TW201117342A - Integrated circuit structures - Google Patents

Integrated circuit structures Download PDF

Info

Publication number
TW201117342A
TW201117342A TW99118862A TW99118862A TW201117342A TW 201117342 A TW201117342 A TW 201117342A TW 99118862 A TW99118862 A TW 99118862A TW 99118862 A TW99118862 A TW 99118862A TW 201117342 A TW201117342 A TW 201117342A
Authority
TW
Taiwan
Prior art keywords
channel
group
region
source
gate
Prior art date
Application number
TW99118862A
Other languages
Chinese (zh)
Other versions
TWI451552B (en
Inventor
Chih-Hsin Ko
Clement Hsingjen Wann
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/615,996 external-priority patent/US8816391B2/en
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201117342A publication Critical patent/TW201117342A/en
Application granted granted Critical
Publication of TWI451552B publication Critical patent/TWI451552B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

An integrated circuit structure includes a substrate, and a channel over the substrate. The channel includes a first III-V compound semiconductor material formed of group III and group V elements. A gate structure is over the channel. A source/drain region is adjacent the channel and includes a group-IV region formed of a doped group-IV semiconductor material selected from the group consisting essentially of silicon, germanium, and combinations thereof.

Description

201117342 六、發明說明: 【發明所屬之技術領域】 本發明係有關於積體電路結構,特別有關於包含 ΙΠ·ν族化合物半導體的電晶體及其製造方法。 3 【先前技術】 金屬-氧化半導體(MOS)電晶體的速度與M〇s電晶 體的驅動電流之間有密切的關聯性,而M〇s電晶體的驅 動電流又與電荷的移動率又有密切的關聯性。例如,當 電子移動率在通道區域高時,則NM〇s電晶體具有高的 當電洞移動率在通道區域高時,則PMOS %日日體具有咼的驅動電流。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit structure, and more particularly to a transistor including a ΙΠ·ν group compound semiconductor and a method of manufacturing the same. 3 [Prior Art] There is a close correlation between the speed of a metal-oxide semiconductor (MOS) transistor and the driving current of an M〇s transistor, and the driving current of the M〇s transistor and the rate of charge mobility are Closely related. For example, when the electron mobility is high in the channel region, the NM〇s transistor has a high voltage. When the hole mobility is high in the channel region, the PMOS% solar field has a driving current of 咼.

由III族和V族元素所所構成的化合物半導體材料 (通稱為III-V族化合物半導體)因為具有高電子移 因此y做為良好的候選材料,以形成嶋S電晶體。因 = ’ιιι_ν族化合物半導體常被用來形成NM〇 ^了降低製造成本,已發展出使用Ιη·ν族化合物^體 成圓S電晶體的方法。第1圖顯示傳統配合使 Λ 化合物半導體的電晶體的示意圖。在形成的過 程中,多層材料毯覆性地形成於—⑪基底i上,盆A compound semiconductor material composed of a group III and group V element (generally referred to as a group III-V compound semiconductor) is used as a good candidate material because of having a high electron shift to form a 嶋S transistor. Since the = ι ι ι ν 化合物 化合物 常 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了 了Fig. 1 is a view showing a conventional crystal of a compound semiconductor of a compound semiconductor. During the formation process, a multilayer material is blanket formed on the -11 substrate i, basin

y層材料包括由GaAs形成的緩衝層2、由&爲A 由、TtX為介於,但不等於G和U形成的梯度緩衝層3、 4 ' In-A1-As S形成的頂部阻障層6、由⑽ 蝴敍刻終止層7、以及由In〇53Ga〇47As形成的接觸層 〇503-A34280TWF/jamngwo 3 201117342 料該接觸層8並停止於該钱 儿、止層7以形成-第一凹入。接著,實 步驟以蝕穿該蝕刻終止声 x 層7並蝕刻侵入該頂部阻障層ό 屬構成—第二凹人。接著,將—閘極結構(由金 屬構成)10形成於該第二凹入中。上 晶體具有的優點為所導致的量子井是由底部阻障層、、通 道、和頂部阻障層構成。 而’上述電晶體仍有許多缺點。將高濃度雜質摻 雜進入III-V族化合物半導體中是非常困難的。例如,可 將Si植入或臨場(in_situ)捧雜於GaAs中做為換雜物铁 而矽的最大摻雜濃度僅為介於1〇n/cm3和1〇1Vcm3^ 間。此外,傳導帶的低能態密度導致高的源極/汲極電阻, 其避免最終電晶體驅動電流的改善。因此,業界亟需克 服於先前技術中前述缺點的方法和結構。 【發明内容】 本發明之實施例提供一種積體電路結構,包括:一 基底;一通道位於該基底之上,其中該通道包括由Ιπ族 元素和V族元素所構成的一第一 族化合物半導體材 料;一閘極結構設置於該通道上;以及一源極/汲極區域 鄰接該通道,其中該源極/汲極區域包括一 IV族區域係擇 自一群組實質上包含矽、鍺、及上述之組合。The y layer material includes a buffer layer 2 formed of GaAs, a top barrier formed by a gradient buffer layer 3, 4 ' In-A1-As S formed by & A and TtX being, but not equal to G and U The layer 6, the (10) butterfly etch stop layer 7, and the contact layer 〇 503-A34280TWF/jamngwo 3 201117342 formed by In〇53Ga〇47As, the contact layer 8 is stopped and the stop layer 7 is formed to form - A concave. Next, a real step is to etch through the etch to terminate the acoustic x layer 7 and etch into the top barrier layer to form a second recess. Next, a gate structure (consisting of metal) 10 is formed in the second recess. The upper crystal has the advantage that the resulting quantum well is composed of a bottom barrier layer, a via, and a top barrier layer. The above-mentioned transistors still have many disadvantages. It is very difficult to dope high concentration impurities into the III-V compound semiconductor. For example, Si implantation or in_situ can be mixed in GaAs as a replacement iron and the maximum doping concentration is only between 1〇n/cm3 and 1〇1Vcm3^. In addition, the low energy density of the conduction band results in a high source/drain resistance that avoids an improvement in the final transistor drive current. Therefore, there is a need in the industry for methods and structures that overcome the aforementioned shortcomings of the prior art. SUMMARY OF THE INVENTION Embodiments of the present invention provide an integrated circuit structure including: a substrate; a channel is disposed on the substrate, wherein the channel includes a first group compound semiconductor composed of a Ιπ group element and a V group element a material; a gate structure is disposed on the channel; and a source/drain region is adjacent to the channel, wherein the source/drain region includes a group IV region selected from a group substantially comprising 矽, 锗, And combinations of the above.

