TWI451552B - Integrated circuit structures - Google Patents

Integrated circuit structures Download PDF

Info

Publication number
TWI451552B
TWI451552B TW099118862A TW99118862A TWI451552B TW I451552 B TWI451552 B TW I451552B TW 099118862 A TW099118862 A TW 099118862A TW 99118862 A TW99118862 A TW 99118862A TW I451552 B TWI451552 B TW I451552B
Authority
TW
Taiwan
Prior art keywords
group
channel
region
source
gate
Prior art date
Application number
TW099118862A
Other languages
Chinese (zh)
Other versions
TW201117342A (en
Inventor
Chih Hsin Ko
Clement Hsingjen Wann
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/615,996 external-priority patent/US8816391B2/en
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201117342A publication Critical patent/TW201117342A/en
Application granted granted Critical
Publication of TWI451552B publication Critical patent/TWI451552B/en

Links

Description

積體電路結構Integrated circuit structure

本發明係有關於積體電路結構,特別有關於包含III-V族化合物半導體的電晶體及其製造方法。The present invention relates to an integrated circuit structure, and more particularly to a transistor including a III-V compound semiconductor and a method of manufacturing the same.

金屬-氧化-半導體(MOS)電晶體的速度與MOS電晶體的驅動電流之間有密切的關聯性,而MOS電晶體的驅動電流又與電荷的移動率又有密切的關聯性。例如,當電子移動率在通道區域高時,則NMOS電晶體具有高的驅動電流,然而當電洞移動率在通道區域高時,則PMOS電晶體具有高的驅動電流。The speed of the metal-oxidation-semiconductor (MOS) transistor is closely related to the drive current of the MOS transistor, and the drive current of the MOS transistor is closely related to the mobility of the charge. For example, when the electron mobility is high in the channel region, the NMOS transistor has a high driving current, whereas when the hole mobility is high in the channel region, the PMOS transistor has a high driving current.

由III族和V族元素所所構成的化合物半導體材料(通稱為III-V族化合物半導體)因為具有高電子移動率,因此可做為良好的候選材料,以形成NMOS電晶體。因此,III-V族化合物半導體常被用來形成NMOS電晶體。為了降低製造成本,已發展出使用III-V族化合物半導體材料形成PMOS電晶體的方法。第1圖顯示傳統配合使用III-V族化合物半導體的電晶體的示意圖。在形成的過程中,多層材料毯覆性地形成於一矽基底1上,其中所述多層材料包括由GaAs形成的緩衝層2、由Inx Al1-x As(其中x為介於,但不等於0和1)形成的梯度緩衝層3、由In0.52 Al0.48 As形成的底部阻障層4、由In0.7 Al0.3 As形成的通道5、由In0.52 Al0.48 As形成的頂部阻障層6、由InP形成的蝕刻終止層7、以及由In0.53 Ga0.47 As形成的接觸層8。實施一第一蝕刻步驟以蝕穿該接觸層8並停止於該蝕刻終止層7以形成一第一凹入。接著,實施一第二蝕刻步驟以蝕穿該蝕刻終止層7,並蝕刻侵入該頂部阻障層6的一部分以形成一第二凹入。接著,將一閘極結構(由金屬構成)10形成於該第二凹入中。上述製程所導致的電晶體具有的優點為所導致的量子井是由底部阻障層、通道、和頂部阻障層構成。A compound semiconductor material composed of a group III and group V element (commonly referred to as a group III-V compound semiconductor) can be used as a good candidate material to form an NMOS transistor because of its high electron mobility. Therefore, III-V compound semiconductors are often used to form NMOS transistors. In order to reduce the manufacturing cost, a method of forming a PMOS transistor using a group III-V compound semiconductor material has been developed. Fig. 1 is a view showing a conventional crystal in which a III-V compound semiconductor is used in combination. In the process of forming the multilayer blanket material formed on a silicon based substrate 1, wherein said multilayer material comprises a buffer layer is formed of GaAs 2, the In x Al 1-x As (where x is between, but is not equal to 0 and 1) form a gradient of the buffer layer 3, formed by the bottom of in 0.52 Al 0.48 As barrier layer 4, passage 5 formed by the in 0.7 Al 0.3 As, the top formed by the in 0.52 Al 0.48 As barrier layer 6. An etch stop layer 7 formed of InP, and a contact layer 8 formed of In 0.53 Ga 0.47 As. A first etching step is performed to etch through the contact layer 8 and stop at the etch stop layer 7 to form a first recess. Next, a second etching step is performed to etch through the etch stop layer 7 and etch into a portion of the top barrier layer 6 to form a second recess. Next, a gate structure (made of metal) 10 is formed in the second recess. The transistor resulting from the above process has the advantage that the resulting quantum well is composed of a bottom barrier layer, a via, and a top barrier layer.

然而,上述電晶體仍有許多缺點。將高濃度雜質摻雜進入III-V族化合物半導體中是非常困難的。例如,可將Si植入或臨場(in-situ)摻雜於GaAs中做為摻雜物,然而矽的最大摻雜濃度僅為介於1017 /cm3 和1018 /cm3 之間。此外,傳導帶的低能態密度導致高的源極/汲極電阻,其避免最終電晶體驅動電流的改善。因此,業界亟需克服於先前技術中前述缺點的方法和結構。However, the above transistors still have many disadvantages. It is very difficult to dope high concentration impurities into the III-V compound semiconductor. For example, Si may be implanted or in-situ doped in GaAs as a dopant, whereas the maximum doping concentration of germanium is only between 10 17 /cm 3 and 10 18 /cm 3 . In addition, the low energy density of the conduction band results in a high source/drain resistance that avoids an improvement in the final transistor drive current. Accordingly, there is a need in the art for methods and structures that overcome the aforementioned shortcomings of the prior art.

