TWI727591B - 具堅固性的異質接面雙極性電晶體結構 - Google Patents

具堅固性的異質接面雙極性電晶體結構 Download PDF

Info

Publication number
TWI727591B
TWI727591B TW109100043A TW109100043A TWI727591B TW I727591 B TWI727591 B TW I727591B TW 109100043 A TW109100043 A TW 109100043A TW 109100043 A TW109100043 A TW 109100043A TW I727591 B TWI727591 B TW I727591B
Authority
TW
Taiwan
Prior art keywords
layer
emitter
cap layer
emitter cap
bipolar transistor
Prior art date
Application number
TW109100043A
Other languages
English (en)
Other versions
TW202127665A (zh
Inventor
黃朝興
金宇中
曾敏男
陳凱榆
Original Assignee
全新光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全新光電科技股份有限公司 filed Critical 全新光電科技股份有限公司
Priority to TW109100043A priority Critical patent/TWI727591B/zh
Application granted granted Critical
Publication of TWI727591B publication Critical patent/TWI727591B/zh
Publication of TW202127665A publication Critical patent/TW202127665A/zh

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Abstract

提供一種具堅固性的異質接面雙極性電晶體結構,包含基板與形成於基板上的多層結構,在多層結構中的射極層與歐姆接觸層之間形成第一射極蓋層與第二射極蓋層或僅形成射極蓋層;在設置有第一射極蓋層與第二射極蓋層的情形中,射極層之上形成第一射極蓋層與第二射極蓋層,藉由使第一射極蓋層或第二射極蓋層的能隙發生變化,而提升HBT的堅固性;而在設置有一射極蓋層的情形時,射極蓋層是介於射極層與歐姆接觸層之間,藉由使至少一部分的射極蓋層的電子親和力小於或等於射極層的電子親和力,而提升HBT的堅固性。