本發明之實施例另提供一種積體電路結構,包括: 一半導體基底;一通道位於該半導體基底之上,其中該 通道包括由III族元素和V族元素所構成的一第一 IIIV 〇503-A34280TWF/jamngwo 4 201117342 族化合物半導體材料· 問極間隙子位於極構設置於該通道上;一 道,該凹入呈右一念。,構的側壁上;一凹入鄰接該通 沒極巴域位μ 部低於該通道的底部;以及一源極/ /及極&域位於該凹入中,复 族區域係擇自一群组實’上:'、極汲極區域包括-1ν 以及立㈣m 包含矽、鍺、及上述之組合, 乂及,、中該源極/汲極區域 雜物。 雜〜型摻雜物或一 p-型摻 一某施例又提供一種積體電路結構,包括: 二鰭式結構位於該基底之上,其中關式 。括由III族元素和v族 、 : 二=體:枓,一閑極結構一部分直接設置 額外部分設置於該·… 上’以及-源極/祕區域鄰接該鰭式 汲極區域包括一 1¥族卩祕彳H ώ /、源極/ 錄、及上述之組合域係擇自-群組實質上包切、 為使本發明能更明顯㈣,下文特舉實_,並配 合所附圖式’作詳細說明如下: - 【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之 例,做為本發明之參考依據。在圖式或說明書描述中广 相似或相同之部分皆使用相同之圖號。且在圖式中, 施例之形狀或是厚度可擴大,並以簡化或是方便標示。' 再者,圖式中各元件之部分將以分別描述說明之,=得 注意的是,圖中未繪示或描述之元件,為所屬技術領2 0503-A34280TWF/jamngw〇 5 201117342An embodiment of the present invention further provides an integrated circuit structure, comprising: a semiconductor substrate; a channel is disposed on the semiconductor substrate, wherein the channel comprises a first IIIV 〇 503- composed of a group III element and a group V element. A34280TWF/jamngwo 4 201117342 Group compound semiconductor material · The pole gap is located on the channel in the pole structure; one, the recess is the right one. a side wall of the structure; a recess adjacent to the pass-out pole domain μ portion is lower than the bottom of the channel; and a source//and pole & field is located in the recess, the complex region is selected from the The group is 'on:', the extreme drain region includes -1ν and the vertical (four)m includes 矽, 锗, and combinations of the above, and, in the source/drain region. A hetero-type dopant or a p-type dopant further provides an integrated circuit structure including: a two-fin structure on the substrate, wherein the off-type. Included by the group III element and the v group, : two = body: 枓, a part of the idle pole structure is directly set to the additional part set on the ... and - source / secret area adjacent to the fin type bungee area including a 1 ¥ The family secrets H ώ /, source / record, and the above-mentioned combination domain are selected from the group, in order to make the invention more obvious (4), the following is a special _, and with the drawing The detailed description is as follows: - [Embodiment] Hereinafter, examples of the embodiments will be described in detail with reference to the accompanying drawings, which are considered as reference. The same drawing numbers are used in the similar or identical parts in the drawings or the description of the specification. In the drawings, the shape or thickness of the embodiment can be expanded and simplified or conveniently marked. In addition, the parts of the various elements in the drawings will be described separately, = It is noted that the elements not shown or described in the drawings are the technology of the art 2 0503-A34280TWF/jamngw〇 5 201117342

中具有通常知識者所知的形式 為揭示本發明使用之特定方式 以及形成所述新穎的電晶體的製造方法。 不說明該製造方法的中間階段的實施例。 於,發明各圖式的實施例與各種觀點中,相似的元件符 號是用來表示相似的元件。 _凊參閱第2圖,提供一基底20。基底20可為一半導 體基板,由矽、鍺、SiGe、及/或其他半導體材料所構成。 絕緣結構例如淺溝槽隔離(STI)區30形成於基底2〇中。 請參閱第3圖,藉由蝕刻部分的基底2〇以形成一凹 入22於相對的兩個淺溝槽隔離(STI)區30的側壁之間。 接著’如第4A圖所示,將複數層材料包括一底部阻障層 24、一通道層26、以及一頂部阻障層28磊晶成長於該凹 入22中。於一實施例中,所述通道層26具有第一能隙 (bandgap),而底部阻障層24及頂部阻障層28具有第二 能隙大於第一能隙。據此,由底部阻障層24、通道層26、 及頂4阻障層28構成一量子井。第二能隙大於第一能隙 的範圍約為〇. 1 eV ’然而更大或更小的能隙差距亦可適 用。所述底部阻障層24、通道層26、及頂部阻障層28 的適合材料可選取藉由比較既有具高載子移動率的半導 體材料的能隙,該些半導體材料包括,但非限定於,石夕、 鍺、GaAs、InP、GaN、InGaAs、InAs、InSb、InAlAs、Forms known to those of ordinary skill in the art are those which disclose the particular mode of use of the invention and the method of making the novel transistor. Embodiments of the intermediate stages of the manufacturing method are not described. In the embodiments of the invention, various reference numerals are used to indicate similar elements. _凊 Referring to Figure 2, a substrate 20 is provided. Substrate 20 can be a half-conductor substrate composed of tantalum, niobium, SiGe, and/or other semiconductor materials. An insulating structure such as a shallow trench isolation (STI) region 30 is formed in the substrate 2A. Referring to Figure 3, a portion of the substrate 2 is etched to form a recess 22 between the sidewalls of the opposing two shallow trench isolation (STI) regions 30. Next, as shown in FIG. 4A, a plurality of layers of material including a bottom barrier layer 24, a channel layer 26, and a top barrier layer 28 are epitaxially grown in the recess 22. In one embodiment, the channel layer 26 has a first bandgap, and the bottom barrier layer 24 and the top barrier layer 28 have a second energy gap greater than the first energy gap. Accordingly, a quantum well is formed by the bottom barrier layer 24, the channel layer 26, and the top 4 barrier layer 28. The second energy gap is larger than the first energy gap by about 1. 1 eV ’ However, a larger or smaller gap can also be applied. Suitable materials for the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28 may be selected by comparing energy gaps of semiconductor materials having high carrier mobility, including, but not limited to, semiconductor materials. Yu, Shi Xi, 锗, GaAs, InP, GaN, InGaAs, InAs, InSb, InAlAs,

