CN109671770B - 具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构 - Google Patents

具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构 Download PDF

Info

Publication number
CN109671770B
CN109671770B CN201810461188.8A CN201810461188A CN109671770B CN 109671770 B CN109671770 B CN 109671770B CN 201810461188 A CN201810461188 A CN 201810461188A CN 109671770 B CN109671770 B CN 109671770B
Authority
CN
China
Prior art keywords
layer
energy gap
hole blocking
collector
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810461188.8A
Other languages
English (en)
Other versions
CN109671770A (zh
Inventor
金宇中
黄朝兴
曾敏男
陈凯榆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visual Photonics Epitaxy Co Ltd
Original Assignee
Visual Photonics Epitaxy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visual Photonics Epitaxy Co Ltd filed Critical Visual Photonics Epitaxy Co Ltd
Publication of CN109671770A publication Critical patent/CN109671770A/zh
Application granted granted Critical
Publication of CN109671770B publication Critical patent/CN109671770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7785Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with more than one donor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明提供一种具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,包括一由N型III‑V族半导体形成并设置在一基板上的次集极层;一由N型III‑V族半导体形成并设置在次集极层上的集极层;一设置在集极层上的电洞阻隔层;一由P型III‑V族半导体形成并设置在电洞阻隔层上的基极层;一设置在基极层上并由N型能隙大于基极层的III‑V族半导体形成的射极层;一由N型III‑V族半导体形成并设置在射极层上的射极盖层;和一由N型III‑V族半导体形成并设置在射极盖层上的欧姆接触层;其中电洞阻隔层的能隙由基极层向集极层方向至少包含由小而大的能隙渐变且最大能隙大于基极层与集极层的能隙,可有效增进元件整体电气特性。

