TWI696290B - Semiconductor device, electronic device and electronic device terminal structure - Google Patents

Semiconductor device, electronic device and electronic device terminal structure Download PDF

Info

Publication number
TWI696290B
TWI696290B TW104139045A TW104139045A TWI696290B TW I696290 B TWI696290 B TW I696290B TW 104139045 A TW104139045 A TW 104139045A TW 104139045 A TW104139045 A TW 104139045A TW I696290 B TWI696290 B TW I696290B
Authority
TW
Taiwan
Prior art keywords
semiconductor material
alloy
semiconductor
composition
channel region
Prior art date
Application number
TW104139045A
Other languages
Chinese (zh)
Other versions
TW201631770A (en
Inventor
豪爾赫 A. 奇特爾
玻那 喬斯 哦拉都比
羅伯特 克里斯多弗 保文
麥克 S. 羅德爾
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/942,193 external-priority patent/US9917158B2/en
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201631770A publication Critical patent/TW201631770A/en
Application granted granted Critical
Publication of TWI696290B publication Critical patent/TWI696290B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Provided are a semiconductor device, an electronic device, and an electronic device terminal structure, wherein the semiconductor device can include a channel region with a first semiconductor material for a majority carrier in the channel region during operation (on state) of the device and a metal contact. A source/drain region can include a semiconductor material alloy including a second semiconductor material and at least one heterojunction located between the metal contact and the channel region, wherein the heterojunction forms a band-edge offset for the majority carrier that is less than or equal to about 0.2 eV.

Description

半導體元件、電子元件及電子元件端子結構 Semiconductor component, electronic component and electronic component terminal structure 【相關申請案的交叉參考】 [Cross-reference to related applications]

本申請案有關於並主張於2014年11月26日在美國專利商標局(USPTO)提出申請的、標題為「使用異質接面來達成低接觸電阻的結構及方法(Structure and method to achieve low contact resistance using heterojunctions)」的美國臨時專利申請案第62/085,092號的優先權,且為於2014年3月26日在USPTO提出申請的、標題為「包含高遷移率通道材料以及在凹陷源極/汲極區中具有階變組成的材料的鰭式場效電晶體元件及形成所述元件的方法(FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME)」的美國專利申請案第14/226,518號的部分延續申請案,所述美國專利申請案主張於2013年7月30日在USPTO提出申請的、標題為「低總寄生電阻的具有凹陷且階變的源極及汲極材料的鰭式場效電晶體(FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE)」的美國 臨時專利申請案第61/859,932號的優先權,上述專利申請案的揭露內容全文併入本案供參考。 This application is related to and advocates the application on November 26, 2014 at the United States Patent and Trademark Office (USPTO) with the title "Structure and method to achieve low contact." resistance using heterojunctions)" priority of US Provisional Patent Application No. 62/085,092, and was filed at the USPTO on March 26, 2014, with the heading "Containing High Mobility Channel Materials and Indented Source/ Fin-type field effect transistor element with step-wise composition in the drain region and method of forming the element (FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME) ”Partial continuation of US Patent Application No. 14/226,518, which claims to have an indentation and a step change titled “Low Total Parasitic Resistance” filed at the USPTO on July 30, 2013 FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE of the source and drain materials The priority of Provisional Patent Application No. 61/859,932, the full disclosure content of the above patent application is incorporated in this case for reference.

本發明大體而言是有關於積體電路元件領域,且更具體而言是有關於使用被配置成作為半導體運作的材料的積體電路元件。 The present invention relates generally to the field of integrated circuit elements, and more specifically relates to the use of integrated circuit elements configured to operate as semiconductor materials.

隨著金屬氧化物半導體(metal oxide semiconductor,MOS)元件的尺寸持續縮減,寄生電阻可能會成為越來越突出的問題,其可使得相較於之前的節點,在每一新節點處的總電阻的百分比更高,且可成為影響此等元件的效能的因素。此外,被挑選用於例如MOS元件的通道的特定材料對於低電阻率觸點而言可能並非總是充足的或相容的。 As the size of metal oxide semiconductor (MOS) devices continues to shrink, parasitic resistance may become an increasingly prominent problem, which can make the total resistance at each new node compared to the previous node The percentage is higher and can be a factor that affects the performance of these devices. Furthermore, the specific materials selected for channels such as MOS elements may not always be sufficient or compatible for low-resistivity contacts.

例如在美國專利公開第2006/0202266號及第2009/0166742號中進一步論述寄生電阻,所述美國專利公開的揭露內容全文皆併入本案供參考。 For example, the parasitic resistance is further discussed in US Patent Publication Nos. 2006/0202266 and 2009/0166742, the entire disclosure content of which is incorporated by reference in this case.

根據本發明的實施例,為了低接觸電阻,可提供包含異質接面的元件接觸結構。依據該些實施例,一種半導體元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包含半導體材料合金,所述半導體材料合 金包含第二半導體材料,且至少一個異質接面位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移。 According to the embodiments of the present invention, in order to lower the contact resistance, an element contact structure including a heterojunction can be provided. According to these embodiments, a semiconductor device may include: a channel region having a first semiconductor material for transferring a majority carrier in the channel region during operation of the semiconductor device; and a metal contact point. The source/drain regions may include an alloy of semiconductor materials Gold includes a second semiconductor material, and at least one heterojunction is located in the source/drain region between the metal contact and the channel region, wherein the heterojunction is for the majority carrier This results in a band edge shift of less than or equal to about 0.2 eV.

在根據本發明的某些實施例中,所述半導體材料合金可包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,即,不可能藉由使半導體材料合金自所述第一半導體材料開始連續階變而獲得所述第三半導體材料。 In some embodiments according to the present invention, the semiconductor material alloy may include a stepped composition of the second semiconductor material and a third semiconductor material, wherein the third semiconductor material is not completely incompatible with the first semiconductor material Miscibility, that is, it is impossible to obtain the third semiconductor material by continuously changing the semiconductor material alloy from the first semiconductor material.

在根據本發明的某些實施例中,所述異質接面的所述能帶邊緣偏移可為約0.0電子伏特。 In some embodiments according to the present invention, the band edge offset of the heterojunction may be about 0.0 electron volts.

在根據本發明的某些實施例中,所述異質接面的所述能帶邊緣偏移可為小於0.2電子伏特,且所述異質接面可被摻雜有與所述多數載子的傳導性對應的摻雜劑類型。 In some embodiments according to the present invention, the energy band edge offset of the heterojunction may be less than 0.2 electron volts, and the heterojunction may be doped with conduction with the majority carrier The type of dopant corresponding to the sex.

在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成包含可在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第二半導體材料及貧乏濃度的所述第三半導體材料、並在與所述金屬觸點的界面處進展至貧乏濃度的所述第二半導體材料及富集濃度的所述第三半導體材料。 In some embodiments according to the invention, the stepped composition of the semiconductor material alloy includes the second semiconductor at a concentration that can be enriched at the interface with the first semiconductor material of the channel region Materials and a depleted concentration of the third semiconductor material, and progress to a depleted concentration of the second semiconductor material and an enriched concentration of the third semiconductor material at the interface with the metal contact.

在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成可由S2xS31-x提供,其中S3是所述第三半導體材料,且S2是所述第二半導體材料。在某些實施例中,在與所述金 屬觸點的所述界面處x=0,在與所述第一半導體材料的所述界面處x=1。 In some embodiments according to the present invention, the stepped composition of the semiconductor material alloy may be provided by S2 x S3 1-x , where S3 is the third semiconductor material and S2 is the second semiconductor material . In some embodiments, x=0 at the interface with the metal contact and x=1 at the interface with the first semiconductor material.

在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成中的遞增可被配置成防止所述階變組成中鄰接的階之間的能帶偏移大於約0.2電子伏特。 In some embodiments according to the present invention, the increase in the stepped composition of the semiconductor material alloy may be configured to prevent an energy band shift between adjacent steps in the stepped composition greater than about 0.2 electrons volt.

在根據本發明的某些實施例中,一種電子元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述電子元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包含材料合金,所述材料合金包含至少一種材料組分且可不含所述第一半導體材料的任一組分,以使所述材料合金在所述通道區和與所述金屬觸點的界面之間的組成階變避免在所述組成階變的遞增之間以及在其中的任一異質接面處發生能帶邊緣偏移的驟然變化。 In some embodiments according to the present invention, an electronic component may include: a channel region having a first semiconductor material, the first semiconductor material is used to transmit a majority load in the channel region during operation of the electronic component Sub; and metal contacts. The source/drain region may include a material alloy that includes at least one material component and may be free of any component of the first semiconductor material, so that the material alloy is in the channel region and The compositional step change between the interfaces of the metal contacts avoids sudden changes in band edge shifts between the increase of the compositional step change and at any of the heterojunctions therein.

在根據本發明的某些實施例中,所述第一半導體材料具有第一晶格結構,且所述材料合金可具有不同於所述第一晶格結構的第二晶格結構,以形成對於多數載子而言,具有小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面。 In some embodiments according to the present invention, the first semiconductor material has a first lattice structure, and the material alloy may have a second lattice structure different from the first lattice structure to form a For most carriers, the heterojunction has a band edge shift of less than or equal to about 0.2 eV.

在某些實施例中,半導體元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包括相鄰於含有半導體材料合金的所述通道區的第一部分,所述半導體材料合金包含第二半導體材料以及所述第二半導體材料 與第三半導體材料的階變組成。源極/汲極區可包括相鄰於含有第四半導體材料的所述金屬觸點的另一部分,其中對於所述多數載子而言,所述源極/汲極的所述兩個部分之間的界面為具有小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面,且被摻雜有與所述多數載子對應的摻雜劑類型。在該些實施例中的某些中,材料可被挑選成使得在相鄰於所述通道的源極/汲極的部分與通道材料之間不形成異質接面。舉例而言,在某些實施例中,半導體材料合金被挑選成使得所述半導體材料合金可在與所述通道的界面處被階變為實質上第一半導體材料。在其他實施例中,可在半導體合金與第一半導體材料的界面處呈現對於所述多數載子而言,具有小於或等於約0.2電子伏特的能帶邊緣偏移、且摻雜有與所述多數載子對應的摻雜劑類型的第二異質接面。 In some embodiments, the semiconductor device may include: a channel region having a first semiconductor material for transferring a majority carrier in the channel region during operation of the semiconductor device; and a metal contact point. The source/drain region may include a first portion adjacent to the channel region containing a semiconductor material alloy, the semiconductor material alloy including a second semiconductor material and the second semiconductor material With the third semiconductor material step change composition. The source/drain region may include another portion adjacent to the metal contact containing the fourth semiconductor material, wherein for the majority carrier, one of the two portions of the source/drain The interface between them is a heterojunction with a band edge shift of less than or equal to about 0.2 electron volts, and is doped with a dopant type corresponding to the majority carrier. In some of these embodiments, the material may be selected such that no heterojunction is formed between the portion of the channel adjacent to the source/drain and the channel material. For example, in certain embodiments, the semiconductor material alloy is selected so that the semiconductor material alloy can be stepped into a substantially first semiconductor material at the interface with the channel. In other embodiments, the interface between the semiconductor alloy and the first semiconductor material may exhibit an energy band edge shift of less than or equal to about 0.2 eV for the majority carrier and be doped with the The second heterojunction of the dopant type corresponding to the majority carrier.

在根據本發明的某些實施例中,一種電子元件端子結構可包括:金屬觸點;以及階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且在遠離所述金屬觸點處大約完全為S1,即x=1,且其中x=0與x=1之間的所述階變組成層的階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特。第三材料S3可在遠離所述金屬觸點、x=1的位置處接觸所述階變組成層,S3被選擇成與S1形成等於或小於約0.2電子伏特的異質接面,且其 中S2可被選擇成對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。 In some embodiments according to the present invention, an electronic component terminal structure may include: a metal contact; and a stepped composition layer including the steps within the stepped composition layer represented by S2 x S3 1-x A second material (S2) and a third material (S3) that are combined with each other in a variable composition, wherein the stepped composition of the stepped composition layer is approximately S2 near the metal contact, that is, x=0, And it is almost completely S1 away from the metal contact, that is, x=1, and the stepwise composition of the stepwise composition layer between x=0 and x=1 is sufficient to avoid the terminal structure of the electronic component For the selected carrier of, the band edge shift in the stepped composition layer is greater than 0.2 eV. The third material S3 may contact the stepped composition layer at a position away from the metal contact at x=1, S3 is selected to form a heterojunction with S1 equal to or less than about 0.2 electron volts, and wherein S2 may be It is selected to provide a Schottky barrier height equal to or less than about 0.2 eV to the metal contacts.