GaSb、AlSb、A1P、GaP、及上述材料之組合。通道層26 0503-A34280TWF/jamngwo 6 201117342 111族疋素和¥族元素所構成的-第- ηι-ν族化 = ㈣而形成。於—比較實施例中,通道層'% 〇-3AS而底部阻障層24和頂部阻障層28包 n〇.52Al0.48As。於其他實施例中,通道層% 而底部阻障層24和頂部阻障層28包括 ^其他貫_中’通道層26包括InAs’而底部 24和頂部阻障層28包括InAUs ==:〜至_""道二有 的二"於、·勺2細至5〇細,頂部阻障層μ可具有 =度乾圍介於約5nm^ 5〇()nm。然而,應理解的是, 在此所提到全部的尺寸僅為舉例說明,並且若 的形成技術,亦可隨之改變。 。 選擇性地:將額外的缓衝層形成於基底2〇上,並且 立於-覆蓋半導體層,例如底部阻障層24的下方。 =可具有晶格常數介於基底2〇的晶格 二 :轉隻較不犬然。藉由在淺溝槽隔離 卿4、通道層26、及頂部阻障層28,= 新成長層内所產生的缺陷顯著地較少。 第4Β圖係顯示另擇一的實施例,其中該些層24、 ’疋以毯覆層的型式形成於半導體基底2〇上。 第5圖顯示形成閘極結構與閘極間隙子%的剖面示 =°該閘極結構包括閘極介電層3 2和開極電極3 4。閘 化二電層32可由常用的介電材料構成,例如氧化石夕、氮 、乳氧切、上述之多層材料、及上述材料之組合。 °5〇3-A34280TWF/jamngwo ? 201117342 間極介電層32亦可由高介電常數(M_介電材料構 成。該high_k介電材料的範例可具有k值大 甚至大於7.0,並且可包括氧化鋁、 .^ 石夕化铪、梦化锆、氧化釔、氧化鈽、氧化。鈦、氧::、、 及上述材料之組合。間極電極34可由摻雜多晶石夕、 金屬氮化物、金屬魏物、及類似的材料構成。間極間 隙子36可由氧化石夕:氮化石夕、及上述材料之組合所構成, 並且閘極間隙子36為本技術領域中已知的結構,因而在 此略去其詳細的描述。 請參閱第6圖,形成凹入38。於一比較實施例中, 使用-蝕刻步驟,因此凹入38的側壁垂直對準於閘極間 隙子36的外緣。做為一實施例’在此描述的凹入%的 側壁與閘極間隙子36的外㈣直對準,所屬技術領域中 具有通常知識者應可了解此限定條件意欲含括製程變異 和製程最佳化所導致的對不準(misalignment)。凹入38的 底表面可低於通道層26的底表面。 請參閱第7A圖,將一 IV族半導體材料磊晶成長於 凹入38中,由此形成源極及汲極區域42 (此後通稱為源 極/汲極區域)。於一實施例中,所述源極/汲極區域42可 由矽、鍺、或矽鍺(SiGe)所構成。若最終的電晶體欲成為 NMOS電晶體,源極/汲極區域42可摻雜η-型摻雜物, 例如磷、砷、銻、及上述摻雜物的組合。若最終的電晶 體欲成為PMOS電晶體,源極/汲極區域42可摻雜p-型 摻雜物,例如硼、銦、及上述掺雜物的組合。該η-型換 雜物或ρ_型摻雜物可隨著源極/汲極區域42的磊晶成| 0503-A34280TWF/jamngwo 8 201117342 製程中臨場(in-situ)摻雜,或者在蠢晶成長源極/没極區域 42之後,才進行植入步驟。該η-型或p-型摻雜物的摻雜 濃度範圍可介於約lxl〇18/cm3至lxl021/cm3。於此實施例 中,源極/汲極區域42亦可稱為IV族半導體區域46。 第7B圖顯示另擇一的實施例,其中磊晶成長的源極 /汲極區域42包括磊晶成長的III-V族化合物半導體區域 44 (此後通稱為緩衝層),以及IV族半導體區域46於緩 衝層44上。緩衝層44可由III-V族化合物半導體所構成, φ 其包括但不限定於,GaAs、InP、GaN、InGaAs、InAlAs、 GaSb、AlSb、AlAs、A1P、GaP、上述材料的組合、及上 述之多層材料。缓衝層44可具有一水平部分於該凹入38 的底部上(第6圖),以及一垂直部分位於該凹入38的側 壁上。於一實施例中,緩衝層44包括一梯度組成,具有 較低部分的組成逐漸地變化成所欲的較高部分的組成。 再者,該緩衝層44的較低部分可具有晶格常數較接近於 該通道層26的晶格常數,而該緩衝層44的較高部分可 • 具有晶格常數較接近於該IV族半導體區域46的晶格常 數。緩衝層44與基底20之間晶格常數不匹配,可逐漸 地從缓衝層44的底部增加到緩衝層44的頂部。 於一比較實施例中,通道層26是由In0.7Ga0.3As所 構成,而源極/汲極區域42是由鍺構成,In〇.7Ga〇.3As與 鍺之間具有晶格常數不匹配性約為百分之四。有鑑於 此,缓衝層44可具有銦的含量低於0.7%。缓衝層44亦 可由不均勻組成的多層結構形成,例如In0.2Ga0.8As或一 梯度層具有音的百分比由底部朝向頂部逐漸地增加。 0503-A34280TWF/jamngwo 9 201117342 緩衝層44可被摻雜。若最終的電晶體欲成為NM〇s f晶體,則摻雜的雜質包括石夕(Si)。相反地,若最終的電 晶體欲成為PM〇S電晶體,則摻雜的雜質包括鋅(Zn)及/ 或鈹(Be)。 可觀察到的是,在源極/汲極區域42中的矽鍺具有較 大的晶格不匹配性大於m_v族化合物半導體於通道層 26中的晶格不匹配性。所述較大的晶格不匹配性導致高 的缺陷密度,並且導致高的接面漏電流。藉由形成緩衝 層44’可降低於通道層26與鄰接的源極/汲極區域“之 間的晶格不匹配性,導致降低的接面漏電流。 其次,如第8A和8NB圖所示,將矽化物區域5〇 (其 亦可為,或包括鍺矽化物)形成於於源極/汲極區域42 上。由於源極/汲極區域42包括矽及/或鍺,矽化物的形 成方式可藉由毯覆性地形成一金屬層;施以一退火步驟 使得該僅屬層與底層的矽及/或鍺反應;以及移除該金屬 層的未反應部份。由此,已完成製作電晶體52。 請參閱第9圖,由底部阻障層24、通道層26、以及 頂部阻障層28所構成的量子井可由通道層54取代。通 道層54可由ΙΠ·ν族化合物半導體材料所構成,例如GaSb, AlSb, A1P, GaP, and combinations of the above materials. The channel layer 26 0503-A34280TWF/jamngwo 6 201117342 is formed by the group - ηι-ν grouping of the family of 疋 和 and ¥ = elements. In a comparative embodiment, the channel layer '% 〇-3AS and the bottom barrier layer 24 and the top barrier layer 28 comprise n〇.52Al0.48As. In other embodiments, the channel layer % and the bottom barrier layer 24 and the top barrier layer 28 include other vias 'the channel layer 26 including InAs' and the bottom portion 24 and the top barrier layer 28 include InAUs ==:~ to _""The second two have a ", the spoon 2 is fine to 5 〇 fine, the top barrier layer μ can have a degree of dry circumference of about 5 nm ^ 5 〇 () nm. However, it should be understood that all dimensions mentioned herein are for illustrative purposes only and that the techniques of forming may vary. . Optionally, an additional buffer layer is formed over the substrate 2 and over the underlying semiconductor layer, such as under the bottom barrier layer 24. = can have a lattice constant between the base 2 〇 lattice 2: turn only less dog. By the shallow trench isolation 4, the channel layer 26, and the top barrier layer 28, the defects generated in the new growth layer are significantly less. Figure 4 shows an alternative embodiment in which the layers 24, '' are formed in a blanket pattern on the semiconductor substrate 2''. Fig. 5 shows a cross-sectional view showing the gate structure and the gate spacer %. The gate structure includes a gate dielectric layer 32 and an open electrode 34. The thyristor layer 32 may be composed of a conventional dielectric material such as oxidized oxide, nitrogen, oxycide, a multilayer material as described above, and combinations of the foregoing. °5〇3-A34280TWF/jamngwo ? 201117342 The interlayer dielectric layer 32 may also be composed of a high dielectric constant (M_ dielectric material. Examples of the high_k dielectric material may have a k value of even greater than 7.0, and may include oxidation Aluminium, . . . 