Description

具堅固性的異質接面雙極性電晶體結構
關於一種電晶體結構,尤其是一種異質接面雙極性電晶體結構。
異質接面雙極性電晶體(Heterojunction Bipolar Transistor, HBT)是利用不同半導體材料構成射極層及基極層,並在射極層與基極層的接面處形成異質接面,其好處在於基極層流向射極層的電洞流因為較難跨越基極層與射極層之間的價電帶(Valence Band)位障(△Ev),尤其當射極材料為InGaP、InGaAsP或InAlGaP時,射極層與基極層的價電帶位障特別大,使得射極注入效率(Emitter Injection Efficiency)提高,進而使基極在較高的摻雜濃度下仍可提高電流增益,並進而提升HBT的高頻響應特性。當HBT作為用於手持式裝置的功率放大器(Power Amplifier, PA)時,功率放大器的效率(Power Added Efficiency, PAE)顯得格外重要。在HBT元件上,除了透過調整HBT的磊晶層結構可提高PAE之外,也可透過電路設計方式提高PA的操作電壓或電流,以有效地提升PAE。然而,當HBT在高電壓或高電流下操作時容易因為過大的功率而使HBT元件損壞,例如PA與天線不匹配時所反彈回來的過大功率造成HBT及PA的堅固性(Ruggedness)變差,因此如何有效增進異質接面雙極性電晶體在高電壓或高電流(也就是,高功率密度)操作下的堅固性(Ruggedness)便是一個很重要的課題。
圖1為現有技術中HBT結構的示意圖,其顯示HBT結構1在基板10上由下而上依序堆疊次集極層20、集極層30、基極層40、射極層50、射極蓋層60、以及歐姆接觸層70。一般而言,射極層50是由InGaP形成且射極蓋層60是由GaAs形成,於兩者的接面處會存在很大的導電帶不連續(△Ec),因而形成很大的電子位能障,於是,如圖2所示,當電子由射極蓋層60通往射極層50時,導電帶的位能障會阻礙電子流動,因而導致很大的射極電阻(Re)產生。為了降低此射極電阻,一般會在射極蓋層60使用高摻雜濃度的N型GaAs。然而,當使用高摻雜濃度的射極蓋層60時,會使射-基極接面的崩潰電壓(BVebo)下降並使射-基極接面電容(Cbe)上升,進而對HBT的堅固性及高頻響應(RF)特性造成不良的影響。對此,為了提高射-基極接面的崩潰電壓並降低射-基極接面電容,現有技術中唯有透過增加射極層50的厚度來達成。然而,此方法不僅會增加HBT的製程難度,且射極層50的電阻還會隨厚度增加而增加,進而影響HBT的RF特性。
本發明為克服上述技術問題而完成者,提供一種具堅固性的異質接面雙極性電晶體結構,除了能有效的在不增加或少量增加射極電阻下提升射-基極接面的崩潰電壓及降低射-基極接面電容,並能利用砷化鋁鎵(AlGaAs)等含鋁(Al)半導體材料具有較高能隙及在高溫下電阻率隨溫度上升而快速上升的特性,以提升在高功率密度操作時的PA的堅固性,增進RF特性,並能透過改變HBT設計方式,例如降低Re,以犧牲部分增加的PA堅固性換取進一步提升PA的效率,增進PA的整體效能及設計的彈性。而即使Re值有上升,除可進一步提升PA的堅固性,也可提升PA的線性度(Linearity)。
在包含第一射極蓋層與第二射極蓋層的HBT的實施例中,一種具堅固性的異質接面雙極性電晶體結構包含:一基板;一次集極層,在該基板上,該次集極層包含N型III-V族半導體材料;一集極層,在該次集極層上,該集極層包含III-V族半導體材料;一基極層,在該集極層上,該基極層包含P型III-V族半導體材料;一射極層,在該基極層上,該射極層包含InGaP、InGaAsP及InAlGaP的至少其中一種N型半導體材料;一第一射極蓋層,在該射極層上,該第一射極蓋層包含III-V族半導體材料;一第二射極蓋層,在該第一射極蓋層上,該第二射極蓋層包含III-V族半導體材料;以及一歐姆接觸層,在該第二射極蓋層上,該歐姆接觸層包含N型III-V族半導體材料;其中,在該第二射極蓋層往該射極層的方向上,該第一射極蓋層或該第二射極蓋層的能隙變化包含能隙由小到大漸變以及能隙持平的至少其中一種。
在一實施例中,該第一射極蓋層包含選自由以下各者組成的群組的至少一半導體材料:Al xGa 1-xAs、Al xGa 1-xAs 1-yN y、Al xGa 1-xAs 1-zP z、Al xGa 1-xAs 1-wSb w、In rAl xGa 1-x-rAs及In rAl xGa 1-x-rP,其中,x值為0<x<1;或者,x值的最大值為0.03≤x≤0.8;或者,x值的最大值為0.05≤x≤0.4,且y、z、r、w≤0.1。
在一實施例中,該第一射極蓋層或該第二射極蓋層包含至少一均勻層。
在一實施例中,該第一射極蓋層或該第二射極蓋層包含至少一漸變層,且在該第二射極蓋層往該射極層的方向上,該漸變層的能隙變化至少包含由小到大漸變。
在一實施例中,該第一射極蓋層或該第二射極蓋層包含至少一均勻層及至少一漸變層的組合,且在該第二射極蓋層往該射極層的方向上,該漸變層的能隙變化至少包含由小到大漸變。
在一實施例中,該第一射極蓋層或該第二射極蓋層的厚度為1nm~500nm;該第一射極蓋層或該第二射極蓋層的N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3
在一實施例中,透過光致螢光光譜法(Photoluminescence, PL),在該射極層的材料中,InGaP的放射波長在694nm以下,InGaAsP的放射波長在710nm以下,InAlGaP的放射波長在685nm以下。
在一實施例中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在685nm以下,InGaAsP的放射波長在695nm以下,InAlGaP的放射波長在675nm以下。
在一實施例中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在675nm以下,InGaAsP的放射波長在685nm以下,InAlGaP的放射波長在665nm以下。
在一實施例中,進一步包含一中間複合層,位於該基板與該次集極層之間。
在一實施例中,該中間複合層包含至少一層緩衝層,且該緩衝層包含III-V族半導體材料。
在一實施例中,該中間複合層包含一場效電晶體。
在一實施例中,該中間複合層包含一假性高電子遷移率電晶體,該假性高電子遷移率電晶體在該基板上形成:至少一緩衝層、一第一摻雜層、一第一間隔層、一通道層、一第二間隔層、一第二摻雜層、一肖特基層、一蝕刻終止層及用於歐姆接觸的一頂蓋層。該緩衝層包含III-V族半導體材料;該第一摻雜層或該第二摻雜層包含選自由以下各者組成的群組的至少一種N型半導體材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該第一間隔層或該第二間隔層包含選自由以下各者組成的群組的至少一半導體材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該通道層包含選自由以下各者組成的群組的至少一材料:GaAs、InGaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該肖特基層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該蝕刻終止層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaAsP、InGaP及AlAs;該頂蓋層包含N型III-V族半導體材料。
在一實施例中,進一步包含一間隔層,該間隔層位於該第一射極蓋層與該射極層之間,或該間隔層位於該第一射極蓋層與該第二射極蓋層之間;該間隔層包含N型摻雜的或不摻雜的III-V族半導體材料。
在一實施例中,該間隔層的厚度為0.2nm~200nm;該間隔層的N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3
在一實施例中,該間隔層包含選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、InGaAs、GaAsSb、 InAlGaP及GaAs。
在一實施例中,該間隔層的能隙變化包含能隙由小到大漸變、能隙持平及能隙由大到小漸變的至少其中一種。
以下各實施例是關於射極蓋層的電子親和力。
