TWI700830B - 反型模式全包圍閘奈米片互補反相器結構及其製造方法 - Google Patents

反型模式全包圍閘奈米片互補反相器結構及其製造方法 Download PDF

Info

Publication number
TWI700830B
TWI700830B TW108124822A TW108124822A TWI700830B TW I700830 B TWI700830 B TW I700830B TW 108124822 A TW108124822 A TW 108124822A TW 108124822 A TW108124822 A TW 108124822A TW I700830 B TWI700830 B TW I700830B
Authority
TW
Taiwan
Prior art keywords
channel
gate
type semiconductor
layer
nanochip
Prior art date
Application number
TW108124822A
Other languages
English (en)
Other versions
TW202013722A (zh
Inventor
肖德元
Original Assignee
大陸商芯恩(青島)積體電路有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商芯恩(青島)積體電路有限公司 filed Critical 大陸商芯恩(青島)積體電路有限公司
Publication of TW202013722A publication Critical patent/TW202013722A/zh
Application granted granted Critical
Publication of TWI700830B publication Critical patent/TWI700830B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明提供一種反型模式全包圍閘奈米片互補反相器結構,包括P型場效電晶體和N型場效電晶體,P型場效電晶體包括N型半導體奈米片通道和完全包圍N型半導體奈米片通道的第一閘介電層、第一閘極層以及設置於通道兩端的源汲區,N型場效電晶體包括P型半導體奈米片通道、完全包圍P型半導體奈米片通道的第二閘介電層、第二閘極層以及設置於通道兩端的源汲區;其中,N型半導體奈米片通道和P型半導體奈米片通道橫向並排設置,N型半導體奈米片通道的寬度大於P型半導體奈米片通道的寬度;並設有共用閘電極將第一閘極層和第二閘極層完全包圍。本發明的元件結構緊湊,有利於提高元件密度,提升晶片性能,並且結構簡單,製作工藝易於實現。