Description

具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构
技术领域
本发明有关一种具有能隙渐变的电洞阻隔层的异质接面双极性晶体管(Heterojunction Bipolar Transistor,HBT)结构,尤其是在基极层与集极层之间加入一层电洞阻隔层,其中该电洞阻隔层的能隙由基极层往集极层方向至少包含由小而大的能隙渐变的异质接面双极性晶体管。
背景技术
异质接面双极性晶体管(HBT)是利用不同半导体材料构成射极及基极,并在射极及基极的接面处形成异质接面,其好处在于基极流向射极的电洞流因为较难跨越基极与射极之间的价电带(valance band)位障(Ev),使得射极注入效率(Emitter InjectionEfficiency)提高,进而在较高基极参杂下提高电流增益。当HBT做为功率放大器用于手持式装置时,功率放大器的效率显得格外重要,在HBT元件上影响效率的参数主要为膝电压与导通电压,因此降低膝电压与导通电压是一门重要的课题;此外,由于通过电路设计方式提高功率放大器的操作电压或电流,亦能有效地提升功率放大器的效率(PAE),然而,当异质接面双极性晶体管操作在高电压或高电流时容易形成膝电压上升进而影响功率放大器效率的提升,因此,如何有效降低异质接面双极性晶体管在高电压或高电流操作下的膝电压便是一个很重要的课题。
现有技术提供了一种定向磊晶的异质接面双极性晶体管结构,尤其是一种成长于(100)朝向(111)B面GaAs基板上的异质接面双极性晶体管结构,主要是在(100)朝向(111)B(即(1-11)或(11-1))面的GaAs基板上直接或间接成长III-V族半导体所构成的HBT,包括依序设置的次集极层(Sub-collector)、集极层(Collector)、穿隧集极层(TunnelingCollector)、基极层(Base)、射极层(Emitter),射极盖层(Emitter Cap)以及欧姆接触层。
上述技术是在(100)朝向(111)B面的GaAs基板上直接或间接成长III-V族半导体所构成的HBT,穿隧集极层为磷化铟镓或砷磷化铟镓,射极层为N型能隙大于基极层的III-V族半导体。由于磊晶是在(100)朝向(111)B的基板上进行,因而磷化铟镓(InGaP)或砷磷化铟镓(InGaAsP)中的铟与镓在<111>方向上有序成长(ordering effect),使得磷化铟镓或砷磷化铟镓用于射极层及/或穿隧集极层具有较大的电子亲和力(electron affinity)或较小的能隙,进而降低基极-射极接面及/或基极-穿隧集极接面导电带(conduction band)的不连续以降低电子位障并于基极-穿隧集极接面的价电带增加电洞位障,可降低异质接面双极性晶体管的导通电压(turn-on voltage)与补偏电压(offset voltage,VOS),也同时能改善集极电流阻挡效应(current blocking effect),降低膝电压(knee voltage,VKEE),增加HBT功率放大器(PA)的效率(PAE)增进整体电气特性。
然而,磷化铟镓或砷磷化铟镓穿隧集极层与基极层接面容易因过大的价电带不连续(ΔEv),而于基极层与穿隧集极层接面在高电流密度操作下会因过高的电洞位障阻挡过多的电洞,进而造成该接面电场改变并对元件在高电流密度操作时的膝电压特性造成不良影响,使得在高电流密度下的功率放大器效率的提升受到限制,并且在磷化铟镓或砷磷化铟镓穿隧集极层与集极层接面容易因过大的价电带不连续,形成集极层与穿隧集极层接面具有过深的位能井,进而造成电洞累积在位能井内,如此将会造成无法预期的电场改变,并且累积的电洞会影响充放电的时间,进而影响功率放大器操作的频率响应。此外,基极层与集极层通常属于单一含砷材料,因此,与含磷量高的磷化铟镓或砷磷化铟镓穿隧集极层接面在磊晶成长砷磷或磷砷切换时,容易形成混晶(intermixing)并形成一层未预期的含砷又含磷的砷磷化合物层。此砷磷化合物层将会在HBT蚀刻制程(etching process)中造成难以蚀刻的问题,因而使得制程良率下降,此外,由于磷化铟镓或砷磷化铟镓含磷量很高,所以在与单一含砷材料的基极层或集极层接面做能隙渐变磊晶成长时,容易形成砷磷混晶,造成材料成分控制的困难而难以达到预先设计的能隙渐变接面或者是线性能隙渐变接面,并造成在能隙渐变磊晶的生产时再现性难以控制的问题。另外,即使在(111)B上的定向磊晶磷化铟镓或砷磷化铟镓的穿隧集极层能降低基极层与穿隧集极层或穿隧集极层与集极层的导电带不连续,但仍难以完全消除此导电带电子位障,进而造成HBT元件在高电流密度操作时仍会有集极电流阻挡效应发生,并且造成膝电压上升以及功率放大器在高电流密度操作下的效率提升受到限制。