在根據本發明的某些實施例中,一種電子元件端子結構可包括:金屬觸點;以及階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的所述階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且所述階變組成層的所述階變組成在遠離所述金屬觸點處大約完全為S1,即x=1,且其中x=0與x=1之間的所述階變組成層的階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特。第三材料S3可被定位成將所述金屬觸點與所述階變組成層分離開,且可在x=0的位置處相鄰於所述階變組成層,S3被選擇成與S2形成等於或小於約0.2電子伏特的異質接面並對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。 In some embodiments according to the present invention, an electronic component terminal structure may include: a metal contact; and a stepped composition layer including the steps within the stepped composition layer represented by S2 x S3 1-x A second material (S2) and a third material (S3) that are combined with each other in a variable composition, wherein the stepped composition of the stepped composition layer is approximately completely S2 near the metal contact, that is, x= 0, and the step-wise composition of the step-wise composition layer at the distance from the metal contact is approximately completely S1, that is, x=1, and the step-wise composition between x=0 and x=1 The stepped composition of the layer is sufficient to avoid shifting the band edge within the stepped composition layer by more than 0.2 electron volts for the selected carrier of the electronic component terminal structure. The third material S3 may be positioned to separate the metal contact from the stepped composition layer, and may be adjacent to the stepped composition layer at the position of x=0, and S3 is selected to form with S2 A heterojunction equal to or less than about 0.2 electron volts and provides the metal contact with a Schottky barrier height equal to or less than about 0.2 electron volts.

100:通道區 100: channel area

101:金屬觸點 101: metal contacts

102:界面 102: Interface

105:金屬觸點界面部分 105: Metal contact interface part

106:半導體材料合金 106: Semiconductor material alloy

107:源極/汲極區 107: source/drain region

CBE:傳導帶邊緣 CBE: conduction band edge

S1:第一材料/第一半導體材料 S1: First material/first semiconductor material

S2:第二材料/第二半導體材料 S2: second material/second semiconductor material

S2xS31-x:半導體材料合金 S2 x S3 1-x : semiconductor material alloy

S3:第三材料/第三半導體材料 S3: third material/third semiconductor material

S4:第四半導體材料 S4: Fourth semiconductor material

S5:第五半導體材料 S5: Fifth semiconductor material

VBE:價帶邊緣 VBE: price band edge

圖1為在根據本發明的某些實施例中,與相鄰源極/汲極區的通道區的剖面圖,所述源極/汲極區包含半導體材料合金,所述半導體材料合金具有在所述通道區與位於所述源極/汲極區的上表面處的金屬觸點之間平滑地階變組成。 1 is a cross-sectional view of a channel region with an adjacent source/drain region in some embodiments according to the present invention, the source/drain region including a semiconductor material alloy, the semiconductor material alloy having The channel region and the metal contact located at the upper surface of the source/drain region are smoothly stepped.

圖2及圖3為在根據本發明的某些實施例中的替代通道區以 及相關聯的源極/汲極區幾何結構的剖面圖,所述源極/汲極區幾何結構各自包含在所述通道區與位於所述源極/汲極區的上表面處的金屬觸點之間平滑地發生階變的半導體材料合金。 2 and 3 are alternative channel areas in some embodiments according to the present invention to And a cross-sectional view of the associated source/drain region geometry, each of which includes a metal contact at the channel region and at the upper surface of the source/drain region A semiconductor material alloy in which steps change smoothly between points.

圖4為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的線性組成階變曲線的示意圖。 4 is a schematic diagram of a linear composition step curve of a semiconductor material alloy between a material of a channel region and a metal contact in some embodiments according to the present invention.

圖5為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的非線性組成階變曲線的示意圖。 5 is a schematic diagram of a nonlinear composition step curve of a semiconductor material alloy between a material of a channel region and a metal contact in some embodiments according to the present invention.

圖6為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的階梯式組成階變曲線的示意圖。 FIG. 6 is a schematic diagram of a stepwise composition step curve of a semiconductor material alloy between a material of a channel region and a metal contact in some embodiments according to the present invention.

圖7為在根據本發明的某些實施例中,半導體材料合金在通道區材料與相鄰於金屬觸點的界面材料之間的組成階變曲線的示意圖。 7 is a schematic diagram of a compositional step curve of a semiconductor material alloy between a material of a channel region and an interface material adjacent to a metal contact in some embodiments according to the present invention.

圖8為在根據本發明的某些實施例中,第一及第二半導體材料合金在通道區材料與金屬觸點之間的組成階變曲線的示意圖。 FIG. 8 is a schematic diagram of a composition step curve of the first and second semiconductor material alloys between the channel region material and the metal contact in some embodiments according to the present invention.

以下參照附圖來闡述示例性實施例。在不背離此揭露內容的精神及教示內容的條件下,可作出諸多不同形式及實施例,因此本發明不應被視為僅限於本文中所述的示例性實施例。更確切而言,提供該些示例性實施例是為了使此揭露內容透徹及完整,並向熟習此項技術者傳達本發明的範圍。在圖式中,為清晰起見,可誇大各層及區的大小及相對大小。通篇中相同的參考編號指代相同的元件。 Exemplary embodiments are explained below with reference to the drawings. Many different forms and embodiments can be made without departing from the spirit and teaching content of this disclosure, so the present invention should not be considered limited to the exemplary embodiments described herein. Rather, the exemplary embodiments are provided to make the disclosure content thorough and complete, and to convey the scope of the present invention to those skilled in the art. In the drawings, the size and relative size of each layer and area can be exaggerated for clarity. The same reference numbers refer to the same elements throughout.

本文中,參照剖面圖闡述發明概念的示例性實施例,所述剖面圖為理想化實施例及示例性實施例的中間結構的示意圖。因此,可預期會因例如製造技術及/或容差而偏離圖示形狀。因此,發明概念的示例性實施例不應被視為僅限於本文中所說明的特定形狀,而是包括由例如製造而引起的形狀偏差。 Herein, exemplary embodiments of the inventive concept are explained with reference to cross-sectional views, which are schematic diagrams of idealized embodiments and intermediate structures of exemplary embodiments. Therefore, it can be expected to deviate from the illustrated shape due to, for example, manufacturing technology and/or tolerance. Therefore, the exemplary embodiments of the inventive concept should not be considered limited to the specific shapes described herein, but include shape deviations caused by, for example, manufacturing.

除非另外定義,否則本文中所用的全部用語(包括技術及科學用語)的意義皆與本發明所屬技術領域中的通常知識者所通常理解的意義相同。更應理解,用語(例如在常用字典中所定義的用語)應被解釋為具有與其在相關技術背景中的意義一致的意義,且除非本文中進行明確定義,否則不應將其解釋為具有理想化或過於正式的意義。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those of ordinary knowledge in the technical field to which the present invention belongs. It should be further understood that terms (such as those defined in commonly used dictionaries) should be interpreted as having a meaning consistent with their meaning in the relevant technical background, and unless clearly defined herein, they should not be interpreted as having ideals The meaning is too formal or too formal.

本文中所用術語僅用於闡述特定實施例,而並非旨在限制所述實施例。除非上下文中清楚地另外指明,否則本文中所用的單數形式「一」及「所述」旨在亦包含複數形式。更應理解,當在本說明書中使用用語「包括」及/或「包含」時,是用於指明所述特徵、整數、步驟、操作、元件、及/或組件的存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件及/或其群組的存在或添加。 The terminology used herein is only for explaining specific embodiments, and is not intended to limit the embodiments. Unless the context clearly indicates otherwise, the singular forms "a" and "said" used herein are intended to include the plural forms as well. It should be further understood that when the terms "including" and/or "including" are used in this specification, they are used to indicate the existence of the described features, integers, steps, operations, elements, and/or components, but do not exclude one or The presence or addition of multiple other features, integers, steps, operations, elements, components, and/or groups thereof.

應理解,當稱一元件「耦合」至、「連接」至、「因應」於另一元件或「位於」另一元件「上」時,所述元件可直接耦合至、連接至、因應於所述另一元件,或直接位於所述另一元件上,或亦可存在中間元件。相反,當稱一元件「直接耦合」至、「直接 連接」至、「直接因應」於、或「直接位於」另一元件「上」時,則不存在中間元件。本文中所用的用語「及/或」包括相關列出項中的一或多個項的任意及所有組合。 It should be understood that when an element is referred to as being "coupled" to, "connected to", "responsive" to another element, or "on" another element, it can be directly coupled to, connected to, and corresponding to. The other element may be directly on the other element, or an intermediate element may also be present. On the contrary, when a component is "directly coupled" to, "directly When connecting to, directly responding to, or being "directly on" another component, there is no intermediate component. The term "and/or" as used herein includes any and all combinations of one or more of the listed items.

應理解,儘管本文中可能使用用語第一、第二等來闡述各種元件,但該些元件不應受限於該些用語。該些用語僅用於區分各個元件。因此,在不背離本發明實施例的教示內容的條件下,第一元件可被稱為第二元件。 It should be understood that although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited to these terms. These terms are only used to distinguish each element. Therefore, the first element may be referred to as the second element without departing from the teaching content of the embodiments of the present invention.

在本文中,為便於說明,可使用空間相對關係用語,例如「在…之下」、「在…下面」、「下方的」、「在…之上」、「上方的」等來闡述圖中所說明的一個元件或特徵與另一(其他)元件或特徵的關係。應理解,所述空間相對關係用語旨在除圖中所繪示取向以外亦包括所述元件在使用或操作中的不同取向。舉例而言,若圖中的所述元件被翻轉,則被描述為在其他元件或特徵「下面」或「之下」的元件此時將被取向為在其他元件或特徵「之上」。因此,示例性用語「在…下面」可既包含上方亦包含下方的取向。所述元件可具有其他取向(旋轉90度或其他取向),且因此本文中所用的空間相對關係用語可相應地進行解釋。 In this article, for ease of explanation, the terms of spatial relative relationship can be used, such as "below", "below", "below", "above", "above", etc. The relationship between one element or feature described and another (other) element or feature. It should be understood that the terms of the spatial relative relationship are intended to include different orientations of the elements in use or operation in addition to the orientations depicted in the figures. For example, if the element in the figure is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary term "below" can encompass both an orientation of above and below. The elements may have other orientations (rotation by 90 degrees or other orientations), and therefore the term spatial relative relationship used herein may be interpreted accordingly.

應理解,儘管本文中所述的諸多實施例是有關於電晶體中的半導體材料,但可以其他類型的材料來利用本發明,所述其他類型的材料可配置在電子元件中以作為半導體材料(例如,半金屬(semi-metal)材料、退化態(degenerate)半導體材料、及其組合)運作。 It should be understood that although many of the embodiments described herein relate to semiconductor materials in transistors, the invention can be utilized with other types of materials that can be configured in electronic components as semiconductor materials ( For example, semi-metal materials, degenerate semiconductor materials, and combinations thereof operate.

此外,應理解,儘管本文中所述的諸多實施例繪示鰭式場效電晶體(fin field-effect transistor,finFET)結構作為通道區,但可以其他類型的電晶體結構(例如,平面電晶體、奈米線電晶體、金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)等)來利用本發明。 In addition, it should be understood that although many embodiments described herein illustrate a fin field-effect transistor (finFET) structure as the channel region, other types of transistor structures (eg, planar transistors, Nanowire transistors, metal-oxide-semiconductor field-effect transistors (MOSFETs, etc.) utilize the present invention.

應理解,本文中所使用的與特定材料相關聯的用語「能帶邊緣」,根據在元件(即,pMOS元件對nMOS元件)的運作(接通狀態)期間所使用的電荷載子的導電類型,而指所提及材料的傳導帶邊緣或價帶邊緣。因此,在未指明元件的類型的情況下,可藉由參照「相關載子」而使用用語「能帶邊緣」。對於pMOS元件,所述相關載子為電洞,且能帶邊緣是指價帶邊緣。對於nMOS元件,所述相關載子為電子,且能帶邊緣是指傳導帶邊緣。 It should be understood that the term "band edge" used herein in connection with a specific material depends on the conductivity type of charge carriers used during operation (on state) of the device (ie, pMOS device to nMOS device) , And refers to the edge of the conduction band or valence band of the mentioned material. Therefore, when the type of the component is not specified, the term "band edge" may be used by referring to "relevant carrier". For pMOS devices, the relevant carriers are holes, and the band edge refers to the valence band edge. For nMOS devices, the relevant carriers are electrons, and the band edge refers to the conduction band edge.

