TWI719891B - 偏壓補償裝置及操作偏壓補償裝置的方法 - Google Patents

偏壓補償裝置及操作偏壓補償裝置的方法 Download PDF

Info

Publication number
TWI719891B
TWI719891B TW109113491A TW109113491A TWI719891B TW I719891 B TWI719891 B TW I719891B TW 109113491 A TW109113491 A TW 109113491A TW 109113491 A TW109113491 A TW 109113491A TW I719891 B TWI719891 B TW I719891B
Authority
TW
Taiwan
Prior art keywords
current control
current
control circuits
bias
compensation device
Prior art date
Application number
TW109113491A
Other languages
English (en)
Other versions
TW202141923A (zh
Inventor
黃亭堯
王柏之
陳家源
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW109113491A priority Critical patent/TWI719891B/zh
Application granted granted Critical
Publication of TWI719891B publication Critical patent/TWI719891B/zh
Priority to US17/234,760 priority patent/US11385668B2/en
Publication of TW202141923A publication Critical patent/TW202141923A/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Abstract

偏壓補償裝置包含第一偏壓模組及第二偏壓模組。第一偏壓模組包含互相並聯的複數個第一電流控制電路及複數個第二電流控制電路。複數個第一電流控制電路分別用以輸出第一參考電流,及複數個第二電流控制電路分別用以產生第二參考電流。第二偏壓模組包含互相並聯的複數個第三電流控制電路及複數個第四電流控制電路。複數個第三電流控制電路分別用以產生第三參考電流,及複數個第四電流控制電路分別用以產生第四參考電流。第二參考電流大於第一參考電流,且第四參考電流大於第三參考電流。