本發明之實施例提供一種積體電路結構,包括:一基底;一通道位於該基底之上,其中該通道包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構設置於該通道上;以及一源極/汲極區域鄰接該通道,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合。Embodiments of the present invention provide an integrated circuit structure including: a substrate; a channel is disposed over the substrate, wherein the channel includes a first III-V compound semiconductor material composed of a group III element and a group V element a gate structure is disposed on the channel; and a source/drain region is adjacent to the channel, wherein the source/drain region comprises a group IV region selected from a group substantially comprising 矽, 锗, and Combination of the above.

本發明之實施例另提供一種積體電路結構,包括:一半導體基底;一通道位於該半導體基底之上,其中該通道包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構設置於該通道上;一閘極間隙子位於該閘極結構的側壁上;一凹入鄰接該通道,該凹入具有一底部低於該通道的底部;以及一源極/汲極區域位於該凹入中,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合,以及其中該源極/汲極區域摻雜一n-型摻雜物或一p-型摻雜物。An embodiment of the present invention further provides an integrated circuit structure including: a semiconductor substrate; a channel is disposed on the semiconductor substrate, wherein the channel includes a first III-V group composed of a group III element and a group V element a compound semiconductor material; a gate structure is disposed on the channel; a gate spacer is located on a sidewall of the gate structure; a recess adjacent to the channel, the recess having a bottom lower than a bottom of the channel; and a a source/drain region is located in the recess, wherein the source/drain region includes a group IV region selected from a group substantially comprising 矽, 锗, and combinations thereof, and wherein the source/汲The polar region is doped with an n-type dopant or a p-type dopant.

本發明之實施例又提供一種積體電路結構,包括:一基底;一鰭式結構位於該基底之上,其中該鰭式結構包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構一部分直接設置於該鰭式結構之上,及一額外部分設置於該鰭式結構的另一端上;以及一源極/汲極區域鄰接該鰭式結構,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合。An embodiment of the invention further provides an integrated circuit structure comprising: a substrate; a fin structure is disposed on the substrate, wherein the fin structure comprises a first III- composed of a group III element and a group V element. a group V compound semiconductor material; a gate structure is partially disposed directly on the fin structure, and an additional portion is disposed on the other end of the fin structure; and a source/drain region is adjacent to the fin structure, Wherein the source/drain region comprises a group IV region selected from a group substantially comprising lanthanum, cerium, and combinations thereof.

為使本發明能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the invention more apparent, the following detailed description of the embodiments and the accompanying drawings are as follows:

以下以各實施例詳細說明並伴隨著圖式說明之範例,做為本發明之參考依據。在圖式或說明書描述中,相似或相同之部分皆使用相同之圖號。且在圖式中,實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,另外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。The following is a detailed description of the embodiments and examples accompanying the drawings, which are the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and in particular, The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention.

本發明之實施例提供新穎的電晶體包括由III族和V族元素所所構成的化合物半導體材料(通稱為III-V族化合物半導體),以及形成所述新穎的電晶體的製造方法。並且已藉由圖示說明該製造方法的中間階段的實施例。於本發明各圖式的實施例與各種觀點中,相似的元件符號是用來表示相似的元件。Embodiments of the present invention provide novel transistors comprising a compound semiconductor material (generally referred to as a III-V compound semiconductor) composed of Group III and Group V elements, and a method of forming the novel transistor. And an embodiment of the intermediate stage of the manufacturing method has been illustrated by way of illustration. In the embodiments of the present invention, various similar elements are used to denote similar elements.

請參閱第2圖,提供一基底20。基底20可為一半導體基板,由矽、鍺、SiGe、及/或其他半導體材料所構成。絕緣結構例如淺溝槽隔離(STI)區30形成於基底20中。Referring to Figure 2, a substrate 20 is provided. Substrate 20 can be a semiconductor substrate comprised of germanium, germanium, SiGe, and/or other semiconductor materials. An insulating structure such as a shallow trench isolation (STI) region 30 is formed in the substrate 20.

請參閱第3圖,藉由蝕刻部分的基底20以形成一凹入22於相對的兩個淺溝槽隔離(STI)區30的側壁之間。接著,如第4A圖所示,將複數層材料包括一底部阻障層24、一通道層26、以及一頂部阻障層28磊晶成長於該凹入22中。於一實施例中,所述通道層26具有第一能隙(bandgap),而底部阻障層24及頂部阻障層28具有第二能隙大於第一能隙。據此,由底部阻障層24、通道層26、及頂部阻障層28構成一量子井。第二能隙大於第一能隙的範圍約為0.1eV,然而更大或更小的能隙差距亦可適用。所述底部阻障層24、通道層26、及頂部阻障層28的適合材料可選取藉由比較既有具高載子移動率的半導體材料的能隙,該些半導體材料包括,但非限定於,矽、鍺、GaAs、InP、GaN、InGaAs、InAs、InSb、InAlAs、GaSb、AlSb、AlP、GaP、及上述材料之組合。通道層26可藉由III族元素和V族元素所構成的一第一III-V族化合物半導體材料而形成。於一比較實施例中,通道層26包括In0.7 Ga0.3 As,而底部阻障層24和頂部阻障層28包括In0.52 Al0.48 As。於其他實施例中,通道層26包括InGaAs,而底部阻障層24和頂部阻障層28包括GaAs。又於其他實施例中,通道層26包括InAs,而底部阻障層24和頂部阻障層28包括InAlAs。底部阻障層24可具有的厚度範圍介於約5 nm至10000 nm,通道層26可具有的厚度範圍介於約2 nm至50 nm,頂部阻障層28可具有的厚度範圍介於約5 nm至500 nm。然而,應理解的是,在此所提到全部的尺寸僅為舉例說明,並且若使用不同的形成技術,亦可隨之改變。Referring to FIG. 3, a portion of the substrate 20 is etched to form a recess 22 between the sidewalls of the opposing two shallow trench isolation (STI) regions 30. Next, as shown in FIG. 4A, a plurality of layers of material including a bottom barrier layer 24, a channel layer 26, and a top barrier layer 28 are epitaxially grown in the recess 22. In one embodiment, the channel layer 26 has a first bandgap, and the bottom barrier layer 24 and the top barrier layer 28 have a second energy gap greater than the first energy gap. Accordingly, a quantum well is formed by the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28. The second energy gap is greater than the first energy gap by a range of about 0.1 eV, although larger or smaller energy gaps may also apply. Suitable materials for the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28 may be selected by comparing energy gaps of semiconductor materials having high carrier mobility, including, but not limited to, semiconductor materials.矽, 锗, GaAs, InP, GaN, InGaAs, InAs, InSb, InAlAs, GaSb, AlSb, AlP, GaP, and combinations of the above materials. The channel layer 26 can be formed by a first group III-V compound semiconductor material composed of a group III element and a group V element. In a comparative embodiment, channel layer 26 includes In 0.7 Ga 0.3 As, while bottom barrier layer 24 and top barrier layer 28 comprise In 0.52 Al 0.48 As. In other embodiments, channel layer 26 includes InGaAs, while bottom barrier layer 24 and top barrier layer 28 comprise GaAs. In still other embodiments, the channel layer 26 includes InAs, and the bottom barrier layer 24 and the top barrier layer 28 comprise InAlAs. The bottom barrier layer 24 can have a thickness ranging from about 5 nm to 10000 nm, the channel layer 26 can have a thickness ranging from about 2 nm to 50 nm, and the top barrier layer 28 can have a thickness ranging from about 5 nm. Nm to 500 nm. However, it should be understood that all of the dimensions mentioned herein are merely illustrative and may vary with different forming techniques.

