TWI702304B - 矽氮化膜之成膜方法及成膜裝置 - Google Patents
矽氮化膜之成膜方法及成膜裝置 Download PDFInfo
- Publication number
- TWI702304B TWI702304B TW106125188A TW106125188A TWI702304B TW I702304 B TWI702304 B TW I702304B TW 106125188 A TW106125188 A TW 106125188A TW 106125188 A TW106125188 A TW 106125188A TW I702304 B TWI702304 B TW I702304B
- Authority
- TW
- Taiwan
- Prior art keywords
- gas
- raw material
- nitriding
- nitride film
- material gas
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02186—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本發明提供一種矽氮化膜之成膜方法及成膜裝置,可將具有良好膜質,且具有足夠的乾蝕刻耐受性的矽氮化膜成膜。該矽氮化膜之成膜方法,於被處理基板上,將矽氮化膜成膜,該方法包含如下步驟:對被處理基板,將吸附矽原料氣體之處理、及藉由氮化氣體之電漿將吸附的該矽原料氣體氮化之處理重複第1次數,以將矽氮化膜成膜的步驟;以及對被處理基板,將吸附含有氯的鈦原料氣體之處理、及藉由氮化氣體之電漿將吸附的該鈦原料氣體氮化之處理重複第2次數,以將氮化鈦膜成膜的步驟;將上述步驟重複既定次數,使摻雜有既定量的鈦之矽氮化膜成膜。
Description
本發明係關於一種矽氮化膜之成膜方法及成膜裝置。
矽氮化膜,在半導體積體電路裝置中,不僅作為閘極絕緣膜等絕緣材料,亦作為蝕刻阻擋層、側壁間隙壁、應力襯層等材料而廣泛地使用。
此等矽氮化膜之成膜處理,雖廣泛使用化學蒸鍍法(Chemical Vapor Deposition,CVD法),但近年隨著半導體裝置之細微化・高密集化的發展,從改善絕緣性等之特性的觀點來看,能夠以較習知之CVD法所進行的成膜更低之溫度形成良質膜的原子層沉積法(Atomic Layer Deposition,ALD法)受到注目。
作為ALD法所進行的矽氮化膜之成膜技術,前人已提出如下技術:使用係Si原料氣體的二氯矽烷(DCS;SiH2
Cl2
)氣體與係氮化氣體的氨(NH3
)氣體,將其等交互地供給,在供給NH3
氣體時施加高頻電力而產生電漿,促進氮化反應(例如專利文獻1、2)。 [習知技術文獻] [專利文獻]
專利文獻1:日本特開2004-281853號公報 專利文獻2:日本特開2016-115814號公報
[本發明所欲解決的問題]然而,藉由ALD法雖可獲得品質良好之矽氮化膜,但矽氮化膜之對於乾蝕刻耐受性的需求提高,現狀的ALD所產生的矽氮化膜難以獲得足夠的乾蝕刻耐受性。
因此,本發明的課題在於提供一種矽氮化膜之成膜方法及成膜裝置,可將具有良好膜質,且具有足夠的乾蝕刻耐受性之矽氮化膜成膜。 [解決問題之技術手段]
為了解決上述問題,本發明的第1觀點提供一種矽氮化膜之成膜方法,於被處理基板上,將矽氮化膜成膜,該方法的特徵在於包含如下步驟:對該被處理基板,將吸附矽原料氣體之處理、及藉由氮化氣體之電漿將吸附的該矽原料氣體氮化之處理重複第1次數,以將矽氮化膜成膜的步驟;以及對該被處理基板,將吸附含有氯的鈦原料氣體之處理、及藉由氮化氣體之電漿將吸附的該鈦原料氣體氮化之處理重複第2次數,以將氮化鈦膜成膜的步驟;將上述步驟重複既定次數,使摻雜有既定量的鈦之矽氮化膜成膜。
上述第1觀點中,藉由調整該第1次數、該第2次數,而可控制鈦之摻雜量。此一情況,TiN相對於膜整體的量,宜為0.1~2mol%之範圍。
該氮化處理,可使用NH3
氣體作為氮化氣體而施行。此外,該氮化處理,可藉由以微波電漿激發氮化氣體所產生的氮化種而施行。作為在該氮化鈦膜的成膜步驟使用之含有氯的鈦原料氣體,可使用TiCl4
氣體。
可於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、及使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域與該氮化區域;將吸附該矽原料氣體或該鈦原料氣體之處理、及使吸附的該矽原料或該鈦原料氮化之處理,交互地施行。
實施該氮化鈦膜之成膜步驟時,宜在該氮化處理的前後,施行藉由還原氣體之電漿將吸附的該鈦原料還原之處理。此一情況,可於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域、及在該氮化區域的前後施行還原氣體之電漿所進行的還原處理之還原區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域、該還原區域的一方、該氮化區域、該還原區域的另一方;在該氮化鈦膜的成膜步驟中,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料還原之處理、使吸附的該鈦原料氣體氮化之處理、將氮化後的該鈦原料氣體還原之處理。
實施該矽氮化膜的成膜步驟時,亦可在該氮化處理的前後,施行藉由還原氣體之電漿將吸附的該矽原料還原之處理。此一情況,可於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域、及在該氮化區域的前後施行還原氣體之電漿所進行的還原處理之還原區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域、該還原區域的一方、該氮化區域、該還原區域的另一方;在該氮化鈦膜的成膜步驟中,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料氣體還原之處理、使吸附的該鈦原料氣體氮化之處理、將氮化後的該鈦原料還原之處理;在該矽氮化膜的成膜步驟中,依序施行吸附該矽原料氣體之處理、將吸附的該矽原料氣體還原之處理、使吸附的該矽原料氣體氮化之處理、將氮化後的該矽原料還原之處理。