因此,需要一种具有且容易实施能隙渐变的能隙渐变电洞阻隔层的异质接面双极性晶体管结构,除了能有效地消除电洞阻隔层与基极层或集极层接面导电带的电子位障还能保持电洞阻隔层与基极层接面适当的价电带电洞位障,以改善高电流密度操作时的集极电流阻挡效应及降低膝电压,增加功率放大器的效率(PAE),并能降低或消除电洞阻隔层与集极层的价电带电洞位能井,以避免该接面的价电带电洞位能井的产生或降低其深度,进而降低电洞在位能井内的累积从而提升整体的电气特性,尤其是在高电压或高电流操作时,电气操作特性会变得更好,并且在大功率操作时,功率将不会受局限。
发明内容
本发明的主要目的在于提供一种具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,包括:一次集极层,由N型III-V族半导体形成,并设置在一基板上;一集极层,设置在所述次集极层上,并由N型III-V族半导体形成;一电洞阻隔层,设置在所述集极层上,并由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb及InAlGaAs的至少其中之一形成,其中,Al成分小于22%,In、N、P、Sb成分分别小于或等于10%;一基极层,设置在所述电洞阻隔层上,并由P型III-V族半导体形成;一射极层,设置在所述基极层上,并由N型能隙大于基极层的III-V族半导体形成;一射极盖层(Emitter Cap),设置在所述射极层上,并由N型III-V族半导体形成;以及一欧姆接触层,设置在所述射极盖层上,并由N型III-V族半导体形成;其中,所述电洞阻隔层的能隙由所述基极层往所述集极层方向至少包含由小而大的能隙渐变且能隙渐变的最大能隙分别大于所述基极层与所述集极层的能隙。
本发明技术方案,通过具有能隙渐变的电洞阻隔层与基极层接面建立适当的价电带电洞位障,能在极端的高电流密度操作时起到保护异质接面双极性晶体管的作用,进而增加异质接面双极性晶体管的坚固性(Ruggedness),在极端的高电流密度下,电洞阻隔层与基极层接面的电洞位障仍然可阻挡足量的电洞,因而改变该接面电场,以形成集极电流阻挡效应,避免因过高的集极电流密度而损坏异质接面双极性晶体管元件。
附图说明
图1为本发明第一实施例的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构的示意图;
图2为本发明第二实施例的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构的示意图;
图3a为本发明一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图一;
图3b为本发明一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图二;
图4a为本发明另一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图一;
图4b为本发明另一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图二;
图5a为本发明又一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图一;
图5b为本发明又一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图二;
图6a为本发明再一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图一;
图6b为本发明再一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图二;
图7为本发明与现有技术的异质接面双极性晶体管的I-V电气特性比较图。
10 基板
15 中间复合层
20 次集极层
30 集极层
35 电洞阻隔层
40 基极层
50 射极层
60 射极盖层
70 欧姆接触层
具体实施方式
以下配合图式及元件符号对本发明的实施方式做更详细的说明,使熟习该项技艺者在研读本说明书后能据以实施。
参阅图1,为本发明第一实施例的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管(HBT)结构的示意图。如图1所示,本发明的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构包括在基板10上由下而上依序设置的次集极层20、集极层30、电洞阻隔层35、基极层40、射极层50、射极盖层(Emitter