石 铪 铪 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 梦 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛 钛Metal material, and similar materials. The interpole spacer 36 may be composed of a combination of oxidized stone, cerium nitride, and the like, and the gate spacer 36 is a structure known in the art, and thus A detailed description thereof is omitted. Referring to Fig. 6, a recess 38 is formed. In a comparative embodiment, an -etching step is used, so that the sidewall of the recess 38 is vertically aligned with the outer edge of the gate spacer 36. As an embodiment, the sidewalls of the recessed % described herein are aligned with the outer (four) of the gate spacer 36, and those of ordinary skill in the art should understand that the qualifications are intended to encompass process variations and process variations. Misalignment caused by Jiahua The bottom surface of the recess 38 may be lower than the bottom surface of the channel layer 26. Referring to Figure 7A, a Group IV semiconductor material is epitaxially grown in the recess 38, thereby forming a source and drain region 42 (hereinafter referred to as a source) In the embodiment, the source/drain region 42 may be composed of germanium, germanium, or germanium (SiGe). If the final transistor is to be an NMOS transistor, the source The pole/drain region 42 may be doped with an η-type dopant such as phosphorus, arsenic, antimony, and combinations of the above dopants. If the final transistor is to be a PMOS transistor, the source/drain region 42 may Doping a p-type dopant, such as boron, indium, and a combination of the above dopants. The η-type dopant or ρ-type dopant may be epitaxial with the source/drain region 42 0503-A34280TWF/jamngwo 8 201117342 In-situ doping in the process, or after the stray growth source/nomogram region 42 is performed. The η-type or p-type dopant The doping concentration may range from about lxl 〇 18/cm 3 to l x l 021 / cm 3 . In this embodiment, the source/drain region 42 may also be referred to as a group IV semiconductor region 46. 7B shows an alternative embodiment in which the epitaxially grown source/drain regions 42 comprise epitaxially grown III-V compound semiconductor regions 44 (hereinafter collectively referred to as buffer layers), and the group IV semiconductor regions 46 are The buffer layer 44 may be composed of a III-V compound semiconductor, and φ includes, but is not limited to, GaAs, InP, GaN, InGaAs, InAlAs, GaSb, AlSb, AlAs, AlP, GaP, a combination of the above materials. And the above multilayer materials. The buffer layer 44 can have a horizontal portion on the bottom of the recess 38 (Fig. 6) and a vertical portion on the side wall of the recess 38. In one embodiment, the buffer layer 44 includes a gradient composition having a composition in which the lower portion gradually changes to a desired higher portion. Furthermore, the lower portion of the buffer layer 44 may have a lattice constant closer to the lattice constant of the channel layer 26, and the upper portion of the buffer layer 44 may have a lattice constant closer to the Group IV semiconductor. The lattice constant of region 46. The lattice constant between the buffer layer 44 and the substrate 20 does not match and may gradually increase from the bottom of the buffer layer 44 to the top of the buffer layer 44. In a comparative embodiment, the channel layer 26 is composed of In0.7Ga0.3As, and the source/drain region 42 is composed of germanium. The lattice constant does not match between In〇.7Ga〇.3As and germanium. The sex is about four percent. In view of this, the buffer layer 44 may have an indium content of less than 0.7%. The buffer layer 44 may also be formed of a multi-layered structure composed of unevenness, for example, In0.2Ga0.8As or a gradient layer having a percentage of sound gradually increasing from the bottom toward the top. 0503-A34280TWF/jamngwo 9 201117342 The buffer layer 44 can be doped. If the final transistor is to be an NM〇s f crystal, the doped impurities include Shi Xi (Si). Conversely, if the final transistor is to be a PM〇S transistor, the doped impurities include zinc (Zn) and/or beryllium (Be). It can be observed that the germanium in the source/drain region 42 has a larger lattice mismatch than the lattice mismatch of the m_v compound semiconductor in the channel layer 26. The larger lattice mismatch results in a high defect density and results in a high junction leakage current. By forming the buffer layer 44', the lattice mismatch between the channel layer 26 and the adjacent source/drain regions can be reduced, resulting in reduced junction leakage current. Second, as shown in Figures 8A and 8NB. The germanide region 5 〇 (which may also be or include a germanide) is formed on the source/drain region 42. Since the source/drain region 42 includes germanium and/or germanium, the formation of germanide The method can form a metal layer by blanket; applying an annealing step to react the only layer with the ruthenium and/or ruthenium of the underlayer; and removing the unreacted portion of the metal layer. The transistor 52 is fabricated. Referring to Fig. 9, the quantum well composed of the bottom barrier layer 24, the channel layer 26, and the top barrier layer 28 may be replaced by a channel layer 54. The channel layer 54 may be made of a ΙΠ·ν compound semiconductor material. Composition, for example

