JP2009105163A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009105163A
JP2009105163A JP2007274302A JP2007274302A JP2009105163A JP 2009105163 A JP2009105163 A JP 2009105163A JP 2007274302 A JP2007274302 A JP 2007274302A JP 2007274302 A JP2007274302 A JP 2007274302A JP 2009105163 A JP2009105163 A JP 2009105163A
Authority
JP
Japan
Prior art keywords
semiconductor layer
crystal
semiconductor
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007274302A
Other languages
Japanese (ja)
Inventor
Naoki Kusunoki
直樹 楠
Nobuaki Yasutake
信昭 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007274302A priority Critical patent/JP2009105163A/en
Publication of JP2009105163A publication Critical patent/JP2009105163A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having high carrier mobility in a channel region. <P>SOLUTION: The semiconductor device 1 is provided with a semiconductor substrate 2, a semiconductor layer 3 which is formed on the semiconductor substrate and is formed of first crystal whose inner carrier mobility is higher than a Si crystal, a gate insulting film 4 formed on the semiconductor layer, a gate electrode formed on the gate insulating film and source/drain regions which are formed by sandwiching the semiconductor layer, include second crystal giving distortion to the semiconductor layer in a direction where carrier mobility in the semiconductor layer rises and have source/drain extension regions being shallow regions which are brought into contact with the semiconductor layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

従来の半導体装置として、n型トランジスタのチャネル領域を挟む位置に、Si結晶よりも格子定数の小さいSiC結晶をエピタキシャル成長させることにより、チャネル領域に引張応力を加えて歪みを生じさせた半導体装置がある(例えば、特許文献1参照)。この特許文献1に記載の半導体装置によれば、チャネル領域を構成するSi結晶に引張歪みを生じさせることにより、チャネル領域中の電子の移動度を向上させ、n型トランジスタの動作速度を向上させることができる。   As a conventional semiconductor device, there is a semiconductor device in which strain is generated by applying tensile stress to the channel region by epitaxially growing a SiC crystal having a lattice constant smaller than that of the Si crystal at a position sandwiching the channel region of the n-type transistor. (For example, refer to Patent Document 1). According to the semiconductor device described in Patent Document 1, tensile strain is generated in the Si crystal constituting the channel region, thereby improving the mobility of electrons in the channel region and improving the operation speed of the n-type transistor. be able to.

また、従来の他の半導体装置として、内部の電子の移動度がSi結晶よりも大きいGe結晶をチャネル領域に使用する技術が知られている(例えば、非特許文献1参照)。
米国特許第6621131号明細書 S. Takagi et al., SSDM, p. 1056-1057 (2006).
As another conventional semiconductor device, a technique is known in which a Ge crystal whose internal electron mobility is larger than that of a Si crystal is used for a channel region (see, for example, Non-Patent Document 1).
US Pat. No. 6,621,131 S. Takagi et al., SSDM, p. 1056-1057 (2006).

本発明の目的は、チャネル領域における高いキャリア移動度を有する半導体装置を提供することにある。   An object of the present invention is to provide a semiconductor device having high carrier mobility in a channel region.

本発明の一態様は、半導体基板と、前記半導体基板上に形成され、内部におけるキャリアの移動度がSi結晶よりも大きい第1の結晶からなる半導体層と、前記半導体層上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記半導体層を挟んで形成され、前記半導体層に前記半導体層内のキャリアの移動度が上昇する方向に歪みを与える第2の結晶を含み、前記半導体層に接する深さの浅い領域であるソース・ドレインエクステンション領域を有するソース・ドレイン領域と、を有することを特徴とする半導体装置を提供する。   One embodiment of the present invention is a semiconductor substrate, a semiconductor layer formed over the semiconductor substrate and including a first crystal in which carrier mobility inside the Si crystal is larger than that of a Si crystal, and a gate formed over the semiconductor layer An insulating film, a gate electrode formed on the gate insulating film, and the semiconductor layer are sandwiched therebetween, and a second strain is applied to the semiconductor layer in a direction in which the mobility of carriers in the semiconductor layer increases. And a source / drain region having a source / drain extension region which is a shallow region in contact with the semiconductor layer.

本発明によれば、チャネル領域における高いキャリア移動度を有する半導体装置を提供することができる。   According to the present invention, a semiconductor device having high carrier mobility in a channel region can be provided.