Cap)60以及欧姆接触层70,其中,次集极层20由N型III-V族半导体形成,并设置在基板10上;集极层30设置在次集极层20上,并由N型III-V族半导体形成;值得注意的是,电洞阻隔层35设置在集极层30上,并由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb及InAlGaAs的至少其中之一形成,其中,Al成分小于22%,较佳地Al成分可介于6~18%之间,最佳地,Al成分可介于8~16%之间;电洞阻隔层35的厚度可介于1nm~300nm;较佳的电洞阻隔层的厚度可介于5nm~100nm;最佳的电洞阻隔层的厚度可介于10nm~60nm;此外,电洞阻隔层可为P型掺杂(其掺杂浓度小于1x1019/cm3,较佳的掺杂浓度小于1x1018/cm3,最佳的掺杂浓度小于1x1017/cm3)或不掺杂(undoped)或N型掺杂;较佳的电洞阻隔层可为不掺杂或N型掺杂;最佳的电洞阻隔层可为N型掺杂,其掺杂浓度大于1x1015/cm3,较佳的掺杂浓度介于1x1015/cm3与1x1019/cm3之间,最佳的掺杂浓度介于1x1016/cm3与5x1018/cm3之间,基极层40设置在电洞阻隔层35上,并由P型III-V族半导体形成;射极层50设置在基极层40上,并由N型能隙大于基极层40的III-V族半导体形成;射极盖层60设置在射极层50上,并由N型III-V族半导体形成,而欧姆接触层70设置在射极盖层60上,并由N型III-V族半导体形成,其中,值得注意的是,电洞阻隔层35的能隙由基极层40往集极层30方向至少包含由小而大的能隙渐变且能隙渐变的最大能隙分别大于基极层与集极层的能隙。
具体而言,集极层30可由N型砷化镓(GaAs)及砷化铝镓(AlGaAs)的至少其中之一形成,基极层40可由P型GaAs、GaAsSb、InGaAs及InGaAsN的至少其中之一形成,射极层可由N型AlGaAs、InGaP及InGaAsP的至少其中之一形成,且电洞阻隔层35的厚度为1nm~300nm,射极盖层60可由N型GaAs、AlGaAs、InGaP及InGaAsP的至少其中之一形成,而欧姆接触层70可由N型GaAs及InGaAs的至少其中之一形成。
由于电洞阻隔层35具有能隙渐变成分限制,所以本发明的基板10无需限制于某一倾斜方向(例如,由(100)朝向(111)B面方向倾斜)及限制使用磷化铟镓或砷磷化铟镓磊晶层材料,但是,本发明仍可通过能隙渐变消除或降低电洞阻隔层35与基极层40或集极层30接面的导电带电子位障,并保持电洞阻隔层35与基极层40接面适当的价电带电洞位障及降低或消除电洞阻隔层35与集极层30接面的价电带电洞位能井,进而更加提升高电流密度操作下的功率放大器效率及频率响应,并使其最高输出功率不受限制。
此外,可进一步包括至少一间隔层(Spacer)(图中未显示),并位于电洞阻隔层与基极层之间及/或形成于电洞阻隔层与集极层之间,且可由III-V族半导体形成;换言之,可由GaAs、GaAsSb、InGaAs、InGaAsN、AlGaAs、AlGaAsSb、AlGaAsP、InAlGaAs及AlGaAsN的至少其中之一形成;值得一提的是,间隔层可为P型掺杂(其掺杂浓度小于1x1019/cm3,较佳的掺杂浓度小于1x1018/cm3,最佳的掺杂浓度小于1x1017/cm3)或不掺杂或N型掺杂;较佳的间隔层可为不掺杂或N型掺杂;最佳的间隔层可为N型掺杂,其掺杂浓度大于1x1015/cm3,较佳的掺杂浓度介于1x1015/cm3与1x1019/cm3之间,最佳的掺杂浓度介于1x1016/cm3与5x1018/cm3之间。值得一提的是,间隔层的厚度可介于0.1nm~100nm之间;较佳的间隔层的厚度可介于3nm~80nm之间;最佳的间隔层的厚度可介于5nm~50nm之间。
进一步参考图2,为本发明第二实施例具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构的示意图,其中,第二实施例的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构包括在基板10上由下而上依序设置的中间复合层15、次集极层20、集极层30、电洞阻隔层35、基极层40、射极层50、射极盖层60以及欧姆接触层70,其中,要注意的是,图2的第二实施例类似于图1的第一实施例,其主要的差异点在于,第二实施例额外包含中间复合层15,且设置于基板10及次集极层20之间,而第二实施例的其余元件与第一实施例相同,在此不再赘述。
具体而言,中间复合层15可包括至少一缓冲层(图中未显示),且缓冲层由III-V族半导体形成。或者,中间复合层15可包括一场效晶体管(Field Effect Transistor)。
此外,中间复合层15亦可包括一假性高电子迁移率晶体管(pHEMT),且假性高电子迁移率晶体管包含在基板10上由下到上依序设置的至少一缓冲层、第一掺杂层、第一间隔层、通道层、第二间隔层、第二掺杂层、萧特基层、蚀刻终止层以及用于欧姆接触的顶盖层(图中未显示)。尤其是,缓冲层是由III-V族半导体形成,第一掺杂层及第二掺杂层由掺杂硅的砷化镓、掺杂硅的砷化铝镓、掺杂硅的磷化铟铝镓、掺杂硅的磷化铟镓以及掺杂硅的磷砷化铟镓的至少其中之一所形成,第一间隔层及第二间隔层由砷化镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,通道层是由砷化镓、砷化铟镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,萧特基层是由砷化镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,蚀刻终止层是由砷化镓、砷化铝镓、磷化铟铝镓、磷砷化铟镓、磷化铟镓以及砷化铝的至少其中之一所形成,而顶盖层是由N型III-V族半导体形成。