選擇性地,將額外的緩衝層形成於基底20上,並且位於一覆蓋半導體層,例如底部阻障層24的下方。該緩衝層可具有晶格常數介於基底20的晶格常數與覆蓋半導體層的晶格常數之間,使得從底部層至頂部層之間的晶格常數轉變較不突然。藉由在淺溝槽隔離(STI)區30之間形成底部阻障層24、通道層26、及頂部阻障層28,在重新成長層內所產生的缺陷顯著地較少。Optionally, an additional buffer layer is formed over the substrate 20 and underlying a capping semiconductor layer, such as the bottom barrier layer 24. The buffer layer may have a lattice constant between the lattice constant of the substrate 20 and the lattice constant of the capping semiconductor layer such that the lattice constant transition from the bottom layer to the top layer is less abrupt. By forming the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28 between the shallow trench isolation (STI) regions 30, the defects generated in the re-grown layer are significantly less.

第4B圖係顯示另擇一的實施例,其中該些層24、26、28是以毯覆層的型式形成於半導體基底20上。Figure 4B shows an alternative embodiment in which the layers 24, 26, 28 are formed on the semiconductor substrate 20 in a blanket pattern.

第5圖顯示形成閘極結構與閘極間隙子36的剖面示意圖。該閘極結構包括閘極介電層32和閘極電極34。閘極介電層32可由常用的介電材料構成,例如氧化矽、氮化矽、氮氧化矽、上述之多層材料、及上述材料之組合。閘極介電層32亦可由高介電常數(high-k)介電材料構成。該high-k介電材料的範例可具有k值大於約4.0、或甚至大於7.0,並且可包括氧化鋁、氧化鉿、氮氧化鉿、矽化鉿、矽化鋯、氧化釔、氧化鈰、氧化鈦、氧化鉭、及上述材料之組合。閘極電極34可由摻雜多晶矽、金屬、金屬氮化物、金屬矽化物、及類似的材料構成。閘極間隙子36可由氧化矽、氮化矽、及上述材料之組合所構成,並且閘極間隙子36為本技術領域中已知的結構,因而在此略去其詳細的描述。Fig. 5 is a schematic cross-sectional view showing the formation of a gate structure and a gate spacer 36. The gate structure includes a gate dielectric layer 32 and a gate electrode 34. The gate dielectric layer 32 can be formed of conventional dielectric materials such as hafnium oxide, tantalum nitride, hafnium oxynitride, the above-described multilayer materials, and combinations of the foregoing. Gate dielectric layer 32 can also be constructed of a high dielectric constant (high-k) dielectric material. Examples of the high-k dielectric material may have a k value greater than about 4.0, or even greater than 7.0, and may include alumina, cerium oxide, cerium oxynitride, cerium lanthanum, zirconium hydride, cerium oxide, cerium oxide, titanium oxide, Cerium oxide, and combinations of the above materials. The gate electrode 34 may be composed of doped polysilicon, metal, metal nitride, metal telluride, and the like. The gate spacer 36 may be composed of tantalum oxide, tantalum nitride, and combinations of the above materials, and the gate spacer 36 is a structure known in the art, and thus a detailed description thereof will be omitted herein.

請參閱第6圖,形成凹入38。於一比較實施例中,使用一蝕刻步驟,因此凹入38的側壁垂直對準於閘極間隙子36的外緣。做為一實施例,在此描述的凹入38的側壁與閘極間隙子36的外緣垂直對準,所屬技術領域中具有通常知識者應可了解此限定條件意欲含括製程變異和製程最佳化所導致的對不準(misalignment)。凹入38的底表面可低於通道層26的底表面。Referring to Figure 6, a recess 38 is formed. In a comparative embodiment, an etch step is used so that the sidewalls of the recess 38 are vertically aligned with the outer edge of the gate spacer 36. As an example, the sidewalls of the recess 38 described herein are vertically aligned with the outer edge of the gate spacer 36, and those of ordinary skill in the art will appreciate that the limitations are intended to encompass process variations and process variations. The misalignment caused by Jiahua. The bottom surface of the recess 38 may be lower than the bottom surface of the channel layer 26.