該還原處理,可使用H2
氣體作為還原氣體而施行。此外,該還原處理,可藉由以微波電漿激發還原氣體所產生的還原種而施行。
本發明的第2觀點,提供一種矽氮化膜之成膜裝置,於被處理基板上,將矽氮化膜成膜,其特徵為包含:真空容器,內部保持為真空;旋轉台,在該真空容器內,以載置有複數被處理基板之狀態公轉;吸附區域,設置於該真空容器內,具備矽原料氣體供給機構及鈦原料氣體供給機構,將該矽原料氣體或該鈦原料氣體吸附於該被處理基板;氮化區域,設置於該真空容器內,藉由氮化氣體之電漿將吸附的該矽原料氣體或該鈦原料氣體氮化;以及控制部,進行控制,俾於將該複數被處理基板載置於該旋轉台之狀態下,實施如下步驟:使該旋轉台旋轉,於該被處理基板通過該吸附區域時,實行從該矽原料氣體供給機構供給該矽原料氣體,將該矽原料氣體吸附在該被處理基板之處理,於該被處理基板通過該氮化區域時,施行以該氮化氣體之電漿將吸附的該矽原料氣體氮化之處理,藉由使該旋轉台旋轉第1次數,而將吸附該矽原料氣體之處理與該氮化之處理重複第1次數,將矽氮化膜成膜的步驟;以及使該旋轉台旋轉,於該被處理基板通過該吸附區域時,實行從該鈦原料氣體供給機構供給該鈦原料氣體,將該鈦原料氣體吸附在該被處理基板之處理,於該被處理基板通過該氮化區域時,實行以該氮化氣體之電漿將吸附的該鈦原料氣體氮化之處理,藉由使該旋轉台旋轉第2次數,而將吸附該鈦原料氣體之處理與該氮化之處理重複第2次數,將氮化鈦膜成膜的步驟;將該矽氮化膜的成膜步驟、及該氮化鈦膜的成膜步驟,重複既定次數。
上述第2觀點中,該矽氮化膜之成膜裝置宜更包含2個還原區域,設置於該氮化區域的前後,施行還原氣體的電漿所進行之還原處理;該控制部,進行控制,俾於該氮化鈦膜的成膜步驟時,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料還原之處理、使吸附的該鈦原料氣體氮化之處理、將氮化後的該鈦原料氣體還原之處理。
此一情況,該控制部,亦可進行控制,俾於將該矽氮化膜成膜時,依序施行吸附該矽原料氣體之處理、將吸附的該矽原料還原之處理、使吸附的該矽原料氣體氮化之處理、將氮化後的該矽原料氣體還原之處理。此外,該控制部,藉由調整該第1次數、該第2次數,而可控制鈦之摻雜量。該控制部,宜控制使TiN相對於膜整體的量,成為0.1~2mol%之範圍。
本發明的第3觀點提供一種記憶媒體,在電腦上動作,儲存有用於控制矽氮化膜之成膜裝置的程式;其特徵為,該程式,在實行時,使電腦控制該矽氮化膜之成膜裝置,俾施行上述第1觀點的矽氮化膜之成膜方法。 [本發明之效果]
本發明,使下述步驟重複既定次數,使摻雜有既定量的鈦之矽氮化膜成膜:對被處理基板,將吸附矽原料氣體之處理、及藉由氮化氣體之電漿將吸附的該矽原料氣體氮化之處理重複第1次數,以將矽氮化膜成膜;以及對被處理基板,將吸附含有氯的鈦原料氣體之處理、及藉由氮化氣體之電漿將吸附的該鈦原料氣體氮化之處理重複第2次數,以將氮化鈦膜成膜。因此,可將膜質良好且具有足夠的乾蝕刻耐受性之矽氮化膜成膜。
以下,參考附圖對本發明之實施形態予以說明。
<成膜裝置>首先,茲就可實施本發明的矽氮化膜之成膜方法的矽氮化膜之成膜裝置的一例予以說明。
圖1為本例之成膜裝置的橫剖面圖,圖2為圖1之成膜裝置的A-A′線之縱剖面圖,圖3為本例之成膜裝置的俯視圖,圖4為放大顯示本例的成膜裝置之第1區域的縱剖面圖,圖5為顯示設置於第1區域之原料氣體導入單元的底視圖,圖6為放大顯示本例之成膜裝置的第2區域之一個氮化區域的縱剖面圖。
如圖1~6所示,成膜裝置,具有界定施行成膜處理之處理空間的真空容器11。於此真空容器11內,配置形成有複數個晶圓載置區域21之旋轉台2。真空容器11內的旋轉台2通過之部分的上方側空間,例如具有:吸附區域R1,將如二氯矽烷(DCS;SiH2
Cl2
)等Si原料氣體,或例如四氯化鈦(TiCl4
)等含有氯(Cl)的Ti原料氣體,吸附於晶圓W;氮化區域R2,對晶圓W施行氮化處理;以及還原區域R3、R4,設置於氮化區域R2的兩側。
於真空容器11內之吸附區域R1的上部,具有將Si原料氣體及Ti原料氣體導入吸附區域R1所用之原料氣體導入單元3;原料氣體導入單元3,藉由配管而與Si原料氣體供給源52及Ti原料氣體供給源53連接。此外,從氮化氣體供給源55,通過配管而往氮化區域R2供給氮化氣體,例如NH3
氣體。此外,從還原氣體供給源56,通過配管而往還原區域R3及R4供給還原氣體,例如H2
氣體。另,圖1中僅於還原區域R3圖示供給還原氣體所用的配管。
於氮化區域R2及還原區域R3、R4,分別設置電漿產生部6A、6B、6C。關於氣體供給系統及電漿產生部,將在之後內容詳細說明。
如圖2所示,真空容器11,係由形成真空容器11之側壁及底部的容器本體13、以及氣密性地封閉該容器本體13之頂面側開口的頂板12所構成,為略圓形之扁平容器。真空容器11,例如由鋁等金屬構成,於真空容器11之內面,施加陽極氧化處理或陶瓷噴敷處理等抗電漿處理。
於旋轉台2之表面,施加例如與真空容器11同樣的抗電漿處理。在旋轉台2之中心部設置往鉛直下方延伸的旋轉軸14,在旋轉軸14之下端部,設置使旋轉台2旋轉所用的旋轉驅動機構15。
於旋轉台2之頂面,如圖1所示,在圓周方向均等地設置6個晶圓載置區域21。各晶圓載置區域21,構成為具有較晶圓W略大之直徑的圓形凹部。另,晶圓載置區域21之數目不限為6個。
如圖2所示,在位於旋轉台2下方位置的容器本體13之底面,沿著該旋轉台2的圓周方向,形成圓環狀的環狀溝部45。於此環狀溝部45內,以與晶圓載置區域21之配置區域對應的方式設置加熱器46。藉由加熱器46,將旋轉台2上之晶圓W加熱至既定溫度。此外,環狀溝部45之頂面的開口,以係圓環狀的板構件之加熱器罩蓋47封閉。
如圖1及圖3所示,於真空容器11之側壁面,設置用於將晶圓W搬出入的搬出入部101。搬出入部101可藉由閘閥開閉。通過此一搬出入部101,將外部之搬運機構所保持的晶圓W往真空容器11內搬入。
若在具備上述構造之旋轉台2中,以旋轉軸14使旋轉台2旋轉,則各晶圓載置區域21繞旋轉中心之周圍公轉。此時晶圓載置區域21通過以一點鏈線表示之圓環狀的公轉區域RA
。
接著,對吸附區域R1予以說明。如圖2所示,吸附區域R1的原料氣體導入單元3,設置於與旋轉台2之頂面相對向的頂板12之底面側。此外,如圖1所示,原料氣體導入單元3之平面形狀,成為將晶圓載置區域21的公轉區域RA