要注意的是,参考图3a和图3b,图3a和图3b为本发明一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图;电洞阻隔层35的能隙由基极层40往集极层30方向由小变大过程中至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合,其中,电洞阻隔层35的能隙由小变大过程可起始于基极层40,但不限于此。再者,参考图4a和图4b,图4a和图4b为本发明另一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图;电洞阻隔层35的能隙由基极层40往集极层30方向由小变大过程之后更进一步包含能隙由大变小。电洞阻隔层35的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合,其中,电洞阻隔层35的能隙由小变大过程可起始于基极层40,但不限于此。此外,参考图5a和图5b,图5a和图5b为本发明又一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图;电洞阻隔层35的能隙由基极层40往集极层30方向由小变大过程中及/或过程之后更进一步包含至少一段能隙持平。电洞阻隔层35的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合,其中,电洞阻隔层35的能隙由小变大过程可起始于基极层40,但不限于此。另外,参考图6a和图6b,图6a和图6b为本发明再一实例的异质接面双极性晶体管能隙渐变电洞阻隔层能带的示意图;电洞阻隔层35的能隙由基极层40往集极层30方向由小变大过程中及/或过程之后更进一步包含至少一段能隙持平,且电洞阻隔层35的能隙由小变大过程之后更进一步包含能隙由大变小,且由大变小过程中及/或过程之后更进一步包含至少一段能隙持平。电洞阻隔层35的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合,其中,电洞阻隔层35的能隙由小变大过程可起始于基极层40,但不限于此。
因此,本发明确实具有更佳的电气操作性能以及容易制作的优点,尤其是,在高电压或高电流操作时,电气特性会更好,并且在大功率操作时,功率将较不会受限。此外,本发明使得电子位障可以被消除,并可保持适当的电洞位障。
参考图7,为本发明与现有技术的异质接面双极性晶体管的I-V电气特性比较图。显而易见的是,与现有技术比较,本发明不只可降低补偏电压(Offset Voltage),也可同时降低膝电压,其中,补偏电压是指集极电流Ic为零时的集极-射极电压VCE,而膝电压是指饱合区与作用区交界的电压,同时在大功率信号操作下最大饱和功率Psat较现有技术可提高1.5dBm。因而,本发明能确实解决上述现有技术的问题,改善元件操作的特性及频率响应,进而增进整体元件电气操作性能。
综上所述,依据本发明的上述实施例,由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb或InAlGaAs组成的能隙渐变电洞阻隔层主要是由含砷材料组成,所以与主要含砷的基极层及集极层材料接面不会形成砷磷混晶,除了蚀刻制程容易制作及制程良率提高以外,也容易制作与基极层或集极层接面的能隙渐变,帮助降低或消除电洞阻隔层与基极层或集极层接面的导电带电子位障,以及帮助保持电洞阻隔层与基极层接面适当的价电带电洞位障,并且可有效减小电洞阻隔层与集极层接面的价电带位能井深度或甚至消除价电带位能井,此外,该系列材料本身与基极层与集极层间的价电带不连续比InGaP或InGaAsP小且可通过Al成分来调整,降低该价电带不连续也能减少在高电流密度下在基极层与电洞阻隔层接面阻挡过多电洞或在电洞阻隔层与集极层接面形成过深的位能井,借此来避免在高电流密度操作下,让位能井内累积过多电洞而影响功率放大器的效率与频率响应。此外,电洞阻隔层与基极层接面的价电带电洞位障仍然可在极端的高电流密度时,保护异质接面双极性晶体管元件,避免因过高的集极电流密度造成损坏,进而提高异质接面双极性晶体管元件的坚固性。
简而言之,依据本发明的上述实施例,通过具有能隙渐变的电洞阻隔层与基极层接面建立适当的价电带电洞位障,能在极端的高电流密度操作时起到保护异质接面双极性晶体管的作用,进而增加异质接面双极性晶体管的坚固性,在极端的高电流密度下,电洞阻隔层与基极层接面的电洞位障仍然可阻挡足量的电洞,因而改变该接面电场,以形成集极电流阻挡效应,避免因过高的集极电流密度而损坏异质接面双极性晶体管元件。
以上所述者仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,是以,凡有在相同的发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。