Description

反型模式全包圍閘奈米片互補反相器結構及其製造方法
本發明涉及半導體元件領域,特別是涉及一種工作於反型模式下的全包圍閘奈米片互補反相器結構及其製造方法。
FinFET是一種具有垂直“鰭”結構的鰭式場效電晶體。鰭式的三維結構可以形成三個閘極以提高功率和效率。當今的14奈米和10奈米晶片採用帶有這種FinFET的晶片供電,甚至不久前宣佈的7奈米測試晶片也是如此。這些FinFET晶片最近已開始進入伺服器、電腦和設備,並將成為未來幾年的標準。
公開號為US08350298B2的美國專利HYBRID MATERIAL INVERSION MODE GAA CMOSFET公開了一種採用混合材料的全包圍閘CMOS場效電晶體。該電晶體的PMOS通道和NMOS通道的橫截面為跑道形,閘極將PMOS通道和NMOS通道的表面完全包圍。這種全包圍閘(GAA,Gate-All-Around)電晶體結構具備較高的載子遷移率、可避免多晶矽閘耗盡及短通道效應等優點。
通過將矽奈米片層水平堆疊在一起,可以實現5奈米節點的GAA電晶體結構,提供未來應用所需的功率和性能提升。從垂直結構到水平矽層的 變化開啟了電晶體上的第四個“閘”,這使得電信號能夠穿過晶片上的其他電晶體並在它們之間傳遞。在這些維度上,它意味著這些信號正穿過一個寬度不大於兩到三條並排DNA鏈寬度的開關。因此,人們非常渴望利用類似這樣的新的性能提升技術,來應對超過5nm節點的元件所面臨的挑戰。
在京都召開的2017年VLSI技術和電路研討會上宣佈了一種用於5奈米節點晶片的新型電晶體。這種電晶體採用業界一流的工藝來堆疊矽奈米片作為元件結構,將閘極圍繞在電晶體周圍,能夠在指甲大小的晶片上實現300億個開關的規模,這與如今最前沿的10奈米晶片相比將顯著提高功率和性能。
然而,在實際的生產應用中,如何進一步提高元件的密度、功率和性能仍是本領域技術人員亟待解決的技術問題。
鑒於以上所述現有技術,本發明的目的在於提供一種反型模式全包圍閘奈米片互補反相器結構及其製造方法,用於進一步提升元件性能。
為實現上述目的及其他相關目的,本發明提供一種反型模式全包圍閘奈米片互補反相器結構,包括:基板;位於所述基板上的P型場效電晶體和N型場效電晶體,所述P型場效電晶體包括位於所述基板上的N型半導體奈米片通道、完全包圍所述N型半導體奈米片通道的第一閘介電層、完全包圍所述第一閘介電層的第一閘極層以及相對的設置於所述N型半導體奈米片通道兩端的第一源區和第一汲區,所述N型場效電晶體包括位於所述基板上的P型半導體奈米片通道、完全包圍所述P型半導體奈米片通道的第二閘介電層、完全包圍所述第二閘介電層的第二閘極層以及相對的設置於所述P型半導體奈米片通道兩端的第二源區和第二汲區;以及將所述第一閘極層和所述第二閘極層連 接在一起的共用閘電極,所述共用閘電極將所述第一閘極層和所述第二閘極層完全包圍;其中,所述N型半導體奈米片通道和所述P型半導體奈米片通道橫向並排設置,且分別具有水平方向的寬度和長度,以及垂直于水平方向的高度,所述N型半導體奈米片通道的長度定義了所述第一源區和所述第一汲區之間的距離,所述P型半導體奈米片通道的長度定義了所述第二源區和所述第二汲區之間的距離,所述N型半導體奈米片通道的寬度大於所述P型半導體奈米片通道的寬度。
可選地,所述第一源極連接電源端VDD,所述第一汲極與所述第二汲極連接在一起作為輸出端Vout,所述第二源極接地,所述共用閘電極作為輸入端Vin
可選地,所述P型半導體奈米片通道和所述N型半導體奈米片通道在寬度方向的截面輪廓大致為跑道形,所述跑道形由左右兩端的半圓及中部的與左右兩端半圓過渡連接的矩形共同構成。
可選地,所述P型半導體奈米片通道採用P型矽奈米片,所述N型半導體奈米片通道採用N型矽奈米片。
可選地,所述P型效應電晶體包括縱向排列的多條所述N型半導體奈米片通道,所述N型場效電晶體包括縱向排列的多條所述P型半導體奈米片通道。
可選地,所述第一源區和所述第一汲區的材料為P型的SiGe,所述第二源區和所述第二汲區的材料為N型的SiC。
可選地,在所述第一源區和所述第一汲區與第一閘極層和共用閘電極之間設有電介電層隔離,在所述第二源區和所述第二汲區與第二閘極層和共用閘電極之間也設有電介電層隔離。
可選地,所述P型場效電晶體和所述N型場效電晶體之下設有絕緣埋層與所述基板隔離。
為實現上述目的及其他相關目的,本發明還提供一種全包圍閘奈米片互補反相器結構的製造方法,包括以下步驟:提供基板;在所述基板上形成犧牲層與半導體奈米片層交錯的堆疊結構;定義至少兩個並排的不同寬度的通道區域,並蝕刻所述堆疊結構得到分別對應所述兩個通道區域的兩組並排的不同寬度的半導體奈米片,去除所述半導體奈米片下方的犧牲層,使所述半導體奈米片周圍裸露並懸於所述基板上;分別對兩組半導體奈米片進行離子摻雜,形成N型半導體奈米片通道和P型半導體奈米片通道,且所述N型半導體奈米片通道的寬度大於所述P型半導體奈米片通道的寬度;在所述N型半導體奈米片通道上形成完全環繞包圍所述N型半導體奈米片通道的第一閘介電層以及完全包圍所述第一閘介電層的第一閘極層,在所述P型半導體奈米片通道上形成完全環繞包圍所述P型半導體奈米片通道的第二閘介電層以及完全包圍所述第二閘介電層的第二閘極層;形成共用閘電極,所述共用閘電極同時將所述第一閘極層和所述第二閘極層完全包圍;在所述N型半導體奈米片通道的兩端分別形成第一源區和第一汲區,在所述P型半導體奈米片通道的兩端分別形成第二源區和第二汲區。