請參閱第7A圖,將一IV族半導體材料磊晶成長於凹入38中,由此形成源極及汲極區域42(此後通稱為源極/汲極區域)。於一實施例中,所述源極/汲極區域42可由矽、鍺、或矽鍺(SiGe)所構成。若最終的電晶體欲成為NMOS電晶體,源極/汲極區域42可摻雜n-型摻雜物,例如磷、砷、銻、及上述摻雜物的組合。若最終的電晶體欲成為PMOS電晶體,源極/汲極區域42可摻雜p-型摻雜物,例如硼、銦、及上述摻雜物的組合。該n-型摻雜物或p-型摻雜物可隨著源極/汲極區域42的磊晶成長製程中臨場(in-situ)摻雜,或者在磊晶成長源極/汲極區域42之後,才進行植入步驟。該n-型或p-型摻雜物的摻雜濃度範圍可介於約1×1018 /cm3 至1×1021 /cm3 。於此實施例中,源極/汲極區域42亦可稱為IV族半導體區域46。Referring to FIG. 7A, a Group IV semiconductor material is epitaxially grown in the recess 38, thereby forming a source and drain region 42 (hereinafter collectively referred to as a source/drain region). In one embodiment, the source/drain regions 42 may be comprised of germanium, germanium, or germanium (SiGe). If the final transistor is to be an NMOS transistor, the source/drain region 42 may be doped with an n-type dopant such as phosphorus, arsenic, antimony, and combinations of the above dopants. If the resulting transistor is to be a PMOS transistor, the source/drain region 42 may be doped with a p-type dopant such as boron, indium, and combinations of the above dopants. The n-type dopant or p-type dopant may be in-situ doped in the epitaxial growth process of the source/drain region 42 or in the epitaxial growth source/drain region After 42, the implantation step is performed. The doping concentration of the n-type or p-type dopant may range from about 1 x 10 18 /cm 3 to 1 x 10 21 /cm 3 . In this embodiment, the source/drain regions 42 may also be referred to as a group IV semiconductor region 46.

第7B圖顯示另擇一的實施例,其中磊晶成長的源極/汲極區域42包括磊晶成長的III-V族化合物半導體區域44(此後通稱為緩衝層),以及IV族半導體區域46於緩衝層44上。緩衝層44可由III-V族化合物半導體所構成,其包括但不限定於,GaAs、InP、GaN、InGaAs、InAlAs、GaSb、AlSb、AlAs、AlP、GaP、上述材料的組合、及上述之多層材料。緩衝層44可具有一水平部分於該凹入38的底部上(第6圖),以及一垂直部分位於該凹入38的側壁上。於一實施例中,緩衝層44包括一梯度組成,具有較低部分的組成逐漸地變化成所欲的較高部分的組成。再者,該緩衝層44的較低部分可具有晶格常數較接近於該通道層26的晶格常數,而該緩衝層44的較高部分可具有晶格常數較接近於該IV族半導體區域46的晶格常數。緩衝層44與基底20之間晶格常數不匹配,可逐漸地從緩衝層44的底部增加到緩衝層44的頂部。Figure 7B shows an alternative embodiment in which the epitaxially grown source/drain regions 42 comprise epitaxially grown III-V compound semiconductor regions 44 (hereinafter collectively referred to as buffer layers), and Group IV semiconductor regions 46. On the buffer layer 44. The buffer layer 44 may be composed of a III-V compound semiconductor including, but not limited to, GaAs, InP, GaN, InGaAs, InAlAs, GaSb, AlSb, AlAs, AlP, GaP, a combination of the above materials, and the above multiple layers of materials. . The buffer layer 44 can have a horizontal portion on the bottom of the recess 38 (Fig. 6) and a vertical portion on the sidewall of the recess 38. In one embodiment, the buffer layer 44 includes a gradient composition having a composition in which the lower portion gradually changes to a desired higher portion. Furthermore, the lower portion of the buffer layer 44 may have a lattice constant closer to the lattice constant of the channel layer 26, and the higher portion of the buffer layer 44 may have a lattice constant closer to the group IV semiconductor region. The lattice constant of 46. The lattice constant between the buffer layer 44 and the substrate 20 does not match and may gradually increase from the bottom of the buffer layer 44 to the top of the buffer layer 44.

於一比較實施例中,通道層26是由In0.7 Ga0.3 As所構成,而源極/汲極區域42是由鍺構成,In0.7 Ga0.3 As與鍺之間具有晶格常數不匹配性約為百分之四。有鑑於此,緩衝層44可具有銦的含量低於0.7%。緩衝層44亦可由不均勻組成的多層結構形成,例如In0.2 Ga0.8 As或一梯度層具有音的百分比由底部朝向頂部逐漸地增加。Comparative In an embodiment, the channel layer 26 is composed of In 0.7 Ga 0.3 As embodiment, while the source / drain regions 42 are formed of Ge, In 0.7 Ga 0.3 As and Ge having a lattice constant between Mismatch about For four percent. In view of this, the buffer layer 44 may have an indium content of less than 0.7%. The buffer layer 44 may also be formed of a multilayer structure composed of unevenness, for example, In 0.2 Ga 0.8 As or a gradient layer having a percentage of sound gradually increasing from the bottom toward the top.

緩衝層44可被摻雜。若最終的電晶體欲成為NMOS電晶體,則摻雜的雜質包括矽(Si)。相反地,若最終的電晶體欲成為PMOS電晶體,則摻雜的雜質包括鋅(Zn)及/或鈹(Be)。The buffer layer 44 can be doped. If the final transistor is to be an NMOS transistor, the doped impurities include germanium (Si). Conversely, if the final transistor is to be a PMOS transistor, the doped impurities include zinc (Zn) and/or bismuth (Be).

