TWI698553B - 氮化鋁陶瓷基板表面改質的方法 - Google Patents

氮化鋁陶瓷基板表面改質的方法 Download PDF

Info

Publication number
TWI698553B
TWI698553B TW108137418A TW108137418A TWI698553B TW I698553 B TWI698553 B TW I698553B TW 108137418 A TW108137418 A TW 108137418A TW 108137418 A TW108137418 A TW 108137418A TW I698553 B TWI698553 B TW I698553B
Authority
TW
Taiwan
Prior art keywords
aluminum nitride
ceramic substrate
nitride ceramic
modifying
item
Prior art date
Application number
TW108137418A
Other languages
English (en)
Other versions
TW202117076A (zh
Inventor
吳俊德
郭養國
黃宏庭
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW108137418A priority Critical patent/TWI698553B/zh
Application granted granted Critical
Publication of TWI698553B publication Critical patent/TWI698553B/zh
Priority to US17/068,811 priority patent/US20210111304A1/en
Publication of TW202117076A publication Critical patent/TW202117076A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明為一種氮化鋁陶瓷基板表面改質的方法,採用濺鍍與有機物化學氣相沉積法(MOCVD)製程進行多晶氮化鋁陶瓷基板之表面改質。藉此,以MOCVD的方式分兩階段溫度進行磊晶成長氮化鋁層,可使多晶相氮化鋁陶瓷基板之表面形成類單晶相之氮化鋁材料結晶相,並降低多晶相氮化鋁陶瓷基板之表面粗糙度。