GaAs、InP、GaN、InGaAs、InAs、InSb、InAlAs、GaSb、GaAs, InP, GaN, InGaAs, InAs, InSb, InAlAs, GaSb,

AlSb、AlAs、A1P、GaP、及上述材料的組合。 第10圖係顯示另擇一的實施例,其相似於如第8a 和8NB圖所示的實施例,其差異僅在於未形成閘極介電 層。閘極電極34直接與頂部阻障層28接觸。於此範例 中’在閘極電極34與頂部阻障層28之間因蕭基阻障 0503-A34280TWF/jamngwo 201117342 (SchoUky barrier)所導致的空乏區(未圖示)的作用為閘極 介電層。 第11圖顯示一類似的結構如第9圖所示,其中並未 形成閘極介電層。再次地,於第9至11圖中,源極/汲極 區域42可包括僅為摻雜的矽/鍺/siGe區域與通道層% (或54)鄰接,或者為摻雜的矽/鍺/SiGe區域及底層的緩衝 層44。 在上述段落中所討論的實施例可應用於鰭式場效電 •晶體(fin field effect transistor,簡稱 FinFET)。請參閱第 12圖’形成縛式結構60、閘極介電層32、閘極電極34、 及閘極間隙子36 (未圖示)。形成鰭式結構60的細節已於 本案的共同申請案中揭露:美國專利申請案號 61/182550, 2009 年 5 月 29 日提申’標題為“Gradient Ternary or Quaternary Multiple-Gate transistor”,在 j:匕引 為參考資料。鰭式結構60可包括III-V族化合物半導體 材料。 • 接著,如第13圖所示,將鰭式結構60露出的結構 移除。被閘極電極34和閘極間隙子36覆蓋的鰭式結構 60部分可受到保護以免被蝕成凹入。於第14圖中,以蠢 晶地成長源極/ >及極區域42 ’並且以先前段落中所討論實 質上相同的材料形成。同樣的’源極/沒極區域42可包括 介於IV族半導體區域46之間的緩衝層44,或僅包括ιν 族半導體區域。 第15_ 17圖係顯示另擇一的實施例的剖面示意圖,其 中該些剖面示意圖是源自第14圖中沿切割線Α-Α,的垂 0503-A34280TWF/jamngwo 11 201117342 直切面。於笛 U圖中,並未形成閘極介電層。閘極電極 虚頂部卩趟觸鳍式結構6G。於此範例巾,在雜電極34 章層28之間因蕭基阻障(Schottky barrier)所導 的:乏區(未圖示)的作用為閘極介電層。 猶第16圖’—量子井是由鰭式結構6G(此後通 辟I心、)及半導體層64形成,位於鰭式結構60的側 頂部表面上。半導體層64具有能隙大於籍式結構 墓騁Γ*隙,例如約大於ο.1 eV。再者,鰭式結構60及半 導體層64的材料已於本案的共同申請案中揭露·美國專 利申請案號61/182550,2〇〇9年5月29日提申,標題為 ‘价他加Ternary 〇r Quat_ry刚办㈣攸 transistor”。 ,第Π圖顯示一類似的結構如第15圖所示,其中並 未形成閘極介電層。再次地,於第15至17圖中,雖然 源極/汲極區域42並未顯示於剖面示意圖中,其可藉由如 第14圖所述結構實質上相同的材料形成。 本發明之實施例具有多重優點的技術特徵。藉由再 成長矽/鍺源極/汲極區域42,可將既有的矽化技術用於降 低源極/汲極電阻,且改善最終電晶體的驅動電流。緩衝 層44具有緩和介於電晶體的通道與源極/汲極區域之間 的晶格常數轉換的效果,因而導致具有降低缺陷密度和 降低接面漏電流的效果。 又 本發明雖以各種實施例揭露如上,然其並非用以限 定本發明的範圍,任何所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可做也許的更 0503-A34280TWF/5amngw〇 \2 201117342 動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。AlSb, AlAs, A1P, GaP, and combinations of the above materials. Figure 10 shows an alternative embodiment similar to the embodiment shown in Figures 8a and 8NB, except that the gate dielectric layer is not formed. The gate electrode 34 is in direct contact with the top barrier layer 28. In this example, the depletion region (not shown) caused by the Schottky barrier 0503-A34280TWF/jamngwo 201117342 (SchoUky barrier) between the gate electrode 34 and the top barrier layer 28 functions as a gate dielectric layer. Figure 11 shows a similar structure as shown in Figure 9, in which no gate dielectric layer is formed. Again, in Figures 9 through 11, the source/drain regions 42 may include only the doped 矽/锗/siGe regions adjacent to the channel layer % (or 54), or doped 矽/锗/ The buffer layer 44 of the SiGe region and the bottom layer. The embodiments discussed in the above paragraphs can be applied to fin field effect transistors (FinFETs). Referring to Fig. 12, a junction structure 60, a gate dielectric layer 32, a gate electrode 34, and a gate spacer 36 (not shown) are formed. The details of the formation of the fin structure 60 are disclosed in the co-pending application of the present application: U.S. Patent Application Serial No. 61/182,550, issued May 29, 2009, entitled "Gradient Ternary or Quaternary Multiple-Gate transistor", at j : 匕 cited as a reference. The fin structure 60 may comprise a III-V compound semiconductor material. • Next, as shown in Fig. 13, the structure in which the fin structure 60 is exposed is removed. The portion of the fin structure 60 covered by the gate electrode 34 and the gate spacer 36 can be protected from being etched into a recess. In Fig. 14, the source/gt; and the pole region 42' are grown in a staggered manner and are formed of substantially the same material as discussed in the previous paragraph. The same 'source/nomogram region 42 may comprise a buffer layer 44 between the group IV semiconductor regions 46, or only a ιν semiconductor region. Fig. 15-17 is a schematic cross-sectional view showing an alternative embodiment, wherein the cross-sectional views are derived from the straight cut surface of the slanting 0503-A34280TWF/jamngwo 11 201117342 along the cutting line 第-Α in Fig. 14. In the U-picture, the gate dielectric layer is not formed. Gate electrode imaginary top crucible structure 6G. In this example, a Schottky barrier is shown between the layers 28 of the impurity electrode 34: the spent region (not shown) functions as a gate dielectric layer. Jude 16's quantum well is formed by a fin structure 6G (hereinafter referred to as I core) and a semiconductor layer 64 on the side top surface of the fin structure 60. The semiconductor layer 64 has a band gap greater than that of the structure of the tomb, for example, greater than about ο.1 eV. Furthermore, the fin structure 60 and the material of the semiconductor layer 64 have been disclosed in the co-pending application of the present application. U.S. Patent Application Serial No. 61/182,550, filed on May 29, 2009, entitled Ternary 〇r Quat_ry has just started (4) 攸transistor". The figure shows a similar structure as shown in Fig. 15, in which the gate dielectric layer is not formed. Again, in pictures 15 to 17, although the source The pole/drain regions 42 are not shown in the cross-sectional schematic view and may be formed of substantially the same structure as described in Figure 14. Embodiments of the present invention have the technical advantages of multiple advantages. The source/drain region 42 can be used to reduce the source/drain resistance and improve the drive current of the final transistor. The buffer layer 44 has the channel and source between the transistors. The effect of the lattice constant conversion between the drain regions, thus resulting in the effect of reducing the defect density and reducing the junction leakage current. The present invention has been disclosed above in various embodiments, but is not intended to limit the scope of the present invention. Any technical field Those skilled in the art, while departing from the spirit and scope of the present invention, may be able to do more of the 0503-A34280TWF/5amngw〇\2 201117342 movement and retouching. Therefore, the scope of protection of the present invention is attached to the scope of the patent application. The definition is final.