一種具堅固性的異質接面雙極性電晶體結構包含:一基板;一次集極層,在該基板上,該次集極層包含N型III-V族半導體材料;一集極層,在該次集極層上,該集極層包含III-V族半導體材料;一基極層,在該集極層上,該基極層包含P型III-V族半導體材料;一射極層,在該基極層上,該射極層包含N型III-V族半導體材料;一射極蓋層,在該射極層上,該射極蓋層包含III-V族半導體材料;以及一歐姆接觸層,在該射極蓋層上,該歐姆接觸層包含N型III-V族半導體材料;其中,該射極蓋層的至少一部分為一電流箝制層,該電流箝制層的電子親和力小於或等於該射極層的電子親和力。
其中,射極層包含選自由以下各者組成的群組的至少一N型半導體材料:InGaP、InGaAsP、AlGaAs及InAlGaP。該電流箝制層包含選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、GaAsSb、InAlGaP及GaAs。
在一實施例中,該射極蓋層包含至少一均勻層。
在一實施例中,該射極蓋層包含至少一漸變層,且在該歐姆接觸層往該射極層的方向上,該漸變層的能隙變化至少包含由小到大漸變。
在一實施例中,該射極蓋層包含至少一均勻層及至少一漸變層的組合,且在該歐姆接觸層往該射極層的方向上,該漸變層的能隙變化至少包含由小到大漸變。
在一實施例中,該射極蓋層的厚度為1nm~500nm;該射極蓋層的N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3
在一實施例中,透過光致螢光光譜法(Photoluminescence, PL),在該射極層的材料中,InGaP的放射波長在694nm以下,InGaAsP的放射波長在710nm以下,InAlGaP的放射波長在685nm以下。
在一實施例中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在685nm以下,InGaAsP的放射波長在695nm以下,InAlGaP的放射波長在675nm以下。
在一實施例中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在675nm以下,InGaAsP的放射波長在685nm以下,InAlGaP的放射波長在665nm以下。
在一實施例中,進一步包含一中間複合層,位於該基板與該次集極層之間。
在一實施例中,該中間複合層包含至少一層緩衝層,且該緩衝層包含III-V族半導體材料。
在一實施例中,該中間複合層包含一場效電晶體。
在一實施例中,該中間複合層包含一假性高電子遷移率電晶體,該假性高電子遷移率電晶體在該基板上形成:至少一緩衝層、一第一摻雜層、一第一間隔層、一通道層、一第二間隔層、一第二摻雜層、一肖特基層、一蝕刻終止層及用於歐姆接觸的一頂蓋層。該緩衝層包含III-V族半導體材料;該第一摻雜層或該第二摻雜層包含選自由以下各者組成的群組的至少一種N型半導體材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該第一間隔層或該第二間隔層包含選自由以下各者組成的群組的至少一半導體材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該通道層包含選自由以下各者組成的群組的至少一材料:GaAs、InGaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該肖特基層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該蝕刻終止層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaAsP、InGaP及AlAs;該頂蓋層包含N型III-V族半導體材料。
在一實施例中,進一步包含一間隔層,該間隔層位於該射極蓋層與該射極層之間,或該間隔層位於該射極蓋層與該歐姆接觸層之間;該間隔層包含N型摻雜的或不摻雜的III-V族半導體材料。
在一實施例中,該間隔層的厚度為0.2nm~200nm;該間隔層的N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3
在一實施例中,該間隔層包含選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、InGaAs、GaAsSb、 InAlGaP及GaAs。
在一實施例中,該間隔層的能隙變化包含能隙由小到大漸變、能隙持平及能隙由大到小漸變的至少其中一種。
以下配合附圖及元件符號對本發明的實施方式作詳細說明,以使熟習所屬技術領域的技術人員在研讀本說明書後能據以實施。
以下描述具體的元件及其排列的例子以簡化本發明。當然這些僅是例子且不該以此限定本發明的範圍。例如,在描述中提及第一磊晶層於第二磊晶層之上時,其可能包括第一磊晶層與第二磊晶層直接接觸的實施例,也可能包括兩者之間有其他元件或磊晶層形成而沒有直接接觸的實施例。此外,在不同實施例中可能使用重複的標號及/或符號,這些重複僅為了簡單清楚地敘述一些實施例,不代表所討論的不同實施例及/或結構之間有特定的關係。
此外,其中可能用到與空間相關的用詞,像是“在...下方”、“下方”、“較低的”、“上方”、“較高的”及類似的用詞,這些關係詞是為了便於描述附圖中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係。這些空間關係詞包括使用中或操作中的裝置的不同方位,以及圖式中所描述的方位。
本發明說明書提供不同的實施例來說明不同實施方式的技術特徵。舉例而言,全文說明書中所指的“一些實施例”意味著在實施例中描述到的特定特徵、結構、或特色至少包含在一實施例中。因此,全文說明書不同地方所出現的片語“在一些實施例中”所指不一定為相同的實施例。
此外,特定的特徵、結構、或特色可在一或多個的實施例中透過任何合適的方法結合。進一步地,對於在此所使用的用語“包括”、“具有”、“有”、“其中”或前述的變換,這些語意類似於用語“包括”來包含相應的特徵。
此外,“層”可以是單一層或者包含是多層;而一磊晶層的“一部分”可能是該磊晶層的一層或互為相鄰的複數層。
參考圖3,圖3為依據被描述的第一實施例的具堅固性的HBT結構的示意圖,如圖3所示,HBT結構2包含基板10、次集極層20、集極層30、基極層40、射極層50、第一射極蓋層62、第二射極蓋層64以及歐姆接觸層70。
在HBT結構2中,次集極層20是在基板10上,次集極層20主要包含N型III-V族半導體材料;集極層30是在次集極層20上,集極層30主要包含III-V族半導體材料;基極層40是在集極層30上,基極層40主要包含P型III-V族半導體材料;射極層50是在基極層40上,射極層50主要包含InGaP、InGaAsP及InAlGaP的至少其中一種N型半導體材料;第一射極蓋層62是在射極層50上,第一射極蓋層62主要包含N型III-V族半導體材料;第二射極蓋層64是在第一射極蓋層62上,第二射極蓋層64主要包含N型III-V族半導體材料;歐姆接觸層70是在第二射極蓋層64上,歐姆接觸層70主要包含N型III-V族半導體材料。
第一射極蓋層62是包含Al xGa 1-xAs、Al xGa 1-xAs 1-yN y、Al xGa 1-xAs 1-zP z、Al xGa 1-xAs 1-wSb w、In rAl xGa 1-x-rAs及In rAl xGa 1-x-rP的至少其中一種不摻雜的或N型摻雜的半導體材料,其中,x值為0<x<1;或者,x值的最大值為0.03≤x≤0.8;或者,x值的最大值為0.05≤x≤0.4,且y、z、r、w≤0.1。
其中,次集極層20、集極層30、基極層40、第二射極蓋層64以及歐姆接觸層70的材料只要是能夠使HBT結構2運作的半導體材料,則並無任何限制,但可根據需要而選擇適當材料;次集極層20包含N型的GaAs、AlGaAs、InGaP及InGaAsP的至少其中之一;集極層30包含GaAs、AlGaAs、InGaP及InGaAsP的至少其中之一,該些半導體材料為P型摻雜、N形摻雜或不摻雜,但較佳地該些半導體材料的至少一部分須為N型摻雜;基極層40包含P型的GaAs、GaAsSb、InGaAs及InGaAsN的至少其中之一;第二射極蓋層64包含N型的GaAs、AlGaAs、InGaP、InGaAsP、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InAlGaP及InGaAs的至少其中之一;且歐姆接觸層70包含N型的GaAs及InGaAs的至少其中之一。