Description

氮化鋁陶瓷基板表面改質的方法
本發明係關於一種氮化鋁陶瓷基板表面改質的方法,特別是關於一種多晶氮化鋁陶瓷基板表面改質的方法。
隨著電子元件朝體積縮小、性能提升及環保節能之趨勢需求,高度密集且為高功率、高頻或高熱環境之高能電子元件,其散熱通量甚至已高達100W/cm2以上,例如LED路燈、MOSFET、IGBT與雷射等元件,已成為相關產業主要開發的技術重點項目,因密集排列及長時間工作所產生之熱能,於有限之封裝散熱空間內,若未適時排除於外,因接面溫度升高,將使元件性能及壽命降低,且材料間因高溫熱應力累積,勢必衍生元件可靠度問題,故亟需以優良之散熱封裝設計與高導熱材料加以消弭。
已知技術之發光二極體、堆疊式記憶體及堆疊式積體電路等所用之陶瓷基板,大多以矽(Si)材料及氧化鋁(Al2O3)陶瓷材料作為散熱基板。而氮化鋁在近年電子應用材料當中十分的熱門,因為其具有高的熱傳導率(170-230W/mK,接近碳化矽及氧化鈹,是氧化鋁的5~7倍),低的介電常數和 介電損失,良好的電絕緣性,及其低的熱膨脹係數接近於矽(4.2×10-6/℃)及砷化鎵(5.7×10-6/℃),無氧化鈹之毒性,生產成本較低。因此氮化鋁可應用範圍相當廣泛,例如可應用於半導體與微電子電路封裝基板、高亮度LED晶片承載基板、車用電子與照明元件、高功率電子元件散熱材料等方面,未來具有極大潛力可逐漸取代其他的陶瓷基板材料。
已知市售單晶相氮化鋁陶瓷基板之熱傳導係數約為200-240W/mk,多晶相氮化鋁陶瓷基板之熱傳導係數約為170-180W/mk。目前市售以多晶相氮化鋁陶瓷基板為主,其價格遠低於單晶相氮化鋁陶瓷基板。然而多晶相氮化鋁陶瓷基板之結晶相種類多於單晶相之氮化鋁陶瓷基板,此多晶相氮化鋁陶瓷基板表面不利於發光二極體、堆疊式記憶體及堆疊式積體電路等元件之後續製程技術。
此外,多晶相氮化鋁陶瓷基板係利用氮化鋁粉體歷經模造油壓成型、CIP緻密化、除膠、高溫燒結等製程製備而成,然後再以精密切割與研磨拋光方式,得到表面較平坦的多晶相氮化鋁陶瓷基板。但研磨拋光的時候,容易造成多晶相氮化鋁粉體剝落,導致多晶相氮化鋁陶瓷基板上出現孔洞,致使多晶相氮化鋁陶瓷基板表面粗糙度增加。
而氮化鋁基板最吸引人的應用,是應用於紫外光(UV)LED的開發,UV LED在生醫檢測方面極具的商業價值。目前UV LED最常用的基板還是藍寶石,但藍寶石與氮化鋁之 間有高達13%的晶格差異,因此要在藍寶石基板上成長單晶氮化鋁或高鋁含量的氮化鋁鎵(AlGaN)是很大的挑戰。這也是當UV LED的波長一旦低於300nm,發光效率就急遽降低的原因之一。雖然已有研究團隊提出以單晶氮化鋁基板取代藍寶石基板的解決方法,但礙於單晶氮化鋁基板的價格極高,短期內無法取代藍寶石基板。若我們能在多晶的氮化鋁基板上,以MOCVD成長品質可接受的類單晶氮化鋁薄膜,對UV LED的開發會是一個令人期待研究方向。
因此,為了解決上述問題,目前亟需發展一低成本、低表面粗糙度及單一結晶性之氮化鋁陶瓷基板,能提供發光二極體、堆疊式記憶體及堆疊式積體電路等元件進行後續製程技術。
鑒於上述悉知技術之缺點,本發明採用濺鍍與有機物化學氣相沉積法(MOCVD)製程進行氮化鋁陶瓷基板之表面改質,在氮化鋁基板上先以濺鍍的方式鍍製一層鈦金屬作為接著層,接續以濺鍍的方式鍍製一層氮化鋁薄膜作為磊晶層與基板之間的緩衝層,再以MOCVD的方式分兩階段溫度進行磊晶成長氮化鋁層,藉由提高基板溫度來加速晶核的側向成長,使各自獨立晶核連接成單一的磊晶層。
為了達上述目的,根據本發明所提出的方案,提供一種氮化鋁陶瓷基板表面改質的方法,步驟包括:(A)提供 一多晶氮化鋁基板,於該基板上以濺鍍法製作一鈦金屬層;(B)於該鈦金屬層上以濺鍍法製作一氮化鋁緩衝層;(C)於該氮化鋁緩衝層上以金屬有機物化學氣相沉積法(MOCVD)製作一厚度小於1μm之氮化鋁薄膜磊晶層;(D)提高製程溫度,持續以金屬有機物化學氣相沉積法(MOCVD)於該氮化鋁薄膜磊晶層上製作一厚度大於1μm之氮化鋁厚膜磊晶層。
上述中,步驟(A)鈦金屬層之厚度可為100nm-500nm。
上述中,步驟(A)可使用鈦靶材進行濺鍍,濺鍍的氣體為氬氣。
上述中,步驟(B)氮化鋁緩衝層之厚度可為100nm-500nm。
上述中,步驟(B)可使用鋁靶材進行濺鍍,濺鍍的氣體為氬氣及氮氣。
上述中,步驟(C)之反應物可為三甲基鋁(Al2(CH3)6)及氨氣(NH3),磊晶成長溫度介於950℃-1030℃之間。
上述中,步驟(D)之反應物可為三甲基鋁(Al2(CH3)6)及氨氣(NH3),磊晶成長溫度介於1030℃-1160℃之間。
上述中,該氮化鋁緩衝層之結晶相可包括:(002)結晶相,其繞射角2 θ=35.5°與36.5°之間、(102)結晶相,其繞射 角2 θ=49.5°與50.5°之間、(103)結晶相,其繞射角2 θ=65.5°與66.5°之間。
上述中,該氮化鋁薄膜磊晶層之厚度可為100nm-500nm,該氮化鋁厚膜磊晶層之厚度可為1μm-5μm。該氮化鋁薄膜磊晶層及該氮化鋁厚膜磊晶層可進一步具有(101)之氮化鋁單晶晶面。
本發明可使多晶相氮化鋁陶瓷基板之表面形成類單晶相之氮化鋁材料結晶相,可降低多晶相氮化鋁陶瓷基板之表面粗糙度,且磊晶面的分佈均勻並呈現金字塔型的角錐狀,角椎側面則與c-plane(即與基板表面平行的面)成62°,是為(101)晶面,對UV LED的發光效率有很大的幫助,可大幅降低光束在元件內產生全反射的機率,能有效提升LED的萃光效率。
以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本發明達到預定目的所採取的方式、手段及功效。而有關本發明的其他目的及優點,將在後續的說明及圖式中加以闡述。
S101-S104‧‧‧步驟
第一圖係為本發明氮化鋁陶瓷基板表面改質的方法流程圖;
第二圖係為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之剖面形貌圖;