,在與晶圓載置區域21的公轉方向交叉的方向區隔而形成之扇形形狀。
原料氣體導入單元3,如同在圖4及圖5放大顯示,成為從下方側依序疊層下述空間之構造:原料氣體擴散空間33,使原料氣體擴散;排氣空間32,施行原料氣體之排氣;以及分離氣體擴散空間31,使將原料氣體導入單元3之下方側區域、與原料氣體導入單元3之外方側區域分離的分離氣體擴散。
最下層之原料氣體擴散空間33與原料氣體供給路17連接,原料氣體供給路17在頂板12之頂面開口,於該開口處連接原料氣體供給配管18。原料氣體供給配管18分支為Si原料配管521及Ti原料配管531:Si原料配管521,與供給Si原料氣體之Si原料氣體供給源52連接;Ti原料配管531,與供給含有Cl的Ti原料氣體之Ti原料氣體供給源53連接。Si原料配管521,與開閉閥522及質量流量控制器等流量控制器523連接。此外,Ti原料配管531,與開閉閥532及質量流量控制器等流量控制器533連接。於原料氣體導入單元3之底面形成多個噴吐孔331,用於從原料氣體擴散空間33朝向旋轉台2側供給原料氣體。
作為Si原料氣體,可使用甲矽烷(SiH4
)、乙矽烷(Si2
H6
)、單氯矽烷(MCS;SiH3
Cl)、二氯矽烷(DCS;SiH2
Cl2
)、三氯矽烷(TCS;SiHCl3
)、四氯化矽(STC;SiCl4
)、六氯二矽烷(HCD;Si2
Cl6
)等。其等之中可適當使用DCS。
此外,作為含有Cl的Ti原料氣體,可適當使用TiCl4
氣體。
噴吐孔331分散設置在圖5中以虛線表示之扇形區域內。此扇形區域之在旋轉台2的半徑方向延伸之2邊的長度,成為較晶圓載置區域21的直徑更長。因此,若晶圓載置區域21通過原料氣體導入單元3之下方側,則從噴吐孔331,對載置於晶圓載置區域21內之晶圓W的全表面供給Si原料氣體或Ti原料氣體。
設置有多個噴吐孔331之扇形區域,構成成膜原料氣體之噴吐部330。藉由噴吐部330、原料氣體擴散空間33、原料氣體供給路17、Si原料配管521、Ti原料配管531、開閉閥522與532、流量控制器523與533、Si原料氣體供給源52、及Ti原料氣體供給源53,構成原料氣體供給部。
如圖4及圖5所示,形成於原料氣體擴散空間33之上方側的排氣空間32,與沿著包圍噴吐部330周圍的封閉路徑而延伸之排氣口321連通。此外,排氣空間32,藉由排氣路192而與排氣機構51連接,形成將從原料氣體擴散空間33往原料氣體導入單元3之下方側供給的原料氣體導往排氣機構51側之獨立的流路。藉由排氣口321、排氣空間32、排氣路192、及排氣機構51,構成排氣部。
進一步,形成於排氣空間32之上方側的分離氣體擴散空間31,與沿著包圍排氣口321周圍的封閉路徑而延伸之分離氣體供給口311連通。此外,分離氣體擴散空間31,與分離氣體供給路16連接,分離氣體供給路16在頂板12之頂面開口,於該開口處連接分離氣體供給配管541。分離氣體供給配管541,與供給分離氣體之分離氣體供給源54連接。分離氣體供給配管541,與開閉閥542及質量流量控制器等流量控制器543連接。從分離氣體供給源54供給分離氣體,該分離氣體將分離氣體供給口311之內側與外側的氣體環境分離,且亦扮演用於將過量吸附在晶圓W之原料氣體去除的沖洗氣體之角色。作為分離氣體使用惰性氣體,例如使用Ar氣體。藉由分離氣體供給口311、分離氣體擴散空間31、分離氣體供給路16、分離氣體供給配管541、開閉閥542、流量控制器543、及分離氣體供給源54,構成分離氣體供給部。
在原料氣體導入單元3中,從噴吐部330之各噴吐孔331供給的原料氣體,於旋轉台2之頂面流動並向周圍擴散,最終到達排氣口321而從旋轉台2之頂面排氣。因此,在真空容器11內,原料氣體存在的區域,限於沿著第1封閉路徑設置的排氣口321之內側。原料氣體導入單元3,成為將晶圓載置區域21的公轉區域RA
之一部分在與晶圓載置區域21的公轉方向交叉的方向區隔之形狀,故若使旋轉台2旋轉,則載置於各晶圓載置區域21的晶圓W通過吸附區域R1,將原料氣體吸附於其全表面。
另一方面,於排氣口321之周圍,沿著第2封閉路徑而設置分離氣體供給口311,從此分離氣體供給口311朝向旋轉台2之頂面側施行分離氣體的供給。因此,吸附區域R1的內外,藉由排氣口321所進行之排氣、及從分離氣體供給口311供給之分離氣體,而分離為2層,有效地抑制原料氣體的往吸附區域R1之外側的漏出、及來自吸附區域R1外側之氣體成分的進入。
吸附區域R1之範圍,為在可確保將原料氣體吸附於晶圓W之全表面的接觸時間足夠,且不干涉設置於吸附區域R1之外側,施行氮化處理的氮化區域R2及施行還原處理的還原區域R3、R4之範圍即可。
接著,對氮化區域R2及還原區域R3、R4予以說明。如同上述,在氮化區域R2及設置於其兩側之R3、R4,分別設置電漿產生部6A、6B、6C。此外,對氮化區域R2,從氮化氣體供給源55通過配管而由其外側及內側供給氮化氣體;對還原區域R3、R4,從還原氣體供給源56通過配管而由其外側及內側供給還原氣體。作為氮化氣體,可使用NH3
氣體、N2
氣體等。其等之中可適當使用NH3
氣體。此外,作為還原氣體,可適當使用H2
氣體。
如圖6所示,氮化區域R2之電漿產生部6A,具備朝向真空容器11內放射微波之天線部60、朝向天線部60供給微波之同軸波導管65、以及微波產生器69,而構成為RLSA(註冊商標)微波電漿處理裝置。天線部60,設置為封閉設置在與旋轉台2之頂面相對向的頂板12之略三角形形狀的開口。
微波產生器69,產生例如2.45GHz之頻率的微波。微波產生器69,與波導管67連接,於波導管67,設置施行阻抗匹配之調諧器68。波導管67,與模式轉換器66連接,而模式轉換器66,與往下方延伸之同軸波導管65連接。此外,同軸波導管65之下端,與天線部60連接。而以微波產生器69產生的微波,經由波導管67、模式轉換器66、同軸波導管65而往天線部60傳播。模式轉換器66,將微波的模式轉換為可往同軸波導管65傳導的模式。同軸波導管65,具備內側導體651、及與內側導體651同軸地設置之外側導體652。
天線部60,構成為具有介電窗61、平面槽孔天線62、波延遲件63、及冷卻套64的RLSA(註冊商標)天線。