Claims (11)

1.一种具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,包括:
一次集极层,由N型III-V族半导体形成,并设置在一基板上;
一集极层,设置在所述次集极层上,并由N型III-V族半导体形成;
一电洞阻隔层,设置在所述集极层上,并由AlGaAs、AlGaAsN、AlGaAsP、AlGaAsSb及InAlGaAs的至少其中之一形成,其中,Al成分小于22%,In、N、P及Sb成分分别小于或等于10%;
一基极层,设置在所述电洞阻隔层上,并由P型III-V族半导体形成;
一射极层,设置在所述基极层上,并由N型能隙大于基极层的III-V族半导体形成;
一射极盖层,设置在所述射极层上,并由N型III-V族半导体形成;以及
一欧姆接触层,设置在所述射极盖层上,并由N型III-V族半导体形成;
其中,所述电洞阻隔层的能隙由所述基极层往所述集极层方向至少包含由小而大的能隙渐变且能隙渐变的最大能隙分别大于所述基极层与所述集极层的能隙,
所述电洞阻隔层的能隙由所述基极层往所述集极层方向由小变大过程中至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合,
其中,所述电洞阻隔层的能隙由所述基极层往所述集极层方向由小变大过程之后更进一步包含能隙由大变小,所述电洞阻隔层的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合。
2.根据权利要求1所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述集极层由N型GaAs及AlGaAs的至少其中之一形成,所述基极层由P型GaAs、GaAsSb、InGaAs及InGaAsN的至少其中之一形成,所述射极层由N型AlGaAs、InGaP及InGaAsP的至少其中之一形成,且所述电洞阻隔层的厚度为1nm~300nm,而所述射极盖层由N型GaAs、AlGaAs、InGaP及InGaAsP的至少其中之一形成,所述欧姆接触层由N型GaAs及InGaAs的至少其中之一形成。
3.根据权利要求1所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,还包括:一中间复合层,由半导体材料形成,并形成于所述基板与所述次集极层之间。
4.根据权利要求3所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述中间复合层包括至少一缓冲层,且所述缓冲层由III-V族半导体形成。
5.根据权利要求3所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述中间复合层包括一场效晶体管。
6.根据权利要求3所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述中间复合层包括一假性高电子迁移率晶体管,且所述假性高电子迁移率晶体管包含在所述基板上由下到上依序设置的至少一缓冲层、一第一掺杂层、一第一间隔层、一通道层、一第二间隔层、一第二掺杂层、一萧特基层、一蚀刻终止层,以及一用于欧姆接触的顶盖层,且所述缓冲层由III-V族半导体形成,所述第一掺杂层及所述第二掺杂层由掺杂硅的砷化镓、掺杂硅的砷化铝镓、掺杂硅的磷化铟铝镓、掺杂硅的磷化铟镓以及掺杂硅的磷砷化铟镓的至少其中之一所形成,所述第一间隔层及所述第二间隔层由砷化镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,所述通道层由砷化镓、砷化铟镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,所述萧特基层由砷化镓、砷化铝镓、磷化铟铝镓、磷化铟镓以及磷砷化铟镓的至少其中之一所形成,所述蚀刻终止层由砷化镓、砷化铝镓、磷化铟铝镓、磷砷化铟镓、磷化铟镓以及砷化铝的至少其中之一所形成,而所述顶盖层由N型III-V族半导体形成。
7.根据权利要求1所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述电洞阻隔层的能隙由所述基极层往所述集极层由小变大过程中及/或过程之后更进一步包含至少一段能隙持平,所述电洞阻隔层的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合。
8.根据权利要求1所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述电洞阻隔层的能隙由所述基极层往所述集极层方向由小变大过程中及/或过程之后更进一步包含至少一段能隙持平,且所述电洞阻隔层的能隙由小变大过程之后更进一步包含能隙由大变小且由大变小过程中及/或过程之后更进一步包含至少一段能隙持平;所述电洞阻隔层的能隙至少形成一段或多段线性能隙渐变、非线性能隙渐变、阶梯状能隙渐变或其组合。
9.根据权利要求1所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,还包括:一间隔层,由III-V族半导体材料形成,并形成于所述电洞阻隔层与所述基极层之间及/或形成于所述电洞阻隔层与所述集极层之间。
10.根据权利要求9所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述间隔层由GaAs、GaAsSb、InGaAs、InGaAsN、AlGaAs、AlGaAsSb、AlGaAsP、InAlGaAs及AlGaAsN的至少其中之一形成。
11.根据权利要求9所述的具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构,其特征在于,所述间隔层为P型掺杂、不掺杂或N型掺杂。
CN201810461188.8A 2017-10-17 2018-05-15 具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构 Active CN109671770B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106135564A TWI643337B (zh) 2017-10-17 2017-10-17 具有能隙漸變的電洞阻隔層之異質接面雙極性電晶體結構
TW106135564 2017-10-17