第三圖係為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之X光繞射圖譜;
第四圖係為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之磊晶層表面及剖面結構SEM圖;
第五圖係為本發明實施例多晶相氮化鋁陶瓷基板與表面改質後之AFM形貌圖。
以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之優點及功效。
請參閱第三圖,為本發明氮化鋁陶瓷基板表面改質的方法流程圖。如圖所示,本發明氮化鋁陶瓷基板表面改質的方法,步驟包括:(A)提供一多晶氮化鋁基板,於該基板上以濺鍍法製作一鈦金屬層S101;(B)於該鈦金屬層上以濺鍍法製作一氮化鋁緩衝層S102;(C)於該氮化鋁緩衝層上以金屬有機物化學氣相沉積法(MOCVD)製作一厚度小於1μm之氮化鋁薄膜磊晶層S103;(D)提高製程溫度,持續以金屬有機物化學氣相沉積法(MOCVD)於該氮化鋁薄膜磊晶層上製作一厚度大於1μm之氮化鋁厚膜磊晶層S104。
實施例:
於此實施例中,首先提供一多晶氮化鋁基板,在該多晶氮化鋁基板上先以濺鍍的方式(使用鈦Ti靶材,濺鍍參 數:功率100W,時間30-150min,氬氣流速8sccm,壓力5×10-3torr)鍍製一層鈦金屬(Ti)作為接著層,接續以濺鍍的方式(使用鋁Al靶材,濺鍍參數:功率100W,時間30-150min,氬氣/氮氣流速8sccm,壓力5×10-3torr)鍍製一層氮化鋁薄膜作為磊晶層與基板之間的緩衝層,再施以金屬有機物化學氣相沉積法(MOCVD)的方式,使用三甲基鋁(TMAl)和氨氣(NH3)為原料,分兩階段(第一階段MOCVD參數:溫度950-1030℃,時間30min,TMAl流速10sccm/NH3流速500sccm,壓力200mbar;第二階段MOCVD參數:溫度1030-1160℃,時間60min,TMAl流速20sccm/NH3流速1000sccm,壓力200mbar)進行磊晶成長氮化鋁薄膜及厚膜磊晶層,以完成本發明多晶氮化鋁陶瓷基板的表面改質。請參閱第二圖,為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之剖面形貌圖,如圖所示,其結構包括一多晶相氮化鋁陶瓷基板、一鈦金屬薄膜、一氮化鋁薄膜及一氮化鋁磊晶層。
請參閱第三圖,為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之X光繞射圖譜。利用X光繞射儀進行結晶相鑑定,先針對多晶相氮化鋁陶瓷基板進行結晶相鑑定,如第三圖(a)所示,顯示多晶相氮化鋁陶瓷基板在2 θ=23.4°、25.4°、29.6°、30.7°、33.2°、34.3°、36.0°、37.9°、49.8°、59.4°、66.1°、69.7°、71.5°、72.7°出現多晶相之氮化鋁材料的繞射峰;使用濺鍍的方式鍍製一層鈦金屬作為接著層於多晶相氮化鋁陶瓷基板上,再以濺鍍及金屬有機物化學氣相沉積法(MOCVD)製程 製備氮化鋁緩衝層與氮化鋁磊晶層於鈦金屬薄膜/多晶相氮化鋁陶瓷基板後,如第三圖(b)顯示在2 θ=38.2°出現金屬鈦薄膜的繞射峰;最後使用低略角X光繞射儀針對氮化鋁磊晶層/氮化鋁緩衝層/鈦金屬薄膜(接著層)/多晶相氮化鋁陶瓷基板之表層進行結晶相鑑定,如第三圖(c)所示,在2 θ=35.9°出現氮化鋁薄膜的單一繞射峰,表示該多晶相氮化鋁陶瓷基板使用此基板表面改質技術,確實可將多晶相氮化鋁陶瓷基板之表面由多晶相轉換成單晶相。
請參閱第四圖,為本發明實施例多晶相氮化鋁陶瓷基板表面改質後之磊晶層表面及剖面結構SEM圖,結果顯示本發明所製備氮化鋁磊晶層之氮化鋁晶粒形狀較規則且磊晶面分布均勻,呈金字塔型的角錐狀,角錐側面則與c-plane(即與基板表面平行的面)成62°,是為(101)晶面,SEM圖所呈現的AlN晶面分佈與XRD的檢測結果相符。一般來說,成長在c-plane的量子井屬極性(polar)量子井,有最大的偏極電場,(101)晶面對UV LED的發光效率有很大的幫助,此金字塔型的表面可大幅降低光束在元件內部產生全反射的機率,能有效提高LED的萃光效率。本發明所提出的表面改質方法可以便宜製造出更大、更均勻的氮化鋁基材,將可作為高品質的GaN磊晶基材,開拓UV LED的應用市場。
請參閱第五圖,為本發明實施例多晶相氮化鋁陶瓷基板與表面改質後之AFM形貌圖,其量測所得的表面粗糙 度如表一所示。第五圖(a)為本發明之多晶相氮化鋁陶瓷基板之表面形貌圖,結合表一顯示多晶相氮化鋁陶瓷基板之表面粗糙度為25.5nm;第五圖(b)為本發明之多晶相氮化鋁陶瓷基板表面改質後之表面形貌圖,結合表一顯示本發明之表面改質後之表面粗糙度為7.8nm,表示該多晶相氮化鋁陶瓷基板使用此表面改質方法,可有效將多晶相氮化鋁陶瓷基板之表面粗糙度由25.5nm降低至7.8nm。
表一
Figure 108137418-A0101-12-0009-7
本發明之一種氮化鋁陶瓷基板表面改質的方法,採用濺鍍與MOCVD製程進行多晶氮化鋁陶瓷基板之表面改質,此方法可使多晶相氮化鋁陶瓷基板之表面形成類單晶相之氮化鋁材料結晶相,可降低多晶相氮化鋁陶瓷基板之表面粗糙度,且磊晶面的分佈均勻並呈現金字塔型的角錐狀,可作為高品質的GaN磊晶基材,應用至UV LED對其發光效率有很大的幫助,可大幅降低光束在元件內產生全反射的機率,能有效提升LED的萃光效率。本發明之一種氮化鋁陶瓷基板表面改質的方法能提供發光二極體、堆疊式記憶體及堆疊式積體電路等元件進行後續製程技術,使其在未來的應用領域更加寬廣。
上述之實施例僅為例示性說明本發明之特點及功效,非用以限制本發明之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背發明之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。
S101-S104‧‧‧步驟