〔第1の実施の形態〕
(半導体装置の構成)
図1は、本発明の第1の実施の形態に係る半導体装置の断面図である。半導体装置1は、半導体基板2と、半導体基板2上に形成された半導体層3と、半導体層3上に形成されたゲート絶縁膜4と、ゲート絶縁膜4上に形成されたゲート電極5と、ゲート電極5の側面に形成されたオフセットスペーサ6およびゲート側壁8と、半導体層3を挟んで形成されたエクステンション領域7eを含むエピタキシャル層7と、半導体基板2内に形成された素子分離領域10と、を有して概略構成される。
[First Embodiment]
(Configuration of semiconductor device)
FIG. 1 is a cross-sectional view of a semiconductor device according to the first embodiment of the present invention. The semiconductor device 1 includes a semiconductor substrate 2, a semiconductor layer 3 formed on the semiconductor substrate 2, a gate insulating film 4 formed on the semiconductor layer 3, and a gate electrode 5 formed on the gate insulating film 4. The offset spacer 6 and the gate sidewall 8 formed on the side surface of the gate electrode 5, the epitaxial layer 7 including the extension region 7 e formed with the semiconductor layer 3 interposed therebetween, and the element isolation region 10 formed in the semiconductor substrate 2. And is schematically configured.

半導体基板2は、例えば、Si基板が用いられる。   For example, a Si substrate is used as the semiconductor substrate 2.

半導体層3は、SiGe、Ge、GaAs、InP、InAs、InSb等の、内部におけるキャリアの移動度がSi結晶よりも大きい結晶からなる。なお、半導体層3がSiGe結晶からなる場合は、Ge濃度が10〜30原子%であることが好ましい。SiGe結晶のGe濃度が10原子%未満の場合は、キャリアの移動度が効果的に上昇せず、30原子%を超える場合は、隣接する結晶等に結晶欠陥を発生させ、リーク電流の原因となるおそれがある。   The semiconductor layer 3 is made of a crystal such as SiGe, Ge, GaAs, InP, InAs, InSb, or the like, in which the carrier mobility inside is larger than that of the Si crystal. When the semiconductor layer 3 is made of SiGe crystal, the Ge concentration is preferably 10 to 30 atomic%. When the Ge concentration of the SiGe crystal is less than 10 atomic%, the carrier mobility does not increase effectively, and when it exceeds 30 atomic%, a crystal defect is generated in an adjacent crystal or the like, causing a leakage current. There is a risk.

また、半導体層3は、半導体装置1の動作時に発生する反転層の厚さ以下の厚さを有することが好ましい。半導体層3を反転層よりも厚くしても、キャリアは反転層よりも厚い領域は移動せず、半導体装置1の動作速度はほとんど変わらないためである。また、半導体層3が、半導体基板2から受ける応力により内部におけるキャリアの移動度が低下する方向に歪みが生じる結晶である場合は、半導体層3を厚くするほどこの歪みが大きくなってキャリアの移動度が低下するためである。なお、反転層の厚さは、例えば2〜3nmである。   The semiconductor layer 3 preferably has a thickness equal to or less than the thickness of the inversion layer generated during the operation of the semiconductor device 1. This is because even if the semiconductor layer 3 is thicker than the inversion layer, the carrier does not move in a region thicker than the inversion layer, and the operation speed of the semiconductor device 1 hardly changes. Further, when the semiconductor layer 3 is a crystal that is distorted in the direction in which the carrier mobility in the interior decreases due to the stress received from the semiconductor substrate 2, the thickness of the semiconductor layer 3 increases as the semiconductor layer 3 increases in thickness. This is because the degree decreases. Note that the thickness of the inversion layer is, for example, 2 to 3 nm.

ゲート絶縁膜4は、例えば、SiO、SiN、SiONや、高誘電材料(例えば、HfSiON、HfSiO、HfO等のHf系材料、ZrSiON、ZrSiO、ZrO等のZr系材料、Y等のY系材料)からなる。 The gate insulating film 4 is made of, for example, SiO 2 , SiN, SiON, high dielectric material (for example, Hf-based material such as HfSiON, HfSiO, HfO, Zr-based material such as ZrSiON, ZrSiO, ZrO, Y 2 O 3, etc. Y-based material).

ゲート電極5は、例えば、導電型不純物を含む多結晶Siまたは多結晶SiGeからなる。ゲート電極5に含まれる導電型不純物には、p型トランジスタの場合はB、BF等のp型不純物イオン、n型トランジスタの場合はAs、P等のn型不純物イオンが用いられる。また、ゲート電極4は、W、Ta、Ti、Hf、Zr、Ru、Pt、Ir、Mo、Al等やこれらの化合物等からなるメタルゲート電極であってもよい。また、メタルゲート電極と多結晶Si系電極を積層した構造であってもよい。また、ゲート電極5の上面にシリサイド層が形成されてもよい。 The gate electrode 5 is made of, for example, polycrystalline Si or polycrystalline SiGe containing a conductive impurity. As the conductive impurities contained in the gate electrode 5, p-type impurity ions such as B and BF 2 are used in the case of a p-type transistor, and n-type impurity ions such as As and P are used in the case of an n-type transistor. Further, the gate electrode 4 may be a metal gate electrode made of W, Ta, Ti, Hf, Zr, Ru, Pt, Ir, Mo, Al or the like or a compound thereof. Moreover, the structure which laminated | stacked the metal gate electrode and the polycrystal Si type | system | group electrode may be sufficient. A silicide layer may be formed on the upper surface of the gate electrode 5.