其中,第一射極蓋層62或第二射極蓋層64透過半導體材料中的成分變化,使得第一射極蓋層62或第二射極蓋層64的能隙變化在第二射極蓋層64往射極層50的方向上(也就是歐姆接觸層往射極層的方向上)可包含能隙由小到大漸變以及能隙持平的至少其中一種;第一射極蓋層62能隙漸變的能隙,可起始於第二射極蓋層64的能隙,但不限於此;或第二射極蓋層64能隙漸變的能隙,可起始於歐姆接觸層的能隙,但不限於此。如此可降低HBT的射-基極接面在順向偏壓時,電子由歐姆接觸層70通往射極層50時所遭遇的導電帶位障、或消除導電帶位障,進而提高HBT的高頻響應特性及堅固性。
第一射極蓋層62或第二射極蓋層64的能隙變化至少包含一均勻層、一漸變層或一均勻層及一漸變層。
具體地,在一實施例中,第一射極蓋層62包含至少一層漸變層,漸變層是由但不限於Al成分漸變的AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaP及InAlGaAs的至少其中一種不摻雜的或N型半導體材料形成,且在第二射極蓋層64往射極層50的方向上Al成分為由少到多漸變。當Al成分越多時則第一射極蓋層62的能隙則越大,因此第一射極蓋層62的能隙會在第二射極蓋層64往射極層50的方向上由小到大漸變。於是,當第一射極蓋層62包含一層漸變層且漸變層的能隙漸變為線性漸變時,則如圖4a所示,第一射極蓋層62的能隙在第二射極蓋層64與射極層50之間表現出線性漸變,因此當HBT的射-基極接面在順向偏壓時,電子通過第二射極蓋層64與射極層50之間時,所遭遇的導電帶位障變得不明顯,於是有效地降低射極電阻。
雖然圖4a顯示了第一射極蓋層的能隙為線性漸變的實施方式,但也可將漸變層的能隙漸變透過成分漸變調整為梯度曲線漸變(非線性),使得第一射極蓋層62的能隙為非線性漸變,以有效地降低射極電阻。其結果呈現在圖4b。
或者,第一射極蓋層62可為兩層以上的漸變層,圖4c顯示第一射極蓋層62包含一層線性變化的能隙漸變層以及一層非線性變化的能隙漸變層的實施方式,但並不限於此,還可根據需要包含多層線性變化的能隙漸變層、多層非線性變化的能隙漸變層、或者線性及非線性變化組合而成的多層能隙漸變層。
此外,雖然圖4a~圖4c僅示出第一射極蓋層62的導電帶最後與射極層50的導電帶等高的實施方式,但也可以透過調整材料的成分,使第一射極蓋層62的導電帶低於射極層50的導電帶(第一型能帶接合方式,Type I band alignment),或者使第一射極蓋層62的導電帶高於射極層50的導電帶(第二型能帶接合方式,Type II band alignment)。
進一步地,說明第一射極蓋層62中的材料組成比例。以Al 0.03Ga 0.97As 0.9P 0.1為例(Al xGa 1-xAs 1-zP z,x=0.03且z=0.1),其顯示當第III族元素(Al及Ga)的總莫耳數等於第V族(As及P)的總莫耳數時,各元素之間的莫耳數比為Al:Ga:As:P:=3:97:90:10。關於Al的成分,“x的最高值為0.03≤x≤0.8”是指第一射極蓋層62由於為成分漸變,因而在每一處Al含量可為不相同,甚至在至少其中一處更可不含Al,但只要其中一處的Al含量為最高,且最高含量落在0.03≤x≤0.8即可。當第一射極蓋層62中Al成分的最高含量在x≥0.03時,相較於現有的GaAs射極蓋層,能降低第一射極蓋層62與射極層50的電子位能障或甚至形成第二型能帶接合方式,消除與射極層的位能障;當Al成分的最高含量在x≤0.8時,則可避免或降低因Al成分過多,進而導致HBT可靠度下降的風險。
在一實施例中,第一射極蓋層62包含基本上材質均勻的至少一層均勻層,並主要由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaP及InAlGaAs的至少其中一種不摻雜或N型半導體材料形成。當第一射極蓋層62為一層均勻層,也就是在固定成分的情況下,其能帶圖如圖5a所示,第一射極蓋層62的能隙呈持平狀態,透過適當材料的搭配與選擇,導電帶的位能則可介於第二射極蓋層64與射極層50的導電帶之間。圖5a還顯示透過第一射極蓋層62,第二射極蓋層64與射極層50之間的導電帶呈階梯式的變化,因此當電子通過時,每一次所要克服的導電帶位障相對變小,進而能夠降低第二射極蓋層64與射極層50之間的射極電阻。
此外,第一射極蓋層62可以為兩層以上的均勻層,圖5b顯示第一射極蓋層62包含兩層均勻層的實施方式,透過改變成分的方式(例如透過增加Al含量),均勻層的導電帶的位能高度則一層一層地增加,於是第二射極蓋層64與射極層50之間的導電帶中的每一個導電帶位障相對更小,進而更能夠降低第二射極蓋層64與射極層50之間的射極電阻。
此外,雖然圖5a、圖5b僅示出第一射極蓋層62的導電帶最後低於射極層50的導電帶的實施方式,但也可以透過調整Al或其他成分,使第一射極蓋層62的導電帶與射極層50的導電帶等高,或者使第一射極蓋層62的導電帶高於射極層50的導電帶。
在一實施例中,第一射極蓋層62包含至少一層均勻層及至少一層漸變層的組合,均勻層主要由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaP及InAlGaAs的至少其中一種不摻雜或N型半導體形成,漸變層主要由成分漸變的AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaP及InAlGaAs的至少其中一種不摻雜或N型半導體材料形成,且在第二射極蓋層64往射極層50的方向上,漸變層的能隙變化至少包含由小到大漸變。如圖6a所示,由第二射極蓋層64往射極層50的方向上,第一射極蓋層62依序包含一層線性能隙漸變的漸變層以及一層均勻層的情況下,第二射極蓋層64與射極層50之間的導電帶先是位能呈線性增加變化,然後再持平一段。又,如圖6b所示,第一射極蓋層62依序包含一層線性能隙漸變的漸變層、一層均勻層、以及一層線性能隙漸變的漸變層的情況下,第二射極蓋層64與射極層50之間的導電帶先是位能呈線性增加、接著持平一段、然後再線性增加,其中前後兩段線性增加的斜率可相同也可不同。此外,至少一層均勻層及至少一層漸變層的組合並不限於此,還可由多層均勻層、多層漸變層交錯堆疊,形成具有多段能隙持平以及能隙漸變的實施方式。或者,如圖6c所示,第一射極蓋層62依序包含一層線性能隙漸變的漸變層與一層均勻層,第一射極蓋層62的均勻層的導電帶高於射極層50的導電帶;圖6c的HBT的第一射極蓋層包含一層為成分漸變的AlGaAs與一層成分均勻的AlGaAs;成分漸變是指由第二射極蓋層往射極層的方向上第一射極蓋層的Al成分從0增加到0.2(x值由0漸變至0.2),而成分均勻是指Al成份為0.2 ,HBT的第一射極蓋層的摻雜濃度約為1×10 18/cm 3
根據以上說明,第一射極蓋層62或第二射極蓋層64透過半導體材料中成分的調整,其能隙漸變能起始於第二射極蓋層64或歐姆接觸層70的能隙但不限於此,能隙漸變的方式可為線性、非線性、以及階梯狀的至少其中之一或其組合。其中,第一射極蓋層62或第二射極蓋層64的能隙在由小變大漸變之前、之中或之後包含至少一段或多段能隙持平。
關於第一射極蓋層62的製作條件,考量到製作困難度,堅固性的改善程度以及對射極電阻的影響,第一射極蓋層62的厚度可為1nm~500nm,較佳為10nm~300nm,最佳為20nm~200nm;又考量到摻雜濃度對崩潰電壓以及射-基極接面電容的影響,第一射極蓋層62中N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3,較佳為1×10 17/cm 3~4×10 18/cm 3,最佳為3×10 17/cm 3~3×10 18/cm 3。而第二射極蓋層64的厚度可為1nm~500nm,第二射極蓋層64的N型摻雜的濃度為1×10 15/cm 3~5×10 18/cm 3