應理解,本文中所使用的用語「低接觸電阻率」或類似用語是指約為1×10-8歐姆-平方釐米(ohm-cm2)或小於1×10-8歐姆-平方釐米的界面接觸電阻率值。在某些實施例中,其可指約為1×10-7歐姆-平方釐米或小於1×10-7歐姆-平方釐米的接觸電阻率值。應理解,本文中針對與半導體材料接觸的金屬所使用的用語「低肖特基位障高度(Schottky barrier height,SBH)」或「低位障」包括約0.2電子伏特或小於0.2電子伏特的值。應理解,本文中所使用的用語「小」(或類似用語)在被用於指相關載子在兩種不同材料之間的異質接面處的能帶邊緣之間的能帶偏移時,包括約0.2電子伏特或小於0.2電子伏特的值。應理解,本文中所使用 的用語「小」(或類似用語)在被用於指藉由材料的組成階變中的遞增或階梯而形成的能帶偏移時,包括約0.2電子伏特或小於0.2電子伏特、較佳地約0.1電子伏特或小於0.1電子伏特的值。 It should be understood that the term "low contact resistivity" or similar terms used herein refers to an interface of about 1×10 -8 ohm-cm 2 or less than 1×10 -8 ohm-cm 2 Contact resistivity value. In certain embodiments, it may refer to about 1 × 10 -7 ohm - cm or less than 1 × 10 -7 ohm - cm contact resistance value. It should be understood that the terms "low Schottky barrier height (SBH)" or "low barrier" used herein for metals in contact with semiconductor materials include values of about 0.2 eV or less. It should be understood that the term "small" (or similar terms) used in this text is used to refer to the shift of the energy band between the edges of the energy carriers at the heterojunction between two different materials, Include values of about 0.2 eV or less. It should be understood that the term "small" (or similar terms) as used herein, when used to refer to an energy band shift formed by an increase or step in the compositional step of the material, includes about 0.2 eV or less 0.2 eV, preferably about 0.1 eV or less.

應理解,本文中所使用的形式表達式(例如,S2xS31-x)是指兩種材料(S2及S3)以相對組成形成合金以使得每x單位的S2對應每1-x單位的S3,其中指數x可在0與1之間變化。合金S2xS31-x可包含在區(例如,源極/汲極區)中,且合金的組成物(由參數x表示)可隨著在所述區中的位置而變化。可使用用語「貧乏」或「富集」來指特定材料的比例。舉例而言,S2富集的S2xS31-x合金為x接近於1的S2xS31-x合金。舉例而言,S2貧乏的S2xS31-x合金為x接近於0的S2xS31-x合金。 It should be understood that the formal expressions used in this document (for example, S2 x S3 1-x ) refer to two materials (S2 and S3) formed into alloys with a relative composition so that S2 per x unit corresponds to every 1-x unit. S3, where the index x can vary between 0 and 1. The alloy S2 x S3 1-x may be included in the region (eg, source/drain region), and the composition of the alloy (represented by the parameter x) may vary with the position in the region. The terms "poor" or "enriched" can be used to refer to the proportion of specific materials. For example, S2 x S3 1-x alloy enriched S2 is close to x S2 x S3 1-x alloy 1. For example, S2 poor S2 x S3 1-x alloy close to x S2 x S3 1-x alloy 0.

本文中所使用的用語「半導體材料」可指僅包含單種元素的半導體材料,或指包含多於一種元素的半導體材料化合物。本文中所使用的用語「半導體材料合金」是指包含至少兩種不同元素的半導體材料。 The term "semiconductor material" as used herein may refer to a semiconductor material containing only a single element, or to a semiconductor material compound containing more than one element. The term "semiconductor material alloy" as used herein refers to a semiconductor material containing at least two different elements.

如由本發明的發明者所理解,在根據本發明的某些實施例中,對於元件而言,可藉由在通道區與金屬觸點之間形成具有平滑地階變組成的半導體材料合金(以下簡稱為半導體合金或合金)(S2與S3)而向通道區中的第一半導體材料S1(以下簡稱為半導體材料S1)提供低電阻率接觸。舉例而言,半導體合金中的組成階變可為如此以使得S2及S3在所述合金中的貢獻隨著在源極/汲極區中的位置而逐漸變化。舉例而言,合金的組成階變可被 設置成使得半導體合金在靠近通道區處基本上為S2,而半導體合金在遠離通道區的金屬觸點處基本上為S3。 As understood by the inventor of the present invention, in some embodiments according to the present invention, for the device, a semiconductor material alloy (hereinafter referred to as abbreviated as a A low-resistivity contact is provided to the first semiconductor material S1 (hereinafter simply referred to as semiconductor material S1) in the channel region for a semiconductor alloy or alloy (S2 and S3). For example, the compositional step change in the semiconductor alloy may be such that the contributions of S2 and S3 in the alloy gradually change with the position in the source/drain regions. For example, the alloy composition step can be changed by It is arranged such that the semiconductor alloy is substantially S2 near the channel region, and the semiconductor alloy is substantially S3 at the metal contact away from the channel region.

此外,包含於合金(S2與S3)中的半導體材料可各自被選擇成相對於通道中的半導體材料(S1)具有特定關係。舉例而言,相較於第三半導體材料S3(以下簡稱為半導體材料S3)的能帶邊緣,第二半導體材料S2(以下簡稱為半導體材料S2)可被選擇成具有相對接近於半導體材料S1的能帶邊緣的能帶邊緣(即,低能帶邊緣偏移)。然而,半導體材料S3可被選擇成具有相對於半導體材料S1相對大的能帶邊緣偏移。此外,對於相關載子而言,源極/汲極區中的半導體合金(S2與S3)的組成階變應為平滑的,以避免在源極/汲極區中的能帶邊緣中的任何驟然變化。 In addition, the semiconductor materials contained in the alloys (S2 and S3) can each be selected to have a specific relationship with respect to the semiconductor material (S1) in the channel. For example, compared to the band edge of the third semiconductor material S3 (hereinafter referred to as semiconductor material S3), the second semiconductor material S2 (hereinafter referred to as semiconductor material S2) can be selected to have a relatively close to the semiconductor material S1 Band edge band edge (ie, low band edge offset). However, the semiconductor material S3 may be selected to have a relatively large band edge offset relative to the semiconductor material S1. In addition, for the relevant carriers, the compositional steps of the semiconductor alloys (S2 and S3) in the source/drain regions should be smooth to avoid any of the band edge in the source/drain regions Suddenly changed.

因此,如由本發明的發明者所理解,通道區中的半導體材料S1及半導體材料S3被選擇成使得其中的一者(例如,S3)無法藉由使用連續的組成階變而自另一者(例如,S1)獲得。換言之,半導體材料S2可被用作較接近於S1的能帶邊緣但亦可與S3一起存在於合金中的中間材料。 Therefore, as understood by the inventor of the present invention, the semiconductor material S1 and the semiconductor material S3 in the channel region are selected so that one of them (for example, S3) cannot be changed from the other by using a continuous composition step ( For example, S1) obtained. In other words, the semiconductor material S2 can be used as an intermediate material that is closer to the energy band edge of S1 but can also be present in the alloy together with S3.

因此,半導體材料S1可被選擇成顯著不同於半導體材料S2但仍具有相對低的能帶邊緣偏移,且此外,半導體合金的組成階變可被用於隨著階變朝向遠離通道區的金屬觸點進展而逐漸增大S3的貢獻並減小S2的貢獻。更應理解,存在於金屬觸點處的半導體材料S3可被選擇成對相關載子提供相對低的肖特基位障高度。 Therefore, the semiconductor material S1 can be selected to be significantly different from the semiconductor material S2 but still have a relatively low band edge shift, and in addition, the compositional step change of the semiconductor alloy can be used to move the metal away from the channel region as the step changes The contact progresses and gradually increases the contribution of S3 and decreases the contribution of S2. It should further be understood that the semiconductor material S3 present at the metal contacts can be selected to provide a relatively low Schottky barrier height to the relevant carriers.

如由本發明的發明者所理解,參考文獻(詹妮.胡(Jenny Hu)、H.-S.菲利普.王(H.-S.Philip Wong)及克裏希納.薩拉斯沃特(Krishna Saraswat)(2011)於材料研究學會公告(Materials Research Society Bulletin,MRS Bulletin)第36期第112-120頁發表的「用於高遷移率通道材料的新穎接觸結構(Novel contact structures for high mobility channel materials)」(可於doi:10.1557/mrs.2011.5在線獲得並併入本文供參考))的圖3以及參考文獻(長穀川秀城(Hideki Hasgawa)及赤澤政道(Masamichi Akazawa)於韓國物理社會雜誌(Journal of the Korean Physical Society)2009年9月第3期第55卷第1167-1179頁發表的「電流傳輸、費米能階釘紮、及III族氮化物肖特基位障的瞬時行為(Current transport,Fermi Level Pinning,and Transient Behavior of Group-III Nitride Schottky Barriers)」(併入本文供參考))的圖4說明可在根據本發明的元件中使用的不同半導體材料/化合物/合金的各別能帶對準(band alignment)。根據上述材料,某些半導體材料在與金屬接觸時呈現費米能階釘紮(且在某些情形中呈現強烈的費米能階釘紮);在此種情形中,在金屬半導體界面處形成的肖特基位障適度依賴或不依賴金屬的功函數。費米能階釘紮位置通常接近電荷中性位準。 As understood by the inventor of the present invention, references (Jenny Hu, H.-S. Philip Wong) and Krishna Saraswater ( Krishna Saraswat (2011) published in Materials Research Society Bulletin (MRS Bulletin) No. 36, pages 112-120, ``Novel contact structures for high mobility channel (Novel contact structures for high mobility channel) materials)" (available online at doi: 10.1557/mrs.2011.5 and incorporated into this article for reference)) and Figure 3 and references (Hideki Hasgawa and Masamichi Akazawa) in the Korean Journal of Physical Society (Journal of the Korean Physical Society) "Transient Behavior of Current Transmission, Fermi Level Pinning, and Group III Nitride Schottky Barriers" published on September 3, 2009, Volume 55, pages 1167-1179 (Journal of the Korean Physical Society) Current transport, Fermi Level Pinning, and Transient Behavior of Group-III Nitride Schottky Barriers)'' (incorporated herein by reference)) illustrates each of the different semiconductor materials/compounds/alloys that can be used in the element according to the invention Don't take band alignment. According to the above materials, some semiconductor materials exhibit Fermi level pinning when in contact with metal (and in some cases exhibit strong Fermi level pinning); in this case, they form at the metal-semiconductor interface The Schottky barrier is moderately dependent or not dependent on the work function of the metal. The Fermi level pinning position is usually close to the charge neutral level.

仍參照胡的圖3及長穀川的圖4,表示了若干半導體材料的電荷中性位準。在某些實施例中,被選擇用來形成金屬觸點半導體材料在接近相關載子能帶邊緣的位置處具有費米能階釘紮或 強烈的費米能階釘紮,以在接觸金屬時向相關載子提供低肖特基位障高度。 Still referring to Figure 3 of Hu and Figure 4 of Hasegawa, the charge-neutral levels of several semiconductor materials are shown. In some embodiments, the semiconductor material selected to form the metal contact has a Fermi level pinning or near the edge of the relevant carrier band Strong Fermi level pinning to provide a low Schottky barrier height to the relevant carrier when in contact with metal.

更應理解,銦鎵銻(InGaSb)合金的釘紮可接近價帶邊緣。更應理解,對於銦鎵砷(InGaAs)、銦鎵氮(InGaN)及鋁鎵氮(AlGaN)合金,電荷中性位準的絕對位置可隨組成物而略有變化。在某些實施例中,砷化銦(InAs)、銦(In)富集的銦-鎵-砷(In-Ga-As)合金、氮化銦(InN)、及銦(In)富集的銦-鎵-氮(In-Ga-N)合金可適用於在nMOS元件中用於至金屬觸點的合金界面的半導體材料。由於其小的間隙,銻化銦(InSb)可適用於nMOS元件及pMOS元件。對於pMOS元件而言,鍺(Ge)、銻化銦(InSb)、銻化鎵(GaSb)及銦-鎵-銻(In-Ga-Sb)合金可適用作用於至金屬觸點的合金界面的半導體材料。 It should be further understood that the pinning of the indium gallium antimony (InGaSb) alloy can be close to the edge of the valence band. It should be further understood that for indium gallium arsenide (InGaAs), indium gallium nitrogen (InGaN), and aluminum gallium nitrogen (AlGaN) alloys, the absolute position of the charge neutral level may vary slightly with the composition. In some embodiments, indium arsenide (InAs), indium (In) enriched indium-gallium-arsenic (In-Ga-As) alloy, indium nitride (InN), and indium (In) enriched Indium-gallium-nitrogen (In-Ga-N) alloys can be applied to semiconductor materials used for alloy interfaces to metal contacts in nMOS devices. Due to its small gap, indium antimonide (InSb) can be applied to nMOS devices and pMOS devices. For pMOS devices, germanium (Ge), indium antimonide (InSb), gallium antimonide (GaSb), and indium-gallium-antimony (In-Ga-Sb) alloys can be applied to the alloy interface to the metal contacts semiconductors.