Claims (10)

  1. 一種氮化鋁陶瓷基板表面改質的方法,步驟包括:
    (A)提供一多晶氮化鋁基板,於該基板上以濺鍍法製作一鈦金屬層;
    (B)於該鈦金屬層上以濺鍍法製作一氮化鋁緩衝層;
    (C)於該氮化鋁緩衝層上以金屬有機物化學氣相沉積法(MOCVD)製作一厚度小於1μm之氮化鋁薄膜磊晶層;
    (D)提高製程溫度,持續以金屬有機物化學氣相沉積法(MOCVD)於該氮化鋁薄膜磊晶層上製作一厚度大於1μm之氮化鋁厚膜磊晶層。
  2. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(A)鈦金屬層之厚度為100nm-500nm。
  3. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(A)係使用鈦靶材進行濺鍍,濺鍍的氣體為氬氣。
  4. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(B)氮化鋁緩衝層之厚度為100nm-500nm。
  5. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(B)係使用鋁靶材進行濺鍍,濺鍍的氣體為氬氣及氮氣。
  6. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(C)之反應物為三甲基鋁(Al2(CH3)6)及氨氣(NH3),磊晶成長溫度介於950℃-1030℃之間。
  7. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,步驟(D)之反應物為三甲基鋁(Al2(CH3)6)及氨氣(NH3),磊晶成長溫度介於1030℃-1160℃之間。
  8. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,該氮化鋁薄膜磊晶層之厚度為100nm-500nm。
  9. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,該氮化鋁厚膜磊晶層之厚度為1μm-5μm。
  10. 如申請專利範圍第1項所述之氮化鋁陶瓷基板表面改質的方法,其中,該氮化鋁薄膜磊晶層及該氮化鋁厚膜磊晶層具有(101)氮化鋁單晶晶面。
TW108137418A 2019-10-15 2019-10-15 氮化鋁陶瓷基板表面改質的方法 TWI698553B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108137418A TWI698553B (zh) 2019-10-15 2019-10-15 氮化鋁陶瓷基板表面改質的方法
US17/068,811 US20210111304A1 (en) 2019-10-15 2020-10-12 Surface modification method of aluminum nitride ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108137418A TWI698553B (zh) 2019-10-15 2019-10-15 氮化鋁陶瓷基板表面改質的方法