Description

偏壓補償裝置及操作偏壓補償裝置的方法
本發明是有關於一種偏壓補償裝置,特別是一種多段式的偏壓補償裝置。
由於差動訊號對於環境中的雜訊有較佳的抗噪能力,因此被廣泛的應用在各種電路當中。然而實際在製造差動放大器或其他差動電路時,由於製程上的偏差,常會導致直流位準的偏移,使得差動對的兩端產生偏差電壓及/或偏差電流。由於差動對的兩端的偏差電壓及/或偏差電流會對差動訊號造成干擾而導致訊號失真,因此必須透過額外的電壓或電流來對電路做補償,以減少直流位準偏移對差動訊號所帶來的影響。
此外,隨著製程技術的發展,電子元件的尺寸也越來越小。而當電子元件的尺寸較小時,相同的偏差電壓及/或偏差電流對於差動電路所造成的影響也變得更加明顯,因此系統對於偏壓補償的精確度也會有較高的要求。
本發明的一實施例提供一種偏壓補償裝置。偏壓補償裝置包含第一偏壓模組及第二偏壓模組。
第一偏壓模組耦接於第一偏壓點,第一偏壓模組包含複數個第一電流控制電路及複數個第二電流控制電路。複數個第一電流控制電路分別產生第一參考電流,而複數個第二電流控制電路分別產生第二參考電流。第二偏壓模組耦接於第二偏壓點,第二偏壓模組包含複數個第三電流控制電路及複數個第四電流控制電路。複數個第三電流控制電路分別產生第三參考電流,而複數個第四電流控制電路分別產生第四參考電流。
複數個第一電流控制電路及複數個第二電流控制電路是耦接於第一偏壓點且互相並聯。複數個第三電流控制電路及複數個第四電流控制電路是耦接於第二偏壓點且互相並聯。第二參考電流大於第一參考電流,且第四參考電流大於第三參考電流。
本發明的另一實施例提供一種操作偏壓補償裝置的方法。偏壓補償裝置包含第一偏壓模組及第二偏壓模組,第一偏壓模組包含複數個第一電流控制電路及複數個第二電流控制電路,第二偏壓模組包含複數個第三電流控制電路及複數個第四電流控制電路。複數個第一電流控制電路及複數個第二電流控制電路耦接於第一偏壓點且互相並聯,及複數個第三電流控制電路及複數個第四電流控制電路耦接於第二偏壓點且互相並聯。
操作偏壓補償裝置的方法包含根據欲補償之偏壓值致能對應數量的第二電流控制電路或第四電流控制電路以初步補償偏壓值,並根據初步補償後的偏壓值致能對應數量的第一電流控制電路或第三電流控制電路以再次補償偏壓值。
每一第二電流控制電路所產生的第二參考電流大於每一第一電流控制電路所產生的第一參考電流,且每一第四電流控制電路所產生的第四參考電流大於每一第三電流控制電路所產生的第三參考電流。
100、300:偏壓補償裝置
110:第一偏壓模組
120:第二偏壓模組
1121至112X:第一電流控制電路
1141至114Y:第二電流控制電路
1221至122X:第三電流控制電路
1241至124Y:第四電流控制電路
116:第一主電流源
126:第:二主電流源
CS1、CS2、CS3、CS4:參考電流源
SW1、SW2、SW3、SW4:開關
N1:第一偏壓點
N2:第二偏壓點
M1:混頻器
IOS:偏差電流
Iref1:第一參考電流
Iref2:第二參考電流
Iref3:第三參考電流
Iref4:第四參考電流
Im1:第一主電流
Im2:第二主電流
200:方法
S210至S220:步驟
VOS:偏壓
R1、R2:電阻
NV1:系統電壓端
第1圖是本發明一實施例之偏壓補償裝置的示意圖。
第2圖是本發明一實施例之操作壓補償裝置之方法流程圖。
第3圖是本發明一實施例之混頻器之本振洩漏及第1圖偏壓補償裝置之致能電流控制電路組態的關係圖。
第4圖是本發明另一實施例之偏壓補償裝置的示意圖。
第1圖是本發明一實施例之偏壓補償裝置100的示意圖。在第1圖中,偏壓補償裝置100可以用來補償混頻器M1的兩個偏差電流端之間的偏差電流IOS。偏壓補償裝置100包含第一偏壓模組110及第二偏壓模組120。第一偏壓模組110可耦接於第一偏壓點N1,而第二偏壓模組120可耦接於第二偏壓點N2。
第一偏壓模組110包含X個第一電流控制電路1121至112X及Y個第二電流控制電路1141至114Y,其中X及Y為正整數。每一個第一電流控制電路1121至112X可以產生一第一參考電流Iref1,而每一個第二電流控制電路1141至114Y可以產生一第二參考電流Iref2。第二偏壓模組120包含X個第三電流控制電路1221至122X及Y個第四電流控制電路1241至124Y,每一個第三電流控制電路1221至122X可以產生一第三參考電流Iref3,而每一個第四電流控制電路1241至124Y可以產生一第四參考電流Iref4。