如由本發明的發明者所理解,三帝普.蒂瓦裏(Sandip Tiwari)及大衛.J.弗蘭克(David J.Frank)於應用物理學快報(Appl.Phys.Lett.)60,630(1992)發表的「對III-V合金系統中的能帶不連續性及位障高度的經驗擬合(Empirical fit to band discontinuities and barrier heights in III-V alloy systems)」(可於dx.doi.org/10.1063/1.06575在線獲得並併入本文供參考)的圖1為說明在根據本發明的某些實施例中,不同半導體材料的晶格常數及能帶邊緣位置的曲線圖。因此,蒂瓦裏的圖1可用於選擇恰當的材料組合以用於元件的通道區及源極汲極區。如更由本發明的發明者所理解,由赫蘇斯A.戴爾.阿拉莫(Jesús A.del Alamo)於 自然雜誌(Nature)479,317-323(2011年11月17日)發表的「具有III-V化合物半導體的奈米級電子元件(Nanometre-scale electronics with III-V compound semiconductors)」(可於doi:10.1038/nature10677在線獲得並併入本文供參考)的圖1為說明若干半導體材料的遷移率的曲線圖,且可用以選擇恰當的通道材料。 As understood by the inventor of the present invention, Sandipu. Sandip Tiwari and David. J. David J. Frank published in Appl. Phys. Lett. 60,630 (1992) "Empirical fitting of band discontinuities and barrier heights in III-V alloy systems (Empirical fit to band discontinuities and barrier heights in III-V alloy systems)'' (available online at dx.doi.org/10.1063/1.06575 and incorporated herein for reference) is shown in FIG. 1 to illustrate certain embodiments according to the present invention. In the graph of lattice constants and band edge positions of different semiconductor materials. Therefore, Tivari's Figure 1 can be used to select the appropriate material combination for the channel and source drain regions of the device. As more understood by the inventor of the present invention, by Jesus A. Dell. Alamo (Jesús A. del Alamo) "Nanometre-scale electronics with III-V compound semiconductors" (Nanometre-scale electronics with III-V compound semiconductors) published by Nature 479,317-323 (November 17, 2011) (available at doi: 10.1038 /nature10677 is available online and incorporated herein for reference). Figure 1 is a graph illustrating the mobility of several semiconductor materials and can be used to select the appropriate channel material.

在源極/汲極區中的半導體材料合金的組成階變可基於被選擇用於與金屬觸點的界面的半導體材料以及將被用於通道區中的半導體材料而設置。舉例而言,在根據本發明的某些實施例中,高鍺的矽鍺合金(high Ge SiGe alloy)或用於nMOS或pMOS的鍺(Ge)、用於nMOS或pMOS的矽(Si)、用於pMOS的矽鍺(SiGe)、用於nMOS的銦-鎵-砷(In-Ga-As)合金、用於nMOS的銦-砷(In-As)合金、或用於nMOS或pMOS的銦-鎵-銻(In-Ga-Sb)合金等可用於通道區中的半導體材料。應理解,上述參數(即,用作至金屬觸點的界面的半導體材料、以及用於通道區中的半導體材料)中的每一者可被選擇成滿足以下兩個條件:(1)在通道區中使用的半導體材料無法平滑地在組成上階變以達到在至金屬觸點的界面處使用的半導體材料;以及(2)在通道區中使用的半導體材料與被選擇成位於至金屬觸點的界面處的半導體材料之間的能帶邊緣偏移(對於相關載子而言)是顯著的(即,大於約0.2電子伏特)。 The compositional step change of the semiconductor material alloy in the source/drain region may be set based on the semiconductor material selected for the interface with the metal contact and the semiconductor material to be used in the channel region. For example, in some embodiments according to the present invention, high germanium silicon germanium alloy (high Ge SiGe alloy) or germanium (Ge) for nMOS or pMOS, silicon (Si) for nMOS or pMOS, Silicon-germanium (SiGe) for pMOS, In-Ga-As alloy for nMOS, In-As alloy for nMOS, or Indium for nMOS or pMOS -Gallium-antimony (In-Ga-Sb) alloys and the like can be used as semiconductor materials in the channel region. It should be understood that each of the above parameters (ie, the semiconductor material used as the interface to the metal contact, and the semiconductor material used in the channel region) can be selected to satisfy the following two conditions: (1) in the channel The semiconductor material used in the region cannot be smoothly changed in composition to achieve the semiconductor material used at the interface to the metal contact; and (2) The semiconductor material used in the channel region is selected to be located at the metal contact The band edge shift between semiconductor materials at the interface of (for related carriers) is significant (ie, greater than about 0.2 eV).

鑒於以上所述,在通道區與金屬觸點之間,可使用源極/汲極區中的半導體合金的平滑組成階變而提供低電阻率接觸。在 任意一種情形中,合金中所包含的半導體材料被選擇成在源極/汲極區中有效地減少對載子傳輸的位障,而無論例如靠近金屬觸點或靠近通道區形成的異質接面存在與否。在任意一種情形中,在異質接面處提供的能帶邊緣偏移對於相關載子而言應小於0.2電子伏特。 In view of the above, between the channel region and the metal contact, a smooth composition step change of the semiconductor alloy in the source/drain region can be used to provide a low resistivity contact. in In either case, the semiconductor material contained in the alloy is selected to effectively reduce the barrier to carrier transport in the source/drain region, regardless of, for example, the heterojunction formed near the metal contact or near the channel region Existence or not. In either case, the band edge offset provided at the heterojunction should be less than 0.2 eV for the relevant carriers.

應理解,在源極/汲極區中使用所選擇材料的外延生長(epitaxial-growth),可在外延生長過程期間使用所需的組成表達式(例如S2xS31-x)以執行平滑地階變的半導體材料合金的形成。此外,可使用在以下申請案中闡述的方法來形成平滑地階變的半導體材料合金:於2014年3月26日在USPTO提出申請的、標題為「包含高遷移率通道材料以及在凹陷源極/汲極區中具有階變組成的材料的鰭式場效電晶體元件及形成所述元件的方法(FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME)」的美國專利申請案第14/226,518號、以及於2013年7月30日在USPTO提出申請的、標題為「低總寄生電阻的具有凹陷且階變的源極及汲極材料的鰭式場效電晶體(FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE)」的美國臨時專利申請案第61/859,932號。 It should be understood that using epitaxial growth of the selected material in the source/drain regions (epitaxial-growth), the desired composition expression (eg S2 x S3 1-x ) can be used during the epitaxial growth process to perform smooth steps The formation of variable semiconductor material alloys. In addition, the method described in the following application can be used to form a smooth step-change semiconductor material alloy: the application filed at the USPTO on March 26, 2014, entitled "Containing High Mobility Channel Materials and Indented Source/ Fin-type field effect transistor element with step-wise composition in the drain region and method of forming the element (FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME) ”U.S. Patent Application No. 14/226,518, and the fin field effect of the recessed and stepped source and drain materials with low total parasitic resistance and filed at the USPTO on July 30, 2013 Transistor (FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE)" US Provisional Patent Application No. 61/859,932.

圖1為具有通道區100(以下簡稱為區100)的半導體元 件的剖面圖,通道區100包括通道並包含在源極/汲極區107中與半導體材料合金106相鄰的第一半導體材料(S1)。在根據本發明的某些實施例中,半導體材料合金106亦包括至金屬觸點101的金屬觸點界面部分105。儘管圖1及相關聯的說明,指涉半導體材料的使用,但根據本發明亦可使用其他類型的材料。舉例而言,可使用任何被配置成作為半導體運作的材料,例如半金屬或退化態半導體。進一步而言,圖2及圖3示出在根據本發明的某些實施例中,區100及源極/汲極區107的替代幾何結構。因此,圖1所示元件的幾何結構是示例性的,且本發明並非僅限於此。 FIG. 1 is a semiconductor element having a channel area 100 (hereinafter referred to as area 100) In a cross-sectional view of the device, the channel region 100 includes a channel and contains a first semiconductor material adjacent to the semiconductor material alloy 106 in the source/drain region 107 (S1). In some embodiments according to the invention, the semiconductor material alloy 106 also includes a metal contact interface portion 105 to the metal contact 101. Although FIG. 1 and the associated description refer to the use of semiconductor materials, other types of materials can be used in accordance with the present invention. For example, any material configured to operate as a semiconductor can be used, such as a semi-metal or degenerated semiconductor. Further, FIGS. 2 and 3 illustrate alternative geometries of the region 100 and the source/drain region 107 in some embodiments according to the present invention. Therefore, the geometry of the element shown in FIG. 1 is exemplary, and the present invention is not limited to this.

仍參照圖1,半導體材料合金106在源極/汲極區107中,例如自與含有通道的區100的界面102至金屬觸點界面部分105,在組成上為階變的。換言之,半導體材料合金106的組成隨著在源極/汲極區107中的位置而變化。在某些實施例中,半導體材料合金106的組成隨著在源極/汲極區107中的位置而變化,以提供與半導體材料S1的異質接面以及在金屬觸點界面部分105與金屬觸點101之間提供相對低的肖特基位障高度。具體而言,半導體材料合金106可外延生長以使得半導體材料S2基本上在界面102處被提供且隨著朝向金屬觸點界面部分105移動而逐漸減少,而半導體材料S3隨著半導體材料S2的減少而逐漸增加,以使得當半導體材料合金106的階變達到金屬觸點界面部分105時,半導體材料合金106基本上為半導體材料S3。 Still referring to FIG. 1, the semiconductor material alloy 106 is stepwise in composition in the source/drain region 107, for example, from the interface 102 with the channel-containing region 100 to the metal contact interface portion 105. In other words, the composition of the semiconductor material alloy 106 changes with the position in the source/drain region 107. In some embodiments, the composition of the semiconductor material alloy 106 varies with the position in the source/drain region 107 to provide a heterojunction with the semiconductor material S1 and the metal contact interface portion 105 with the metal contacts Between points 101 provides a relatively low Schottky barrier height. Specifically, the semiconductor material alloy 106 may be grown epitaxially so that the semiconductor material S2 is substantially provided at the interface 102 and gradually decreases as it moves toward the metal contact interface portion 105, while the semiconductor material S3 decreases with the semiconductor material S2 And gradually increase, so that when the step change of the semiconductor material alloy 106 reaches the metal contact interface portion 105, the semiconductor material alloy 106 is basically the semiconductor material S3.

應理解,在某些實施例中,區100中的半導體材料S1在 界面102處與第二半導體材料S2形成異質接面。因此,半導體材料S1可實質上不同於半導體材料S2,且自S2至S1的能帶邊緣偏移可相對小(例如,小於或等於約0.2電子伏特)。亦應理解,在其中存在小的能帶偏移的實施例中,在所述異質接面處(在含有通道的區100中的半導體材料S1與半導體材料合金106中的半導體材料S2之間)可利用摻雜以使得在元件的運作期間,在異質接面界面處不會發生對載子流的顯著位障。 It should be understood that in some embodiments, the semiconductor material S1 in the region 100 is The interface 102 forms a heterojunction with the second semiconductor material S2. Therefore, the semiconductor material S1 may be substantially different from the semiconductor material S2, and the band edge shift from S2 to S1 may be relatively small (eg, less than or equal to about 0.2 electron volts). It should also be understood that in embodiments where there is a small band shift, at the heterojunction (between the semiconductor material S1 in the channel-containing region 100 and the semiconductor material S2 in the semiconductor material alloy 106) Doping can be used so that during operation of the device, no significant barrier to carrier flow occurs at the heterojunction interface.