可觀察到的是,在源極/汲極區域42中的矽鍺具有較大的晶格不匹配性大於III-V族化合物半導體於通道層26中的晶格不匹配性。所述較大的晶格不匹配性導致高的缺陷密度,並且導致高的接面漏電流。藉由形成緩衝層44,可降低於通道層26與鄰接的源極/汲極區域42之間的晶格不匹配性,導致降低的接面漏電流。It can be observed that the germanium in the source/drain region 42 has a larger lattice mismatch than the lattice mismatch of the III-V compound semiconductor in the channel layer 26. The larger lattice mismatch results in a high defect density and results in a high junction leakage current. By forming the buffer layer 44, the lattice mismatch between the channel layer 26 and the adjacent source/drain regions 42 can be reduced, resulting in reduced junction leakage current.

其次,如第8A和8NB圖所示,將矽化物區域50(其亦可為,或包括鍺矽化物)形成於於源極/汲極區域42上。由於源極/汲極區域42包括矽及/或鍺,矽化物的形成方式可藉由毯覆性地形成一金屬層;施以一退火步驟使得該僅屬層與底層的矽及/或鍺反應;以及移除該金屬層的未反應部份。由此,已完成製作電晶體52。Next, as shown in Figures 8A and 8NB, a germanide region 50 (which may also be or include a germanide) is formed on the source/drain region 42. Since the source/drain region 42 includes germanium and/or germanium, the germanide can be formed by blanket forming a metal layer; an annealing step is performed to cause the germanium and underlying germanium and/or germanium Reacting; and removing unreacted portions of the metal layer. Thus, the fabrication of the transistor 52 has been completed.

請參閱第9圖,由底部阻障層24、通道層26、以及頂部阻障層28所構成的量子井可由通道層54取代。通道層54可由III-V族化合物半導體材料所構成,例如GaAs、InP、GaN、InGaAs、InAs、InSb、InAlAs、GaSb、AlSb、AlAs、AlP、GaP、及上述材料的組合。Referring to FIG. 9, the quantum well formed by the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28 may be replaced by the channel layer 54. The channel layer 54 may be composed of a III-V compound semiconductor material such as GaAs, InP, GaN, InGaAs, InAs, InSb, InAlAs, GaSb, AlSb, AlAs, AlP, GaP, and combinations thereof.

第10圖係顯示另擇一的實施例,其相似於如第8A和8NB圖所示的實施例,其差異僅在於未形成閘極介電層。閘極電極34直接與頂部阻障層28接觸。於此範例中,在閘極電極34與頂部阻障層28之間因蕭基阻障(Schottky barrier)所導致的空乏區(未圖示)的作用為閘極介電層。Figure 10 shows an alternative embodiment similar to the embodiment shown in Figures 8A and 8NB, except that the gate dielectric layer is not formed. The gate electrode 34 is in direct contact with the top barrier layer 28. In this example, a depletion region (not shown) between the gate electrode 34 and the top barrier layer 28 due to a Schottky barrier acts as a gate dielectric layer.

第11圖顯示一類似的結構如第9圖所示,其中並未形成閘極介電層。再次地,於第9至11圖中,源極/汲極區域42可包括僅為摻雜的矽/鍺/SiGe區域與通道層26(或54)鄰接,或者為摻雜的矽/鍺/SiGe區域及底層的緩衝層44。Figure 11 shows a similar structure as shown in Figure 9, in which no gate dielectric layer is formed. Again, in Figures 9 through 11, the source/drain regions 42 may include only the doped 矽/锗/SiGe regions adjacent to the channel layer 26 (or 54), or doped 矽/锗/ The buffer layer 44 of the SiGe region and the bottom layer.

在上述段落中所討論的實施例可應用於鰭式場效電晶體(fin field effect transistor,簡稱FinFET)。請參閱第12圖,形成鰭式結構60、閘極介電層32、閘極電極34、及閘極間隙子36(未圖示)。形成鰭式結構60的細節已於本案的共同申請案中揭露:美國專利申請案號61/182550,2009年5月29日提申,標題為“Gradient Ternary or Quaternary Multiple-Gate transistor”,在此引為參考資料。鰭式結構60可包括III-V族化合物半導體材料。The embodiments discussed in the above paragraphs can be applied to fin field effect transistors (FinFETs). Referring to FIG. 12, a fin structure 60, a gate dielectric layer 32, a gate electrode 34, and a gate spacer 36 (not shown) are formed. The details of the formation of the fin structure 60 are disclosed in the co-pending application of the present application: U.S. Patent Application Serial No. 61/182,550, issued May 29, 2009, entitled "Gradient Ternary or Quaternary Multiple-Gate transistor", here Used as a reference. Fin structure 60 may comprise a III-V compound semiconductor material.

接著,如第13圖所示,將鰭式結構60露出的結構移除。被閘極電極34和閘極間隙子36覆蓋的鰭式結構60部分可受到保護以免被蝕成凹入。於第14圖中,以磊晶地成長源極/汲極區域42,並且以先前段落中所討論實質上相同的材料形成。同樣的,源極/汲極區域42可包括介於IV族半導體區域46之間的緩衝層44,或僅包括IV族半導體區域。Next, as shown in Fig. 13, the structure in which the fin structure 60 is exposed is removed. The portion of the fin structure 60 covered by the gate electrode 34 and the gate spacer 36 can be protected from being etched into a recess. In Fig. 14, the source/drain regions 42 are grown epitaxially and are formed of substantially the same materials as discussed in the previous paragraph. Likewise, the source/drain regions 42 may include a buffer layer 44 between the group IV semiconductor regions 46, or only include a group IV semiconductor region.

第15-17圖係顯示另擇一的實施例的剖面示意圖,其中該些剖面示意圖是源自第14圖中沿切割線A-A’的垂直切面。於第15圖中,並未形成閘極介電層。閘極電極34直接接觸鰭式結構60。於此範例中,在閘極電極34與頂部阻障層28之間因蕭基阻障(Schottky barrier)所導致的空乏區(未圖示)的作用為閘極介電層。Figures 15-17 are schematic cross-sectional views showing alternative embodiments, wherein the cross-sectional views are derived from the vertical section along the cutting line A-A' in Figure 14. In Fig. 15, a gate dielectric layer is not formed. Gate electrode 34 is in direct contact with fin structure 60. In this example, a depletion region (not shown) between the gate electrode 34 and the top barrier layer 28 due to a Schottky barrier acts as a gate dielectric layer.