在第一偏壓模組110中,第一電流控制電路1121至112X及第二電流控制電路1141至114Y可耦接於第一偏壓點N1並且可以互相並聯。在第二偏壓模組120中,第三電流控制電路1221至122X及第四電流控制電路1241至124Y可耦接於第二偏壓點N2並且可以互相並聯。
在第1圖中,第一電流控制電路1121可包含參考電流源CS1及開關SW1。參考電流源CS1可以產生第一參考電流Iref1,而開關SW1可與參考電流源CS1串聯。在有些實施例中,透過導通及截止開關SW1便可以使第一電流控制電路1121致能及失能。在有些實施例中,第一電流控制電路1121至112X、第二電流控制電路1141至114Y、第三電流控制電路1221至122X及第四電流控制電路1241至124Y可具有相似的結構,也就是說,偏壓補償裝置100可以分別透過控制第一電流控制電路1121至112X、第二電流控制電路1141至114Y、第三電流控制電路1221至122X及第四電流控制電路1241至124Y中的開關SW1、SW2、SW3及SW4來使其中的參考電流源CS1、CS2、CS3及CS4致能或失能,且每個第一電流控制電路1121至112X、第二電流控制電路1141至114Y、第三電流控制電路1221至122X及第四電流控制電路1241至124Y都可以獨立控制。
此外,在此實施例中,參考電流源CS2所產生的第二參考電流Iref2可大於參考電流源CS1所產生的第一參考電流Iref1,且參考電流源CS4所產生的第四參考電流Iref4可大於參考電流源CS3所產生的第三參考電流Iref3。再者,第一參考電流Iref1實質上可與第三參考電流Iref3相等,且第二參考電流Iref2實質上可與第四參考電流Iref4相等。
此外,在第1圖的實施例中,第一偏壓模組110還可包含第一主電流源116,第一主電流源116可與第一電流控制電路1121至112X及第二電流控制電路1141至114Y並聯,並且可以產生第一主電流Im1。相似地,第二偏壓模組120也可另包含第二主電流源126,第二主電流源126可與第三電流控制電路1221至122X及第四電流控制電路1241至124Y並聯,並且可以產生第二主電流Im2。透過第一主電流源116及第二主電流源126就可以在第一電流控制電路1121至112X、第二電流控制電路1141至114Y、第三電流控制電路1221至122X及第四電流控制電路1241至124Y未被致能時,根據系統的需求提供基本的預設偏差電 流,以維持系統的運作。在有些實施例中,第一主電流Im1可與第二主電流Im2實質上相等。
在有些實施例中,偏壓補償裝置100可以先根據需補償的偏壓值,亦即偏差電流IOS,來致能適當數量的第二電流控制電路1141至1141Y或致能適量數量的第四電流控制電路1241至124Y以進行初步的補償,並在確認應致能第二電流控制電路1141至114Y或第四電流控制電路1241至124Y的數量之後,進一步根據初步補償的結果,判斷應致能第一電流控制電路1121至112X或第三電流控制電路1221至122X的數量,以對偏差電流IOS做更精細的補償。
由於偏壓補償裝置100可以先利用能夠產生較大電流的第二電流控制電路1141至1141Y或第四電流控制電路1241至124Y來對進行初步的補償,再根據初步補償的結果,利用產生較小電流的第一電流控制電路1121至112X或第三電流控制電路1221至122X來做進一步的補償,因此偏壓補償裝置100能夠快速地決定應致能的電流控制電路及其數量,以達補償偏壓的效果。此外,透過多段式的補償,也可以減少電流控制電路的數量及面積。
第2圖是本發明一實施例之操作偏壓補償裝置100之方法200的流程圖。方法200包含步驟S210及S220:S210:根據欲補償之偏壓值致能對應數量的第二電流控制電路1141至114Y或第四電流控制電路1241至124Y的數量以初步補償偏壓值;及S220:根據初步補償後的偏壓值致能對應數量的第一電流控制電路1121至112X或第三電流控制電路1221至122X以再次補償偏壓值。
一般來說,在對偏差電流IOS進行補償之前,並無法直接得知偏差電流IOS的實際值為何,然而根據混頻器M1在原始直流準位的情況下所產生的偏差電流或本振洩漏(LO leakage)的大小,就能夠大致得知目前偏差電流的情況。