應理解,圖4至圖8中所示的能帶對準圖表示本文中所述半導體材料(例如S1、S2、S3等)的材料性質,而非元件在特定運作模式中的特定能帶圖。在圖4及圖6中,舉例而言,CBE指代傳導帶邊緣,且所述圖對應於針對nMOS元件說明的可能實施例。應理解,可對pMOS元件應用類似的機制(在此種情形中,所說明的能帶邊緣將對應於價帶邊緣)。在圖5、圖7及圖8中,VBE指代價帶邊緣,且所述圖對應於針對pMOS元件說明的可能實施例。應理解,可對nMOS元件應用類似的機制(在此種情形中,所說明的能帶邊緣將對應於傳導帶邊緣)。在本發明的範圍內,可具有諸多其他圖。 It should be understood that the energy band alignment diagrams shown in FIGS. 4 to 8 represent the material properties of the semiconductor materials (such as S1, S2, S3, etc.) described herein, rather than the specific energy band diagram of the device in a specific operating mode . In FIGS. 4 and 6, for example, CBE refers to the conduction band edge, and the figures correspond to possible embodiments illustrated for nMOS devices. It should be understood that similar mechanisms can be applied to pMOS devices (in this case, the illustrated band edge will correspond to the valence band edge). In Figures 5, 7 and 8, VBE refers to cost band edges, and the figures correspond to possible embodiments illustrated for pMOS elements. It should be understood that a similar mechanism can be applied to nMOS devices (in this case, the illustrated band edge will correspond to the conduction band edge). There can be many other figures within the scope of the invention.

圖4為源極/汲極區107中的半導體材料合金106的線性組成階變曲線的示意圖。應理解,圖4所示的示意圖可應用至其中圖1所示的元件為nMOS元件的實施例中。參照圖1及圖4,x=1的位置是指通道區100與源極/汲極區107之間的界面102,在此處半導體材料合金106包含半導體材料S2但不包含半導體材料 S3。在某些實施例中,在界面102處,半導體材料合金106包含半導體材料S2以及少量的S3(即,S2富集而S3貧乏)。 FIG. 4 is a schematic diagram of the linear composition step curve of the semiconductor material alloy 106 in the source/drain region 107. It should be understood that the schematic diagram shown in FIG. 4 can be applied to the embodiment in which the element shown in FIG. 1 is an nMOS element. Referring to FIGS. 1 and 4, the position of x=1 refers to the interface 102 between the channel region 100 and the source/drain region 107, where the semiconductor material alloy 106 includes the semiconductor material S2 but does not include the semiconductor material S3. In some embodiments, at the interface 102, the semiconductor material alloy 106 contains the semiconductor material S2 and a small amount of S3 (ie, S2 is rich and S3 is poor).

如圖4所示,在半導體材料合金106內半導體材料S2與半導體材料S3的組成可隨著在源極/汲極區107中的位置而線性變化。應理解,所有半導體材料S1至S3以及由以上所示關係式所表達的所有中間材料在對元件的處理及應用中所使用的熱預算(thermal budget)內是穩定的或介穩定的(metastable)。進一步而言,半導體材料合金106可在半導體材料合金106的外延生長期間同時被摻雜。 As shown in FIG. 4, the composition of the semiconductor material S2 and the semiconductor material S3 in the semiconductor material alloy 106 may change linearly with the position in the source/drain region 107. It should be understood that all semiconductor materials S1 to S3 and all intermediate materials expressed by the relationship shown above are stable or metastable within the thermal budget used in the processing and application of the device . Further, the semiconductor material alloy 106 may be simultaneously doped during the epitaxial growth of the semiconductor material alloy 106.

進一步而言,存在於至金屬觸點101的金屬觸點界面部分105處的半導體材料S3被選擇成在金屬觸點101處對相關載子提供相對小的肖特基位障高度(例如,等於或小於約0.2電子伏特)。應理解,半導體材料合金106內的半導體材料的組成階變在整個源極/汲極區107中提供組成上相對小的變化。此外,在根據本發明的某些實施例中,對整個結構施加充足的摻雜以使得屏蔽(screening)可有效地減少對相關載子傳輸的任何位障,否則所述對相關載子傳輸的位障可因組成階變所引起的能帶邊緣位置的變化而升起。 Further, the semiconductor material S3 present at the metal contact interface portion 105 to the metal contact 101 is selected to provide a relatively small Schottky barrier height (eg, equal to Or less than about 0.2 eV). It should be understood that the compositional step change of the semiconductor material within the semiconductor material alloy 106 provides a relatively small change in composition throughout the source/drain region 107. In addition, in some embodiments according to the present invention, sufficient doping is applied to the entire structure so that screening can effectively reduce any barriers to the transmission of related carriers, otherwise the The barrier can be raised due to the change of the band edge position caused by the compositional step change.

應理解,上述所提及利用平滑組成階變以屏蔽對載子傳輸的位障,可藉由在源極/汲極區中將能帶邊緣中的變化保持至某一距離內某一特定水準而被提供。在根據本發明的某些實施例中,對於約1×1018cm-3的摻雜,平滑組成階變是為如此以使得對 於相關載子而言,能帶邊緣的位置在約6奈米或大於6奈米內的變化約0.1電子伏特。在某些實施例中,對於約1×1019cm-3的摻雜,平滑組成階變是為如此以使得對於相關載子而言,能帶邊緣的位置在約2奈米或大於2奈米內的變化約0.1電子伏特。在某些實施例中,對於約1×1020cm-3的摻雜,平滑組成階變是為如此以使得對於相關載子而言,能帶邊緣的位置在約0.6奈米或大於0.6奈米內的變化約0.1電子伏特。 It should be understood that the above mentioned use of smooth composition steps to shield the barrier to carrier transmission can be achieved by maintaining the changes in the band edge to a certain level within a certain distance in the source/drain regions While being offered. In some embodiments according to the present invention, for a doping of about 1×10 18 cm -3 , the smooth composition step is such that for the relevant carrier, the position of the band edge is about 6 nm Or greater than 6 nanometers with a variation of about 0.1 eV. In some embodiments, for a doping of about 1×10 19 cm -3 , the smooth composition step is such that for the relevant carriers, the position of the band edge is about 2 nm or greater than 2 nm The change within meters is about 0.1 eV. In some embodiments, for a doping of about 1×10 20 cm -3 , the smooth composition step is such that for the relevant carrier, the position of the band edge is about 0.6 nm or greater than 0.6 nm The change within meters is about 0.1 eV.

更應理解,當摻雜被提供以使得經由組成階變而有效地屏蔽對載子傳輸的位障時,可在特定距離內在具有特定能帶邊緣變化的源極/汲極區中使用某些摻雜水準。 It should further be understood that when doping is provided so that the barrier to carrier transmission is effectively shielded via compositional steps, certain ones can be used in source/drain regions with specific band edge changes within a specific distance Doping level.

參照圖1,在根據本發明的某些實施例中,應理解,對金屬觸點介面部分105的摻雜可用於提供本文中所需的低金屬觸點界面電阻。舉例而言,對於具有極低肖特基位障高度的金屬觸點以及對於金屬觸點介面部分105中具有小的穿隧有效質量(tunneling effective mass)的材料而言,1×1019cm-3的若干倍的摻雜濃度可為足夠的。在某些實施例中,可在金屬觸點介面部分105中使用1×1020cm-3或高於1×1020cm-3的摻雜濃度。在大多數情形中,即使對小的肖特基位障高度而言,在金屬觸點介面部分105中較高的摻雜濃度可能導致較低的接觸電阻率,例如在與砷化銦(InAs)接觸的情形中。 Referring to FIG. 1, in some embodiments according to the present invention, it should be understood that the doping of the metal contact interface portion 105 can be used to provide the low metal contact interface resistance required herein. For example, for metal contacts with a very low Schottky barrier height and for materials with a small tunneling effective mass in the metal contact interface portion 105, 1×10 19 cm A doping concentration of several times of 3 may be sufficient. In some embodiments, a doping concentration of 1×10 20 cm −3 or higher than 1×10 20 cm −3 may be used in the metal contact interface portion 105. In most cases, even for small Schottky barrier heights, a higher doping concentration in the metal contact interface portion 105 may result in lower contact resistivity, for example, in contact with indium arsenide (InAs ) In the case of contact.

因此,在某些實施例中,實際可達成的最高摻雜濃度可用於金屬觸點介面部分105中。 Therefore, in some embodiments, the highest achievable doping concentration may be used in the metal contact interface portion 105.

類似地,在具有小的能帶邊緣偏移的異質接面的情形中可使用高摻雜,其中較高的摻雜可提供較低的異質接面界面電阻。在某些實施例中,可使用大於1×1019cm-3的摻雜水準。在某些實施例中,可使用約1×1020cm-3或高於1×1020cm-3的摻雜水準。 Similarly, in the case of heterojunctions with small band edge shifts, high doping can be used, where higher doping can provide lower heterojunction interface resistance. In some embodiments, doping levels greater than 1×10 19 cm -3 may be used. In certain embodiments, may be used from about 1 × 10 20 cm -3 or higher than the doping level of 1 × 10 20 cm -3 in.

在其中例如圖4所示的設置為nMOS元件的某些實施例中:S1可為矽(Si)、矽鍺(SiGe)合金或鍺(Ge);S2可為砷化鎵(GaAs)或銦-鎵-氮(In-Ga-N)或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金,其中銦-鎵-氮(In-Ga-N)合金或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金的組成物被挑選成使得傳導帶邊緣位於S1的傳導帶邊緣的約0.2電子伏特或小於0.2電子伏特內;以及S3可為砷化銦(InAs)、氮化銦(InN)或銦-砷-氮(In-As-N)合金或銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金(在銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金的情形中,較佳地具有銦(In)富集的組成物)。在某些實施例中,若S2為砷化鎵(GaAs),則S3實質上為砷化銦(InAs)。在某些實施例中,S3被摻雜成大於1×1019cm-3。在某些實施例中,S3的摻雜高達約1×1020cm-3或高於1×1020cm-3。在某些實施例中,金屬觸點101由耐火金屬或過渡金屬形成,因此金屬觸點101為經反應的過渡金屬-S3合金。合金的組成階變可如圖4所示為線性的,或如圖5所表示為非線性的,亦或如圖6所表示為階梯式的。 In some embodiments where the nMOS device is arranged as shown in FIG. 4 for example: S1 may be silicon (Si), silicon germanium (SiGe) alloy or germanium (Ge); S2 may be gallium arsenide (GaAs) or indium -Gallium-nitrogen (In-Ga-N) or indium-gallium-arsenic-nitrogen (In-Ga-As-N) alloy or indium-aluminum-gallium-arsenic (In-Al-Ga-As) alloy or aluminum- Gallium-arsenic (Al-Ga-As) alloy, in which indium-gallium-nitrogen (In-Ga-N) alloy or indium-gallium-arsenic-nitrogen (In-Ga-As-N) alloy or indium-aluminum-gallium -The composition of the arsenic (In-Al-Ga-As) alloy or the aluminum-gallium-arsenic (Al-Ga-As) alloy is selected so that the conduction band edge is located at about 0.2 electron volts or less than 0.2 of the conduction band edge of S1 Within electronic volts; and S3 can be indium arsenide (InAs), indium nitride (InN) or indium-arsenic-nitrogen (In-As-N) alloy or indium-aluminum-arsenic (In-Al-As) alloy or Indium-gallium-arsenic (In-Ga-As) alloy (in the case of indium-aluminum-arsenic (In-Al-As) alloy or indium-gallium-arsenic (In-Ga-As) alloy, it is preferable to have Indium (In) enriched composition). In some embodiments, if S2 is gallium arsenide (GaAs), then S3 is substantially indium arsenide (InAs). In some embodiments, S3 is doped to be greater than 1×10 19 cm -3 . In some embodiments, S3 is doped up to about 1×10 20 cm -3 or higher than 1×10 20 cm -3 . In some embodiments, the metal contact 101 is formed of a refractory metal or a transition metal, so the metal contact 101 is a reacted transition metal-S3 alloy. The compositional step change of the alloy may be linear as shown in FIG. 4, or non-linear as shown in FIG. 5, or stepped as shown in FIG.