可選地,所述堆疊結構是在所述基板上磊晶生長形成,所述犧牲層為磊晶生長的SiGe層,所述半導體奈米片層為磊晶生長在所述犧牲層上的Si層。
可選地,所述犧牲層的厚度為10-200nm,所述半導體奈米片層的厚度為10-100nm。
可選地,去除所述半導體奈米片下方的犧牲層之後,利用先氧化再濕式蝕刻的方法使所述半導體奈米片的拐角變為圓角。進一步可選地,利用先氧化再濕式蝕刻的方法使所述半導體奈米片的拐角變為圓角之後,對所述半導體奈米片進行氫退火。
可選地,所述第一源區和所述第一汲區是在所述N型半導體奈米片通道的兩端磊晶生長形成,所述第二源區和所述第二汲區是在所述P型半導體奈米片通道的兩端磊晶生長形成。
可選地,所述第一源區和所述第一汲區的材料為P型的SiGe,所述第二源區和所述第二汲區的材料為N型的SiC。
可選地,在所述基板上形成淺溝槽隔離結構,並在所述基板上形成絕緣埋層。
如上所述,本發明的反型模式全包圍閘奈米片互補反相器結構及其製造方法,具有以下有益效果:本發明利用堆疊矽奈米片層製作了三維元件結構,閘極將通道表面完全包圍,實現了全包圍閘,並且共用閘電極將多個通道同時包圍,使元件結構更為緊密,在反型模式下,通過pFET和nFET形成互補反相器電路,pFET與nFET的通道並排,pFET的通道寬度大於nFET的通道寬度,使反相器緊湊平衡,具備更好的性能及進一步按比例縮小的能力。此 外,通道截面為跑道形,可增大通道橫截面積,提高元件的驅動電流,而同時又保持元件的電完整性。
相較于現有技術,本發明的元件結構緊湊,有利於提高元件密度,提升晶片性能,並且結構簡單,製作工藝易於實現。
100:基板
200:絕緣埋層
a:P型場效電晶體
b:N型場效電晶體
301:N型半導體奈米片通道
302:P型半導體奈米片通道
401:第一閘介電層
402:第二閘介電層
501:第一閘極層
502:第二閘極層
600:共用閘電極
S1:第一源區
D1:第一汲區
S2:第二源區
D2:第二汲區
w1、w2:寬度
l1、l2:長度
h1、h2:高度
700:電介電層
310:犧牲層
320:半導體奈米片層
330a:第一通道區域
330b:第二通道區域
210:隔離介質
S1-S7:步驟
圖1a-1b顯示為本發明實施例提供的反型模式全包圍閘奈米片互補反相器結構的示意圖,其中,圖1a為俯視示意圖,圖1b為圖1a中AA’方向的截面示意圖。
圖2顯示為本發明實施例提供的反型模式全包圍閘奈米片互補反相器的電路示意圖。
圖3a-3n顯示為本發明實施例提供的反型模式全包圍閘奈米片互補反相器結構製造方法的流程示意圖。
以下通過特定的具體實例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容輕易地瞭解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。需說明的是,在不衝突的情況下,以下實施例及實施例中的特徵可以相互組合。
需要說明的是,以下實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖式中僅顯示與本發明中有關的組件而非按照實際實施時 的元件數目、形狀及尺寸繪製,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。
請參閱圖1a和圖1b,本實施例提供一種反型模式全包圍閘奈米片互補反相器結構,其包括:基板100、位於所述基板100上的P型場效電晶體a、N型場效電晶體b和共用閘電極600,其中,圖1a為俯視示意圖,圖1b為圖1a中AA’方向的截面示意圖。
所述基板100可以是常規的體矽基板或其他適合的半導體基板。在所述基板100上設有絕緣埋層200,使之與所述P型場效電晶體a和所述N型場效電晶體b隔離。
所述P型場效電晶體a和所述N型場效電晶體b為工作於反型模式下的電晶體。它們均為全包圍閘的非平面電晶體,結構基本相同。所述P型場效電晶體a包括位於所述基板100上的N型半導體奈米片通道301、完全包圍所述N型半導體奈米片通道301的第一閘介電層401、完全包圍所述第一閘介電層401的第一閘極層501以及相對的設置於所述N型半導體奈米片通道301兩端的第一源區S1和第一汲區D1。所述N型場效電晶體b包括位於所述基板100上的P型半導體奈米片通道302、完全包圍所述P型半導體奈米片通道302的第二閘介電層402、完全包圍所述第二閘介電層402的第二閘極層502以及相對的設置於所述P型半導體奈米片通道302兩端的第二源區S2和第二汲區D2。