請參閱第16圖,一量子井是由鰭式結構60(此後通稱為中央鰭)及半導體層64形成,位於鰭式結構60的側壁上和頂部表面上。半導體層64具有能隙大於鰭式結構60的能隙,例如約大於0.1 eV。再者,鰭式結構60及半導體層64的材料已於本案的共同申請案中揭露:美國專利申請案號61/182550,2009年5月29日提申,標題為“Gradient Ternary or Quaternary Multiple-Gate transistor”。Referring to FIG. 16, a quantum well is formed by a fin structure 60 (hereinafter collectively referred to as a central fin) and a semiconductor layer 64 on the sidewalls and top surface of the fin structure 60. The semiconductor layer 64 has an energy gap greater than that of the fin structure 60, such as greater than about 0.1 eV. Furthermore, the fin structure 60 and the material of the semiconductor layer 64 have been disclosed in the co-pending application of the present application: U.S. Patent Application Serial No. 61/182,550, issued May 29, 2009, entitled "Gradient Ternary or Quaternary Multiple- Gate transistor".

第17圖顯示一類似的結構如第15圖所示,其中並未形成閘極介電層。再次地,於第15至17圖中,雖然源極/汲極區域42並未顯示於剖面示意圖中,其可藉由如第14圖所述結構實質上相同的材料形成。Figure 17 shows a similar structure as shown in Figure 15, in which no gate dielectric layer is formed. Again, in Figures 15 through 17, although the source/drain regions 42 are not shown in cross-sectional schematic, they may be formed of substantially the same material as described in Figure 14.

本發明之實施例具有多重優點的技術特徵。藉由再成長矽/鍺源極/汲極區域42,可將既有的矽化技術用於降低源極/汲極電阻,且改善最終電晶體的驅動電流。緩衝層44具有緩和介於電晶體的通道與源極/汲極區域之間的晶格常數轉換的效果,因而導致具有降低缺陷密度和降低接面漏電流的效果。Embodiments of the present invention have the technical features of multiple advantages. By further growing the 矽/锗 source/drain regions 42, existing deuteration techniques can be used to reduce the source/drain resistance and improve the drive current of the final transistor. The buffer layer 44 has the effect of alleviating the lattice constant conversion between the channel and the source/drain region of the transistor, thus resulting in an effect of reducing the defect density and reducing the junction leakage current.

本發明雖以各種實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in the above various embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes and refinements without departing from the spirit and scope of the invention. . Therefore, the scope of the invention is defined by the scope of the appended claims.

1...矽基底1. . .矽 base

2...緩衝層2. . . The buffer layer

3...梯度緩衝層3. . . Gradient buffer layer

4...底部阻障層4. . . Bottom barrier layer

5...通道5. . . aisle

6...頂部阻障層6. . . Top barrier

7...蝕刻終止層7. . . Etch stop layer

8...接觸層8. . . Contact layer

9...源極/汲極9. . . Source/bungee

10...閘極結構10. . . Gate structure

20...基底20. . . Base

22...凹入twenty two. . . Concave

24...底部阻障層twenty four. . . Bottom barrier layer

26‧‧‧通道層26‧‧‧Channel layer

28‧‧‧頂部阻障層28‧‧‧Top barrier

30‧‧‧淺溝槽隔離(STI)區30‧‧‧Shallow Trench Isolation (STI) Zone

32‧‧‧閘極介電層32‧‧‧ gate dielectric layer

34‧‧‧閘極電極34‧‧‧gate electrode

36‧‧‧閘極間隙子36‧‧‧gate gap

38‧‧‧凹入38‧‧‧ recessed

42‧‧‧源極/汲極區域42‧‧‧Source/bungee area

44‧‧‧緩衝層44‧‧‧buffer layer

46‧‧‧IV族半導體區域46‧‧‧IV semiconductor region

50‧‧‧矽化物區域50‧‧‧ Telluride area

52‧‧‧電晶體52‧‧‧Optoelectronics

54‧‧‧通道層54‧‧‧channel layer

60‧‧‧鰭式結構60‧‧‧Fin structure

64‧‧‧半導體層64‧‧‧Semiconductor layer

第1圖顯示傳統電晶體包括III族元素和V族元素所構成的一第一III-V族化合物半導體材料的示意圖;1 is a schematic view showing a conventional III-V compound semiconductor material composed of a group III element and a group V element;

第2、3、4A、4B、5、6、7A、7B、8A、8B、9~11圖顯示根據本發明之實施例於製造電晶體的製程中各製程階段的剖面示意圖;2, 3, 4A, 4B, 5, 6, 7A, 7B, 8A, 8B, 9-11 are schematic cross-sectional views showing stages of the process in the process of fabricating a transistor according to an embodiment of the present invention;

第12~14圖顯示根據本發明之實施例於製造鰭式場效電晶體(FinFET)的製程中各製程階段的立體示意圖;12 to 14 are schematic perspective views showing respective process stages in a process for fabricating a fin field effect transistor (FinFET) according to an embodiment of the present invention;

第15~17圖顯示根據本發明之實施例的鰭式場效電晶體(FinFET)的剖面示意圖。15 to 17 are cross-sectional views showing a fin field effect transistor (FinFET) according to an embodiment of the present invention.