被選擇用來在金屬觸點界面部分105處接觸半導體材料 合金106的金屬(即,半導體材料S3)被選擇成為多數載子提供低的肖特基位障高度(例如,等於或小於約0.2電子伏特)。在根據本發明的某些實施例中,金屬觸點101可為經反應的金屬觸點。在根據本發明的某些實施例中,執行包含半導體材料S3的金屬觸點界面部分105以提供低的界面接觸電阻率。 Selected to contact semiconductor material at metal contact interface portion 105 The metal of alloy 106 (ie, semiconductor material S3) is selected to provide a low Schottky barrier height for most carriers (eg, equal to or less than about 0.2 electron volts). In some embodiments according to the present invention, the metal contact 101 may be a reacted metal contact. In some embodiments according to the present invention, the metal contact interface portion 105 including the semiconductor material S3 is implemented to provide low interface contact resistivity.

應理解,圖5及圖6示出半導體材料合金106之組成階變的替代曲線。具體而言,圖5示出半導體材料合金106的非線性組成階變曲線,而圖6示出半導體材料合金106的階梯式組成階變曲線。應理解,圖4及圖6所示的示意圖意指nMOS元件。亦應理解,圖5、圖7及圖8所示的示意圖意指pMOS元件。然而,更應理解,以上參照nMOS闡述的相同原理可應用至pMOS元件,反之亦然。 It should be understood that FIGS. 5 and 6 show alternative curves of the compositional step change of the semiconductor material alloy 106. Specifically, FIG. 5 shows a nonlinear composition step curve of the semiconductor material alloy 106, and FIG. 6 shows a step composition curve of the semiconductor material alloy 106. It should be understood that the schematic diagrams shown in FIGS. 4 and 6 mean nMOS devices. It should also be understood that the schematic diagrams shown in FIGS. 5, 7 and 8 refer to pMOS devices. However, it should be further understood that the same principles explained above with reference to nMOS can be applied to pMOS devices and vice versa.

在其中例如圖1所示的設置為nM0s元件的某些實施例中:S1可為矽(Si)、矽鍺(SiGe)合金或鍺(Ge);S2可為砷化鎵(GaAs)或銦-鎵-氮(In-Ga-N)或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金,其中銦-鎵-氮(In-Ga-N)合金或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金的組成物被挑選成使得位於S1的傳導帶邊緣的CBE約為0.2電子伏特或小於0.2電子伏特內;以及S3可為砷化銦(InAs)、氮化銦(InN)或銦-砷-氮(In-As-N)合金或銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金(在銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金的情形 中,較佳地具有銦(In)富集的組成物)。在某些實施例中,若S2為砷化鎵(GaAs),則S3實質上為砷化銦(InAs)。在某些實施例中,S3被摻雜成大於1×1019cm-3。在某些實施例中,S3的摻雜高達約1×1020cm-3或高於1×1020cm-3。在某些實施例中,金屬觸點101由耐火金屬或過渡金屬形成,以使得金屬觸點101分別為經反應的耐火金屬-S3合金或經反應的過渡金屬-S3合金。 In some embodiments in which the device is configured as an nM0s device as shown in FIG. 1 for example: S1 may be silicon (Si), silicon germanium (SiGe) alloy or germanium (Ge); S2 may be gallium arsenide (GaAs) or indium -Gallium-nitrogen (In-Ga-N) or indium-gallium-arsenic-nitrogen (In-Ga-As-N) alloy or indium-aluminum-gallium-arsenic (In-Al-Ga-As) alloy or aluminum- Gallium-arsenic (Al-Ga-As) alloy, in which indium-gallium-nitrogen (In-Ga-N) alloy or indium-gallium-arsenic-nitrogen (In-Ga-As-N) alloy or indium-aluminum-gallium -The composition of arsenic (In-Al-Ga-As) alloy or aluminum-gallium-arsenic (Al-Ga-As) alloy is selected so that the CBE at the edge of the conduction band of S1 is about 0.2 electron volts or less than 0.2 electrons Volts; and S3 can be indium arsenide (InAs), indium nitride (InN) or indium-arsenic-nitrogen (In-As-N) alloy or indium-aluminum-arsenic (In-Al-As) alloy or indium -Gallium-arsenic (In-Ga-As) alloy (in the case of indium-aluminum-arsenic (In-Al-As) alloy or indium-gallium-arsenic (In-Ga-As) alloy, preferably having indium (In) Enriched composition). In some embodiments, if S2 is gallium arsenide (GaAs), then S3 is substantially indium arsenide (InAs). In some embodiments, S3 is doped to be greater than 1×10 19 cm -3 . In some embodiments, S3 is doped up to about 1×10 20 cm -3 or higher than 1×10 20 cm -3 . In some embodiments, the metal contact 101 is formed of a refractory metal or a transition metal, such that the metal contact 101 is a reacted refractory metal-S3 alloy or a reacted transition metal-S3 alloy, respectively.

參照圖1及圖4至圖6,半導體材料合金106在表面處具有充足的摻雜,以使得可提供至金屬觸點101的低接觸電阻率界面。在某些實施例中,半導體材料合金106具有充足的摻雜以使得載子有效地發現在元件的接通狀態不存在位障。半導體材料合金106的階變組成的曲線亦可被調整以最佳化元件功能,例如減少向通道中的擴散等。在某些實施例中,輕度摻雜的延伸亦可被形成。在某些實施例中,一旦達到輕度摻雜的延伸(自源極/汲極朝向通道),所使用材料的能帶邊緣位置便可不發生顯著變化。換言之,組成階變可充分地包含在高度摻雜區中,且至半導體材料S1的界面亦應包含在源極/汲極區的高度摻雜區中。 Referring to FIGS. 1 and 4 to 6, the semiconductor material alloy 106 has sufficient doping at the surface so that a low contact resistivity interface to the metal contact 101 can be provided. In some embodiments, the semiconductor material alloy 106 has sufficient doping so that carriers effectively find that there are no barriers in the on-state of the element. The curve of the stepped composition of the semiconductor material alloy 106 can also be adjusted to optimize device function, such as reducing diffusion into the channel. In some embodiments, lightly doped extensions can also be formed. In some embodiments, once the extension of light doping (from the source/drain toward the channel) is reached, the position of the band edge of the material used does not change significantly. In other words, the composition step can be sufficiently included in the highly doped region, and the interface to the semiconductor material S1 should also be included in the highly doped region of the source/drain region.

圖7為在根據本發明的某些實施例中半導體材料合金106自通道區100至作為至金屬觸點101的界面的中間半導體材料的組成階變曲線的示意圖。根據圖7,半導體材料S2被選擇用於通道區100,且亦被選擇用於與半導體材料S3一起包含於半導體材料合金106中。此外,根據關係式S2xS31-x提供包含S2及S3的合金的組成階變曲線,其中在源極/汲極區107中,通道區100 與半導體材料合金106之間的界面102處x=1,且在源極/汲極區107中向所示第四半導體材料S4(以下簡稱為半導體材料S4)提供界面的中間位置處x=0。 7 is a schematic diagram of the compositional step curve of the semiconductor material alloy 106 from the channel region 100 to the intermediate semiconductor material as the interface to the metal contact 101 in some embodiments according to the present invention. According to FIG. 7, the semiconductor material S2 is selected for the channel region 100 and is also selected for inclusion in the semiconductor material alloy 106 together with the semiconductor material S3. In addition, according to the relationship S2 x S3 1-x , the composition step curve of the alloy including S2 and S3 is provided, wherein in the source/drain region 107, the interface 102 between the channel region 100 and the semiconductor material alloy 106 is at x =1, and x=0 at an intermediate position where an interface is provided in the source/drain region 107 to the illustrated fourth semiconductor material S4 (hereinafter simply referred to as semiconductor material S4).

應理解,所有的半導體材料(S2及S3)在對元件的處理及應用中所使用的熱預算內是穩定的或介穩定的。此外,在半導體材料合金106的外延生長期間,可針對pMOS或nMOS元件相應地摻雜半導體材料。應理解,儘管圖7所示的組成階變表現為非線性函數,但亦可使用其他類型的階變(例如連續階變或階梯式階變等其他類型)。 It should be understood that all semiconductor materials (S2 and S3) are stable or meta-stable within the thermal budget used in the processing and application of the device. In addition, during the epitaxial growth of the semiconductor material alloy 106, the semiconductor material may be correspondingly doped for the pMOS or nMOS element. It should be understood that although the composition step shown in FIG. 7 appears as a nonlinear function, other types of step changes (eg, continuous step changes or stepped step changes and other types) may be used.

應理解,半導體材料合金106中的組成階變應被平滑地提供(即,在源極/汲極區107中,對組成物中x的值提供小的變化)並提供摻雜水準以使得屏蔽有效地減少對載子傳輸的任何位障,否則由於階變,所述對載子傳輸的位障可因整個半導體材料合金106的能帶邊緣位置中的變化而升起。 It should be understood that the compositional steps in the semiconductor material alloy 106 should be provided smoothly (ie, in the source/drain region 107, provide a small change in the value of x in the composition) and provide a doping level to allow shielding Any barriers to carrier transmission are effectively reduced, otherwise the barriers to carrier transmission may rise due to changes in the band edge position of the entire semiconductor material alloy 106 due to the step change.

對於元件的多數載子而言,在能帶邊緣之間,半導體材料S4實質上不同於半導體材料S3以使得在二者之間形成具有相對小的偏移(即,等於或小於約0.2電子伏特)的異質接面。更應理解,在其中在異質接面處存在小的能帶偏移的情形中,可對異質接面施加充足的摻雜以屏蔽在異質接面處對載子流的任何位障。 For most carriers of the device, between the band edges, the semiconductor material S4 is substantially different from the semiconductor material S3 so that a relatively small offset (ie, equal to or less than about 0.2 eV is formed between the two ) Heterojunction. It should be further understood that in cases where there is a small band shift at the heterojunction, sufficient doping may be applied to the heterojunction to shield any barriers to carrier flow at the heterojunction.

更應理解,半導體材料S4亦被選擇成對金屬觸點101提供相對小的肖特基位障高度(例如,等於或小於約0.2電子伏特)。 在根據本發明的某些實施例中,金屬觸點101可為經反應的金屬觸點(例如,金屬或由金屬材料與半導體材料S4之間的反應產生的含金屬材料)。在根據本發明的某些實施例中,可在半導體材料S4與金屬觸點101之間的界面處施加摻雜以提供低的界面接觸電阻率。 It should be further understood that the semiconductor material S4 is also selected to provide a relatively small Schottky barrier height (eg, equal to or less than about 0.2 eV) to the metal contact 101. In some embodiments according to the present invention, the metal contact 101 may be a reacted metal contact (for example, a metal or a metal-containing material generated by the reaction between the metal material and the semiconductor material S4). In some embodiments according to the present invention, doping may be applied at the interface between the semiconductor material S4 and the metal contact 101 to provide low interface contact resistivity.

在採用圖7中所說明的階變組成的pMOS元件的實例中,半導體材料S4可為鍺(Ge)或高鍺的矽鍺合金(high-Ge SiGe alloy),且具有至作為S3的銻化鎵(GaSb)或銻化銦鎵(InGaSb)合金的異質接面,其然後朝向通道中的另一III-V材料(S2)階變。在pMOS元件的某些實施例中,S4可為高鍺的矽鍺合金(high-Ge SiGe alloy),且具有至作為S3的砷化銦(InAs)合金的異質接面,其然後朝向通道區100中的砷化鎵銦(InGaAs)(S2)階變。 In the example of the pMOS device using the stepped composition illustrated in FIG. 7, the semiconductor material S4 may be germanium (Ge) or high-Ge SiGe alloy (high-Ge SiGe alloy), and has antimony as S3 A heterojunction of gallium (GaSb) or indium gallium antimonide (InGaSb) alloy, which then steps toward another III-V material (S2) in the channel. In some embodiments of the pMOS device, S4 may be a high-Ge SiGe alloy with a heterojunction to the indium arsenide (InAs) alloy as S3, which then faces the channel region 100 InGaAs (S2) step change.