オフセットスペーサ6は、例えば、SiO、SiN等からなる。 The offset spacer 6 is made of, for example, SiO 2 or SiN.

ゲート側壁8は、例えばSiNからなる単層構造や、SiN、SiO、TEOS(Tetraethoxysilane)等の複数種の絶縁材料からなる2層構造、更には3層以上の構造であってもよい。 The gate sidewall 8 may have a single-layer structure made of, for example, SiN, a two-layer structure made of a plurality of kinds of insulating materials such as SiN, SiO 2 , TEOS (Tetraethoxysilane), or a structure having three or more layers.

エピタキシャル層7およびそのエクステンション領域7eは、p型トランジスタの場合は、半導体基板2を構成する結晶よりも大きい格子定数を有する結晶をエピタキシャル成長させることにより形成する。例えば、半導体基板2がSi結晶からなる場合は、SiGe結晶等をエピタキシャル成長させる。一方、n型トランジスタの場合は、半導体基板2を構成する結晶よりも小さい格子定数を有する結晶をエピタキシャル成長させることにより形成する。例えば、半導体基板2がSi結晶からなる場合は、SiC結晶等をエピタキシャル成長させる。   In the case of a p-type transistor, the epitaxial layer 7 and its extension region 7e are formed by epitaxially growing a crystal having a lattice constant larger than that of the crystal constituting the semiconductor substrate 2. For example, when the semiconductor substrate 2 is made of Si crystal, SiGe crystal or the like is epitaxially grown. On the other hand, the n-type transistor is formed by epitaxially growing a crystal having a lattice constant smaller than that of the crystal constituting the semiconductor substrate 2. For example, when the semiconductor substrate 2 is made of Si crystal, SiC crystal or the like is epitaxially grown.

ここで、エピタキシャル層7およびエクステンション領域7eが半導体基板2を構成する結晶よりも大きい格子定数を有する結晶からなる場合は、エピタキシャル層7およびエクステンション領域7eがチャネル領域として働く半導体層3に圧縮歪みを与えて、半導体層3の内部の正孔の移動度を向上させることができる。一方、エピタキシャル層7およびエクステンション領域7eが半導体基板2を構成する結晶よりも小さい格子定数を有する結晶からなる場合は、エピタキシャル層7およびエクステンション領域7eがチャネル領域として働く半導体層3に引張歪みを与えて、半導体層3における電子の移動度を向上させることができる。   Here, when the epitaxial layer 7 and the extension region 7e are made of a crystal having a larger lattice constant than the crystal constituting the semiconductor substrate 2, the epitaxial layer 7 and the extension region 7e cause compressive strain on the semiconductor layer 3 that functions as a channel region. Thus, the mobility of holes inside the semiconductor layer 3 can be improved. On the other hand, when the epitaxial layer 7 and the extension region 7e are made of a crystal having a lattice constant smaller than that of the crystal constituting the semiconductor substrate 2, the epitaxial layer 7 and the extension region 7e give tensile strain to the semiconductor layer 3 serving as a channel region. Thus, the mobility of electrons in the semiconductor layer 3 can be improved.

なお、エピタキシャル層7およびエクステンション領域7eに用いられるSiGe結晶のGe濃度は10〜30原子%、SiC結晶のC濃度は1〜3原子%であることが好ましい。SiGe結晶のGe濃度が10原子%未満の場合は、半導体層3に与える歪みが不十分となり、30原子%を超える場合は、隣接する結晶等に結晶欠陥を発生させ、リーク電流の原因となるおそれがある。また、同様に、SiC結晶のC濃度が1原子%未満の場合は、半導体層3に与える歪みが不十分となり、3原子%を超える場合は、隣接する結晶等に結晶欠陥を発生させ、リーク電流の原因となるおそれがある。   The Ge concentration of the SiGe crystal used for the epitaxial layer 7 and the extension region 7e is preferably 10 to 30 atomic%, and the C concentration of the SiC crystal is preferably 1 to 3 atomic%. When the Ge concentration of the SiGe crystal is less than 10 atomic%, the strain applied to the semiconductor layer 3 is insufficient, and when it exceeds 30 atomic%, a crystal defect is generated in an adjacent crystal or the like, causing a leakage current. There is a fear. Similarly, when the C concentration of the SiC crystal is less than 1 atomic%, the strain applied to the semiconductor layer 3 is insufficient, and when it exceeds 3 atomic%, a crystal defect is generated in an adjacent crystal or the like, causing leakage. May cause current.