平面槽孔天線62,構成為略三角形的金屬板,形成有多個槽孔621。槽孔621,適宜設定為效率良好地放射微波。例如,槽孔621,從上述三角形形狀的中心朝向邊緣在徑方向、及圓周方向以既定間隔配置,形成為相鄰的槽孔621、621彼此交叉或垂直。
介電窗61,具有使從同軸波導管65傳送,而從平面槽孔天線62之槽孔621放射出的微波穿透,在旋轉台2之上方的空間均一地產生表面波電漿之功能,例如以氧化鋁等陶瓷構成,具有可封閉頂板12側之開口的略三角形之平面形狀。於介電窗61之底面具有具備推拔面之環狀的凹部611,用於使微波的能量集中,藉而穩定產生電漿。另,介電窗61之底面亦可呈平面狀。
波延遲件63,設置於平面槽孔天線62上,由具有較真空更大之介電常數的介電材料,例如氧化鋁等陶瓷構成。波延遲件63,用於使微波的波長減短,具有與介電窗61、平面槽孔天線62對應的略三角形之平面形狀。於波延遲件63上設置冷卻套64。於冷卻套64之內部形成冷媒流路641,藉由使冷媒在該冷媒流路641流通而可將天線部60冷卻。
此外,在微波產生器69產生的微波,經由波導管67、模式轉換器66、同軸波導管65、及波延遲件63,經由平面槽孔天線62的槽孔621,穿透介電窗61而往其下方的晶圓W通過區域之正上方的空間S供給。
在頂板12之支持介電窗61的部分之邊緣部,形成對產生電漿的空間S噴吐用於氮化處理之氣體的邊緣側氣體噴吐孔703。邊緣側氣體噴吐孔703,彼此隔著間隔配置於複數處,例如2處。邊緣側氣體噴吐孔703與邊緣側氣體供給路184連通,邊緣側氣體供給路184在頂板12之頂面開口。邊緣側氣體供給路184,與配管551連接;配管551,與氮化氣體供給源55連接。於配管551,設置開閉閥552及流量調節部553。
另一方面,在頂板12之支持介電窗61的部分之中央部,形成向產生電漿的空間S噴吐用於氮化處理之氣體的中央側氣體噴吐孔704。中央側氣體噴吐孔704與中央側氣體供給路185連通,中央側氣體供給路185在頂板12之頂面開口。中央側氣體供給路185,與配管554連接;配管554,與氮化氣體供給源55連接。於配管554,設置開閉閥555及流量調節部556。
藉此,往已供給微波的晶圓W通過區域之正上方的空間S供給氮化氣體,在晶圓W通過區域之正上方的區域產生氮化氣體之活性種,例如NH3
自由基(NH3 *
)。
另,亦可設置另外的氣體供給管線,對介電窗61之正下方位置供給Ar氣體等稀有氣體以作為電漿產生用氣體。
還原區域R3及R4之電漿產生部6B及6C,如圖7所示,除了取代氮化氣體供給源55,而具有還原氣體供給源56以供給還原氣體,例如供給H2
氣體之外,與圖6的氮化區域R2之電漿產生部6A同樣地構成。還原區域R3及R4的來自還原氣體供給源56之還原氣體的供給,亦與氮化區域R2之氮化氣體的供給同樣地施行。而還原區域R3及R4中,往已供給微波的晶圓W通過區域之正上方的空間S供給還原氣體,在晶圓W通過區域之正上方的區域產生還原氣體的活性種,例如H2
自由基(H2 *
)。
另,氮化區域R2,及還原區域R3、R4的處理空間,如圖1所示,通過在真空容器11之容器本體13的底部之外縁部均等設置的4個排氣口190A、190B、190C、190D,而藉由排氣機構57排氣。
如圖1所示,成膜裝置具有控制部8。控制部8,控制成膜裝置之各構成部,例如,使旋轉台2旋轉的旋轉驅動機構15、原料氣體供給部、分離氣體供給部、氮化處理氣體供給部、電漿產生部6A~6C等。控制部8,具有CPU(電腦),具有施行上述控制之主控制部、輸入裝置、輸出裝置、顯示裝置、及記憶裝置。於記憶裝置安裝記憶媒體,該記憶媒體收納有用於控制在成膜裝置實行之處理的程式,亦即處理配方;主控制部,進行控制俾叫出儲存在記憶媒體之既定的處理配方,依據該處理配方而以成膜裝置100施行既定處理。
<矽氮化膜之成膜方法>接著,參考圖8之流程圖,說明使用如同上述地構成之成膜裝置的矽氮化膜之成膜方法的一實施形態。
過去,ALD所進行的矽氮化膜之成膜,藉由下述電漿ALD施行:使用係Si原料氣體的二氯矽烷(DCS;SiH2
Cl2
)氣體與係氮化氣體的氨(NH3
)氣體,將其等往晶圓上交互地供給,在供給NH3
氣體時施加高頻電力而產生電漿,促進氮化反應;藉此獲得膜質良好而絕緣性高的矽氮化膜,但矽氮化膜之對於乾蝕刻耐受性的需求提高,現狀的ALD所產生之矽氮化膜難以獲得足夠的乾蝕刻耐受性。
因而,本實施形態,利用上述成膜裝置,將ALD所產生之矽氮化膜(SiN膜)、及ALD所產生之氮化鈦膜(TiN膜)以既定比例疊層,使摻雜有微量的鈦之矽氮化膜成膜。
氮化鈦相較於氮化矽,蝕刻抗性高,故藉由如此地摻雜微量的鈦,而可將膜質維持在高膜質,使蝕刻抗性顯著提高。
在利用上述成膜裝置將此等矽氮化膜成膜時,如圖8所示,首先,開啟搬出入部101之閘閥,藉由外部的搬運機構將複數片晶圓W搬入真空容器11內,將複數片晶圓W載置於旋轉台2之晶圓載置區域21(步驟1)。
晶圓W的傳遞,係使旋轉台2間歇地旋轉而施行,於全部的晶圓載置區域21載置晶圓W。晶圓W的載置結束後,使搬運機構退出,關閉搬出入部101之閘閥。此時將真空容器11內以排氣機構51、57預先真空排氣為既定壓力。此外,從分離氣體供給口311供給例如Ar氣體以作為分離氣體。
接著,依據溫度感測器(未圖示)之檢測值,藉由加熱器46使旋轉台2上的晶圓W溫度上升至既定的設定溫度,開始對真空容器11內的吸附區域R1供給Si原料氣體、對氮化區域R2供給氮化處理所用之NH3
氣體、及供給來自電漿產生部6A~6C之微波,使旋轉台2以既定速度順時針旋轉,在晶圓W上,將Si原料氣體之吸附、與電漿所進行之氮化處理交互重複第1次數,藉由ALD形成既定厚度的SiN膜(步驟2)。
接著,以既定速度使旋轉台2保持順時針旋轉,將對吸附區域R1之供給氣體切換為含有Cl的Ti原料氣體,在晶圓W上,將Ti原料氣體之吸附、與電漿所進行之氮化處理交互重複第2次數,藉由ALD形成既定厚度的TiN膜(步驟3)。
而後,藉由將步驟2與步驟3重複既定次數,而可將既定膜厚的摻雜有Ti之矽氮化膜成膜。
此時,可藉由調整係步驟2之重複次數的第1次數、係步驟3之重複次數的第2次數,而控制Ti之摻雜量。
此時的Ti之摻雜量,宜為可有效提高蝕刻抗性,並可維持高膜質的範圍。Ti摻雜量越增加則可提高蝕刻抗性,但若Ti摻雜量變得過多則變得無法維持膜質,故若考慮此點,則宜使相對於膜整體,TiN為0.1~2mol%之範圍。