圖8為在根據本發明的某些實施例中源極/汲極區107內兩種半導體材料合金的兩種階變組成曲線的示意圖。根據圖8,第一階變組成合金(在圖8中稱為合金1)可包含半導體材料S2及半導體材料S3,且具有組成階變,所述組成階變將第一階變組成合金自在與通道區100的界面處為S2改變為在與第二階變組成合金(在圖8中稱為合金2)的界面處為半導體材料S3。第二階變組成合金位於所述通道區與所述第一階變組成合金之間的所述源極/汲極區中。如圖8所示,第二階變組成合金包含第四半導體材料S4(以下簡稱為半導體材料S4)及第五半導體材料S5(以下簡稱為半導體材料S5),且自在與半導體材料S3的界面處為半導 體材料S4過渡至半導體材料S5,以向金屬觸點101提供金屬觸點界面部分105。第五半導體材料不與所述第一半導體材料完全混溶。應理解,無論異質接面存在於圖8所示的圖中何處,異質接面處的能帶偏移為小的,較佳地小於約0.2電子伏特,且可在整個異質接面上使用摻雜。在其中S1為高鍺的矽鍺(high Ge SiGe)(例如,90%或90%以上為鍺(Ge))或鍺(Ge)的nMOS元件的某些實施例中,S2=S1,S3可為較低鍺(Ge)含量的矽鍺(SiGe)合金(例如,具有60%的鍺(Ge)的矽鍺(SiGe)),S4可為砷化鎵(GaAs),且S5可為砷化銦(InAs)。在其中S1為高鍺的矽鍺(high Ge SiGe)(例如,90%或90%以上為鍺(Ge))或鍺(Ge)的nMOS元件的某些實施例中,S2=S1,S3可為較低鍺(Ge)含量的矽鍺(SiGe)合金(例如,具有60%的鍺(Ge)的矽鍺(SiGe)),S4可為砷化鎵(GaAs),且S5可為砷化銦(InAs)。在通道中的S1及S2可為銦-鎵-銻(In-Ga-Sb)合金的pMOS元件的某些實施例中,S3可為銦-鎵-銻(In-Ga-Sb)合金,S4可為矽鍺(SiGe)合金,且S5可為高鍺的矽鍺(high Ge SiGe)合金或鍺(Ge)。 8 is a schematic diagram of two step composition curves of two semiconductor material alloys in the source/drain region 107 in some embodiments according to the present invention. According to FIG. 8, the first-order variable composition alloy (referred to as alloy 1 in FIG. 8) may include semiconductor material S2 and semiconductor material S3 and have a compositional step change, which makes the first-order variable composition alloy free and At the interface of the channel region 100, S2 is changed to semiconductor material S3 at the interface with the second-order variable composition alloy (referred to as alloy 2 in FIG. 8). A second order variable composition alloy is located in the source/drain region between the channel region and the first order variable composition alloy. As shown in FIG. 8, the second-order variable composition alloy includes a fourth semiconductor material S4 (hereinafter referred to as semiconductor material S4) and a fifth semiconductor material S5 (hereinafter referred to as semiconductor material S5), and is at the interface with the semiconductor material S3 Semiconducting The bulk material S4 transitions to the semiconductor material S5 to provide the metal contact interface portion 105 to the metal contact 101. The fifth semiconductor material is not completely miscible with the first semiconductor material. It should be understood that no matter where the heterojunction exists in the diagram shown in FIG. 8, the energy band offset at the heterojunction is small, preferably less than about 0.2 eV, and can be used across the heterojunction Doping. In some embodiments of nMOS devices where S1 is high Ge SiGe (for example, 90% or more is germanium (Ge)) or germanium (Ge), S2=S1, S3 may be Is a silicon germanium (SiGe) alloy with a lower germanium (Ge) content (for example, silicon germanium (SiGe) with 60% germanium (Ge)), S4 may be gallium arsenide (GaAs), and S5 may be arsenide Indium (InAs). In some embodiments of nMOS devices where S1 is high Ge SiGe (for example, 90% or more is germanium (Ge)) or germanium (Ge), S2=S1, S3 may be Is a silicon germanium (SiGe) alloy with a lower germanium (Ge) content (for example, silicon germanium (SiGe) with 60% germanium (Ge)), S4 may be gallium arsenide (GaAs), and S5 may be arsenide Indium (InAs). S1 and S2 in the channel may be indium-gallium-antimony (In-Ga-Sb) alloy pMOS device in some embodiments, S3 may be indium-gallium-antimony (In-Ga-Sb) alloy, S4 It may be a silicon germanium (SiGe) alloy, and S5 may be a high germanium silicon germanium (high Ge SiGe) alloy or germanium (Ge).

如本文中所述,在根據本發明的某些實施例中,對於元件而言,可藉由在通道區與金屬觸點之間形成具有平滑地階變組成的半導體合金(由組分S2及S3構成),而向通道區中的半導體材料(S1)提供低的電阻率接觸。舉例而言,半導體合金中的組成階變可為如此以使得合金中S2及S3的貢獻隨著在源極/汲極區內的位置而逐漸變化。舉例而言,合金的組成階變可被設置成使 得半導體合金在靠近通道區處基本上為S2,而半導體合金在遠離通道區的金屬觸點處基本上為S3。 As described herein, in some embodiments according to the present invention, for the device, a semiconductor alloy (composed of components S2 and S3) can be formed between the channel region and the metal contact with a smooth step change Structure), and provide a low resistivity contact to the semiconductor material (S1) in the channel region. For example, the compositional step in the semiconductor alloy may be such that the contribution of S2 and S3 in the alloy gradually changes with the position in the source/drain region. For example, the alloy composition step can be set so that The resulting semiconductor alloy is essentially S2 near the channel region, and the semiconductor alloy is essentially S3 at the metal contact away from the channel region.

此外,包含於合金(由組分S2及S3構成)中的半導體材料可各自被選擇為相對於通道中的半導體材料(S1)具有特定關係。舉例而言,相較於半導體材料S3的能帶邊緣,半導體材料S2可被選擇成具有相對接近於半導體材料S1的能帶邊緣的能帶邊緣(即,低能帶邊緣偏移)。然而,半導體材料S3可被選擇成具有相對於通道半導體材料S1相對大的能帶邊緣偏移。半導體材料S3可被選擇成對金屬觸點具有低接觸電阻率(較佳為10-8歐姆-平方釐米或小於10-8歐姆-平方釐米,且在某些實施例中為10-7歐姆-平方釐米或小於10-7歐姆-平方釐米)。此外,源極/汲極區中的半導體合金(由組分S2及組分S3構成)的組成階變應為平滑的以避免對於相關載子而言在源極/汲極區中的能帶邊緣的任何驟然變化。 In addition, the semiconductor materials contained in the alloy (consisting of components S2 and S3) can each be selected to have a specific relationship with respect to the semiconductor material (S1) in the channel. For example, the semiconductor material S2 may be selected to have an energy band edge that is relatively close to the energy band edge of the semiconductor material S1 (ie, a low energy band edge offset) compared to the energy band edge of the semiconductor material S3. However, the semiconductor material S3 may be selected to have a relatively large band edge offset relative to the channel semiconductor material S1. The semiconductor material S3 can be selected to have a low contact resistivity for metal contacts (preferably 10 -8 ohm-square centimeter or less than 10 -8 ohm-square centimeter, and in some embodiments 10 -7 ohm- Square centimeters or less than 10 -7 ohm-square centimeters). In addition, the compositional steps of the semiconductor alloy (composed of component S2 and component S3) in the source/drain region should be smooth to avoid energy bands in the source/drain region for the relevant carriers Any sudden change on the edge.

因此,如由本發明的發明者所理解,通道區中的半導體材料S1及半導體材料S3被選擇成使得其中的一者(例如,S3)無法藉由使用連續的組成階變而自另一者(例如,S1)獲得。換言之,半導體材料S2可被用作相對接近於S1的能帶邊緣但亦可與S3一起存在於合金中的中間材料。 Therefore, as understood by the inventor of the present invention, the semiconductor material S1 and the semiconductor material S3 in the channel region are selected so that one of them (for example, S3) cannot be changed from the other by using a continuous composition step ( For example, S1) obtained. In other words, the semiconductor material S2 can be used as an intermediate material that is relatively close to the band edge of S1 but can also be present in the alloy together with S3.

以上揭露的主題將被理解為是說明性的而非限制性的,且隨附申請專利範圍旨在覆蓋落於發明概念的真實精神及範圍內的所有此類潤飾、增強及其他實施例。因此,在法律所容許的最 大程度上,本發明的範圍將由對以下申請專利範圍及其等效形式的最寬泛的可允許的解釋而確定,而不應局限於或受限於以上詳細說明。 The above disclosed subject matter is to be understood as illustrative rather than limiting, and the scope of the accompanying patent application is intended to cover all such retouching, enhancements, and other embodiments that fall within the true spirit and scope of the inventive concept. Therefore, in the To a large extent, the scope of the present invention will be determined by the broadest permissible interpretation of the following patent applications and their equivalents, and should not be limited or limited to the above detailed description.

100:通道區 100: channel area

101:金屬觸點 101: metal contacts

102:界面 102: Interface

105:金屬觸點界面部分 105: Metal contact interface part

106:半導體材料合金 106: Semiconductor material alloy

107:源極/汲極區 107: source/drain region

Claims (16)

一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,以及其中所述半導體材料合金的階變組成包含在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第二半導體材料及貧乏濃度的所述第三半導體材料、並在與所述金屬觸點的界面處進展至貧乏濃度的所述第二半導體材料及富集濃度的所述第三半導體材料。 A semiconductor device, including: a channel region, including a first semiconductor material, the first semiconductor material is used to transport majority carriers in the channel region during operation of the semiconductor device; metal contacts; source/drain Region, comprising a semiconductor material alloy, the semiconductor material alloy comprising a second semiconductor material; and at least one heterojunction, located in the source/drain region between the metal contact and the channel region, wherein The heterojunction forms a band edge shift of less than or equal to about 0.2 electron volts for the majority carrier, wherein the semiconductor material alloy includes a stepped composition of the second semiconductor material and the third semiconductor material , Wherein the third semiconductor material is not completely miscible with the first semiconductor material, and wherein the stepped composition of the semiconductor material alloy is contained at the interface with the first semiconductor material of the channel region rich Concentration of the second semiconductor material and a depleted concentration of the third semiconductor material, and progressing to a depleted concentration of the second semiconductor material and an enriched concentration of the first semiconductor material at the interface with the metal contact Three semiconductor materials. 如申請專利範圍第1項所述的半導體元件,其中所述異質接面被摻雜有與所述多數載子的傳導性對應的摻雜劑類型。 The semiconductor device according to item 1 of the patent application range, wherein the heterojunction is doped with a dopant type corresponding to the conductivity of the majority carrier. 如申請專利範圍第1項所述的半導體元件,其中所述半導體材料合金的所述階變組成是由S2xS31-x提供,其中S3是所述第 三半導體材料,S2是所述第二半導體材料,且在與所述金屬觸點的界面處x=0,在與所述第一半導體材料的界面處x=1。 The semiconductor element as described in item 1 of the patent application range, wherein the stepped composition of the semiconductor material alloy is provided by S2 x S3 1-x , where S3 is the third semiconductor material and S2 is the first Two semiconductor materials, and x=0 at the interface with the metal contact, and x=1 at the interface with the first semiconductor material. 如申請專利範圍第3項所述的半導體元件,其中所述半導體材料合金的所述階變組成中的遞增被配置成防止所述階變組成中鄰接的階之間的能帶偏移大於約0.2電子伏特。 The semiconductor element according to item 3 of the patent application range, wherein the increase in the stepped composition of the semiconductor material alloy is configured to prevent the band shift between adjacent steps in the stepped composition from being greater than about 0.2 eV. 如申請專利範圍第1項所述的半導體元件,其中所述金屬觸點及在與所述金屬觸點的界面處的所述第二半導體材料或所述半導體材料合金的各別材料被選擇成在其之間提供等於約0.2電子伏特或小於0.2電子伏特的肖特基位障高度。 The semiconductor element according to item 1 of the patent application range, wherein the metal contact and the respective materials of the second semiconductor material or the semiconductor material alloy at the interface with the metal contact are selected as A Schottky barrier height equal to about 0.2 eV or less is provided therebetween. 如申請專利範圍第1項所述的半導體元件,其中所述階變組成是線性階變組成、非線性階變組成、階梯式階變組成、或其組合。 The semiconductor device according to item 1 of the scope of the patent application, wherein the stepped composition is a linear stepped composition, a non-linear stepped composition, a stepped stepped composition, or a combination thereof. 如申請專利範圍第1項所述的半導體元件,其中所述第一半導體材料包含至少一種IV族半導體元素,所述第二半導體材料包含III-V族半導體化合物或III-V族半導體合金,且所述半導體材料合金包含所述第三半導體材料及所述第二半導體材料。 The semiconductor device according to item 1 of the patent application range, wherein the first semiconductor material includes at least one group IV semiconductor element, and the second semiconductor material includes a group III-V semiconductor compound or a group III-V semiconductor alloy, and The semiconductor material alloy includes the third semiconductor material and the second semiconductor material. 如申請專利範圍第1項所述的半導體元件,其中所述半導體元件包含NMOS元件,且所述第一半導體材料包含Si、SiGe合金、或Ge,所述第三半導體材料包含InAs、InN、In-As-N合金、In-Al-As合金、或In-Ga-As合金,且所述第二半導體材料包含GaAs、In-Ga-N、In-Ga-As-N合金、In-Al-Ga-As合金、或Al-Ga-As合金。 The semiconductor element according to item 1 of the patent application range, wherein the semiconductor element includes an NMOS element, and the first semiconductor material includes Si, SiGe alloy, or Ge, and the third semiconductor material includes InAs, InN, In -As-N alloy, In-Al-As alloy, or In-Ga-As alloy, and the second semiconductor material includes GaAs, In-Ga-N, In-Ga-As-N alloy, In-Al- Ga-As alloy or Al-Ga-As alloy. 一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,以及其中所述半導體材料合金的所述階變組成包含在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第一半導體材料及貧乏濃度的所述第二半導體材料,並在所述界面處進展至貧乏濃度的所述第一半導體材料及富集濃度的所述第二半導體材料,以與所述第三半導體材料形成所述至少一個異質接面,其中所述第三半導體材料不與所述第一半導體材料完全混溶。 A semiconductor device, including: a channel region, including a first semiconductor material, the first semiconductor material is used to transport majority carriers in the channel region during operation of the semiconductor device; metal contacts; source/drain Region, comprising a semiconductor material alloy, the semiconductor material alloy comprising a second semiconductor material; and at least one heterojunction, located in the source/drain region between the metal contact and the channel region, wherein The heterojunction forms a band edge shift of less than or equal to about 0.2 electron volts for the majority carrier, wherein the semiconductor material alloy includes a stepped composition of the second semiconductor material and the third semiconductor material , And wherein the stepped composition of the semiconductor material alloy includes an enriched concentration of the first semiconductor material and a poor concentration of the second semiconductor material at an interface with the first semiconductor material of the channel region A semiconductor material, and progresses to a lean concentration of the first semiconductor material and an enriched concentration of the second semiconductor material at the interface to form the at least one heterojunction with the third semiconductor material, wherein The third semiconductor material is not completely miscible with the first semiconductor material. 一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包 含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,以及其中所述半導體材料合金包含所述第二半導體材料與所述第三半導體材料的第一階變組成合金,所述半導體元件更包含:第二階變組成合金,位於所述通道區與所述第一階變組成合金之間的所述源極/汲極區中,所述第二階變組成合金包含第四半導體材料與第五半導體材料的階變組成,其中所述第五半導體材料不與所述第一半導體材料完全混溶。 A semiconductor device, including: a channel region, including a first semiconductor material, the first semiconductor material is used to transport majority carriers in the channel region during operation of the semiconductor device; metal contacts; source/drain Zone, containing a semiconductor material alloy, the semiconductor material alloy package Containing a second semiconductor material; and at least one heterojunction in the source/drain region between the metal contact and the channel region, wherein the heterojunction is for the majority carrier A band edge shift of less than or equal to about 0.2 electron volts is formed, wherein the semiconductor material alloy includes a stepped composition of the second semiconductor material and a third semiconductor material, wherein the third semiconductor material does not The first semiconductor material is completely miscible, and wherein the semiconductor material alloy includes a first-order variable composition alloy of the second semiconductor material and the third semiconductor material, and the semiconductor element further includes: a second-order variable composition alloy , Located in the source/drain region between the channel region and the first order variable composition alloy, the second order variable composition alloy includes a stepped composition of a fourth semiconductor material and a fifth semiconductor material , Wherein the fifth semiconductor material is not completely miscible with the first semiconductor material. 一種電子元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述電子元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;以及源極/汲極區,包含材料合金,所述材料合金包含至少一種材料組分且不含所述第一半導體材料的任一組分,以使所述材料合金在所述通道區和與所述金屬觸點的界面之間的組成階變避免在所述組成階變的遞增之間以及在其中的任一異質接面處的能帶邊緣偏移的驟然變化, 其中所述第一半導體材料及處於與所述第一半導體材料的界面處的所述材料合金形成具有對於所述多數載子而言小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面。 An electronic component, including: a channel region including a first semiconductor material used for transporting a majority carrier in the channel region during operation of the electronic component; metal contacts; and source/drain The pole region contains a material alloy that contains at least one material component and does not contain any component of the first semiconductor material, so that the material alloy is in the channel region and in contact with the metal The compositional step change between the interfaces of the avoids the sudden change of the band edge shift between the increase of the compositional step change and at any of the heterojunctions, Wherein the first semiconductor material and the material alloy at the interface with the first semiconductor material form a heterojunction with an energy band edge shift of less than or equal to about 0.2 eV for the majority carrier surface. 如申請專利範圍第11項所述的電子元件,其中對於所述多數載子而言,所述能帶邊緣偏移小於或等於約0.1電子伏特。 The electronic component as described in item 11 of the patent application range, wherein for the majority carrier, the band edge shift is less than or equal to about 0.1 eV. 如申請專利範圍第12項所述的電子元件,其中所述材料合金被摻雜至約1×1018cm-3至約1×1020cm-3的範圍。 The electronic component as described in item 12 of the patent application range, wherein the material alloy is doped to a range of about 1×10 18 cm −3 to about 1×10 20 cm −3 . 如申請專利範圍第13項所述的電子元件,其中所述遞增之間的所述能帶邊緣偏移介於在約6奈米內約0.1電子伏特與在約0.6奈米內約0.1電子伏特之間。 The electronic component of claim 13 of the patent application range, wherein the band edge offset between the increments is between about 0.1 eV within about 6 nm and about 0.1 eV within about 0.6 nm between. 一種電子元件端子結構,包括:金屬觸點;階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的所述階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且所述階變組成層的所述階變組成在遠離所述金屬觸點處大約完全為S1,即x=1,且其中在x=0與x=1之間的所述階變組成層的所述階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特;第三材料S3,在x=1處接觸所述階變組成層,S3被選擇成與S1形成等於或小於約0.2電子伏特的異質接面;且 其中S2被選擇成對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。 An electronic component terminal structure, including: a metal contact; a stepped composition layer including second materials (S2) combined with each other according to the stepped composition in the stepped composition layer represented by S2 x S3 1-x And a third material (S3), wherein the step-wise composition of the step-wise composition layer is approximately S2 near the metal contact, that is, x=0, and the step-wise composition layer's The stepwise composition is approximately S1, ie x=1, away from the metal contact, and the stepwise composition of the stepwise composition layer between x=0 and x=1 is sufficient to avoid For the selected carrier of the terminal structure of the electronic component, the band edge shift in the stepped composition layer is greater than 0.2 electron volts; the third material S3, which contacts the stepped composition layer at x=1, S3 is It is selected to form a heterojunction equal to or less than about 0.2 eV with S1; and wherein S2 is selected to provide a Schottky barrier height equal to or less than about 0.2 eV to the metal contact. 如申請專利範圍第15項所述的電子元件端子結構,其中S1、S2及S3被配置成在所述電子元件端子結構中作為各別半導體材料運作。 An electronic component terminal structure as described in item 15 of the patent application scope, wherein S1, S2, and S3 are configured to operate as separate semiconductor materials in the electronic component terminal structure.
TW104139045A 2014-11-26 2015-11-25 Semiconductor device, electronic device and electronic device terminal structure TWI696290B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462085092P 2014-11-26 2014-11-26
US62/085,092 2014-11-26
US14/942,193 US9917158B2 (en) 2013-07-30 2015-11-16 Device contact structures including heterojunctions for low contact resistance
US14/942,193 2015-11-16

Publications (2)

Publication Number Publication Date
TW201631770A TW201631770A (en) 2016-09-01
TWI696290B true TWI696290B (en) 2020-06-11

Family

ID=56047902

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139045A TWI696290B (en) 2014-11-26 2015-11-25 Semiconductor device, electronic device and electronic device terminal structure

Country Status (3)

Country Link
KR (1) KR102295517B1 (en)
CN (1) CN105633165B (en)
TW (1) TWI696290B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711211A (en) * 2016-12-29 2017-05-24 中国科学院微电子研究所 InP-based MOSHEMT structure and preparation method thereof
KR102371319B1 (en) 2019-04-16 2022-03-07 한국전자통신연구원 Schottky barrier diode and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081151A (en) * 1988-12-22 1992-01-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Method of growing hair
US20050212055A1 (en) * 2004-03-26 2005-09-29 Kabushiki Kaisha Toshiba Field effect transistor
TW201017879A (en) * 2008-10-26 2010-05-01 Kou-Cheng Wu Schottky barrier quantum well resonant tunneling transistor
TW201242022A (en) * 2010-12-21 2012-10-16 Intel Corp Transistors with high concentration of boron doped germanium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583105A (en) * 1982-12-30 1986-04-15 International Business Machines Corporation Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
CN85104043A (en) * 1984-02-17 1986-11-26 斯托弗化学公司 Phosphorus barrier in quantum well devices and high phosphorus polyphosphide potential barrier
WO2002052652A1 (en) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
US7325837B2 (en) 2004-07-26 2008-02-05 Ward Kraft, Inc. Self laminating specimen capture and containment assembly and recordation form combination
KR100839752B1 (en) * 2006-09-25 2008-06-19 전북대학교산학협력단 Manufacture method of semiconductor device structure using self-aligned epitaxial layers
US7763943B2 (en) 2007-12-26 2010-07-27 Intel Corporation Reducing external resistance of a multi-gate device by incorporation of a partial metallic fin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081151A (en) * 1988-12-22 1992-01-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Method of growing hair
US20050212055A1 (en) * 2004-03-26 2005-09-29 Kabushiki Kaisha Toshiba Field effect transistor
TW201017879A (en) * 2008-10-26 2010-05-01 Kou-Cheng Wu Schottky barrier quantum well resonant tunneling transistor
TW201242022A (en) * 2010-12-21 2012-10-16 Intel Corp Transistors with high concentration of boron doped germanium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S Tiwari, DJ Frank, "Empirical fit to band^&rn^discontinuities and barrier heights in III–V alloy^&rn^systems", Appl. Phys. Lett.,60 (5), pp.630-632, 1992.
S Tiwari, DJ Frank, "Empirical fit to band^&rn^discontinuities and barrier heights in III–V alloy^&rn^systems", Appl. Phys. Lett.,60 (5), pp.630-632, 1992. *

Also Published As

Publication number Publication date
CN105633165A (en) 2016-06-01
KR102295517B1 (en) 2021-08-31
TW201631770A (en) 2016-09-01
KR20160063280A (en) 2016-06-03
CN105633165B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
US7435987B1 (en) Forming a type I heterostructure in a group IV semiconductor
US10269970B2 (en) Gradient ternary or quaternary multiple-gate transistor
US9741848B2 (en) Multi-gate tunnel field-effect transistor (TFET)
CN107359197B (en) Tunneling Field Effect Transistor (TFET) of CMOS architecture and method of fabricating N-type and P-type TFETs
US11908941B2 (en) FinFET transistor
Vandooren et al. Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs
Tomioka et al. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length
TWI451552B (en) Integrated circuit structures
US20150054031A1 (en) Tin doped iii-v material contacts
EP2064744A2 (en) Assembly of nanoscaled field effect transistors
US9431529B2 (en) Confined semi-metal field effect transistor
US9773904B2 (en) Vertical field effect transistor with biaxial stressor layer
US9590084B2 (en) Graded heterojunction nanowire device
KR20120116167A (en) Graphene device having physical gap
TWI696290B (en) Semiconductor device, electronic device and electronic device terminal structure
US9917158B2 (en) Device contact structures including heterojunctions for low contact resistance
Liu et al. Vertical GeSn nanowire MOSFETs for CMOS beyond silicon
US10680088B2 (en) Tunnel field effect transistor having anisotropic effective mass channel
Yoon et al. Bandgap engineering and strain effects of core–shell tunneling field-effect transistors
KR102273935B1 (en) Tunnel field-effect transistor based on negative differential transconductance
Maeda et al. Scalable TaN metal source/drain & gate InGaAs/Ge n/pMOSFETs
CN117280475A (en) Semiconductor device and method for manufacturing the same
Cheng et al. Sub-100 nm Gate III-V MOSFET for Digital Applications
TW201917895A (en) Semiconductor device
Östling Nanoscaled SiGe based MOSETs