所述共用閘電極600完全包圍第一閘極層501和第二閘極層502,使它們連接在一起。
其中,所述N型半導體奈米片通道301和所述P型半導體奈米片通道302橫向並排設置。所述N型半導體奈米片通道301具有水平方向的寬度w1和 長度l1,以及垂直于水平方向的高度h1,長度l1定義了所述第一源區S1和所述第一汲區D1之間的距離。所述P型半導體奈米片通道302具有水平方向的寬度w2和長度l2,以及垂直于水平方向的高度h2,長度l2定義了所述第二源區S2和所述第二汲區D2之間的距離。所述N型半導體奈米片通道301的寬度w2大於所述P型半導體奈米片通道302的寬度w2。它們的高度h1和h2基本相同,可以為10-100nm。它們在寬度方向上的截面輪廓都大致為跑道形,如圖1b中所示,所述跑道形由左右兩端的半圓及中部的與左右兩端半圓過渡連接的矩形共同構成。這種截面形狀可增大通道橫截面積,提高元件的驅動電流,而同時又保持元件的電完整性。由於pFET的通道載子電洞,其遷移率比nFET的通道載子電子遷移率小很多,因此,本發明設計的pFET通道寬度比nFET更寬,使組成的CMOS更為平衡。
具體地,所述N型半導體奈米片通道301可以採用N型矽奈米片。所述P型半導體奈米片通道302可以採用P型矽奈米片。pFET的源汲區,即第一源區S1和第一汲區D1,可以採用磊晶生長的P型SiGe材料,nFET的源汲區,即第二源區S2和第二汲區D2的材料可以採用磊晶生長的N型SiC材料。其中,pFET的源汲區採用SiGe可對pFET的通道產生圧應力,以提高載子電洞遷移率;nFET的源汲區採用SiC可對nFET的通道產生張應力,以提高載子電子遷移率。在所述第一源區S1和所述第一汲區D1與第一閘極層501和共用閘電極600之間設有電介電層700作為側牆隔離(spacer),在所述第二源區S2和所述第二汲區D2與第二閘極層502和共用閘電極600之間也設有電介電層700作為側牆隔離(spacer)。
本實施例的反型模式全包圍閘奈米片互補反相器結構可採用如圖2所示的互補反相器電路,其中,所述P型場效電晶體a即為pFET,所述N型場效電晶體b即為nFET,它們均工作於反型模式下,第一源極S1連接電源端VDD,所述第一汲極D1與所述第二汲極D2連接在一起作為輸出端Vout,所述第二源極S2接地,所述共用閘電極作為輸入端Vin
此外,作為本發明的優選方案,所述P型效應電晶體a可以包括縱向排列的多條所述N型半導體奈米片通道301;所述N型場效電晶體b可以包括縱向排列的多條所述P型半導體奈米片通道302,以提高元件性能。本實施例中,每個電晶體可以對應上下兩條通道,而在本發明的其他實施例中,每個場效電晶體還可以對應更多數量的通道。
下面結合附圖進一步詳細說明本實施例提供的反型模式全包圍閘奈米片互補反相器結構的製造方法。
請參閱圖3a-3n,本實施例提供一種反型模式全包圍閘奈米片互補反相器結構的製造方法,包括S1-S7等步驟。
S1提供基板100。所述基板100可以是常規的體矽基板或其他適合的半導體基板。
S2在所述基板100上形成犧牲層310與半導體奈米片層320交錯的堆疊結構,如圖3a所示。
具體地,所述堆疊結構可以在所述基板100上磊晶生長形成。例如,可以在所述基板100上磊晶生長SiGe層作為所述犧牲層310,再在所述犧牲層310上磊晶生長Si層作為所述半導體奈米片層320。其中,所述犧牲層310的厚度可以為10-200nm,所述半導體奈米片層320的厚度可以為10-100nm。本實施例 中,堆疊結構中的犧牲層310和半導體奈米片層320為兩層,在其他實施例中,它們的層數可以更多,以提供更多數量的通道。
S3定義至少兩個並排的不同寬度的通道區域,並蝕刻所述堆疊結構得到對應所述兩個通道區域的兩組並排的不同寬度的半導體奈米片300,去除所述半導體奈米片300下方的犧牲層310,使所述半導體奈米片300周圍裸露並懸於所述基板100上。
如圖3b所示,可以先利用光顯影和蝕刻工藝形成淺溝槽隔離結構(STI)所需的溝槽,同時可定義出至少兩個並排的通道區域,分別對應P型場效電晶體a和N型場效電晶體b的第一通道區域330a和第二通道區域330b。所述溝槽從所述堆疊結構表面深入至基板100中。蝕刻所述溝槽的同時,即可得到分別對應第一通道區域330a和第二通道區域330b的兩組並排的半導體奈米片300。
然後,如圖3c所示,在溝槽中填入隔離介質210,再如圖3d所示採用化學機械研磨(CMP)使所得結構表面平坦化,避免在半導體奈米片300上有介質材料殘留。隨後,如圖3e所示,利用光顯影和蝕刻工藝去除第一通道區域330a和第二通道區域330b周圍的隔離介質材料,保留填入基板100中的隔離介質210。