對顯示此一情形之實驗結果予以說明。圖9為,顯示SiN膜中的TiN濃度、與以未含TiN之SiN膜的乾蝕刻率為1而標準化的乾蝕刻率之關係的圖。作為蝕刻氣體,使用C4
F6
/Ar/O2
。如此圖所示,得知蝕刻率僅因將TiN少量添加0.1mol%程度而急遽降低,即乾蝕刻耐受性變高。
圖10為,顯示在SiN膜未摻雜Ti的情況(0mol%),及摻雜Ti以使TiN成為1.9mol%、10.2mol%的情況之漏電流特性的圖。如此圖所示,得知TiN摻雜量為1.9mol%時漏電流特性位於容許範圍(電場為-2MV/cm、漏電流密度為1μA/cm2
以下),但TiN摻雜量為10.2mol%時漏電流特性惡化。亦即,Ti摻雜量(TiN添加量)越增加則SiN膜之漏電流特性越為惡化,得知TiN宜為2mol%以下。
Ti之摻雜量,係以步驟2時的旋轉台2之旋轉次數,即SiN膜之膜厚,與步驟3時的旋轉台之旋轉次數,即TiN膜之膜厚的比而決定。例如,若假定為旋轉台2之每1次旋轉的SiN膜之膜厚與TiN膜之膜厚相同,則在欲使TiN為5mol%之情況,使旋轉次數為如下比例,重複直至膜成為既定厚度為止:步驟2時的旋轉台2之旋轉次數為19次,步驟3時的旋轉台2之旋轉次數為1次。此外,在欲使TiN為2mol%之情況,使旋轉次數為如下比例,重複直至膜成為既定厚度為止:步驟2時的旋轉台2之旋轉次數為49次,步驟3時的旋轉台2之旋轉次數為1次。
如此地,藉由在氮化處理時使用微波電漿,而能夠以低電子溫度產生高密度之電漿,並可施行自由基主體之處理。因此,可將膜質更優良的矽氮化膜成膜。
成膜時之較佳條件如同以下。成膜溫度:400~600℃壓力:66.6~1330PaSi原料氣體(DCS氣體)流量:600~1200sccmTi原料氣體(TiCl4
氣體)流量:100~200sccm氮化氣體(NH3
氣體)流量:80~4000sccm微波功率:1000~2500W
而作為將TiN膜成膜時之Ti原料氣體,使用含有氯者,例如使用TiCl4
氣體,但在吸附TiCl4
氣體後,以微波電漿激發NH3
氣體等氮化氣體而氮化之情況,Cl容易殘留在成膜的TiN膜中。
因而,本實施形態,於氮化區域R2的兩側設置還原區域R3及R4,在將TiN膜成膜時,對通過還原區域R3及R4的晶圓W供給還原氣體,例如H2
氣體,並以微波電漿激發,藉由還原氣體的活性種,例如H2 *
(H*
),而施行吸附的Ti原料之還原處理。藉此,可將膜中的殘留氯有效地還原,可減少殘留氯。
參考圖11,詳細地說明此時之程序及機制。此處,對於在SiN膜成膜後的氮化表面,使用TiCl4
氣體作為Ti原料氣體,使用H2
氣體作為還原氣體,使用NH3
氣體作為氮化氣體而將TiN膜成膜之情況予以說明。
首先,在吸附區域R1中,將TiCl4
氣體吸附於經氮化的晶圓W表面(吸附步驟)。
接著,在還原區域R3中,藉由以微波電漿激發H2
氣體而產生的H*
,施行第1次還原處理(還原1步驟)。此時,若將TiCl4
的Cl完全置換為H,則在之後的氮化處理時無法產生NH3
所進行的氮化反應,故在殘留有-Cl基的狀態下停止還原。此時,還原的對象剛吸附之狀態的TiCl4
,為尚不穩定的狀態,故容易還原。
接著,在氮化區域R2中,藉由以微波電漿激發NH3
氣體而產生的NH3 *
,施行氮化處理(氮化步驟)。此時,NH3 *
與和Ti鍵結的-Cl基反應而將Ti氮化,但留下-Cl基的一部分。
接著,在還原區域R4中,藉由以微波電漿激發H2
氣體而產生的H*
,施行第2次還原(還原2步驟)。藉此,將氮化處理後殘存的Cl幾乎完全還原。
如此地,在步驟3之TiN膜成膜時,於電漿所進行之氮化處理的前後以H2
電漿施行還原處理,藉而可將容易殘存在膜中的Cl去除,故可將Cl含有量極少的良質TiN膜成膜。因此,可改善摻雜有Ti的矽氮化膜之膜質。此外,其係電漿所進行之還原處理,故將Cl還原去除的效果高。
此一情況之還原處理的較佳條件,在還原1步驟及還原2步驟皆如同以下。H2
氣體流量:100~4000sccm微波功率:1000~2500W
如同上述之在氮化處理的前後施行之還原處理,在步驟3之TiN膜成膜時施行有效,但亦可在步驟2之SiN膜成膜時施行。尤其是,在使用DCS等含有氯的Si原料氣體之情況,雖未到TiCl4
的程度,但仍有往膜中導入Cl的可能性,因而宜在氮化處理的前後施行還原處理。
使用DCS氣體作為Si原料氣體,使用H2
氣體作為還原氣體,使用NH3
氣體作為氮化氣體而將SiN膜成膜之情況的具體程序,成為如同下述之程序。
亦即,首先,在吸附區域R1中,將DCS氣體吸附於經氮化的晶圓W表面。接著,在區域R3中,藉由以微波電漿激發H2
氣體而產生的H2 *
,施行第1次還原。接著,在區域R2中,藉由以微波電漿激發NH3
氣體而產生的NH3 *
,施行氮化處理。接著,在還原區域R4中,藉由以微波電漿激發H2
氣體而產生的H2 *
,施行第2次還原。
如此地在步驟2之SiN膜成膜時,亦於電漿所進行之氮化處理的前後以H2
電漿施行還原處理,藉而在將SiN膜成膜時亦可將膜中的Cl排出,故可使SiN膜中的Cl含有量減少,可進一步改善摻雜有Ti之矽氮化膜的膜質。
<其他應用>以上,雖對本發明之實施形態予以說明,但本發明並未限定於上述實施形態,在不脫離其思想之範圍可進行各種變形。
例如,上述實施形態,顯示以旋轉式成膜裝置將摻雜有Ti的矽氮化膜成膜之情況,該旋轉式成膜裝置藉由使承載有複數片晶圓之旋轉台旋轉,而交互地施行原料氣體的吸附、及氮化處理;較佳態樣,顯示使用為了將膜中的Cl排出,而在氮化區域的前後具有還原區域之成膜裝置的情況,但亦可使用重複原料氣體的供給、吹掃、氮化處理、吹掃,或重複原料氣體的供給、吹掃、還原處理、氮化處理、還原處理、吹掃之單片式成膜裝置。
此外,上述實施形態,雖顯示使用微波電漿作為氮化處理及還原處理時之電漿的例子,但並不限於此一實施形態,亦可使用電感耦合電漿等其他電漿。