Publications (2)

Publication Number Publication Date
CN109671770A CN109671770A (zh) 2019-04-23
CN109671770B true CN109671770B (zh) 2022-04-05

Family

ID=65431933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810461188.8A Active CN109671770B (zh) 2017-10-17 2018-05-15 具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构

Country Status (3)

Country Link
US (1) US10651298B2 (zh)
CN (1) CN109671770B (zh)
TW (1) TWI643337B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2019135B1 (en) * 2017-06-28 2019-01-07 Nowi Energy B V An energy harvester to convert incident radio frequency, RF, energy associated with an RF signal to direct current energy as well as a corresponding method and sensor.
US10818781B2 (en) * 2018-10-16 2020-10-27 Visual Photonics Epitaxy Co., Ltd. Heterojunction bipolar transistor structure with a bandgap graded hole barrier layer
US11133405B2 (en) * 2018-11-20 2021-09-28 Visual Photonics Epitaxy Co., Ltd. High ruggedness heterojunction bipolar transistor
TWI691085B (zh) * 2018-11-20 2020-04-11 全新光電科技股份有限公司 具堅固性的異質接面雙極性電晶體結構
TWI742714B (zh) * 2019-06-11 2021-10-11 全新光電科技股份有限公司 半導體雷射二極體
TWI754326B (zh) * 2019-07-19 2022-02-01 全新光電科技股份有限公司 包含具有壓縮應力AlGaAsP層的垂直共振腔表面放射雷射二極體(VCSEL)
US20210226045A1 (en) * 2020-01-22 2021-07-22 Visual Photonics Epitaxy Co., Ltd. Heterojunction bipolar transistor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329144A (en) * 1993-04-23 1994-07-12 At&T Bell Laboratories Heterojunction bipolar transistor with a specific graded base structure
CN1226750A (zh) * 1998-02-20 1999-08-25 松下电器产业株式会社 双极型晶体管及半导体装置
CN1433082A (zh) * 2002-01-18 2003-07-30 Nec化合物半导体器件株式会社 异质结双极型晶体管和利用它构成的半导体集成电路器件
CN1619830A (zh) * 2003-11-18 2005-05-25 Nec化合物半导体器件株式会社 半导体器件
CN1669131A (zh) * 2002-07-19 2005-09-14 索尼株式会社 半导体器件
CN1706047A (zh) * 2003-04-15 2005-12-07 松下电器产业株式会社 弹道半导体元件
JP2007027294A (ja) * 2005-07-14 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> ヘテロ接合バイポーラトランジスタ
CN1956215A (zh) * 2005-07-26 2007-05-02 索尼株式会社 半导体装置
CN101051651A (zh) * 2006-04-04 2007-10-10 国际商业机器公司 异质结双极型晶体管及其制造方法
CN101162752A (zh) * 2006-07-31 2008-04-16 菲尼萨公司 半导体器件中的有效载流子注入
US7385236B2 (en) * 2005-10-21 2008-06-10 Visual Photonics Epitaxy Co., Ltd. BiFET semiconductor device having vertically integrated FET and HBT
US7573080B1 (en) * 2008-06-20 2009-08-11 Visual Photonics Epitaxy Co., Ltd. Transient suppression semiconductor device
CN104900688A (zh) * 2014-03-07 2015-09-09 全新光电科技股份有限公司 定向磊晶的异质接面双极性晶体管结构
CN104900689A (zh) * 2015-06-08 2015-09-09 中国科学院半导体研究所 降低基区电阻率的GaN基HBT外延结构及生长方法
CN105374861A (zh) * 2014-08-15 2016-03-02 全新光电科技股份有限公司 具有阻隔层结构的异质接面双极性晶体管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631477A (en) * 1995-06-02 1997-05-20 Trw Inc. Quaternary collector InAlAs-InGaAlAs heterojunction bipolar transistor
JP3252805B2 (ja) * 1998-08-20 2002-02-04 日本電気株式会社 バイポーラトランジスタ
US6320212B1 (en) * 1999-09-02 2001-11-20 Hrl Laboratories, Llc. Superlattice fabrication for InAs/GaSb/AISb semiconductor structures
US6674103B2 (en) * 2000-07-31 2004-01-06 The Regents Of The University Of California HBT with nitrogen-containing current blocking base collector interface and method for current blocking
US7345327B2 (en) * 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
JP2004200255A (ja) * 2002-12-17 2004-07-15 Sumitomo Chem Co Ltd バイポーラトランジスタ構造を有する半導体材料及びこれを用いた半導体素子
US6822274B2 (en) * 2003-02-03 2004-11-23 Agilent Technologies, Inc. Heterojunction semiconductor device having an intermediate layer for providing an improved junction
US6992337B2 (en) * 2004-04-02 2006-01-31 Agilent Technologies, Inc. Gallium arsenide antimonide (GaAsSB)/indium phosphide (InP) heterojunction bipolar transistor (HBT) having reduced tunneling probability
JP5160071B2 (ja) * 2006-11-16 2013-03-13 ルネサスエレクトロニクス株式会社 ヘテロ接合バイポーラトランジスタ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329144A (en) * 1993-04-23 1994-07-12 At&T Bell Laboratories Heterojunction bipolar transistor with a specific graded base structure
CN1226750A (zh) * 1998-02-20 1999-08-25 松下电器产业株式会社 双极型晶体管及半导体装置
CN1433082A (zh) * 2002-01-18 2003-07-30 Nec化合物半导体器件株式会社 异质结双极型晶体管和利用它构成的半导体集成电路器件
CN1669131A (zh) * 2002-07-19 2005-09-14 索尼株式会社 半导体器件
CN1706047A (zh) * 2003-04-15 2005-12-07 松下电器产业株式会社 弹道半导体元件
CN1619830A (zh) * 2003-11-18 2005-05-25 Nec化合物半导体器件株式会社 半导体器件
JP2007027294A (ja) * 2005-07-14 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> ヘテロ接合バイポーラトランジスタ
CN1956215A (zh) * 2005-07-26 2007-05-02 索尼株式会社 半导体装置
US7385236B2 (en) * 2005-10-21 2008-06-10 Visual Photonics Epitaxy Co., Ltd. BiFET semiconductor device having vertically integrated FET and HBT
CN101051651A (zh) * 2006-04-04 2007-10-10 国际商业机器公司 异质结双极型晶体管及其制造方法
CN101162752A (zh) * 2006-07-31 2008-04-16 菲尼萨公司 半导体器件中的有效载流子注入
US7573080B1 (en) * 2008-06-20 2009-08-11 Visual Photonics Epitaxy Co., Ltd. Transient suppression semiconductor device
CN104900688A (zh) * 2014-03-07 2015-09-09 全新光电科技股份有限公司 定向磊晶的异质接面双极性晶体管结构
CN105374861A (zh) * 2014-08-15 2016-03-02 全新光电科技股份有限公司 具有阻隔层结构的异质接面双极性晶体管
CN104900689A (zh) * 2015-06-08 2015-09-09 中国科学院半导体研究所 降低基区电阻率的GaN基HBT外延结构及生长方法