根據一實施例,第一射極蓋層62或第二射極蓋層64透過半導體材料中的成分調整(例如調整Al成分),能降低電子由歐姆接觸層70通往射極層50的導電帶位障或消除此導電帶位障,特別是形成Type Ⅱ能帶接合方式更能降低射極電阻(Re)。因此,此第一射極蓋層62不需要使用高N型摻雜濃度,如此不但可在不提高射極電阻下大幅提高射-基極接面崩潰電壓,也能大幅降低射-基極接面電容以提升HBT的高頻響應特性或堅固性。再者,由於所選擇的含Al成分的半導體材料的射極蓋層能隙一般都具有比現有的GaAs射極蓋層的能隙大,因此,較大的能隙的射極蓋層也可進一步提高射-基極接面崩潰電壓及也能進一步提升HBT的堅固性。同時由於所選擇的含Al成分的第一射極蓋層62主要是由AlGaAs等半導體材料構成,而AlGaAs等的材料相較於GaAs具有在高溫時其電阻率隨溫度上升的上升速度比較快的材料特性。當HBT在高的功率密度下操作時,射極溫度會升高,使用主要含AlGaAs的材料的第一射極蓋層62或第二射極蓋層64會因射極溫度在高功率密度操作下快速升高,使射極電阻快速上升進而起到保護HBT的作用,增加HBT的堅固性。而HBT在一般正常操作功率密度下,主要含AlGaAs的材料的第一射極蓋層62或第二射極蓋層64在一般正常工作溫度下因上述原因並不會額外增加過多的射極電阻,因此對HBT及PA的高頻響應特性並不會形成顯著的負面影響。
另外,射極層50的材料InGaP、InGaAsP或InAlGaP具有不同程度的原子有序排列(Ordring Effect),此現象會造成自發性的極化效應(Spontaneous Polarization),而此越高程度的原子有序排列(High Ordering)的材料會形成越大的自發性極化效應,造成材料的能隙越小並形成越強的電場,所形成的強電場會空乏射極層50上的第一射極蓋層62的載子,於是造成射極電阻上升而影響PA的RF特性。因此,在適當的應用較低程度的原子有序排列(Low Ordering)的InGaP、InGaAsP及InAlGaP射極層50下能減少第一射極蓋層62載子被空乏,避免造成Re上升而對PA特性形成顯著的負面影響,或者也能避免第一射極蓋層62為了克服載子受到射極層50電場影響而被空乏時而衍生的高設計複雜度,進而提升HBT及PA整體的電氣特性或堅固性。
因此,在一實施例中,為了確定射極層50中原子有序排列的程度,主要是利用光致螢光(Photoluminescence, PL)光譜法來進行評估。在該方法中,首先以與製造射極層50相同的製程手法,將射極層50的材料在一基板上磊晶成長為數百奈米的厚度,然後將特定波長的光發射至射極層材料,射極層材料吸收光後又重新放射光至外界,最後透過測量放射光的波長來評估射極層材料中原子有序排列的程度。當射極層中原子有序排列的程度越高時,其能隙相對小,因此PL量測時材料透過能隙躍遷所放射的波長就相對長;相對地,當原子有序排列的程度越低時,則所放射的波長就相對短。
圖7為由光致螢光光譜法量測所得的磷化銦鎵(InGaP)的PL光譜圖。其中,高度原子有序排列的InGaP因具有較小的能隙,因此PL的放射光譜波長較長為694nm,而具有低度原子有序排列的InGaP,由於具有較大的能隙,因此PL的放射光譜波長則較短為659nm。一般而言,在低度原子有序排列的情況下,InGaP的放射波長還可短至640nm,InGaAsP的放射波長可為645nm且InAlGaP的放射波長可為635nm,而為了避免因高度原子有序排列而產生強電場,InGaP構成的射極層50的放射波長可在694nm以下,較佳為685nm以下,更佳為675nm以下。同樣地,構成射極層50的InGaAsP其放射波長可在710nm以下、較佳為695nm以下、更佳為685nm以下。構成射極層50的InAlGaP其放射波長可在685nm以下、較佳為675nm以下、更佳為665nm以下。
圖8為使用不同程度的原子有序排列(Ordering Effect)的磷化銦鎵(InGaP)為射極層時藉由C-V量測法而得的射-基極接面載子濃度圖,其中基極層為P型GaAs,厚度為80nm,載子濃度為4×10 19/cm 3,射極層為不同原子有序排列的InGaP,厚度為40nm。
第一射極蓋層為厚度6nm的Al 0.15Ga 0.85As及厚度30nm的Al xGa 1-xAs能隙漸變層(x值由0.15漸變至0)依序形成於InGaP射極層上,由圖8中可看出使用較高原子有序排列的InGaP射極層因較大的自發性極化效應而形成較強的電場,以至於造成更多的第一射極蓋層載子的空乏。此載子的空乏會造成射極電阻的增加,為降低第一射極蓋層載子被空乏則需要增加第一射極蓋層N型的摻雜濃度,但此舉又會造成射-基極接面崩潰電壓下降並增加射-基極接面電容,使HBT及PA的堅固性或高頻響應特性受到負面影響。而使用較低原子有序排列的InGaP射極層的射-基極接面載子濃度圖則看出在相同摻雜濃度的射極層及第一射極蓋層下,因較小的自發性極化效應,第一射極蓋層載子被空乏較少,因此對Re的負面影響較小。
參閱圖9,圖9為顯示依據圖6c的HBT與現有技術的HBT的安全操作範圍面積(safe operation area,SOA)比較圖。現有技術的HBT包含射極蓋層,圖6c的HBT的第一射極蓋層與第二射極蓋層的總厚度約等於現有技術HBT的射極蓋層的總厚度;圖9中,現有技術HBT的射極蓋層的材料是N型GaAs,而N型摻雜濃度約為4.0×10 18/cm 3;圖6c的HBT的第一射極蓋層包含一層為成分漸變的AlGaAs與一層成分均勻的AlGaAs;成分漸變是指由第二射極蓋層往射極層的方向上第一射極蓋層的Al成分從0增加到0.2(x值由0漸變至0.2),而成分均勻是指Al成份為0.2 ,HBT的第一射極蓋層的摻雜濃度約為1×10 18/cm 3
從圖中可以清楚看到,圖6c的HBT的SOA大於現有技術的HBT的SOA,HBT的堅固性確有明顯的增進。
在一實施例中,具堅固性的HBT結構2能進一步包含中間複合層(未示出),中間複合層形成於基板10與次集極層20之間,並由半導體材料形成。
在一實施例中,中間複合層包含至少一層緩衝層,且緩衝層是由III-V族半導體材料形成。
在一實施例中,中間複合層包含場效電晶體。
在一實施例中,中間複合層包含假性高電子遷移率電晶體,假性高電子遷移率電晶體在基板10上能依序形成(以下結構未示出):至少一層緩衝層、第一摻雜層、第一間隔層、通道層、第二間隔層、第二摻雜層、肖特基層、蝕刻終止層及用於歐姆接觸的一頂蓋層;緩衝層是主要由III-V族半導體材料形成,第一摻雜層或第二摻雜層是主要由GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP的至少其中一種N型半導體材料形成;第一間隔層或第二間隔層是由GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP的至少其中一種半導體材料形成;通道層是由GaAs、InGaAs、AlGaAs、InAlGaP、InGaP及InGaAsP的至少其中一種半導體材料形成;肖特基層是由GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP的至少其中一種半導體材料形成;蝕刻終止層是由GaAs、AlGaAs、InAlGaP、InGaAsP、InGaP及AlAs的至少其中一種半導體材料形成,頂蓋層是由N型III-V族半導體材料形成。
在一實施例中,具堅固性的HBT結構2進一步包含間隔層(Spacer,未示出),間隔層是形成於第一射極蓋層62與射極層50之間或是形成於第一射極蓋層62與第二射極蓋層64之間,間隔層包含N型摻雜的或不摻雜的III-V族半導體材料。間隔層的用途可舉例但不限於調整能隙變化、降低製程難度、提高製程良率;在蝕刻製程中作為蝕刻中止層、蝕刻辨識層;並且還可作為量子井層。較佳地,間隔層的厚度為0.2nm~200nm;N型摻雜的濃度可為1×10 15/cm 3~5×10 18/cm 3,較佳為1×10 17/cm 3~4×10 18/cm 3,最佳為3×10 17/cm 3~3×10 18/cm 3
間隔層的材料只要是現有的N型摻雜或不摻雜的III-V族半導體材料,則沒有任何限制,但較佳地可由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、InGaAs、GaAsSb、InAlGaP及GaAs的至少其中一種N型摻雜或不摻雜的半導體材料形成。
較佳地,透過半導體材料中的成分變化,能使間隔層的能隙產生變化,使得間隔層在第一射極蓋層62往射極層50的方向上包含能隙由小到大漸變以及能隙由大到小漸變的至少其中一種。但間隔層並不限於成分變化的漸變層,也可為均勻層,使得間隔層表現為能隙持平。間隔層還可為漸變層與均勻層的組合,使得間隔層在第一射極蓋層62往射極層50的方向上的能隙變化可包含能隙由小到大漸變、能隙持平及能隙由大到小漸變的至少其中一種。同樣地,能隙漸變的方式還可包含線性漸變、非線性漸變及階梯狀的至少其中之一。
