
US9423807B2 (en) * 2013-03-06 2016-08-23 Qualcomm Incorporated Switching power converter
US8890575B1 (en) 2013-07-19 2014-11-18 Integrated Silicon Solution, Inc. Glitch-free input transition detector
US10320290B2 (en) 2013-08-09 2019-06-11 Microsemi Corporation Voltage regulator with switching and low dropout modes
KR102147465B1 (ko) * 2013-12-13 2020-08-25 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
US9608613B2 (en) 2015-06-30 2017-03-28 Synaptics Incorporated Efficient high voltage square wave generator
JP6468399B2 (ja) * 2016-06-03 2019-02-13 富士電機株式会社 半導体素子の駆動装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW425551B (en) * 1998-04-13 2001-03-11 Nippon Electric Co Pulse duration changer for stably generating output pulse signal from high-frequency input pulse signal and method used therein
US20020093391A1 (en) * 2000-10-03 2002-07-18 Seiji Ishida Pulse width modulation method, pulse width modulator and power converter
TW200301042A (en) * 2001-12-12 2003-06-16 Etron Technology Inc A minimum pulse width detection and regeneration circuit
US7646240B2 (en) * 2003-11-06 2010-01-12 Marvell World Trade Ltd. Class D amplifier
TWI342103B (zh) * 2005-09-13 2011-05-11 Toshiba Carrier Corp
US20070145961A1 (en) * 2005-12-26 2007-06-28 Fujitsu Limited DC-DC converter and control circuit for DC-DC converter
CN101160714A (zh) * 2006-02-09 2008-04-09 埃派克森微电子有限公司 D类放大中的信号调制方法及其电路
CN101438623A (zh) * 2006-03-13 2009-05-20 线形技术公司 增加最大脉宽调制调光率和避免发光二极管闪烁的发光二极管调光控制技术
US7961120B1 (en) * 2006-12-12 2011-06-14 Marvell International Ltd. Truncation for three-level digital amplifier
US20100164456A1 (en) * 2008-12-26 2010-07-01 Rohm Co., Ltd. Control circuit and control method for switching regulator

Also Published As

Publication number Publication date
KR20190089919A (ko) 2019-07-31
US20180183419A1 (en) 2018-06-28
CN110089034B (zh) 2022-11-08
US20180331677A1 (en) 2018-11-15
US10033366B2 (en) 2018-07-24
TW201838334A (zh) 2018-10-16
KR102469269B1 (ko) 2022-11-22
CN110089034A (zh) 2019-08-02
WO2018116109A1 (en) 2018-06-28
US10250244B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
TWI729252B (zh) 最小脈寬保證技術
CN109560807B (zh) 高电压电平移位器电路
US9838000B1 (en) Minimum pulse-width assurance
JP6993548B2 (ja) 遷移事象検出器回路及び方法
US10181722B2 (en) Single inductor, multiple output DC-DC converter
US8624655B2 (en) Level shifter circuit and gate driver circuit including the same
TWI514770B (zh) 直流電壓產生電路及其脈衝產生電路
JP4265894B2 (ja) Dc/dcコンバータの制御回路及びdc/dcコンバータ
US20130049718A1 (en) Class d amplifier and control method
TWI528701B (zh) 具有相位自我檢測的多相式升壓轉換器及其檢測電路
JP2007329822A (ja) 駆動回路
JP6145038B2 (ja) Dc−dcコンバータ、および、半導体集積回路
WO2022015366A1 (en) Method, system and apparatus for constant, high switching frequency and narrow duty ratio pwm control of dc-dc converters and accurate pfm control at light load
US6828836B1 (en) Two comparator voltage mode PWM
TWI660185B (zh) 反向器用負載異常檢測電路
JP6354937B2 (ja) 駆動回路、集積回路装置及びチャージポンプ回路の制御方法
US9912331B2 (en) Gate driver that drives with a sequence of gate resistances
JP2009016997A (ja) スイッチング回路
JP2009278406A (ja) 半導体回路
JP2020162248A (ja) Dc/dcコンバータの制御回路、制御方法および電子機器
KR101404568B1 (ko) 전류 모드 제어의 펄스폭변조 변환 장치
JP5595204B2 (ja) スイッチング素子の駆動回路
WO2022146956A1 (en) Power converter control
TW201117541A (en) Dc-dc converter
CN111725975B (zh) 用于开关模式电源中的半桥配置的并联同步操作