30...淺溝槽隔離(STI)區30. . . Shallow trench isolation (STI) region

34...閘極電極34. . . Gate electrode

36...閘極間隙子36. . . Gate gap

42...源極/汲極區域42. . . Source/drain region

44...緩衝層44. . . The buffer layer

46...IV族半導體區域46. . . Group IV semiconductor region

50...矽化物區域50. . . Telluride region

54...通道層54. . . Channel layer

Claims (12)

一種積體電路結構,包括:一基底;一通道位於該基底之上,其中該通道包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構設置於該通道上;以及一源極/汲極區域鄰接該通道,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合,其中該源極/汲極區域更包括一緩衝層位於該通道和該IV族區域之間且毗鄰該通道和該IV族區域。 An integrated circuit structure comprising: a substrate; a channel on the substrate, wherein the channel comprises a first III-V compound semiconductor material composed of a group III element and a group V element; a gate structure And a source/drain region adjacent to the channel, wherein the source/drain region comprises a group IV region selected from a group substantially comprising 矽, 锗, and combinations thereof The source/drain region further includes a buffer layer between the channel and the group IV region adjacent to the channel and the group IV region. 如申請專利範圍第1項所述之積體電路結構,其中該源極/汲極區域的底表面低於該通道的底表面。 The integrated circuit structure of claim 1, wherein the bottom surface of the source/drain region is lower than the bottom surface of the channel. 如申請專利範圍第1項所述之積體電路結構,更包括一閘極間隙子位於該閘極結構的側壁上,以及其中該閘極間隙子的外緣垂直對準於該源極/汲極區域的內部側壁。 The integrated circuit structure of claim 1, further comprising a gate spacer on a sidewall of the gate structure, and wherein an outer edge of the gate spacer is vertically aligned with the source/汲The inner side wall of the pole area. 如申請專利範圍第1項所述之積體電路結構,其中該IV族區域是由摻雜一雜質的IV族半導體材料所構成,其中該緩衝層包括一第二III-V族化合物半導體材料具有一晶格常數介於該通道的晶格常數與該IV族區域的晶格常數之間。 The integrated circuit structure of claim 1, wherein the group IV region is composed of a group IV semiconductor material doped with an impurity, wherein the buffer layer comprises a second III-V compound semiconductor material having A lattice constant is between the lattice constant of the channel and the lattice constant of the group IV region. 如申請專利範圍第1項所述之積體電路結構,其中該閘極結構包括一閘極電極,以及其中該閘極電極的全部位於該通道之上。 The integrated circuit structure of claim 1, wherein the gate structure comprises a gate electrode, and wherein all of the gate electrodes are located above the channel. 如申請專利範圍第1項所述之積體電路結構,其中該閘極結構包括一閘極電極,以及其中該閘極電極包括一部分直接位於該通道之上,以及額外的部分位於該通道的對向邊。 The integrated circuit structure of claim 1, wherein the gate structure comprises a gate electrode, and wherein the gate electrode comprises a portion directly on the channel, and the additional portion is located in the pair of channels To the side. 如申請專利範圍第1項所述之積體電路結構,其中該閘極結構包括一閘極電極與一下方的半導體層接觸。 The integrated circuit structure of claim 1, wherein the gate structure comprises a gate electrode in contact with a lower semiconductor layer. 一種積體電路結構,包括:一半導體基底;一通道位於該半導體基底之上,其中該通道包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構設置於該通道上;一閘極間隙子位於該閘極結構的側壁上;一凹入鄰接該通道,該凹入具有一底部低於該通道的底部;一源極/汲極區域位於該凹入中,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合,以及其中該源極/汲極區域摻雜一n-型摻雜物或一p-型摻雜物;以及一緩衝層,包括一垂直部分位於該通道與該IV族區域之間。 An integrated circuit structure comprising: a semiconductor substrate; a channel on the semiconductor substrate, wherein the channel comprises a first III-V compound semiconductor material composed of a group III element and a group V element; a gate a structure is disposed on the channel; a gate spacer is located on a sidewall of the gate structure; a recess adjacent to the channel, the recess having a bottom lower than a bottom of the channel; a source/drain region is located In the recess, wherein the source/drain region comprises a group IV region selected from a group substantially comprising germanium, germanium, and combinations thereof, and wherein the source/drain region is doped with an n-type a dopant or a p-type dopant; and a buffer layer comprising a vertical portion between the channel and the group IV region. 如申請專利範圍第8項所述之積體電路結構,其中該緩衝層包括一第二III-V族化合物半導體材料於該凹入中,以及其中該緩衝層包括一第二III-V族化合物半導 體材料具有一晶格常數介於該通道的一第一晶格常數與該IV族區域的一第二晶格常數之間。 The integrated circuit structure of claim 8, wherein the buffer layer comprises a second III-V compound semiconductor material in the recess, and wherein the buffer layer comprises a second III-V compound Semi-guide The bulk material has a lattice constant between a first lattice constant of the channel and a second lattice constant of the group IV region. 如申請專利範圍第9項所述之積體電路結構,其中該緩衝層具有一梯度組成,具有較靠近該通道的第一部分的晶格常數較接近該第一晶格常數,以及較靠近該IV族區域的第二部分的晶格常數較接近該第二晶格常數。 The integrated circuit structure of claim 9, wherein the buffer layer has a gradient composition, a lattice constant of a first portion closer to the channel is closer to the first lattice constant, and is closer to the IV The lattice constant of the second portion of the family region is closer to the second lattice constant. 一種積體電路結構,包括:一基底;一鰭式結構位於該基底之上,其中該鰭式結構包括由III族元素和V族元素所構成的一第一III-V族化合物半導體材料;一閘極結構一部分直接設置於該鰭式結構之上,及一額外部分設置於該鰭式結構的另一端上;以及一源極/汲極區域鄰接該鰭式結構,其中該源極/汲極區域包括一IV族區域係擇自一群組實質上包含矽、鍺、及上述之組合,其中該源極/汲極區域更包括一緩衝層位於該鰭式結構和該IV族區域之間且毗鄰該鰭式結構和該IV族區域。 An integrated circuit structure comprising: a substrate; a fin structure on the substrate, wherein the fin structure comprises a first III-V compound semiconductor material composed of a group III element and a group V element; a portion of the gate structure is disposed directly on the fin structure, and an additional portion is disposed on the other end of the fin structure; and a source/drain region is adjacent to the fin structure, wherein the source/drain The region includes a group IV region selected from a group consisting essentially of yttrium, lanthanum, and combinations thereof, wherein the source/drain region further includes a buffer layer between the fin structure and the group IV region and Adjacent to the fin structure and the group IV region. 如申請專利範圍第11項所述之積體電路結構,其中該鰭式結構包括:一中央鰭式結構由該第一第一III-V族化合物半導體材料形成;以及一半導體層包括一第一部分直接位於該中央鰭式結構上,及一第二部分位於該中央鰭式結構的對向的側壁 上,其中該半導體層的能隙大於該中央鰭式結構的能隙。 The integrated circuit structure of claim 11, wherein the fin structure comprises: a central fin structure formed of the first first III-V compound semiconductor material; and a semiconductor layer including a first portion Directly on the central fin structure, and a second portion on the opposite side wall of the central fin structure The energy gap of the semiconductor layer is greater than the energy gap of the central fin structure.
TW099118862A 2009-11-10 2010-06-10 Integrated circuit structures TWI451552B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/615,996 US8816391B2 (en) 2009-04-01 2009-11-10 Source/drain engineering of devices with high-mobility channels