例如,在第一射極蓋層62的導電帶低於射極層50的導電帶(Type I band alignment)的情況下,可使用至少包含能隙由小到大漸變的間隔層,以減少或消除第一射極蓋層62與射極層50之間的導電帶位障。此外,導入能隙漸變的間隔層後導致間隔層的導電帶高於射極層50的導電帶(Type II band alignment)時,由於電子通過間隔層與射極層50之間不會遭遇到導電帶的位能障,其結果並不會造成射極電阻的增加。
在第一射極蓋層62的導電帶高於射極層50的導電帶(Type II band alignment)的情況下,若是使用了至少包含能隙由大到小漸變的間隔層以當作蝕刻中止層等,可發現間隔層的導電帶可與射極層50的導電帶接合。此外,也有加入間隔層後,間隔層的導電帶會低於射極層50而在間隔層與射極層50之間產生導電帶位能障的情況,但由於間隔層可作為量子井,因此間隔層的導電帶的電子能階會發生量子化,其結果是間隔層的電子位能的能階被提高。當電子通過間隔層與射極層50之間時,所遭遇的導電帶位障變低,於是射極電阻並不會明顯地提高。此外,還有因應製程考量,而導入了至少包含能隙由小到大漸變間隔層,使得間隔層的導電帶更高於射極層50的導電帶的情況,但其結果同樣地也不會造成射極電阻的顯著的增加。
此外,上述說明是為了讓本領域技術人員瞭解到:當間隔層用於改良製程時,無論能隙漸變為何種的態樣(即,能隙由小到大漸變、能隙持平及能隙由大到小漸變的至少其中一種),基本上都不會造成射極電阻明顯的增加,並不是為了將間隔層的能隙變化方式僅限於上述的範例中。
透過以上實施例的說明,透過含有Al成分的第一射極蓋層,除了能有效的在不增加或少量增加射極電阻下提升射-基極接面的崩潰電壓及降低射-基極接面電容,並能利用含AlGaAs材料具有較大能隙及在高溫下電阻率隨溫度上升而快速上升的材料特性,以提升在高功率密度操作時的功率放大器的堅固性或RF特性,並能透過改變HBT設計方式,例如降低Re,以犧牲部分增加的PA堅固性換取進一步提升PA的效率,增進PA的整體效能及設計的彈性。而即使Re值有上升,除可進一步提升PA的堅固性,也可提升PA的線性度(Linearity)
此外,為了避免射極層的材料因高度原子有序排列而形成越大的自發性極化效應,造成射極電阻上升而影響PA的RF特性。因此,使用PL法來評估射極層材料的原子有序排列程度,進而能夠確定並且適當地應用較低程度的原子有序排列的InGaP、InGaAsP、InAlGaP射極層,如此則可減少第一射極蓋層載子被空乏,避免造成Re上升而對PA特性形成的負面影響,或者也可避免第一射極蓋層為了克服載子受到射極層電場影響而被空乏時而衍生的高設計複雜度,進而提升HBT及PA整體的電氣特性或堅固性。
圖10為依據被描述的第二實施例的具堅固性的HBT結構的示意圖。如圖10所示,第二實施例的HBT結構3是在基板100上形成有次集極層200、集極層300、基極層400、射極層500、射極蓋層600以及歐姆接觸層700;射極蓋層的至少一部分為一電流箝制層,電流箝制層的電子親和力小於或等於射極層。
射極層500的材料為選自由以下各者組成的群組的至少一N型半導體材料:InGaP、InGaAsP、AlGaAs及InAlGaP。
電流箝制層的材料為選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、GaAsSb、InAlGaP及GaAs。
由於電流箝制層的電子親和力小於或等於射極層,當電晶體操作在較高電流密度時,電流箝制層的電子位能障會變高,電晶體的電流上升到達某程度時就會受到限制,以避免HBT在過高的電流下操作,因而降低電晶體損壞的風險,提高HBT的堅固性;電流箝制層的電子位能障會隨電流密度上升而變高,而電子位能障變高的幅度會因射極蓋層、電流箝制層或射極層的材料、成分、摻雜濃度或摻雜方式的不同而有不同。
圖11a~圖11d是展示一些電流箝制層的導電帶與射極層的導電帶之間的關係示意圖。圖11a~圖11d中,在射極蓋層的一部分中形成電流箝制層,電流箝制層設置於射極蓋層的不同處;如這些示意圖所顯示的,電流箝制層的設置位置沒有什麼限制,只要使射極蓋層的電流箝制層的電子親和力小於或等於射極層的電子親和力即可。只要射極蓋層的一部分的電子親和力小於或等於射極層,即使射極蓋層的其他部分的電子親和力大於射極層或不論電流箝制層是否相接於射極層,整體而言,電流箝制層還是能發揮電流箝制(current clamping)效果;受限於篇幅,僅列出一些示圖作為代表或示範,只要在射極蓋層的一部分設有電流箝制層,都是本發明所要保護的範圍。
值得注意的是,圖10的HBT的射極蓋層是設置有電流箝制層,電流箝制層的電子親和力小於或等於射極層;參圖6c,HBT中一部分的第一射極蓋層的電子親和力為小於射極層的電子親和力,因此第一射極蓋層也具有電流箝制的效果;因此依據本文的實施例,具有電流箝制層的HBT一般也具有改善SOA或改善堅固性的效果。
第一實施例的第一射極蓋層與第二實施例的電流箝制層都能幫助改善HBT的堅固性,兩者在具體技術手段上能依據不同需求而做出不同變化。
第二實施例中的基板、次集極層、集極層、基極層與歐姆接觸層相同於第一實施例中的基板、次集極層、集極層、基極層與歐姆接觸層,因此不再贅述,詳細內容請參前文所述。
具電流箝制層的HBT能根據實施需求而更選擇運用中間複合層或間隔層,或者中間複合層或間隔層的各種實施例;中間複合層與間隔層的各實施例內容都已揭示於前文中,因此不再贅述,詳細內容請參前文所述。要注意的是,第二實施例中的間隔層是設置在射極層之上或設置於射極層跟射極蓋層之間。
根據實施需求,具電流箝制層的HBT的各實施例能分別與第一實施例中射極層中或本文中的一實施例或一些實施例做配合運用;或具電流箝制層的HBT的各實施例能分別與第一實施例中或本文中的能隙漸變(第一射極蓋層或第二射極蓋層)的一實施例或一些實施例做配合運用;如本文所述,能隙漸變包含線性漸變、非線性漸變、階梯狀漸變或其組合,射極層與能隙漸變(第一射極蓋層或第二射極蓋層)的各實施例都已揭示於本文中,因此不再贅述。
以上所述者僅為用以解釋本發明的較佳實施例,並非企圖據以對本發明做任何形式上的限制,是以,凡有在相同的發明精神下所作有關本發明的任何修飾或變更,皆仍應包含在本發明意圖保護的範疇。
1:HBT結構
2、3:HBT結構
10:基板
20、200:次集極層
30、300:集極層
40、400:基極層
50、500:射極層
60、600:射極蓋層
62:第一射極蓋層
64:第二射極蓋層
70、700:歐姆接觸層
圖1為現有技術中HBT結構的示意圖。 圖2為現有技術的HBT結構中,射極蓋層與射極層之間的能帶示意圖。 圖3為依據被描述的第一實施例的具堅固性的HBT結構的示意圖,第一實施例的HBT包含第一射極蓋層與第二射極蓋層。 圖4a至圖4c為根據一實施例的HBT結構中,射極蓋層與射極層之間的能帶示 意圖。 圖5a至圖5b為根據一實施例的HBT結構中,射極蓋層與射極層之間的能帶示 意圖。 圖6a至圖6c為根據一實施例的HBT結構中,射極蓋層與射極層之間的能帶示 意圖。 圖7為根據一實施例作為射極層材料的磷化銦鎵(InGaP)的光致螢光(PL) 光譜圖。 圖8為使用不同程度的原子有序排列的磷化銦鎵作為射極層時,藉由C-V量 測法而得的射-基極接面載子濃度圖。 圖9為顯示依據圖6c的HBT與現有技術的HBT的安全操作範圍面積(safe operation area,SOA)比較圖。縱軸為集極電流密度Jc(kA/cm 2),橫軸為集 極-射極間電壓Vce(Volt)。 圖10依據被描述的第二實施例的具堅固性的HBT結構的示意圖,第二實施例 的射極蓋層的一部分是電流箝制層,電流箝制層的電子親和力是小於或等於 射極層的電子親和力。 圖11a是展示電流箝制層的導電帶與射極層的導電帶之間的關係示意圖。 圖11b是展示電流箝制層的導電帶與射極層的導電帶之間的關係示意圖。 圖11c是展示電流箝制層的導電帶與射極層的導電帶之間的關係示意圖。 圖11d是展示電流箝制層的導電帶與射極層的導電帶之間的關係示意圖。
2:HBT結構
10:基板
20:次集極層
30:集極層
40:基極層
50:射極層
62:第一射極蓋層
64:第二射極蓋層
70:歐姆接觸層