100‧‧‧成膜裝置101‧‧‧搬出入部11‧‧‧真空容器12‧‧‧頂板13‧‧‧容器本體14‧‧‧旋轉軸15‧‧‧旋轉驅動機構16‧‧‧分離氣體供給路17‧‧‧原料氣體供給路18‧‧‧配管184‧‧‧邊緣側氣體供給路185‧‧‧中央側氣體供給路190A、190B、190C、190D‧‧‧排氣口192‧‧‧排氣路2‧‧‧旋轉台21‧‧‧晶圓載置區域3‧‧‧原料氣體導入單元31‧‧‧分離氣體擴散空間311‧‧‧分離氣體供給口32‧‧‧排氣空間321‧‧‧排氣口33‧‧‧原料氣體擴散空間330‧‧‧噴吐部331‧‧‧噴吐孔45‧‧‧環狀溝部46‧‧‧加熱器47‧‧‧加熱器罩蓋51、57‧‧‧排氣機構52‧‧‧Si原料氣體供給源521‧‧‧Si原料配管522、532、542‧‧‧開閉閥523、533、543‧‧‧流量控制器53‧‧‧Ti原料氣體供給源531‧‧‧Ti原料配管54‧‧‧分離氣體供給源541‧‧‧分離氣體供給配管55‧‧‧氮化氣體供給源551、554‧‧‧配管552、555‧‧‧開閉閥553、556‧‧‧流量調節部56‧‧‧還原氣體供給源6A、6B、6C‧‧‧電漿產生部60‧‧‧天線部61‧‧‧介電窗611‧‧‧凹部62‧‧‧平面槽孔天線621‧‧‧槽孔63‧‧‧波延遲件64‧‧‧冷卻套641‧‧‧冷媒流路65‧‧‧同軸波導管651‧‧‧內側導體652‧‧‧外側導體66‧‧‧模式轉換器67‧‧‧波導管68‧‧‧調諧器69‧‧‧微波產生器703‧‧‧邊緣側氣體噴吐孔704‧‧‧中央側氣體噴吐孔8‧‧‧控制部R1‧‧‧吸附區域R2‧‧‧氮化區域R3、R4‧‧‧還原區域RA‧‧‧公轉區域S‧‧‧空間W‧‧‧晶圓
圖1係顯示實施本發明之成膜方法所用的成膜裝置之一例的橫剖面圖。圖2係圖1之成膜裝置的A-A′線之縱剖面圖。圖3係顯示實施本發明之成膜方法所用的成膜裝置之俯視圖。圖4係放大顯示實施本發明之成膜方法所用的成膜裝置之第1區域的縱剖面圖。圖5係顯示設置於吸附區域之原料氣體導入單元的底視圖。圖6係放大顯示實施本發明之成膜方法所用的成膜裝置之氮化區域的縱剖面圖。圖7係用於說明實施本發明之成膜方法所用的成膜裝置之還原區域處理動作的縱剖面圖。圖8係顯示本發明之成膜方法的一實施形態之流程圖。圖9係顯示SiN膜中的TiN濃度、與以未含TiN之SiN膜的乾蝕刻率為1而標準化的乾蝕刻率之關係的圖。圖10係顯示SiN膜未摻雜Ti的情況(0mol%),及摻雜Ti以使TiN成為1.9mol%、10.2mol%的情況之漏電流特性的圖。 圖11係用於說明本發明之成膜方法中,將TiN膜成膜時的較佳形態之程序及機制的圖。
Claims (19)
- 一種矽氮化膜之成膜方法,將矽氮化膜成膜於被處理基板上,其特徵為包含如下步驟: 對該被處理基板,將吸附矽原料氣體之處理、及藉由氮化氣體之電漿將吸附的該矽原料氣體予以氮化之處理重複第1次數,以將矽氮化膜成膜的步驟;以及對該被處理基板,將吸附含有氯的鈦原料氣體之處理、及藉由氮化氣體之電漿將吸附的該鈦原料氣體予以氮化之處理重複第2次數,以將氮化鈦膜成膜的步驟;將上述步驟重複既定次數,使摻雜有既定量的鈦之矽氮化膜成膜。
- 如申請專利範圍第1項之矽氮化膜之成膜方法,其中,藉由調整該第1次數、及該第2次數,而控制鈦之摻雜量。
- 如申請專利範圍第2項之矽氮化膜之成膜方法,其中,TiN相對於膜整體的量,為0.1~2mol%之範圍。
- 如申請專利範圍第1至3項中任一項之矽氮化膜之成膜方法,其中,該氮化處理,係使用NH3 氣體作為氮化氣體而施行。
- 如申請專利範圍第1項之矽氮化膜之成膜方法,其中,該氮化處理,係藉由以微波電漿激發氮化氣體所產生的氮化種而施行。
- 如申請專利範圍第1項之矽氮化膜之成膜方法,其中,作為在該氮化鈦膜的成膜步驟使用之含有氯的鈦原料氣體,係使用TiCl4 氣體。
- 如申請專利範圍第1項之矽氮化膜之成膜方法,其中,於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、及使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域與該氮化區域;將吸附該矽原料氣體或該鈦原料氣體之處理、及使吸附的該矽原料或該鈦原料氮化之處理,交互地施行。
- 如申請專利範圍第1項之矽氮化膜之成膜方法,其中,實施該氮化鈦膜的成膜步驟時,在該氮化處理的前後,施行藉由還原氣體之電漿將吸附的該鈦原料還原之處理。
- 如申請專利範圍第8項之矽氮化膜之成膜方法,其中,於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域、及在該氮化區域的前後施行由還原氣體之電漿所進行的還原處理之還原區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域、該還原區域的一方、該氮化區域、及該還原區域的另一方;在該氮化鈦膜的成膜步驟中,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料還原之處理、使吸附的該鈦原料氣體氮化之處理、將氮化後的該鈦原料氣體還原之處理。
- 如申請專利範圍第8項之矽氮化膜之成膜方法,其中,在實施該矽氮化膜的成膜步驟時,在該氮化處理的前後,施行藉由還原氣體之電漿將吸附的該矽原料還原之處理。
- 如申請專利範圍第10項之矽氮化膜之成膜方法,其中,於真空容器內,設置吸附該矽原料氣體或該鈦原料氣體之吸附區域、使吸附的該矽原料氣體或該鈦原料氣體氮化之氮化區域、及在該氮化區域的前後施行還原氣體之電漿所進行的還原處理之還原區域,在該真空容器內使載置於旋轉台的複數被處理基板公轉,以使該被處理基板,依序通過該吸附區域、該還原區域的一方、該氮化區域、該還原區域的另一方;在該氮化鈦膜的成膜步驟中,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料氣體還原之處理、使吸附的該鈦原料氣體氮化之處理、及將氮化後的該鈦原料還原之處理;在該矽氮化膜的成膜步驟中,依序施行吸附該矽原料氣體之處理、將吸附的該矽原料氣體還原之處理、使吸附的該矽原料氣體氮化之處理、及將氮化後的該矽原料還原之處理。
- 如申請專利範圍第8項之矽氮化膜之成膜方法,其中,該還原處理,係使用H2 氣體作為還原氣體而施行。
- 如申請專利範圍第8項之矽氮化膜之成膜方法,其中,該還原處理,係藉由以微波電漿激發還原氣體所產生的還原種而施行。