此外,根據漏電流的方向(正或負),則可得知應透過第二電流控制電 路1141至114Y來提高第一偏壓點N1的電流以對偏差電流IOS進行補償,或是透過第四電流控制電路1241至124Y來提高第二偏壓點N2的電流以對偏差電流IOS進行補償。由於對混頻器M1而言,第一偏壓點N1及第二偏壓點N2的電流是相對的,因此增加第一偏壓點N1的電流實際上就等同於減少第二偏壓點N2上的電流。同樣地,增加第二偏壓點N2的電流實際上則等同於減少第一偏壓點N1上的電流。因此,一般來說,當選擇將第二電流控制電路1141至114Y中的部分第二電流控制電路致能時,就會同時將第四電流控制電路1241至124Y保持在失能狀態,以避免第二參考電流Iref2及第四參考電流Iref4互相抵銷。相似地,當選擇將第四電流控制電路1241至124Y中的部分的第四電流控制電路致能時,第二電流控制電路1141至114Y則會被失能。
在步驟S210中,在判斷要致能第二電流控制電路1141至114Y或第四電流控制電路1241至124Y之後,便可進一步選擇應致能之第二電流控制電路1141至114Y或第四電流控制電路1241至124Y的對應數量。在有些實施例中,偏壓補償裝置100可以逐步增加第二電流控制電路1141至114Y中被致能之第二電流控制電路的數量以逐步提高第一偏壓點N1的電流,或逐步增加第四電流控制電路1241至124Y中被致能之第四電流控制電路的數量以逐步提高第二偏壓點N2的電流,以尋求能夠將本振洩漏降至最低的電流控制電路組態。
第3圖是本發明一實施例之混頻器M1之本振洩漏(LO leakage)及偏壓補償裝置100致能電流控制電路組態的關係圖。在第3圖中,偏差電流IOS的實際值可例如為280μA,而每一個第四電流控制電路1241至124Y所產生的第四參考電流為100μA。在此情況下,當偏壓補償裝置100逐步將第四電流控制電路1241至1243致能時,由於第四電流控制電路1241至1243所產生的部分參考電流Iref4會與偏差電流IOS相抵銷,因此本振洩漏的數值會逐漸降低。然而當偏壓補償裝置100將第四電流控制電路1241至1244都致能時,則會過度補償,反而使得本振 洩漏的數值提升。在此情況下,偏壓補償裝置100便可在步驟S210中選擇僅致能第四電流控制電路1241至1243最為適當的組態,以對偏差電流IOS進行初步的補償。
在步驟S220中,也可以按照類似的原理,逐步增加第一電流控制電路1121至112X中被致能的數量以逐步提高第一偏壓點N1的電流或逐步增加第三電流控制電路1221至122X中被致能的數量以逐步提高第二偏壓點N2的電流來做進一步的補償。
由於對混頻器M1而言,第一偏壓點N1及第二偏壓點N2的電流是相對的,因此在將第一電流控制電路1121至112X中的部分第一電流控制電路致能時,第三電流控制電路1221至122X將皆被失能,以避免第一參考電流Iref1及第三參考電流Iref3互相抵銷。相似地,在將第三電流控制電路1221至122X中部分的第三電流控制電路致能時,第一電流控制電路1121至112X將皆被失能。
在第3圖的實施例中,第一參考電流Iref1及第三參考電流Iref3可約為25μA。在此情況下,當越多的第三電流控制電路1221至122X被致能時,混頻器M1之本振洩漏的數值將會隨著提升,而當第一電流控制電路1121被致能時,混頻器M1之本振洩漏的數值為最低,當第一電流控制電路1122也被致能時,則混頻器M1之本振洩漏的數值又開始提升。在此情況下,偏壓補償裝置100便可在步驟S220中選擇僅致能第一電流控制電路1121以完成對偏差電流IOS的補償。
由於偏壓補償裝置100可以先利用能夠產生較大電流的電流控制電路來進行初步的補償,再根據初步補償的結果,利用產生較小電流的電流控制電路來做進一步的補償,因此偏壓補償裝置100能夠快速地決定應致能的電流控制電路及其數量,以達補償偏壓的效果。此外,透過多段式的補償,也可以減少電流控制電路的數量及面積。
舉例來說,若系統要求偏壓補償裝置100在一特定範圍內提供32階大 小不同的補償電流,則可將X設定為7,Y設定為3,此時第一偏壓模組110及第二偏壓模組120即各包含共10個電流控制電路。然而,若使用單一段的補償,亦即所有的電流控制電路都只能產生相同大小的參考電流,則同樣為能提供32階的補償電流,其偏壓補償裝置中的兩個偏壓模組就需要各包含31個電流控制電路。相較之下,偏壓補償裝置100不僅可以縮小面積,同時也可以減少寄生效應,維持補償效果。