Claims (21)

  1. 一種具堅固性的異質接面雙極性電晶體結構,包含:一基板;一次集極層,在該基板上,包含N型III-V族半導體材料;一集極層,在該次集極層上,包含III-V族半導體材料;一基極層,在該集極層上,包含P型III-V族半導體材料;一射極層,在該基極層上,包含InGaP、InGaAsP及InAlGaP的至少其中一種N型半導體材料;一第一射極蓋層,直接形成在該射極層上,包含III-V族半導體材料,但不包含GaAs;一第二射極蓋層,在該第一射極蓋層上,包含III-V族半導體材料,但不包含GaAs;以及一歐姆接觸層,在該第二射極蓋層上,並包含N型III-V族半導體材料;其中,在該第二射極蓋層往該射極層的方向上,該第一射極蓋層或該第二射極蓋層的能隙變化包含能隙由小到大漸變以及能隙持平的至少其中一種;其中,該射極層、該第一射極蓋層與該第二射極蓋層不作氧化處理。
  2. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該第一射極蓋層包含選自由以下各者組成的群組的至少一半導體材料:AlxGa1-xAs、AlxGa1-xAs1-yNy、AlxGa1-xAs1-zPz、AlxGa1-xAs1-wSbw、InrAlxGa1-x-rAs及InrAlxGa1-x-rP,其中,x值為0<x<1。
  3. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該第一射極蓋層包含選自由以下各者組成的群組的至少一半導體材料: AlxGa1-xAs、AlxGa1-xAs1-yNy、AlxGa1-xAs1-zPz、AlxGa1-xAs1-wSbw、InrAlxGa1-x-rAs及InrAlxGa1-x-rP,其中,x的最大值為0.03
    Figure 109100043-A0305-02-0027-1
    x
    Figure 109100043-A0305-02-0027-2
    0.8。
  4. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該第一射極蓋層包含選自由以下各者組成的群組的至少一半導體材料:AlxGa1-xAs、AlxGa1-xAs1-yNy、AlxGa1-xAs1-zPz、AlxGa1-xAs1-wSbw、InrAlxGa1-x-rAs及InrAlxGa1-x-rP,其中,x的最大值為0.05
    Figure 109100043-A0305-02-0027-3
    x
    Figure 109100043-A0305-02-0027-4
    0.4,且y、z、r、w
    Figure 109100043-A0305-02-0027-5
    0.1。
  5. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該第一射極蓋層或該第二射極蓋層至少包含一均勻層、一漸變層或一均勻層及一漸變層,且在該第二射極蓋層往該射極層的方向上,該漸變層的能隙變化至少包含由小到大漸變。
  6. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該第一射極蓋層或該第二射極蓋層的厚度為1nm~500nm;該第一射極蓋層或該第二射極蓋層的N型摻雜的濃度為1×1015/cm3~5×1018/cm3
  7. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在694nm以下,InGaAsP的放射波長在710nm以下,InAlGaP的放射波長在685nm以下。
  8. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在685nm以下,InGaAsP的放射波長在695nm以下,InAlGaP的放射波長在675nm以下。
  9. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在675nm以下,InGaAsP的放射波長在685nm以下,InAlGaP的放射波長在665nm以下。
  10. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該結構進一步包含一中間複合層,介於該基板與該次集極層之間。
  11. 如請求項10所述之具堅固性的異質接面雙極性電晶體結構,其中,該中間複合層至少包含一緩衝層或一場效電晶體,該緩衝層包含III-V族半導體材料。
  12. 如請求項10所述之具堅固性的異質接面雙極性電晶體結構,其中,該中間複合層包含一假性高電子遷移率電晶體,該假性高電子遷移率電晶體在該基板上形成:至少一層緩衝層、一第一摻雜層、一第一間隔層、一通道層、一第二間隔層、一第二摻雜層、一肖特基層、一蝕刻終止層及用於歐姆接觸的一頂蓋層;該緩衝層包含III-V族半導體材料;該第一摻雜層或該第二摻雜層包含選自由以下各者組成的群組的至少一N型半導體材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該第一間隔層或該第二間隔層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該通道層包含選自由以下各者組成的群組的至少一材料:GaAs、InGaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該肖特基層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaP及InGaAsP;該蝕刻終止層包含選自由以下各者組成的群組的至少一材料:GaAs、AlGaAs、InAlGaP、InGaAsP、InGaP及AlAs;該頂蓋層是包含N型III-V族半導體材料。
  13. 如請求項1所述之具堅固性的異質接面雙極性電晶體結構,其中,該結構進一步包含一間隔層,位於該第一射極蓋層與該射極層之間或位於該第一射極蓋層與該第二射極蓋層之間,該間隔層包含N型摻雜或不摻雜的III-V族半導體材料。
  14. 如請求項13所述之具堅固性的異質接面雙極性電晶體結構,其中,該間隔層的厚度為0.2nm~200nm;該間隔層的N型摻雜的濃度為1×1015/cm3~5×1018/cm3
  15. 如請求項13所述之具堅固性的異質接面雙極性電晶體結構,其中,該間隔層包含選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、InAlGaP、InGaAs、GaAsSb及GaAs。
  16. 如請求項13所述之具堅固性的異質接面雙極性電晶體結構,其中,該間隔層的能隙變化包含能隙由小到大漸變、能隙持平及能隙由大到小漸變的至少其中一種。
  17. 一種具堅固性的異質接面雙極性電晶體結構,包含:一基板;一次集極層,在該基板上,包含N型III-V族半導體材料;一集極層,在該次集極層上,包含III-V族半導體材料;一基極層,在該集極層上,包含P型III-V族半導體材料;一射極層,在該基極層上,包含N型III-V族半導體材料;一射極蓋層,在該射極層上,包含III-V族半導體材料,該射極蓋層不作氧化處理;以及一歐姆接觸層,在該射極蓋層上,並包含N型III-V族半導體材料;其中,該射極蓋層的至少一部分為一電流箝制層,該電流箝制層的電子親和力小於或等於該射極層的電子親和力。
  18. 如請求項17所述之具堅固性的異質接面雙極性電晶體結構,其中,該射極層包含選自由以下各者組成的群組的至少一N型半導體材料:InGaP、InGaAsP、AlGaAs及InAlGaP;該電流箝制層包含選自由以下各者組成的群組的至少一材料:AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb、InAlGaAs、InGaP、InGaAsP、GaAsSb、InAlGaP及GaAs。
  19. 如請求項18所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在694nm以下,InGaAsP的放射波長在710nm以下,InAlGaP的放射波長在685nm以下。
  20. 如請求項18所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在685nm以下,InGaAsP的放射波長在695nm以下,InAlGaP的放射波長在675nm以下。
  21. 如請求項18所述之具堅固性的異質接面雙極性電晶體結構,其中,透過光致螢光光譜法,在該射極層的材料中,InGaP的放射波長在675nm以下,InGaAsP的放射波長在685nm以下,InAlGaP的放射波長在665nm以下。
TW109100043A 2020-01-02 2020-01-02 具堅固性的異質接面雙極性電晶體結構 TWI727591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109100043A TWI727591B (zh) 2020-01-02 2020-01-02 具堅固性的異質接面雙極性電晶體結構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109100043A TWI727591B (zh) 2020-01-02 2020-01-02 具堅固性的異質接面雙極性電晶體結構