接著,可以採用選擇性橫向蝕刻去除半導體奈米片300下方的犧牲層310,如圖3f所示,使所述半導體奈米片300周圍裸露並懸於所述基板100上。本實施例中,去除SiGe材質的犧牲層310,可以採用包含HF、HNO3、H2O的蝕刻液。
為了獲得跑道形的截面輪廓,去除犧牲層310後,還可以利用先氧化再濕式蝕刻的方法處理所述半導體奈米片300的拐角以形成圓角。如圖3g所 示,先氧化半導體奈米片300,再採用稀氟氫酸(DHF)蝕刻去除氧化層,從而得到截面大致為跑道形的半導體奈米片300。然後在高於800℃-1200℃的溫度下進行氫退火,退火時間可為5分鐘到8小時。進行氫退火可使蝕刻處理後的半導體奈米片300表面更加光滑、緻密。
S4採用離子注入的方法分別對兩組半導體奈米片300進行離子摻雜,形成N型半導體奈米片通道301和P型半導體奈米片通道302。如圖3h所示,寬度較大的一組半導體奈米片300用於形成N型半導體奈米片通道301,寬度較小的一組半導體奈米片300用於形成P型半導體奈米片通道302。
S5在所述N型半導體奈米片通道301上形成完全環繞包圍所述N型半導體奈米片通道301的第一閘介電層401以及完全包圍所述第一閘介電層401的第一閘極層501,在所述P型半導體奈米片通道302上形成完全環繞包圍所述P型半導體奈米片通道302的第二閘介電層402以及完全包圍所述第二閘介電層402的第二閘極層502。
如圖3i所示,可以採用化學氣相沉積(CVD)或原子層沉積(ALD)工藝沉積高介電常數(High-k)電介質作為第一閘介電層401和第二閘介電層402。形成閘介電層的同時,也在暴露的基板100表面形成了絕緣埋層200。然後,如圖3j所示,可以利用化學氣相沉積(CVD)或原子層沉積(ALD)工藝沉積閘極材料,在第一閘介電層401和第二閘介電層402上分別形成第一閘極層501和第二閘極層502。具體地,可以先在第一閘介電層401上形成第一閘極層501,並去除沉積在第二閘介電層402上的閘極材料,然後再在第二閘介電層402上形成第二閘極層502,並去除第一閘極層501上多餘的閘極材料。即,可以先形成第一閘極層501,再形成第二閘極層502。形成第一閘極層501的 材料可以包括TiN、TaN、TiAl、Ti或其他適合的閘極材料,形成第二閘極層502的材料可以包括TiN、TaN、TiAl、Ti或其他適合的閘極材料。
S6形成共用閘電極600,所述共用閘電極600同時將第一閘極層501和第二閘極層502完全包圍,使它們連接在一起,如圖3k所示。形成共用閘電極600的材料可以包括Al、W、Cu等導電材料。
S7在所述N型半導體奈米片通道301的兩端分別形成第一源區S1和第一汲區D1,在所述P型半導體奈米片通道302的兩端分別形成第二源區S2和第二汲區D2,完成P型效應電晶體和N型效應電晶體的製作。
如圖3l所示,可以在所述N型半導體奈米片通道301的兩端,即N型的Si奈米片兩端磊晶生長P型的SiGe,作為所述第一源區S1和所述第一汲區D1。在所述P型半導體奈米片通道302的兩端,即P型的Si奈米片兩端磊晶生長N型的SiC作為所述第二源區S2和所述第二汲區D2。圖3l為形成源汲區後元件側面的示意圖,圖3m和3n分別為沿N型半導體奈米片通道301和P型半導體奈米片通道302的長度方向的截面示意圖。在所述第一源區S1和所述第一汲區D1與第一閘極層501和共用閘電極600之間設有電介電層700隔離,在所述第二源區S2和所述第二汲區D2與第二閘極層502和共用閘電極600之間也設有電介電層700隔離。
最後還可以根據圖2所示的互補反相器電路形成完整的反相器,包括引出源極、汲極等步驟。由於pFET和nFET的通道橫向並排設置,使兩端的源極汲極更加便於連接和引出,也使得元件更為緊湊,易於集成。
綜上所述,本發明利用堆疊矽奈米片層製作了三維元件結構,閘極將通道表面完全包圍,實現了全包圍閘,並且共用閘電極將多個通道同時包圍,使元件結構更為緊密,在反型模式下,通過pFET和nFET形成互補反相器電 路,pFET與nFET的通道並排,pFET的通道寬度大於nFET的通道寬度,使反相器緊湊平衡,具備更好的性能及進一步按比例縮小的能力。此外,通道截面為跑道形,可增大通道橫截面積,提高元件的驅動電流,而同時又保持元件的電完整性。
相較于現有技術,本發明的元件結構緊湊,有利於提高元件密度,提升晶片性能,並且結構簡單,製作工藝易於實現。所以,本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。
上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。
100:基板
200:絕緣埋層
a:P型場效電晶體
b:N型場效電晶體
301:N型半導體奈米片通道
302:P型半導體奈米片通道
401:第一閘介電層
402:第二閘介電層
501:第一閘極層
502:第二閘極層
600:共用閘電極
w1、w2:寬度
h1、h2:高度