在偏壓補償裝置100中,第一偏壓模組110及第二偏壓模組可分別包含產生兩種不同參考電流的電流控制電路,因此在補償偏壓時是以兩階段的方式進行補償。然而在有些其他實施例中,偏壓補償裝置還可以根據系統的需求而包含能夠產生更多不同參考電流的電流控制電路,並以更多階段的方式進行補償。
此外,由於製程上無法控制的因素,第一電流控制電路1121至112X實際上所產生的第一參考電流Iref1可能略有差異。在此情況下,為了確保在補償偏壓的過程中,致能1121至112X的電流都能持續增大且連續,因此,1121至112X的每一個單元電路,在佈局上需相同,避免不同單元電路的Iref1有劇烈變化,結果造成致能電流電路越多,總電流反而降低的情況,進而影響補償。同時也可以避免在切換第一電流控制電路1121至112X的過程中,造成偏壓不穩定而影響系統的操作。同樣地,所有電路控制電路都能以此類推。
再者,由於第二電流控制電路1141至114Y所產生的第二參考電流Iref2也可能略有差異,因此在有些實施例中,第一偏壓模組110可包含較多數量的第一電流控制電路1121至112X,使得第一電流控制電路1121至112X所輸出的第一參考電流Iref1的總電流大於單一個第二參考電流Iref2。舉例來說,若第二參考電流Iref2設定為100μA,而第一參考電流Iref1設定為25μA,則第一偏壓模組110可包含5個第一電流控制電路1121至1125,亦即X可為5。如此一來,例如當第二 電流控制電路1141所產生的第二參考電流Iref2較小時,例如實際上僅有75μA,透過5個第一電流控制電路1121至1125,仍然能夠提供接近至200μA的電流,以確保在每個階段都能維持足夠的精確度。同理,第二偏壓模組120也可包含較多數量的第三電流控制電路1221至122X,使得第三電流控制電路1221至122X所輸出的第三參考電流Iref3的總電流大於單一個第二參考電流Iref2。
在第1圖的實施例中,第一電流控制電路1121至112X及第三電流控制電路1221至122X的可具有相同的總數量X,而第二電流控制電路1141至114Y及第四電流控制電路1241至124Y可具有相同的總數量Y。然而,在有些實施中,根據系統的需求,第一電流控制電路的總數量可與第三電流控制電路的總數量相異,而第二電流控制電路的總數量可與第四電流控制電路的總數量相異。
第4圖是本發明另一實施例之偏壓補償裝置300的示意圖。偏壓補償裝置300與偏壓補償裝置100具有相似的結構,並且可以根據相似的原理操作。然而,偏壓補償裝置300還可包含電阻R1及R2。
電阻R1具有第一端及第二端,電阻R1的第一端耦接於第一偏壓點N1,而電阻R1的第二端耦接於系統電壓端NV1。電阻R2具有第一端及第二端,電阻R2的第一端耦接於第二偏壓點N2,而電阻R2的第二端耦接於系統電壓端NV1。在此情況下,透過調整第一偏壓模組110及第二偏壓模組120所輸出的電流大小,就能夠調整電阻R1及R2的端電壓,進而達到調整第一偏壓點N1及第二偏壓點N2的電壓。如此一來,偏壓補償裝置300就可以用來補償差動放大器A1之輸入端的偏差電壓VOS。在有些實施例中,方法200也可應用於偏壓補償裝置300以對偏差電壓VOS進行補償。
綜上所述,本發明的實施例所提供的偏壓補償裝置及操作偏壓補償裝置的方法可以利用多段式的方式來補償偏壓,因此夠快速地完成補償,同時也可以減少電流控制電路的數量及面積,並減少寄生效應。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100:偏壓補償裝置
110:第一偏壓模組
120:第二偏壓模組
1121至112X:第一電流控制電路
1141至114Y:第二電流控制電路
1221至122X:第三電流控制電路
1241至124Y:第四電流控制電路
116:第一主電流源
126:第二主電流源
CS1、CS2、CS3、CS4:參考電流源
SW1、SW2、SW3、SW4:開關
N1:第一偏壓點
N2:第二偏壓點
M1:混頻器
IOS:偏差電流
Iref1:第一參考電流
Iref2:第二參考電流
Iref3:第三參考電流
Iref4:第四參考電流
Im1:第一主電流
Im2:第二主電流

Claims (8)

  1. 一種偏壓補償裝置,包含:一第一偏壓模組,耦接於一第一偏壓點,該第一偏壓模組包含:複數個第一電流控制電路,分別用以產生一第一參考電流;及複數個第二電流控制電路,分別用以產生一第二參考電流;一第二偏壓模組,耦接於一第二偏壓點,該第二偏壓模組包含:複數個第三電流控制電路,分別用以產生一第三參考電流;及複數個第四電流控制電路,分別用以產生一第四參考電流;其中:該些第一電流控制電路及該些第二電流控制電路係耦接於該第一偏壓點且互相並聯;該些第三電流控制電路及該些第四電流控制電路係耦接於該第二偏壓點且互相並聯;該第二參考電流大於該第一參考電流,且該第四參考電流大於該第三參考電流;及該第一參考電流實質上與該第三參考電流相等,且該第二參考電流實質上與該第四參考電流相等。
  2. 如請求項1所述之偏壓補償裝置,其中該些第一電流控制電路的一總數量與該些第三電流控制電路的一總數量相等,及該些第二電流控制電路的一總數量與該些第四電流控制電路的一總數量相等。
  3. 如請求項1所述之偏壓補償裝置,其中該些第一電流控制電路所輸出的複數個第一參考電流的一總電流大於該第二參考電流。
  4. 如請求項1所述之偏壓補償裝置,其中:該第一偏壓模組另包含一第一主電流源,與該些第一電流控制電路及該些第二電流控制電路並聯,及用以產生一第一主電流;該第二偏壓模組另包含一第二主電流源,與該些第三電流控制電路及該些第四電流控制電路並聯,及用以產生一第二主電流;及該第一主電流與該第二主電流實質上相等。
  5. 如請求項1所述之偏壓補償裝置,其中:當該些第二電流控制電路中有一第二電流控制電路被致能時,該些第四電流控制電路皆被失能;及當該些第四電流控制電路中有一第四電流控制電路被致能時,該些第二電流控制電路皆被失能。
  6. 如請求項5所述之偏壓補償裝置,其中:當該些第一電流控制電路中有一第一電流控制電路被致能時,該些第三電流控制電路皆被失能;及當該些第三電流控制電路中有一第三電流控制電路被致能時,該些第一電流控制電路皆被失能。
  7. 如請求項1所述之偏壓補償裝置,其中每一第一電流控制電路包含:一第一參考電流源,用以產生該第一參考電流;及一第一開關,與該第一參考電流源串聯,用以被導通或截止以使該第一電 流控制電路致能或失能。
  8. 一種操作偏壓補償裝置的方法,該偏壓補償裝置包含一第一偏壓模組及一第二偏壓模組,該第一偏壓模組包含複數個第一電流控制電路及複數個第二電流控制電路,該第二偏壓模組包含複數個第三電流控制電路及複數個第四電流控制電路,該些第一電流控制電路及該些第二電流控制電路係耦接於一第一偏壓點且互相並聯,及該些第三電流控制電路及該些第四電流控制電路係耦接於一第二偏壓點且互相並聯;及根據欲補償之一偏壓值致能一第一對應數量的該些第二電流控制電路或該些第四電流控制電路以初步補償該偏壓值;及根據初步補償後的該偏壓值致能一第二對應數量的該些第一電流控制電路或該些第三電流控制電路以再次補償該偏壓值;其中:每一第二電流控制電路所產生的一第二參考電流大於每一第一電流控制電路所產生的一第一參考電流,且每一第四電流控制電路所產生的一第四參考電流大於每一第三電流控制電路所產生的一第三參考電流;及該第一參考電流實質上與該第三參考電流相等,且該第二參考電流實質上與該第四參考電流相等。
TW109113491A 2020-04-22 2020-04-22 偏壓補償裝置及操作偏壓補償裝置的方法 TWI719891B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109113491A TWI719891B (zh) 2020-04-22 2020-04-22 偏壓補償裝置及操作偏壓補償裝置的方法
US17/234,760 US11385668B2 (en) 2020-04-22 2021-04-19 Configurable offset compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109113491A TWI719891B (zh) 2020-04-22 2020-04-22 偏壓補償裝置及操作偏壓補償裝置的方法

Publications (2)

Publication Number Publication Date
TWI719891B true TWI719891B (zh) 2021-02-21
TW202141923A TW202141923A (zh) 2021-11-01

Family

ID=75745893

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113491A TWI719891B (zh) 2020-04-22 2020-04-22 偏壓補償裝置及操作偏壓補償裝置的方法

Country Status (2)

Country Link
US (1) US11385668B2 (zh)
TW (1) TWI719891B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834951A (en) * 1993-12-17 1998-11-10 Imp, Inc. Current amplifier having a fully differential output without a d. c. bias and applications thereof
US6512408B2 (en) * 1998-07-24 2003-01-28 Gct Semiconductor, Inc. Mixer structure and method for using same
US20030165209A1 (en) * 2002-03-01 2003-09-04 Broadcom Corporation Phase-interpolator based PLL frequency synthesizer
US6967609B1 (en) * 2004-11-12 2005-11-22 Lsi Logic Corporation Method and apparatus for dynamically biasing switching elements in current-steering DAC
US7076384B1 (en) * 2004-09-29 2006-07-11 Xilinx, Inc. Method and apparatus for calibrating a current-based circuit
US20060220743A1 (en) * 2005-03-30 2006-10-05 Iwao Kojima Variable gain amplifier, mixer and quadrature modulator using the same
US20070229140A1 (en) * 2006-04-04 2007-10-04 Realtek Semiconductor Corp. Mixer
TW200740106A (en) * 2006-04-04 2007-10-16 Realtek Semiconductor Corp Low noise amplifier and low noise amplifying method of dynamically adjusting a bias voltage when switching gain modes to improve linearity
CN100468969C (zh) * 2003-12-05 2009-03-11 智慧第一公司 输出阻抗偏压补偿系统及调整其输出阻抗的方法
US20090170465A1 (en) * 2007-12-31 2009-07-02 Mipsabg Chipidea, Lda. Electronic Mixer
US8270917B2 (en) * 2006-04-24 2012-09-18 Icera Canada ULC Current controlled biasing for current-steering based RF variable gain amplifiers
US8724736B2 (en) * 2008-09-05 2014-05-13 Icera, Inc. Passive transmitter architecture with switchable outputs for wireless applications
US20150220100A1 (en) * 2014-01-31 2015-08-06 Analog Devices, Inc. Current source calibration tracking temperature and bias current
US20170127001A1 (en) * 2015-10-28 2017-05-04 SK Hynix Inc. Ramp voltage generator, image sensing device including the same and method for driving the image sensing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970689B2 (en) * 2002-02-15 2005-11-29 Broadcom Corporation Programmable mixer for reducing local oscillator feedthrough and radio applications thereof
US7098738B2 (en) * 2003-12-24 2006-08-29 Broadcom Corporation Fine step and large gain range programmable gain amplifier
US7697905B2 (en) * 2004-09-10 2010-04-13 Qualcomm Incorporation Local oscillator feedthrough cancellation scheme to remove RF and baseband offsets
US7289783B2 (en) * 2005-04-14 2007-10-30 Wilinx, Inc. Mixer circuits and methods with matched bias currents
US7657236B2 (en) * 2005-08-16 2010-02-02 Broadcom Corporation Transmitter having reduced local oscillator (LO) leakage by determining direct LO coupling and baseband DC offset
US8335249B1 (en) * 2009-11-25 2012-12-18 Altera Corporation Receiver equalizer circuitry with offset voltage compensation for use on integrated circuits
US8457190B2 (en) * 2010-07-30 2013-06-04 Broadcom Corporation Summer block for a decision feedback equalizer
CN104298287B (zh) * 2013-07-17 2016-04-20 联发科技(新加坡)私人有限公司 电流校正方法与装置及电阻校正方法与装置
US10826570B2 (en) * 2018-05-31 2020-11-03 Skyworks Solutions, Inc. Apparatus and methods for multi-antenna communications