Publications (2)

Publication Number Publication Date
TWI727591B true TWI727591B (zh) 2021-05-11
TW202127665A TW202127665A (zh) 2021-07-16

Family

ID=77036665

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100043A TWI727591B (zh) 2020-01-02 2020-01-02 具堅固性的異質接面雙極性電晶體結構

Country Status (1)

Country Link
TW (1) TWI727591B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195588A1 (en) * 2002-08-02 2004-10-07 Ichiro Hase Semiconductor device
JP2007335586A (ja) * 2006-06-14 2007-12-27 Sony Corp 半導体集積回路装置および半導体集積回路装置の製造方法
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US8120147B1 (en) * 2007-12-27 2012-02-21 Vega Wave Systems, Inc. Current-confined heterojunction bipolar transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195588A1 (en) * 2002-08-02 2004-10-07 Ichiro Hase Semiconductor device
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
JP2007335586A (ja) * 2006-06-14 2007-12-27 Sony Corp 半導体集積回路装置および半導体集積回路装置の製造方法
US8120147B1 (en) * 2007-12-27 2012-02-21 Vega Wave Systems, Inc. Current-confined heterojunction bipolar transistor

Also Published As

Publication number Publication date
TW202127665A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US6881988B2 (en) Heterojunction bipolar transistor and semiconductor integrated circuit device using the same
CN109671770B (zh) 具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构
KR19980034078A (ko) 핫 전자 장치(Hot Electron Device) 및 공진 터널링 핫 전자 장치
US10374071B2 (en) Heterojunction bipolar transistor
US9331187B2 (en) Bipolar transistor
US6936871B2 (en) Heterojunction bipolar transistor with a base layer that contains bismuth
US5003366A (en) Hetero-junction bipolar transistor
JPH0548078A (ja) ヘテロ接合バイポーラトランジスタおよびそれを用いた回路
TWI727591B (zh) 具堅固性的異質接面雙極性電晶體結構
TWI691085B (zh) 具堅固性的異質接面雙極性電晶體結構
Mochizuki et al. GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): Optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers
JP3853341B2 (ja) バイポーラトランジスタ
CN111341842B (zh) 具坚固性的异质结双极性晶体管结构
US11201233B2 (en) Compound semiconductor heterojunction bipolar transistor
JPH09162194A (ja) ヘテロ接合バイポーラトランジスタ
EP0510557A2 (en) Resonant tunneling transistor
US11133405B2 (en) High ruggedness heterojunction bipolar transistor
TWI771872B (zh) 高堅固性的異質接面雙極性電晶體
TWI745224B (zh) 異質接面雙極性電晶體
JP2003007715A (ja) バイポーラトランジスタ
JP2001308102A (ja) 三端子電子素子
JP6096503B2 (ja) ヘテロ接合バイポーラトランジスタ
CN115566057A (zh) 异质结双极晶体管及其制造方法
JP2001257364A (ja) ダイオードおよびダイオードアレイならびにダイオードの製造方法
JPH09102501A (ja) マルチエミッタ型ヘテロバイポーラトランジスタ