- 一種矽氮化膜之成膜裝置,將矽氮化膜成膜於被處理基板上,其特徵為包含:真空容器,內部保持為真空;旋轉台,在該真空容器內,以載置有複數被處理基板之狀態公轉;吸附區域,設置於該真空容器內,具備矽原料氣體供給機構及鈦原料氣體供給機構,將該矽原料氣體或該鈦原料氣體吸附於該被處理基板;以及氮化區域,設置於該真空容器內,藉由氮化氣體之電漿將吸附的該矽原料氣體或該鈦原料氣體氮化;以及控制部,進行控制,俾於將該複數被處理基板載置於該旋轉台之狀態下,實施如下步驟:使該旋轉台旋轉,於該被處理基板通過該吸附區域時,實行從該矽原料氣體供給機構供給該矽原料氣體,將該矽原料氣體吸附在該被處理基板之處理,於該被處理基板通過該氮化區域時,施行以該氮化氣體之電漿將吸附的該矽原料氣體氮化之處理,藉由使該旋轉台旋轉第1次數,而將吸附該矽原料氣體之處理與該氮化之處理重複第1次數,將矽氮化膜成膜的步驟;以及使該旋轉台旋轉,於該被處理基板通過該吸附區域時,實行從該鈦原料氣體供給機構供給該鈦原料氣體,將該鈦原料氣體吸附在該被處理基板之處理,於該被處理基板通過該氮化區域時,實行以該氮化氣體之電漿將吸附的該鈦原料氣體氮化之處理,藉由使該旋轉台旋轉第2次數,而將吸附該鈦原料氣體之處理與該氮化之處理重複第2次數,將氮化鈦膜成膜的步驟;將該矽氮化膜的成膜步驟、及該氮化鈦膜的成膜步驟,重複既定次數。
- 如申請專利範圍第14項之矽氮化膜之成膜裝置,其中,更包含2個還原區域,設置於該氮化區域的前後,施行由還原氣體的電漿所進行之還原處理; 該控制部,進行控制,俾於該氮化鈦膜的成膜步驟時,依序施行吸附該鈦原料氣體之處理、將吸附的該鈦原料還原之處理、使吸附的該鈦原料氣體氮化之處理、及將氮化後的該鈦原料氣體還原之處理。
- 如申請專利範圍第15項之矽氮化膜之成膜裝置,其中,該控制部,進行控制,俾於將該矽氮化膜成膜時,依序施行吸附該矽原料氣體之處理、將吸附的該矽原料還原之處理、使吸附的該矽原料氣體氮化之處理、及將氮化後的該矽原料氣體還原之處理。
- 如申請專利範圍第16項之矽氮化膜之成膜裝置,其中,該控制部,藉由調整該第1次數及該第2次數,而控制鈦之摻雜量。
- 如申請專利範圍第17項之矽氮化膜之成膜裝置,其中,該控制部,進行控制使TiN相對於膜整體的量,成為0.1~2mol%之範圍。
- 一種記憶媒體,儲存有在電腦上動作以控制矽氮化膜之成膜裝置的程式; 該程式,在實行時,使電腦控制該矽氮化膜之成膜裝置,俾施行如申請專利範圍第1至13項中任一項的矽氮化膜之成膜方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-155746 | 2016-08-08 | ||
JP2016155746 | 2016-08-08 | ||
JP2017-087187 | 2017-04-26 | ||
JP2017087187A JP6832785B2 (ja) | 2016-08-08 | 2017-04-26 | シリコン窒化膜の成膜方法および成膜装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201816167A TW201816167A (zh) | 2018-05-01 |
TWI702304B true TWI702304B (zh) | 2020-08-21 |
Family
ID=61194865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125188A TWI702304B (zh) | 2016-08-08 | 2017-07-27 | 矽氮化膜之成膜方法及成膜裝置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6832785B2 (zh) |
KR (1) | KR102334581B1 (zh) |
TW (1) | TWI702304B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7085929B2 (ja) * | 2018-07-13 | 2022-06-17 | 東京エレクトロン株式会社 | 成膜方法 |
JP2020200496A (ja) * | 2019-06-07 | 2020-12-17 | 東京エレクトロン株式会社 | 基板処理方法及び基板処理装置 |
JP7257930B2 (ja) * | 2019-10-08 | 2023-04-14 | 東京エレクトロン株式会社 | 基板処理方法及び基板処理装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004281853A (ja) * | 2003-03-18 | 2004-10-07 | Hitachi Kokusai Electric Inc | 基板処理装置 |
US20050174876A1 (en) * | 2002-05-13 | 2005-08-11 | Nec Corporation | Semiconductor storage device and production method therefor |
TW201350607A (zh) * | 2012-04-09 | 2013-12-16 | Aixtron Se | 利用原子層沉積形成TiSiN薄層之方法 |
US20140357046A1 (en) * | 2012-02-07 | 2014-12-04 | Intermolecular Inc. | ReRAM Cells Including TaXSiYN Embedded Resistors |
TW201625809A (zh) * | 2014-12-15 | 2016-07-16 | 東京威力科創股份有限公司 | 成膜方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080665A (en) * | 1997-04-11 | 2000-06-27 | Applied Materials, Inc. | Integrated nitrogen-treated titanium layer to prevent interaction of titanium and aluminum |
JP4105120B2 (ja) * | 2002-12-05 | 2008-06-25 | 東京エレクトロン株式会社 | 成膜方法 |
KR101485506B1 (ko) * | 2008-11-19 | 2015-01-28 | 주식회사 원익아이피에스 | 박막 증착방법 |