Claims (8)

  1. 一種反型模式全包圍閘奈米片互補反相器結構的製造方法,包括以下步驟:提供基板;在該基板上形成犧牲層與半導體奈米片層交錯的堆疊結構;定義至少兩個並排的不同寬度的通道區域,並蝕刻該堆疊結構得到分別對應該兩個通道區域的兩組並排的不同寬度的半導體奈米片,去除該半導體奈米片下方的犧牲層,使該半導體奈米片周圍裸露並懸於該基板上;分別對兩組半導體奈米片進行離子摻雜,形成N型半導體奈米片通道和P型半導體奈米片通道,且該N型半導體奈米片通道的寬度大於該P型半導體奈米片通道的寬度;在該N型半導體奈米片通道上形成完全環繞包圍該N型半導體奈米片通道的第一閘介電層以及完全包圍該第一閘介電層的第一閘極層,在該P型半導體奈米片通道上形成完全環繞包圍該P型半導體奈米片通道的第二閘介電層以及完全包圍該第二閘介電層的第二閘極層;形成共用閘電極,該共用閘電極同時將該第一閘極層和該第二閘極層完全包圍;在該N型半導體奈米片通道的兩端分別形成第一源區和第一汲區,在該P型半導體奈米片通道的兩端分別形成第二源區和第二汲區。
  2. 如申請專利範圍第1項所述的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:該堆疊結構是在該基板上磊晶生長形成,該犧牲層為磊晶生長的SiGe層,該半導體奈米片層為磊晶生長在該犧牲層上的Si層。
  3. 如申請專利範圍第1項所述的反型模式全包圍閘奈米片互補 反相器結構的製造方法,其中:該犧牲層的厚度為10-200nm,該半導體奈米片層的厚度為10-100nm。
  4. 如申請專利範圍第1項所述的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:去除該半導體奈米片下方的犧牲層之後,利用先氧化再濕式蝕刻的方法使該半導體奈米片的拐角變為圓角。
  5. 如申請專利範圍第4項所述的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:利用先氧化再濕式蝕刻的方法使該半導體奈米片的拐角變為圓角之後,對該半導體奈米片進行氫退火。
  6. 如申請專利範圍1該的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:該第一源區和該第一汲區是在該N型半導體奈米片通道的兩端磊晶生長形成,該第二源區和該第二汲區是在該P型半導體奈米片通道的兩端磊晶生長形成。
  7. 如申請專利範圍第1項所述的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:該第一源區和該第一汲區的材料為P型的SiGe,該第二源區和該第二汲區的材料為N型的SiC。
  8. 如申請專利範圍第1項所述的反型模式全包圍閘奈米片互補反相器結構的製造方法,其中:在該基板上形成淺溝槽隔離結構,並在該基板上形成絕緣埋層。
TW108124822A 2018-09-28 2019-07-15 反型模式全包圍閘奈米片互補反相器結構及其製造方法 TWI700830B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811134866.6A CN110970431A (zh) 2018-09-28 2018-09-28 反型模式全包围栅纳米片互补反相器结构及其制造方法
CN201811134866.6 2018-09-28