0503-A34280TWF/jamngwo 13 201117342 【圖式簡單說明】 第1圖顯示傳統電晶體包括π;[族元素和V族元素所 構成的一第一 III-V族化合物半導體材料的示意圖; 第 2、3、4A、4B、5、6、7A、7B、8A、8B、9〜11 圖顯示根據本發明之實施例於製造電晶體的製程中各製 程階段的剖面示意圖; 第U〜14圖顯示根據本發明之實施例於製造鰭式場 效電晶體(FinFET)的製程中各製程階段的立體示意圖; 第U〜17圖顯示根據本發明之實施例的鰭式場效電 晶體(FinFET)的剖面示意圖。 【主要元件符號說明】 1〜矽基底; 2〜緩衝層; 3〜梯度緩衝層; 4〜底部阻障層; 5〜通道; 6〜頂部阻障層; 7〜蝕刻終止層; 8〜接觸層; 9〜源極/汲極; 1〇〜閘極結構; 20〜基底; 22〜凹入; 24〜底部阻障層; 0503-A34280TWF/jamngwo 14 201117342 2 6〜通道層; 28〜頂部阻障層; 30〜淺溝槽隔離(STI)區; 32〜閘極介電層; 3 4〜閘極電極; 36〜閘極間隙子; 38〜凹入; 4 2〜源極/>及極區域, _ 44〜緩衝層; 46〜IV族半導體區域; 50〜石夕化物區域; 52〜電晶體; 5 4〜通道層; 60〜,if式結構, 64〜半導體層。0503-A34280TWF/jamngwo 13 201117342 [Simplified Schematic] FIG. 1 is a schematic view showing a conventional transistor including π; [a group III-V compound semiconductor material composed of a group element and a group V element; 4A, 4B, 5, 6, 7A, 7B, 8A, 8B, 9 to 11 are schematic cross-sectional views showing stages of each process in the process of fabricating a transistor according to an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the invention are schematic views of various process stages in the fabrication of a fin field effect transistor (FinFET); FIGS. U-17 show cross-sectional views of a fin field effect transistor (FinFET) in accordance with an embodiment of the present invention. [Main component symbol description] 1~矽 substrate; 2~buffer layer; 3~gradient buffer layer; 4~bottom barrier layer; 5~channel; 6~top barrier layer; 7~etch stop layer; 8~contact layer ; 9 ~ source / drain; 1 〇 ~ gate structure; 20 ~ substrate; 22 ~ concave; 24 ~ bottom barrier layer; 0503-A34280TWF / jamngwo 14 201117342 2 6 ~ channel layer; 28 ~ top barrier Layer; 30~ shallow trench isolation (STI) region; 32~ gate dielectric layer; 3 4~ gate electrode; 36~ gate spacer; 38~ recessed; 4 2~source/> Region, _ 44 ~ buffer layer; 46 to IV semiconductor region; 50 ~ lithium region; 52 ~ transistor; 5 4 ~ channel layer; 60 ~, if structure, 64 ~ semiconductor layer.