Publications (2)

Publication Number Publication Date
TW201117342A TW201117342A (en) 2011-05-16
TWI451552B true TWI451552B (en) 2014-09-01

Family

ID=44201101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118862A TWI451552B (en) 2009-11-10 2010-06-10 Integrated circuit structures

Country Status (3)

Country Link
JP (1) JP5328722B2 (en)
KR (1) KR101218735B1 (en)
TW (1) TWI451552B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936976B2 (en) * 2009-12-23 2015-01-20 Intel Corporation Conductivity improvements for III-V semiconductor devices
US8344425B2 (en) * 2009-12-30 2013-01-01 Intel Corporation Multi-gate III-V quantum well structures
US20120161105A1 (en) * 2010-12-22 2012-06-28 Willy Rachmady Uniaxially strained quantum well device and method of making same
US9246004B2 (en) 2011-11-15 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structures of semiconductor devices
WO2014009991A1 (en) * 2012-07-09 2014-01-16 国立大学法人東北大学 Mosfet having 3d-structure and manufacturing method for same
US8896101B2 (en) * 2012-12-21 2014-11-25 Intel Corporation Nonplanar III-N transistors with compositionally graded semiconductor channels
US9159824B2 (en) 2013-02-27 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9385234B2 (en) 2013-02-27 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9087902B2 (en) 2013-02-27 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9214555B2 (en) * 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US8963258B2 (en) 2013-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company FinFET with bottom SiGe layer in source/drain
KR102017625B1 (en) * 2013-05-10 2019-10-22 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US9178045B2 (en) * 2013-09-27 2015-11-03 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETS and methods of forming the same
KR101515071B1 (en) * 2013-11-29 2015-04-24 가천대학교 산학협력단 Silicon-compatible germanium-based transistor with high-hole-mobility
US9263522B2 (en) * 2013-12-09 2016-02-16 Qualcomm Incorporated Transistor with a diffusion barrier
KR102274734B1 (en) * 2014-01-23 2021-07-07 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR102190477B1 (en) * 2014-04-25 2020-12-14 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR101668442B1 (en) * 2015-02-17 2016-10-21 경북대학교 산학협력단 Manufacturing method for semiconductor device
KR102326112B1 (en) 2015-03-30 2021-11-15 삼성전자주식회사 A semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW369730B (en) * 1997-03-19 1999-09-11 Sharp Kk Semiconductor luminescence element
JP2005051241A (en) * 2003-07-25 2005-02-24 Interuniv Micro Electronica Centrum Vzw Multilayer gate semiconductor device and manufacturing method therefor
JP2008160131A (en) * 2006-12-22 2008-07-10 Interuniv Micro Electronica Centrum Vzw Field effect transistor device, and methods of production thereof
JP2009105163A (en) * 2007-10-22 2009-05-14 Toshiba Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255973B2 (en) * 1991-08-02 2002-02-12 株式会社日立製作所 Semiconductor device
US20080001173A1 (en) * 2006-06-23 2008-01-03 International Business Machines Corporation BURIED CHANNEL MOSFET USING III-V COMPOUND SEMICONDUCTORS AND HIGH k GATE DIELECTRICS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW369730B (en) * 1997-03-19 1999-09-11 Sharp Kk Semiconductor luminescence element
JP2005051241A (en) * 2003-07-25 2005-02-24 Interuniv Micro Electronica Centrum Vzw Multilayer gate semiconductor device and manufacturing method therefor
JP2008160131A (en) * 2006-12-22 2008-07-10 Interuniv Micro Electronica Centrum Vzw Field effect transistor device, and methods of production thereof
JP2009105163A (en) * 2007-10-22 2009-05-14 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
TW201117342A (en) 2011-05-16
KR20110052432A (en) 2011-05-18
JP5328722B2 (en) 2013-10-30
JP2011103434A (en) 2011-05-26
KR101218735B1 (en) 2013-01-18

Similar Documents

Publication Publication Date Title
TWI451552B (en) Integrated circuit structures
US8816391B2 (en) Source/drain engineering of devices with high-mobility channels
US10164023B2 (en) FinFETs with strained well regions
US9887290B2 (en) Silicon germanium source/drain regions
US9698060B2 (en) Germanium FinFETs with metal gates and stressors
US10158015B2 (en) FinFETs with strained well regions
US9741800B2 (en) III-V multi-channel FinFETs
TWI440182B (en) Integrated circuit structure
US9508849B2 (en) Device having source/drain regions regrown from un-relaxed silicon layer
US8802531B2 (en) Split-channel transistor and methods for forming the same
CN101908543B (en) Integrated circuit structure
TWI624057B (en) Semiconductor structure with multilayer iii-v heterostructures
US9385234B2 (en) FinFETs with strained well regions
TWI660508B (en) Method of forming a finfet