Also Published As

Publication number Publication date
TW201917887A (zh) 2019-05-01
US20190115458A1 (en) 2019-04-18
CN109671770A (zh) 2019-04-23
TWI643337B (zh) 2018-12-01
US10651298B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN109671770B (zh) 具有能隙渐变的电洞阻隔层的异质接面双极性晶体管结构
US7009225B2 (en) Heterojunction bipolar transistor with a base layer that contains bismuth
US6881988B2 (en) Heterojunction bipolar transistor and semiconductor integrated circuit device using the same
US10636897B2 (en) Semiconductor device having a collector layer including first-conductivity-type semiconductor layers
US20130161698A1 (en) E-mode hfet device
US6756615B2 (en) Heterojunction bipolar transistor and its manufacturing method
US9853136B2 (en) Directed epitaxial heterojunction bipolar transistor
US9331187B2 (en) Bipolar transistor
JP5160071B2 (ja) ヘテロ接合バイポーラトランジスタ
US6147371A (en) Bipolar transistor and manufacturing method for same
Wu et al. Small offset-voltage In/sub 0.49/Ga/sub 0.51/P/GaAs double-barrier bipolar transistor
JP2007128989A (ja) ヘテロ接合バイポーラトランジスタ
US6459103B1 (en) Negative-differential-resistance heterojunction bipolar transistor with topee-shaped current-voltage characteristics
US11049936B2 (en) High ruggedness heterojunction bipolar transistor structure
US10818781B2 (en) Heterojunction bipolar transistor structure with a bandgap graded hole barrier layer
JP2015095552A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ素子
Yalon et al. A Degenerately Doped $\hbox {In} _ {0.53}\hbox {Ga} _ {0.47}\hbox {As} $ Bipolar Junction Transistor
JP2010287603A (ja) 化合物半導体素子及びその製造方法
CN219163404U (zh) 用于射频功率放大器的半导体器件
JP4158683B2 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ
JP5290909B2 (ja) ヘテロ接合バイポーラトランジスタの製法
Loga et al. Fabrication and characterization of circular geometry InP/InGaAs double heterojunction bipolar transistors
Loga et al. Fabrication and characterization of circular geometry InGaP/GaAs double heterojunction bipolar transistors
JP2001176881A (ja) ヘテロ接合バイポーラトランジスタ
JP2005079267A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant