TWI707820B - 微機械構件 - Google Patents

微機械構件 Download PDF

Info

Publication number
TWI707820B
TWI707820B TW106126831A TW106126831A TWI707820B TW I707820 B TWI707820 B TW I707820B TW 106126831 A TW106126831 A TW 106126831A TW 106126831 A TW106126831 A TW 106126831A TW I707820 B TWI707820 B TW I707820B
Authority
TW
Taiwan
Prior art keywords
layer
cavity
main plane
micromechanical component
area
Prior art date
Application number
TW106126831A
Other languages
English (en)
Other versions
TW201815659A (zh
Inventor
阿奇美 布萊林
克里斯多福 史官克
哈特姆 庫普爾斯
妮可 辛德漢
沃克爾 史奇米茲
Original Assignee
德商羅伯特博斯奇股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特博斯奇股份有限公司 filed Critical 德商羅伯特博斯奇股份有限公司
Publication of TW201815659A publication Critical patent/TW201815659A/zh
Application granted granted Critical
Publication of TWI707820B publication Critical patent/TWI707820B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0038Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0041Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS maintaining a controlled atmosphere with techniques not provided for in B81B7/0038
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/025Inertial sensors not provided for in B81B2201/0235 - B81B2201/0242
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00285Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Micromachines (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本發明提供一種具有一延伸的主平面的微機械構件,其中該微機械構件圍封一第一空腔及一第二空腔,其中一第一壓力普遍存在於該第一空腔中且一第二壓力普遍存在於該第二空腔中,其中基本上平行於該延伸的主平面而延伸的該微機械構件之一第一層係在該第一空腔與該第二空腔之間且係基本上垂直於該延伸的主平面而伸入基本上平行於該延伸的主平面而延伸的該微機械構件之一第二層中。

Description

微機械構件
本發明係關於如申請專利範圍第1項及第2項之前言部分所述的微機械構件。
此類微機械構件係大體上已知的。舉例而言,美國專利第8,546,928 B2號揭示具有兩個空腔的微機械構件,在同一晶片上提供用於微機械構件的旋轉速率感測器之相對低的空腔內壓以及用於微機械構件的加速度計之相對高的空腔內壓。在此背景下,藉由位於空腔中的吸氣劑將用於旋轉速率感測器的空腔內壓保持於相對低的位準。
然而,由於構件變得小型化,同一晶片上具有針對空腔內壓之不同要求的感測器的數量不斷增長。
本發明的目標係以簡單且有成本效益的方式提供微機械構件,與先前技術相對比,該微機械構件在其使用壽命內幾乎不改變微機械構件之性質,特別是品質。
在如申請專利範圍第1項之前言部分的微機械構件中,目標得以實現,因為基本上平行於延伸的主平面而延伸的微機械構件之第一層在第一空腔與第二空腔之間且基本上垂直於延伸的主平面而伸入基本上平 行於延伸的主平面而延伸的微機械構件之第二層中。
在如申請專利範圍第2項之前言部分的微機械構件中,目標得以實現,因為基本上平行於延伸的主平面而延伸的微機械構件之第一層基本上垂直於延伸的主平面而伸入基本上平行於延伸的主平面而延伸的微機械構件之第二層中。
此在沿第二層伸展且平行於延伸的主平面的平面內有利地提供擴散障壁或氣體擴散障壁或氣體擴散路徑中的中斷物。由於第一層的區域在沿第二層伸展的平面中伸入第二層中,此有利地使得第一層阻礙原子或分子自第一空腔向第二空腔、或自第二空腔向第一空腔、或自微機械構件的周圍向第一空腔、或自第一空腔向微機械構件的周圍經由第二層擴散成為可能,或使得藉由第一層大大減少原子或分子的擴散成為可能。此減少原子或分子自第一空腔向第二空腔、或自第二空腔向第一空腔、或自微機械構件的周圍向第一空腔、或自第一空腔向微機械構件的周圍擴散,且因此實質上減少兩個空腔之間或微機械構件的周圍與第一空腔之間的氣體交換。此以簡單且有成本效益的方式使得與先前技術相比保持第一壓力及第二壓力、或兩個空腔的內壓或第一壓力恆定成為可能,特別是在不使用吸氣劑的情況下。因此與先前技術相對比,以簡單且有成本效益的方式保持微機械構件在其使用壽命內的性質(特別是品質)的改變較少。
特別地,本發明使得在無需藉由使用吸氣劑材料使一個或兩個空腔的內壓穩定的情況下在晶片上置放兩個各自具有一個空腔的核心成為可能,該等核心彼此相鄰並具有不同的內壓。實施本發明所需要的全部為調適感測器佈局。另外,如在例如產品測試期間為常見的,減少在高溫 下氣體儲存於微機械構件期間兩個空腔之間的氣體交換。此提供尤其有成本效益的、簡單且節省空間的微機械構件。
第一層具有針對第一層中之氫氣擴散的第一擴散係數、針對第一層中之氦氣擴散的另一第一擴散係數及針對第一層中之氖氣擴散的第三第一擴散係數。另外,第二層具有針對第二層中之氫氣擴散的第二擴散係數、針對第二層中之氦氣擴散的另一第二擴散係數及針對第二層中之氖氣擴散的第三第二擴散係數。在此背景下,第一擴散係數及/或另一第一擴散係數及/或第三第一擴散係數較佳地小於第二擴散係數及/或另一第二擴散係數及/或第三第二擴散係數。此藉由第一層伸入第二層中有利地提供自第一空腔向第二空腔或自第二空腔向第一空腔之氫氣及/或氦氣及/或氖氣的擴散的目標設定。
在本發明的背景下,術語「微機械構件」應被理解為意謂該術語涵蓋微機械構件及微機電構件兩者。
本發明之有利的實施方式及改進參考圖式含於附屬申請專利範圍及描述中。
根據一較佳改進,規定第一層包含矽,特別係指經摻雜的單晶及/或多晶矽或多晶Si。更佳地,第一層包含鋁及/或鍺及/或氮化物,最佳地氮化鋁及/或氮化矽。
根據一較佳改進,規定第二層包含氧化物層、較佳地氧化矽層、尤其較佳地二氧化矽層。此藉助於配置於兩個空腔之間的二氧化矽層有利地使得在晶片上置放兩個具有不同空腔內壓的核心成為可能,與先前技術相比可能去除或減少兩個空腔之間的氣體交換。
根據一較佳改進,規定第一層伸入第二層中,使得微機械構件包含分隔第二層的分隔區,其中該分隔區配置於第一空腔與第二空腔之間及/或平行於延伸的主平面圍封第一空腔及/或平行於延伸的主平面圍封第二空腔。較佳地,該分隔區平行於延伸的主平面而配置,至少部分圍封第一空腔,較佳地外圍的至少90%平行於延伸的主平面包圍第一空腔,尤其較佳地外圍的至少95%,極其較佳地外圍的至少99%。亦較佳地該分隔區平行於延伸的主平面而配置,至少部分圍封第二空腔,較佳地另一外圍的至少90%平行於延伸的主平面包圍第二空腔,尤其較佳地另一外圍的至少95%,極其較佳地另一外圍的至少99%。此有利地防止或阻礙自第一空腔向第二空腔或自第二空腔向第一空腔及/或自微機械構件的周圍向第一空腔及/或自微機械構件的周圍向第二空腔經由第二層擴散。
根據一較佳改進,規定第一層伸入第二層中,使得第二層的第一層區及第二層的第二層區平行於延伸的主平面彼此間隔配置。此有利地准許將第二層分隔為第一層區及第二層區,從而阻止原子及/或分子在第二層內平行於延伸的主平面自第一層區向第二層區或自第二層區向第一層區擴散,且使得原子及/或分子必須經由除第二層以外的區域平行於延伸的主平面擴散,以便自第一層區通向第二層區或自第二層區通向第一層區。
根據一較佳改進,規定第二層的第一層區在平行於延伸的主平面的平面中圍封第一空腔。此有利地使得原子及/或分子必須在平面內自第一空腔經由第一層區擴散成為可能。
根據一較佳改進,規定第二層的第二層區在平行於延伸的主平面的平面中圍封第二空腔。此有利地使得原子及/或分子必須在平面內自 第二空腔經由第二層區擴散成為可能。
根據一較佳改進,規定第一層伸入第二層中,使得第二層的第一層區及第二層的第三層區平行於延伸的主平面彼此間隔配置。此有利地准許將第二層分隔為第一層區及第三層區,從而阻止原子及/或分子在第二層內平行於延伸的主平面自第一層區向第三層區或自第三層區向第一層區擴散,且使得原子及/或分子必須經由除第二層以外的區域平行於延伸的主平面擴散,以便自第一層區通向第三層區或自第三層區通向第一層區。
根據一較佳改進,規定第一層伸入第二層中,使得第二層的第二層區及第二層的第三層區平行於延伸的主平面彼此間隔配置。此有利地准許將第二層分隔為第二層區及第三層區,從而阻止原子及/或分子在第二層內平行於延伸的主平面自第二層區向第三層區或自第三層區向第二層區擴散,且使得原子及/或分子必須經由除第二層以外的區域平行於延伸的主平面擴散,以便自第二層區通向第三層區或自第三層區通向第二層區。
根據一較佳改進,規定第二層的第三層區在平行於延伸的主平面的平面中圍封第二層的第一層區。此有利地准許在第三層區與第一層區之間形成伸展於平面中的分隔區。
根據一較佳改進,規定第二層的第三層區在平行於延伸的主平面的平面中圍封第二層的第二層區。此有利地准許在第三層區與第二層區之間形成伸展於平面中的分隔區。
根據一較佳改進,規定第一壓力低於第二壓力,用於量測旋轉速率的第一感測器單元配置於第一空腔中,用於量測加速度的第二感測器單元配置於第二空腔中。此以簡單的方式有利地提供用於量測旋轉速率 及量測加速度的微機械構件,該微機械構件具有在其使用壽命內穩定的品質。較佳地,第一空腔及第二空腔配置於一個晶片上。此有利地使得藉由相同的層方法生產第一空腔及第二空腔或第一感測器單元及第二感測器單元成為可能。此准許尤其具有時效性的生產方法。尤其較佳地,藉由在第一環境壓力下及/或在第二環境壓力下打開及重新封閉第一空腔及/或第二空腔而設定第一壓力及/或第二壓力,使得緊接在重新封閉之後,第一壓力基本上對應於第一環境壓力及/或第二壓力基本上對應於第二環境壓力。
較佳地,本發明減少第一空腔與第二空腔之間的氣體交換,及/或一方面減少第一空腔及/或第二空腔之間的氣體交換,另一方面減少第一空腔與微機械構件的周圍之間的氣體交換,且因此詳言之,在使用壽命內使圍封於用於旋轉速率量測之第一感測器單元的第一空腔中的真空穩定,其導致相對於先前技術用於旋轉速率量測之第一感測器單元的品質及感測器性質的改變較少。
1:微機械構件
3:第一空腔
5:第二空腔
7:第一層
9:第二層
11:第一層區
13:第二層區
15:第三層區
17:分隔區
19:基板
21:線
23:另一第一層
25:另一第二層
27:第三第二層
29:另一分隔區
100:延伸的主平面
圖1展示根據本發明之例示性實施方式之微機械構件的圖解表示。
圖2展示根據本發明之另一例示性實施方式之微機械構件的圖解表示。
圖3展示根據本發明之第三例示性實施方式之微機械構件的圖解表示。
圖4展示根據本發明之其他例示性實施方式之微機械構件的圖解表示。
在各圖中,相同的部件始終具備相同的參考符號,且因此一般而言各自亦僅提及或解釋一次。
圖1展示根據本發明之例示性實施方式之微機械構件1的圖解表示,其中微機械構件1具有延伸的主平面100。較佳地,延伸的主平面100為微機械構件1之基板19的延伸的主平面。在此背景下,微機械構件1圍封第一空腔3及第二空腔5,其中第一壓力普遍存在於第一空腔3中且第二壓力普遍存在於第二空腔5中。尤其較佳地規定第一壓力低於第二壓力,且在第一空腔3中配置有用於旋轉速率量測的第一感測器單元或旋轉速率感測器,且在第二空腔5中配置有用於加速度量測的第二感測器單元或加速度計。
較佳地,微機械構件1包含基座結構,其涵蓋基板19及頂蓋結構,其中藉助於微機械構件1的接合框架將基座結構較佳地一體地連接至頂蓋結構,使得第一空腔3及第二空腔5兩者各自藉由微機械構件1(例如藉助於接合腹板)彼此獨立圍封。
另外,較佳將具有第一化學成份的第一氣體混合物圍封於第一空腔3中,且將具有第二化學成份的第二氣體混合物(較佳地用於加速度計空腔的氣體填充物)圍封於第二空腔5中,第一化學成份不同於第二化學成份。第一壓力較佳地小於10mbar,尤其較佳地小於5mbar,極其較佳地小於1mbar。相比之下,第二壓力較佳地在20mbar及2000mbar之間,尤其較佳地在50mbar及750mbar之間,極其較佳地在450mbar及550mbar之間。
圖1中展示的微機械構件1包含第一層7及第二層9,其中第二層9較佳地包含氧化物層,尤其較佳地二氧化矽層。第一層7及第二層9基本上平行於延伸的主平面100而延伸。在此背景下,第一層7在第一 空腔3與第二空腔5之間基本上垂直於延伸的主平面100而伸入第二層9中。較佳地,此形成分隔第二層9之微機械構件1的分隔區17。
較佳地,在此背景下,分隔區17藉由中斷感測器核心之佈局中的氧化物層或氧化物(特別是第一空腔3與第二空腔5之間)經提供作為氣體擴散路徑的中斷物。
圖1中藉助於實例所展示的例示性實施方式中,分隔區17配置於第一空腔3與第二空腔5之間。另外,第一層7以使得第二層9的第一層區11及第二層9的第二層區13平行於延伸的主平面100彼此間隔配置的方式伸入第二層9中。換言之,分隔區17將第一層區11與第二層區13分隔,或至少部分藉由分隔區17將第一層區11及第二層區13彼此分開。舉例而言,圖1中亦規定且展示第一層區11及第二層區13經設計使得第一層區11及第二層區13至少部分接觸,特別是在分隔區17之延伸的主方向的互相對置末端。
圖1亦藉助於實例展示在平行於延伸的主平面100的平面中第一層區11圍封第一空腔3且第二層區13圍封第二空腔5。
另外,圖1藉助於實例展示分隔區17為線性的,基本上平行於延伸的主平面100,且在平行於延伸的主平面100的平面中配置於第一空腔3與第二空腔5之間及第一層區11與第二層區13之間。在此背景下,舉例而言規定分隔區17在微機械構件1之垂直於延伸的主平面100而伸展的第一表面與微機械構件1之垂直於延伸的主平面100而伸展的第二表面之間為連續的。在此背景下,第一表面(較佳地微機械構件1的外表面)較佳地平行於第二表面(較佳地微機械構件1的另一外表面)而配置。換言 之,分隔區17的形式為第一空腔3與第二空腔5之間的分隔腹板。
圖2展示根據本發明之另一例示性實施方式之微機械構件1的圖解說明,其中圖2中展示的實施方式基本上對應於圖1中展示的實施方式。在圖2中展示的實施方式中,分隔區17經設計使得分隔區17平行於延伸的主平面100圍封第一空腔3。換言之,分隔區17經外圍地設計於第一空腔3周圍。舉例而言此處展示分隔區17配置於第一空腔3與第二空腔5之間且平行於延伸的主平面100,從而圍封第一空腔3。
或者,然而亦規定分隔區17僅平行於延伸的主平面100而配置,從而圍封第一空腔3。在此背景下,舉例而言規定分隔區17經配置從而圍封第一空腔3以及第二空腔5兩者,但並不配置於第一空腔3與第二空腔5之間。
圖2亦展示分隔區17具有封閉的(基本上矩形的)道狀或線性延伸。此有利地使得利用主要標準的生產方法或反應器或配件生產根據本發明的微機械構件1成為可能。另外,此以簡單的方式使得實現分隔區在平行於延伸的主平面100的平面中至少部分圍封第一層區11及/或第二層區13及/或第一空腔3及/或第二空腔5成為可能。換言之,分隔區17經外圍地設計於第一空腔3周圍。
圖3展示根據本發明之第三例示性實施方式之微機械構件1的圖解說明,其中圖3中展示的實施方式基本上對應於圖1圖2中展示的實施方式。然而,在圖3中展示的例示性實施方式中,第一層7伸入第二層9中,使得第二層9的第一層區11第三層區15平行於延伸的主平面100彼此間隔配置。另外,第一層7伸入第二層9中,使得第二層區13及 第三層區15平行於延伸的主平面100彼此間隔配置。此外,第三層區15在平行於延伸的主平面100的平面中圍封第一層區11,且第三層區15在該平面中圍封第二層區13。
圖3中展示的例示性實施方式中,分隔區17配置於第一空腔3與第二空腔5之間,且平行於延伸的主平面100從而圍封第一空腔3,且平行於延伸的主平面100從而圍封第二空腔5。在此背景下,分隔區17具有閉合的(基本上矩形的)道狀或線性延伸。換言之,分隔區17經外圍地形成於第一空腔3周圍及第二空腔5周圍。
圖4展示根據本發明之其他例示性實施方式的微機械構件1的圖解說明,其中圖4中展示的實施方式基本上對應於圖1圖2圖3中展示的實施方式。在此背景下,圖4展示沿線21之垂直於延伸的主平面100的截面視圖。在此背景下,圖4藉助於實例展示氧化物中斷的截面。
圖4的截面視圖藉助於實例展示第一層7、第二層9、第一層區11、第二層區13、分隔區17、基板19及延伸的主平面100。圖4的截面視圖亦藉助於實例展示另一第一層23,其中另一第一層23基本上垂直於延伸的主平面100而伸入另一第二層25中且伸入第三第二層27中,且因此形成另一分隔區29。舉例而言,微機械構件1包含分隔區17及另一分隔區29,使得分隔區17及另一分隔區29配置於第一空腔3與第二空腔5之間,及/或平行於延伸的主平面100從而圍封第一空腔3及/或平行於延伸的主平面100從而圍封第二空腔5,且將第二層9、另一第二層25及第三第二層27分別分隔為第一層區11及第二層區13、另一第二層25的第一層區及第二層區及第三第二層27的第一層區及第二層區。
圖4藉助於實例展示第二層9在分隔區17外部配置於第一層7之面向基板19的一側上,且另一第一層23在分隔區17外部配置於第二層9之面向基板19的一側上。另外,圖4藉助於實例展示另一第二層25配置於另一第一層23之面向基板19的一側上,且第三第二層27配置於另一第二層25之面向基板19的一側上。
另外,圖4藉助於實例展示第二層9包含兩個氧化物層(較佳地兩個氧化矽層,尤其較佳地兩個二氧化矽層),且另一第二層25包含兩個氧化物層(較佳地兩個氧化矽層,尤其較佳地兩個二氧化矽層)。此有利地使得一方面以目標方式使第二層9適應另一第一層23的表面,另一方面准許在生成第二層9的生長或沈積期間的目標生長行為成為可能。亦有利地使得以目標方式使另一第二層25適應第三第二層27或沈積或生長於第三第二層27上之第四層的表面成為可能,且同時使得在生成另一第二層25的生長或沈積期間的目標生長行為成為可能。
1:微機械構件
3:第一空腔
5:第二空腔
7:第一層
9:第二層
11:第一層區
13:第二層區
17:分隔區
100:延伸的主平面

Claims (8)

  1. 一種具有一延伸的主平面(100)的微機械構件(1),其中該微機械構件(1)圍封一第一空腔(3)及一第二空腔(5),其中一第一壓力普遍存在於該第一空腔(3)中且一第二壓力普遍存在於該第二空腔(5)中,其特徵在於基本上平行於該延伸的主平面(100)而延伸的該微機械構件(1)之一第一層(7)在該第一空腔(3)與該第二空腔(5)之間且基本上垂直於該延伸的主平面(100)而伸入基本上平行於該延伸的主平面(100)而延伸的該微機械構件(1)之一第二層(9)中;其中該第一層(7)伸入該第二層(9)中,使得該微機械構件(1)包含分隔該第二層(9)的一分隔區(17),其中該分隔區(17)配置於該第一空腔(3)與該第二空腔(5)之間及/或平行於該延伸的主平面(100)圍封該第一空腔(3)及/或平行於該延伸的主平面(100)圍封該第二空腔(5)。
  2. 一種具有一延伸的主平面(100)的微機械構件(1),其中該微機械構件(1)圍封一第一空腔(3),其中一第一壓力普遍存在於該第一空腔(3)中,其特徵在於基本上平行於該延伸的主平面(100)而延伸的該微機械構件(1)之一第一層(7)基本上垂直於該延伸的主平面(100)而伸入基本上平行於該延伸的主平面(100)而延伸的該微機械構件(1)之一第二層(9)中;其中該第二層(9)的一第三層區(15)在平行於該延伸的主平面(100)的一平面中圍封該第二層(9)的一第一層區(11)。
  3. 如申請專利範圍第1或2項之微機械構件(1),其中該第二層(9)包含一氧化物層,較佳地一氧化矽層,尤其較佳地一二氧化矽層。
  4. 如申請專利範圍第1或2項之微機械構件(1),其中該第一層(7)伸入該第二層(9)中,使得該第二層(9)的一第一層區(11)及該第二層(9)的一第二層區(13)平行於該延伸的主平面(100)彼此間隔配置。
  5. 如申請專利範圍第1或2項之微機械構件(1),其中該第二層(9)的一第一層區(11)在平行於該延伸的主平面(100)的一平面中圍封該第一空腔(3)。
  6. 如申請專利範圍第1或2項之微機械構件(1),其中該第二層(9)的一第二層區(13)在平行於該延伸的主平面(100)的一平面中圍封該第二空腔(5)。
  7. 如申請專利範圍第1或2項之微機械構件(1),其中該第一層(7)伸入該第二層(9)中,使得該第二層(9)的一第一層區(11)及該第二層(9)的一第三層區(15)平行於該延伸的主平面(100)彼此間隔配置。
  8. 如申請專利範圍第1或2項之微機械構件(1),其中該第一層(7)伸入該第二層(9)中,使得該第二層(9)的一第二層區(13)及該第二層(9)的一第三層區(15)平行於該延伸的主平面(100)彼此間隔配置。
TW106126831A 2016-08-11 2017-08-09 微機械構件 TWI707820B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016214966.0A DE102016214966A1 (de) 2016-08-11 2016-08-11 Mikromechanisches Bauelement
DE102016214966.0 2016-08-11
??102016214966.0 2016-08-11

Publications (2)

Publication Number Publication Date
TW201815659A TW201815659A (zh) 2018-05-01
TWI707820B true TWI707820B (zh) 2020-10-21

Family

ID=61018696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126831A TWI707820B (zh) 2016-08-11 2017-08-09 微機械構件

Country Status (5)

Country Link
US (1) US10059583B2 (zh)
CN (1) CN107720686B (zh)
DE (1) DE102016214966A1 (zh)
IT (1) IT201700091702A1 (zh)
TW (1) TWI707820B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037197A1 (en) * 2004-10-04 2008-02-14 Commissariat A L'energie Atomique Variable Capacitance with Dielectric Fluid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016260A1 (de) 2006-04-06 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanische Gehäusung mit mindestens zwei Kavitäten mit unterschiedlichem Innendruck und/oder unterschiedlicher Gaszusammensetzung sowie Verfahren zu deren Herstellung
JP2013232626A (ja) * 2012-04-04 2013-11-14 Seiko Epson Corp 電子デバイス及びその製造方法、電子機器、並びに移動体
US9567210B2 (en) * 2015-02-24 2017-02-14 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-pressure MEMS package

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037197A1 (en) * 2004-10-04 2008-02-14 Commissariat A L'energie Atomique Variable Capacitance with Dielectric Fluid

Also Published As

Publication number Publication date
IT201700091702A1 (it) 2019-02-08
US20180044171A1 (en) 2018-02-15
TW201815659A (zh) 2018-05-01
US10059583B2 (en) 2018-08-28
DE102016214966A1 (de) 2018-02-15
CN107720686B (zh) 2022-12-06
CN107720686A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN101643193B (zh) 具有带有不同大气内压力的空腔的微机械装置
JP6655211B2 (ja) Memsチップ、測定素子及び圧力を測定するための圧力センサ
US20060144142A1 (en) Multiple microelectromechanical (MEM) devices formed on a single substrate and sealed at different pressures and method therefor
US9567212B2 (en) Micromechanical component
JP6440290B2 (ja) 亀裂抵抗性膜構造を有する微小電気機械システムデバイスおよびその作製方法
US20140024161A1 (en) Method of fabricating an inertial sensor
US20120161255A1 (en) Sealed mems cavity and method of forming same
US20100320548A1 (en) Silicon-Rich Nitride Etch Stop Layer for Vapor HF Etching in MEMS Device Fabrication
TW201722844A (zh) 製造微機械構件的方法
TWI634069B (zh) 混合整合構件及其製造方法
CN101391743A (zh) 半导体器件的制造方法
TWI707820B (zh) 微機械構件
JP2018202556A (ja) Memsデバイス
JP2003211399A (ja) マイクロメカニカルデバイスおよびその製造方法
WO2009130681A2 (en) Semiconductor device and method of manufacturing a semiconductor device
TWI715705B (zh) 具有擴散停止通道的微機械構件
EP2973665B1 (en) Epi-poly etch stop for electrode movable out of plane
US8426928B2 (en) Device with microstructure and method of forming such a device
CN111108758B (zh) Mems麦克风系统
TWI756282B (zh) 微機械構件的製造方法
US10472227B2 (en) Micro-device having a plurality of mobile elements arranged in a plurality of embedded cavities
JP7282342B2 (ja) Memsデバイスの製造方法
JP5939168B2 (ja) 半導体装置
JP2006500233A (ja) マイクロマシニング型の構成素子および方法
JP2016061672A (ja) シリコンデバイスの製造方法