Publications (2)

Publication Number Publication Date
TW202013722A TW202013722A (zh) 2020-04-01
TWI700830B true TWI700830B (zh) 2020-08-01

Family

ID=70026587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124822A TWI700830B (zh) 2018-09-28 2019-07-15 反型模式全包圍閘奈米片互補反相器結構及其製造方法

Country Status (3)

Country Link
US (1) US20200235133A1 (zh)
CN (1) CN110970431A (zh)
TW (1) TWI700830B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495662B2 (en) * 2019-09-16 2022-11-08 Taiwan Semiconductor Manufacturing Co., Ltd. Gate all around transistors with different threshold voltages
US11417653B2 (en) * 2019-09-30 2022-08-16 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method for forming the same
US20210126018A1 (en) * 2019-10-24 2021-04-29 International Business Machines Corporation Gate stack quality for gate-all-around field-effect transistors
CN112687626B (zh) * 2020-12-24 2023-01-03 中国科学院微电子研究所 一种cfet结构、其制备方法以及应用其的半导体器件
CN113113494A (zh) * 2021-04-09 2021-07-13 上海集成电路制造创新中心有限公司 Gaa晶体管结构及其制备方法、电子设备
US20230031490A1 (en) * 2021-07-30 2023-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Strained nanosheets on silicon-on-insulator substrate
US20230121650A1 (en) * 2021-10-15 2023-04-20 International Business Machines Corporation Stacked nanosheet gate-all-around device structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254102A1 (en) * 2009-12-01 2011-10-20 Shanghai Institute of Microsystem and Information Technology Chinese Academy Hybrid orientation inversion mode gaa cmosfet
US20140091279A1 (en) * 2012-09-28 2014-04-03 Jessica S. Kachian Non-planar semiconductor device having germanium-based active region with release etch-passivation surface
US20170365604A1 (en) * 2016-06-21 2017-12-21 Samsung Electronics Co., Ltd. Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254102A1 (en) * 2009-12-01 2011-10-20 Shanghai Institute of Microsystem and Information Technology Chinese Academy Hybrid orientation inversion mode gaa cmosfet
US20140091279A1 (en) * 2012-09-28 2014-04-03 Jessica S. Kachian Non-planar semiconductor device having germanium-based active region with release etch-passivation surface
US20170365604A1 (en) * 2016-06-21 2017-12-21 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TW202013722A (zh) 2020-04-01
US20200235133A1 (en) 2020-07-23
CN110970431A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
TWI685947B (zh) 全包圍閘奈米片互補反相器結構及其製造方法
TWI700830B (zh) 反型模式全包圍閘奈米片互補反相器結構及其製造方法
TWI695505B (zh) 全包圍閘量子井互補反相器結構及其製造方法
TWI692102B (zh) 全包圍閘梯度摻雜奈米片互補反相器結構及其製造方法
CN104241134B (zh) 具有替代鳍的非平面晶体管及其制造方法
WO2009151001A1 (ja) ナノワイヤ電界効果トランジスタ及びその作製方法、並びにこれを含む集積回路
CN109244073B (zh) 半导体器件结构及其制作方法
US20170148899A1 (en) Method and Structure for Straining Carrier Channel in Vertical Gate All-Around Device
WO2011066730A1 (zh) 混合晶向反型模式全包围栅cmos场效应晶体管
CN105702727A (zh) 金属氧化物半导体装置与其形成方法
US11049857B2 (en) Nanosheet CMOS semiconductor device and the method of manufacturing the same
CN111129157B (zh) 屏蔽栅功率mosfet器件及其制造方法
US20210066292A1 (en) Semiconductor device and manufacturing method thereof
CN113471213B (zh) 基于内嵌空腔soi衬底的多栅mos器件及其制备方法
TWI686949B (zh) 半導體元件結構及其製作方法
TWI719510B (zh) 半導體元件結構及其製作方法
US20210384324A1 (en) Integrated circuit devices including an element having a non-linear shaped upper surface and methods of forming the same
CN115995490A (zh) 一种半导体器件及其制造方法
CN114267736A (zh) 一种堆叠式全栅纳米片器件及其制造方法