JP2011068974A (ja) * | 2009-09-28 | 2011-04-07 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法 |
JP5926794B2 (ja) * | 2012-04-23 | 2016-05-25 | 東京エレクトロン株式会社 | 成膜方法、成膜装置、及び、成膜システム |
JP2015193878A (ja) * | 2014-03-31 | 2015-11-05 | 東京エレクトロン株式会社 | TiSiN膜の成膜方法および成膜装置 |
KR102215640B1 (ko) * | 2014-03-31 | 2021-02-17 | 주성엔지니어링(주) | 기판 처리 장치와 이를 이용한 박막 형성 방법 및 반도체 소자의 제조 방법 |
KR102188750B1 (ko) * | 2015-09-11 | 2020-12-08 | 버슘머트리얼즈 유에스, 엘엘씨 | 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막 |
-
2017
- 2017-04-26 JP JP2017087187A patent/JP6832785B2/ja active Active
- 2017-07-27 TW TW106125188A patent/TWI702304B/zh active
- 2017-08-03 KR KR1020170098616A patent/KR102334581B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050174876A1 (en) * | 2002-05-13 | 2005-08-11 | Nec Corporation | Semiconductor storage device and production method therefor |
JP2004281853A (ja) * | 2003-03-18 | 2004-10-07 | Hitachi Kokusai Electric Inc | 基板処理装置 |
US20140357046A1 (en) * | 2012-02-07 | 2014-12-04 | Intermolecular Inc. | ReRAM Cells Including TaXSiYN Embedded Resistors |
TW201350607A (zh) * | 2012-04-09 | 2013-12-16 | Aixtron Se | 利用原子層沉積形成TiSiN薄層之方法 |
TW201625809A (zh) * | 2014-12-15 | 2016-07-16 | 東京威力科創股份有限公司 | 成膜方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102334581B1 (ko) | 2021-12-06 |
KR20180016951A (ko) | 2018-02-20 |
JP2018026524A (ja) | 2018-02-15 |
JP6832785B2 (ja) | 2021-02-24 |
TW201816167A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6800004B2 (ja) | シリコン窒化膜の形成方法 | |
KR102216529B1 (ko) | 반도체 장치의 제조 방법 | |
JP5660205B2 (ja) | 成膜方法 | |
JP4228150B2 (ja) | 成膜装置、成膜方法及び記憶媒体 | |
US8119544B2 (en) | Film formation method and apparatus for semiconductor process | |
KR101364834B1 (ko) | 플라즈마 질화 처리 방법 | |
US10151029B2 (en) | Silicon nitride film forming method and silicon nitride film forming apparatus | |
US20120164848A1 (en) | Method for forming nitride film | |
JP2010239103A (ja) | 活性化ガスインジェクター、成膜装置及び成膜方法 | |
KR20080031705A (ko) | 반도체 제조방법 및 반도체 제조장치 | |
JP2010050462A (ja) | 電子デバイス材料の製造方法 | |
KR101991550B1 (ko) | 실리콘 함유막의 성막 방법 | |
TWI702304B (zh) | 矽氮化膜之成膜方法及成膜裝置 | |
WO2011162136A1 (en) | Film formation method, semiconductor-device fabrication method, insulating film and semiconductor device | |
JP5549754B2 (ja) | 成膜装置 | |
US9922820B2 (en) | Film forming method and film forming apparatus | |
JP7253972B2 (ja) | 基板処理装置 | |
US11171014B2 (en) | Substrate processing method and substrate processing apparatus | |
US12112954B2 (en) | Etching method, substrate processing apparatus, and substrate processing system | |
JP2015015272A (ja) | 半導体装置の製造方法及び基板処理装置 | |
US20170218517A1 (en) | Method of forming nitride film |