Publications (2)

Publication Number Publication Date
TWI698553B true TWI698553B (zh) 2020-07-11
TW202117076A TW202117076A (zh) 2021-05-01

Family

ID=72601897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137418A TWI698553B (zh) 2019-10-15 2019-10-15 氮化鋁陶瓷基板表面改質的方法

Country Status (2)

Country Link
US (1) US20210111304A1 (zh)
TW (1) TWI698553B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021124366A1 (de) 2021-09-21 2023-03-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung eines wachstumssubstrats, wachstumssubstrat, und verfahren zur herstellung einer vielzahl optoelektronischer halbleiterchips
CN116751070B (zh) * 2023-07-03 2023-11-17 江苏富乐华功率半导体研究院有限公司 一种陶瓷覆铝基板的制备方法及其制备的陶瓷覆铝基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323618A (ja) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd 銅回路接合基板及びその製造方法
TW201638378A (zh) * 2015-03-06 2016-11-01 Tokuyama Corp Iii族氮化物積層體及具有該積層體之發光元件
TW201716629A (zh) * 2015-11-03 2017-05-16 Nat Chung-Shan Inst Of Science And Tech 一種改善氮化鋁基板與銅鍍層之界面應力的結構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323618A (ja) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd 銅回路接合基板及びその製造方法
TW201638378A (zh) * 2015-03-06 2016-11-01 Tokuyama Corp Iii族氮化物積層體及具有該積層體之發光元件
TW201716629A (zh) * 2015-11-03 2017-05-16 Nat Chung-Shan Inst Of Science And Tech 一種改善氮化鋁基板與銅鍍層之界面應力的結構

Also Published As

Publication number Publication date
US20210111304A1 (en) 2021-04-15
TW202117076A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
CN101924020B (zh) 半导体装置的制造方法
TWI402385B (zh) 鑽石底半導體裝置以及其相關方法
JP2018087128A (ja) 窒化物半導体層の成長方法
CN101358337B (zh) 一种非极性GaN薄膜的生长方法
JP2008533312A (ja) 電子デバイス用のダイヤモンドベースの基板
WO2006126330A1 (ja) GaN単結晶成長方法,GaN基板作製方法,GaN系素子製造方法およびGaN系素子
TWI698553B (zh) 氮化鋁陶瓷基板表面改質的方法
CN111009602B (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
JP2018512744A (ja) Ibadテクスチャ加工基板上のエピタキシャル六方晶材料
CN113206003A (zh) 一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法
CN107086175B (zh) 镀金金属衬底上的氮化铝镓铟/二硫化钼钨膜及制备方法
CN212967721U (zh) 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
JP2021075742A (ja) 窒化アルミニウムセラミック基板の表面改質方法
CN204167345U (zh) 一种使用 SiC 衬底的氮化物 LED 外延结构
CN106206888B (zh) 生长在铝酸镁钪衬底上的InGaN/GaN量子阱及其制备方法
CN101364631B (zh) 一种非极性GaN薄膜的生长方法
WO2022089182A1 (zh) 具有2d材料中介层的氮化镓外延基板
CN210984756U (zh) 具有2d材料中介层的外延基板
WO2020228336A1 (zh) 一种基于GaN的LED外延片及其制备方法
CN105742424B (zh) 一种在金属Al衬底上外延生长的GaN薄膜及其制备方法
CN103996607B (zh) 生长在蓝宝石衬底上的金属Al单晶薄膜及其制备方法和应用
CN106920739A (zh) 一种基于梯度叠层缓冲层薄膜的外延生长AlmGa1‑mN的方法
CN102110751A (zh) 一种自支撑GaN基发光器件及其制备方法
TWI621741B (zh) Epitaxial heat dissipation substrate and manufacturing method thereof
TW200301571A (en) Method for the production of III-V laser components