0503-A34280TWF/jamngwo 150503-A34280TWF/jamngwo 15

Claims (1)

201117342 七、申請專利範圍: L 一種積體電路結構,包括: 一基底; 通^道位於該基底之上’其中該通道包括由 III族元 私兀素所構成的一第一 III-V族化合物半導體材 一問極結構設置於該通道上;以及 一源極/汲極區域鄰接該通道,其中該源極/沒極區域 匕括IV私區域係擇自一群組實質上包含 述之組合。 2·如申晴專利範11第1項所述之積體電路結構,JL 中該源極/祕區域的底表面低於該通道的録面。八 3·如申請專利範圍第丨項所述之積體電路結構,更 包括-閘極間隙子位於該閘極結構的側壁上,以及其中 該閘極間隙子的外㈣直對準於該源極味極區域的; #1辟。 4·如申請專利範圍第!項所述之積體f路結構,其 中該iv族區域是由摻雜一雜質的IV族半導體材料所構 成,其中該源極/汲極區域更包括一緩衝層位於該通道和 該iv族區域之間且毗鄰該通道和該IV族區域,以及其 令該缓衝層包括-第二m_v族化合物半導體材料具有二 晶格常數介於該通道的晶格常數與該1¥族區域的晶袼A 數之間。 日日令 5·如申請專利範圍第i項所述之積體電路結構,盆 尹該間極結構包括-開極電極,以及其中_極電極的 〇^〇3~A34280TWF/jamngwo \β 201117342 全部位於該通道之上。 6.如申請專利範圍第〗項所述之積體電路結構,其 中該閘極結構包括一閘極電極’以及其中該閘極電極’包 括一部分直接位於該通道之上,以及額外的部分位於該 通道的對向邊。 、 7.如申請專利範圍第1項所述之積體電路結構,其 中該閘極肖構包括一閘極電極與一了方的半導體芦接 觸。 曰201117342 VII. Patent application scope: L An integrated circuit structure, comprising: a substrate; the channel is located above the substrate, wherein the channel comprises a first III-V compound composed of a group III private steroid A semiconductor material is disposed on the channel; and a source/drain region is adjacent to the channel, wherein the source/no-polar region includes an IV private region selected from a group substantially comprising the combination. 2. The integrated circuit structure described in the first item of Shen Qing Patent Model 11, the bottom surface of the source/secret region in JL is lower than the recording surface of the channel. 8. The integrated circuit structure of claim 3, further comprising: a gate spacer located on a sidewall of the gate structure, and wherein the outer (four) of the gate spacer is directly aligned with the source Extremely polar region; #1 辟. 4. If you apply for a patent scope! The integrated f-channel structure, wherein the iv-group region is composed of a group IV semiconductor material doped with an impurity, wherein the source/drain region further comprises a buffer layer located in the channel and the iv region Between and adjacent to the channel and the group IV region, and the buffer layer includes - the second m_v compound semiconductor material has a lattice constant between the lattice constant of the channel and the crystal region of the 1¥ family region A number between. Japanese Renewal 5· As set forth in the patent circuit structure described in item i of the patent scope, the pole structure of the pot includes: an open electrode, and a _^〇3~A34280TWF/jamngwo \β 201117342 of the _ pole electrode Located above the channel. 6. The integrated circuit structure of claim 1, wherein the gate structure comprises a gate electrode 'and wherein the gate electrode ' includes a portion directly above the channel, and an additional portion is located The opposite side of the channel. 7. The integrated circuit structure of claim 1, wherein the gate structure comprises a gate electrode and a semiconductor contact.曰 8. 一種積體電路結構,包括: 一半導體基底; 通道位於該半導體基底之上,其中該通道包括由 ΠΙ族元素和V族元素所構成的一第一 m_v族化合 導體材料; 一閘極結構設置於該通道上; 一閘極間隙子位於該閘極結構的側壁上; 一凹入鄰接該通道,該凹入具有一底部低於該通道 的底部;以及 、一源極/汲極區域位於該凹入中,其中該源極/汲極區 域包括一 IV族區域係擇自一群組實質上包含矽、鍺、及 上述之組合,以及其中該源極/汲極區域摻雜一 η-型摻雜 物或一 ρ-型摻雜物。 ” 9,如申請專利範®第8項所述之㈣電路結構,更 己括緩衝層包括一第二m_v族化合物半導體材料於該 凹入中’其中該緩衝層包括—垂直部分位於該通道盘該 IV族區域之間,以及其中該緩衝層包括-第二m-v族 0503-A34280TWF/jamngwo 17 201117342 體材料具有—晶袼常數介於該通道的—第-曰曰格吊數與該1¥族區域的一第二晶格常數之間。第 =如申請專利簡第9項所述之積 :該緩衝層具有-梯度組成,具有較靠近該通道:第其 二刀的晶格常數較接近該第—晶格常數,以及較 數知區域的第二部分的晶格常數較接近該第二晶格Ϊ η· 一種積體電路結構,包括: 一基底; ,其中該鰭式結構包括 一第一 III-V族化合物 鰭式結構位於該基底之上 由ΙΠ族元素和V族元素所構成的 半導體材料; 一閘極結構一部分直接設置於該鰭式結構之上,及 一額外部分設置於該轉式結構的另一端上;以及 -源極/汲極區域鄰接該鰭式結構,其中該源極/沒極 區域包括- IV族區域係擇自—群組實質上包含咬 及上述之組合。 12.如中請專利範㈣u項所述之龍電路結構, 其申該鰭式結構包括: -中央,鰭式結構由該第一第—ΠΙ_Μ化合物半導體 材料形成;以及 -半導體層包括-第-部分直接位於該中央轉式結 構上’及-第二部分位於該中絲式結構的對向的側壁 上,其中該半導體層的能隙大於該中央韓式結構的能隙。 〇503-A34280TWF/jamngwo 188. An integrated circuit structure comprising: a semiconductor substrate; a channel on the semiconductor substrate, wherein the channel comprises a first m_v group compound conductor material composed of a lanthanum element and a group V element; a gate structure Provided on the channel; a gate spacer is located on a sidewall of the gate structure; a recess adjacent to the channel, the recess having a bottom lower than a bottom of the channel; and a source/drain region located In the recess, wherein the source/drain region comprises a group IV region selected from a group substantially comprising lanthanum, cerium, and combinations thereof, and wherein the source/drain region is doped with a η- Type dopant or a p-type dopant. 9. The circuit structure of claim 4, wherein the buffer layer comprises a second m_v compound semiconductor material in the recess, wherein the buffer layer comprises a vertical portion located in the channel disk. Between the group IV regions, and wherein the buffer layer comprises - the second mv group 0503-A34280TWF/jamngwo 17 201117342 body material has a - crystal 袼 constant between the channel - the first 曰曰 grid number and the 1¥ family Between a second lattice constant of the region. The product as described in claim 9: the buffer layer has a gradient composition, which is closer to the channel: the lattice constant of the second knife is closer to the a first-lattice constant, and a lattice constant of the second portion of the plurality of regions is closer to the second lattice · η. An integrated circuit structure includes: a substrate; wherein the fin structure includes a first a III-V compound fin structure is a semiconductor material composed of a lanthanum element and a group V element on the substrate; a gate structure is partially disposed directly on the fin structure, and an additional portion is disposed on the fin structure Another structure And the source/drain region is adjacent to the fin structure, wherein the source/no-polar region comprises a -IV region selected from the group substantially comprising the bite and the combination thereof. The dragon circuit structure described in the above paragraph (4), wherein the fin structure comprises: - a central, fin structure formed of the first first - ΠΙ Μ compound semiconductor material; and - a semiconductor layer including - a - portion directly located at the center The second part of the rotary structure is located on the opposite side wall of the middle wire structure, wherein the energy gap of the semiconductor layer is larger than the energy gap of the central Korean structure. 〇503-A34280TWF/jamngwo 18
TW099118862A 2009-11-10 2010-06-10 Integrated circuit structures TWI451552B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/615,996 US8816391B2 (en) 2009-04-01 2009-11-10 Source/drain engineering of devices with high-mobility channels