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834951A (en) * 1993-12-17 1998-11-10 Imp, Inc. Current amplifier having a fully differential output without a d. c. bias and applications thereof
US6512408B2 (en) * 1998-07-24 2003-01-28 Gct Semiconductor, Inc. Mixer structure and method for using same
US20030165209A1 (en) * 2002-03-01 2003-09-04 Broadcom Corporation Phase-interpolator based PLL frequency synthesizer
CN100468969C (zh) * 2003-12-05 2009-03-11 智慧第一公司 输出阻抗偏压补偿系统及调整其输出阻抗的方法
US7076384B1 (en) * 2004-09-29 2006-07-11 Xilinx, Inc. Method and apparatus for calibrating a current-based circuit
US6967609B1 (en) * 2004-11-12 2005-11-22 Lsi Logic Corporation Method and apparatus for dynamically biasing switching elements in current-steering DAC
US20060220743A1 (en) * 2005-03-30 2006-10-05 Iwao Kojima Variable gain amplifier, mixer and quadrature modulator using the same
US20070229140A1 (en) * 2006-04-04 2007-10-04 Realtek Semiconductor Corp. Mixer
TW200740106A (en) * 2006-04-04 2007-10-16 Realtek Semiconductor Corp Low noise amplifier and low noise amplifying method of dynamically adjusting a bias voltage when switching gain modes to improve linearity
US8270917B2 (en) * 2006-04-24 2012-09-18 Icera Canada ULC Current controlled biasing for current-steering based RF variable gain amplifiers
US20090170465A1 (en) * 2007-12-31 2009-07-02 Mipsabg Chipidea, Lda. Electronic Mixer
US8724736B2 (en) * 2008-09-05 2014-05-13 Icera, Inc. Passive transmitter architecture with switchable outputs for wireless applications
US20150220100A1 (en) * 2014-01-31 2015-08-06 Analog Devices, Inc. Current source calibration tracking temperature and bias current
US20170127001A1 (en) * 2015-10-28 2017-05-04 SK Hynix Inc. Ramp voltage generator, image sensing device including the same and method for driving the image sensing device

Also Published As

Publication number Publication date
TW202141923A (zh) 2021-11-01
US11385668B2 (en) 2022-07-12
US20210333816A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US20070216381A1 (en) Linear regulator circuit
JP2006318327A (ja) 差動増幅回路およびシリーズレギュレータ
US6771122B2 (en) DC offset compensation circuit of closed loop operational amplifier and method of compensating for DC offset
KR20080023133A (ko) 차동 증폭 회로, 차동 증폭 회로를 사용한 전압 레귤레이터및 차동 증폭 회로의 동작 제어 방법
CN110888484A (zh) 一种低待机功耗高电源抑制比的线性稳压器
US20060017504A1 (en) Clamping circuit for operational amplifiers
US20230236615A1 (en) Low-dropout regulator having bidirectional current adjustment
US6483383B2 (en) Current controlled CMOS transconductive amplifier arrangement
TWI719891B (zh) 偏壓補償裝置及操作偏壓補償裝置的方法
JPH1070419A (ja) 増幅回路
US20230223903A1 (en) Bandgap amplifier biasing and startup scheme
JP2015191345A (ja) ボルテージレギュレータ及びその製造方法
US10122337B2 (en) Programmable gain amplifier
CN113568464B (zh) 偏压补偿装置及操作偏压补偿装置的方法
JPH06244655A (ja) 2次同調可能な能動フィルタのための安定化回路およびその方法
TWI763116B (zh) 振盪訊號產生電路
JP2008017336A (ja) 増幅器
CN115225048A (zh) 放大器电路、对应的设备和方法
CN116430945B (zh) 低压差线性稳压电路及电源设备
CN113783530B (zh) 一种石英晶体振荡器电路
KR20010005817A (ko) 위상검출기
JP2023179118A (ja) 電圧増幅回路と回路モジュール
JP4412067B2 (ja) 直流電源装置
JP2002164748A (ja) 増幅回路
JP2020013198A (ja) ボルテージレギュレータ及びボルテージレギュレータの制御方法