Publications (2)

Publication Number Publication Date
TW201117342A true TW201117342A (en) 2011-05-16
TWI451552B TWI451552B (en) 2014-09-01

Family

ID=44201101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118862A TWI451552B (en) 2009-11-10 2010-06-10 Integrated circuit structures

Country Status (3)

Country Link
JP (1) JP5328722B2 (en)
KR (1) KR101218735B1 (en)
TW (1) TWI451552B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936976B2 (en) * 2009-12-23 2015-01-20 Intel Corporation Conductivity improvements for III-V semiconductor devices
US8344425B2 (en) * 2009-12-30 2013-01-01 Intel Corporation Multi-gate III-V quantum well structures
US20120161105A1 (en) * 2010-12-22 2012-06-28 Willy Rachmady Uniaxially strained quantum well device and method of making same
US9246004B2 (en) 2011-11-15 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structures of semiconductor devices
KR20140097569A (en) * 2012-07-09 2014-08-06 도호쿠 다이가쿠 Mosfet having 3d-structure and manufacturing method for same
US8896101B2 (en) 2012-12-21 2014-11-25 Intel Corporation Nonplanar III-N transistors with compositionally graded semiconductor channels
US9159824B2 (en) 2013-02-27 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9087902B2 (en) 2013-02-27 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9385234B2 (en) 2013-02-27 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9214555B2 (en) * 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US8963258B2 (en) 2013-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company FinFET with bottom SiGe layer in source/drain
KR102017625B1 (en) * 2013-05-10 2019-10-22 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US9178045B2 (en) * 2013-09-27 2015-11-03 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETS and methods of forming the same
KR101515071B1 (en) * 2013-11-29 2015-04-24 가천대학교 산학협력단 Silicon-compatible germanium-based transistor with high-hole-mobility
US9263522B2 (en) * 2013-12-09 2016-02-16 Qualcomm Incorporated Transistor with a diffusion barrier
KR102274734B1 (en) * 2014-01-23 2021-07-07 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR102190477B1 (en) * 2014-04-25 2020-12-14 삼성전자주식회사 Semiconductor device and method for fabricating the same
KR101668442B1 (en) * 2015-02-17 2016-10-21 경북대학교 산학협력단 Manufacturing method for semiconductor device
KR102326112B1 (en) 2015-03-30 2021-11-15 삼성전자주식회사 A semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255973B2 (en) * 1991-08-02 2002-02-12 株式会社日立製作所 Semiconductor device
US6417525B1 (en) * 1997-03-19 2002-07-09 Sharp Kabushiki Kaisha Semiconductor light emitter with current block region formed over the semiconductor layer and electrode connection portion for connecting the pad electrode to the translucent electrode
JP2005051241A (en) * 2003-07-25 2005-02-24 Interuniv Micro Electronica Centrum Vzw Multilayer gate semiconductor device and manufacturing method therefor
US20080001173A1 (en) * 2006-06-23 2008-01-03 International Business Machines Corporation BURIED CHANNEL MOSFET USING III-V COMPOUND SEMICONDUCTORS AND HIGH k GATE DIELECTRICS
EP1936696A1 (en) * 2006-12-22 2008-06-25 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) A field effect transistor device and methods of production thereof
JP2009105163A (en) * 2007-10-22 2009-05-14 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
TWI451552B (en) 2014-09-01
JP2011103434A (en) 2011-05-26
KR101218735B1 (en) 2013-01-18
KR20110052432A (en) 2011-05-18
JP5328722B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
TW201117342A (en) Integrated circuit structures
US9673302B2 (en) Conversion of strain-inducing buffer to electrical insulator
US9911829B2 (en) FinFET with bottom SiGe layer in source/drain
TWI419324B (en) Semiconductor device with group iii-v channel and group iv source-drain and method for manufacturing the same
TWI312544B (en) Semiconductor device, cmos device and p-type semiconductor device
JP5058277B2 (en) Semiconductor device and manufacturing method thereof
US8816391B2 (en) Source/drain engineering of devices with high-mobility channels
US8802531B2 (en) Split-channel transistor and methods for forming the same
TWI623042B (en) Quantum-well-based semiconductor devices and method of forming the same
TWI617026B (en) A semiconductor device and a method of fabricating a semiconductor device
WO2014059812A1 (en) Method for manufacturing stacked nano-wire mos transistor
TW201039442A (en) Integrated circuit structure
TW201133793A (en) Integrated circuit structure
CN104517847B (en) Nodeless mesh body pipe and forming method thereof
US20130069126A1 (en) Germanium-based nmos device and method for fabricating the same
TWI652725B (en) Post gate silicon germanium channel condensation and method for producing the same
US9281398B2 (en) Semiconductor structure and method for manufacturing the same
JP2014135499A (en) High-quality hetero-epitaxy using nano-scale epitaxy technology
CN107039514A (en) III V races nanowire tunneling FET method and structure
CN106549054A (en) FET and preparation method thereof
CN102738155B (en) The two polycrystalline BiCMOS integrated device of a kind of mixing crystal face and preparation method
US20210134995A1 (en) Vertical channel device
CN102738172B (en) A kind of two polyplanar SOI BiCMOS integrated device and preparation method
CN106549055A (en) FET and preparation method thereof
CN102820307B (en) Double poly-crystal plane strain BiCMOS integrated device based on SOI (Silicon On Insulator) substrate and preparation method