また、エピタキシャル層7およびエクステンション領域7eは、導電型不純物を含み、ソース・ドレイン領域およびソース・ドレインエクステンション領域として機能する。エピタキシャル層7およびエクステンション領域7eに含まれる導電型不純物には、p型トランジスタの場合はB、BF等のp型不純物イオン、n型トランジスタの場合はAs、P等のn型不純物イオンが用いられる。また、エピタキシャル層7の上面にシリサイド層が形成されてもよい。 The epitaxial layer 7 and the extension region 7e contain a conductive impurity and function as a source / drain region and a source / drain extension region. As the conductive impurities contained in the epitaxial layer 7 and the extension region 7e, p-type impurity ions such as B and BF 2 are used for p-type transistors, and n-type impurity ions such as As and P are used for n-type transistors. It is done. A silicide layer may be formed on the upper surface of the epitaxial layer 7.

また、エピタキシャル層7から半導体層3へ効果的に応力が加わるようにするためには、エクステンション領域7eの下端が半導体層3の下端よりも深い位置にあることが好ましい。   In order to effectively apply stress from the epitaxial layer 7 to the semiconductor layer 3, the lower end of the extension region 7 e is preferably deeper than the lower end of the semiconductor layer 3.

また、エピタキシャル層7をエクステンション領域7eとそれ以外の深い領域の二段構造とする、すなわちソース・ドレイン領域のエクステンション領域とそれ以外の深い領域(ディープ領域)の両方にエピタキシャル結晶を含めることにより、ソース・ドレイン領域のディープ領域のみをエピタキシャル結晶で形成する場合と比較して、半導体層3により効果的に応力を加えることができる。   Further, the epitaxial layer 7 has a two-stage structure of the extension region 7e and the other deep region, that is, by including an epitaxial crystal in both the extension region of the source / drain region and the other deep region (deep region), Compared with the case where only the deep regions of the source / drain regions are formed by epitaxial crystals, stress can be applied more effectively by the semiconductor layer 3.

さらに、エピタキシャル層をエクステンション領域とそれ以外の深い領域の二段構造とする場合、一般的に、エクステンション領域の幅、深さ等を調節することにより、エピタキシャル層から半導体基板のゲート電極下の領域に加わる応力の大きさを変えることができる。   Furthermore, when the epitaxial layer has a two-stage structure of an extension region and a deep region other than that, generally, the region under the gate electrode of the semiconductor substrate is adjusted from the epitaxial layer by adjusting the width, depth, etc. of the extension region. The magnitude of the stress applied to can be changed.

図2(a)、(b)は、参考例としての、半導体層3を有さない半導体装置1と等しい半導体装置100における、エクステンション領域7eの幅、深さとエピタキシャル層7から半導体基板2のゲート電極5下の領域に加わる応力の大きさの関係を概略的に示す図およびグラフである。   2A and 2B show, as a reference example, the width and depth of the extension region 7e and the gate of the semiconductor substrate 2 from the epitaxial layer 7 in the semiconductor device 100 equal to the semiconductor device 1 that does not have the semiconductor layer 3. It is the figure and graph which show roughly the relationship of the magnitude | size of the stress added to the area | region under the electrode 5. FIG.

図2(a)に示すように、エクステンション領域7eのチャネル方向の幅をX、エクステンション領域7eの半導体基板2とゲート絶縁膜4との界面からの深さをYとする。   As shown in FIG. 2A, the width of the extension region 7e in the channel direction is X, and the depth of the extension region 7e from the interface between the semiconductor substrate 2 and the gate insulating film 4 is Y.

図2(b)のグラフは、横軸がY、縦軸がエピタキシャル層7から半導体基板2のゲート電極5下の領域に加わる応力の大きさである。この縦軸の応力の大きさは、n型トランジスタの場合は引張応力の大きさ、p型トランジスタの場合は、圧縮応力の大きさを表す。また、図中の2曲線は、それぞれXを異なる所定の値に固定してYを変化させたときの応力の大きさの変化を表している。   In the graph of FIG. 2B, the horizontal axis represents Y, and the vertical axis represents the magnitude of stress applied from the epitaxial layer 7 to the region under the gate electrode 5 of the semiconductor substrate 2. The magnitude of the stress on the vertical axis represents the magnitude of tensile stress in the case of an n-type transistor, and the magnitude of compressive stress in the case of a p-type transistor. In addition, two curves in the figure represent changes in the magnitude of stress when X is fixed at different predetermined values and Y is changed.

図2(b)からわかるように、2曲線にはそれぞれ極大値があり、Xが大きくなるほど、極大値をとるYの値が大きくなる。すなわち、エクステンション領域7eの幅(X)が大きくなるほど、エピタキシャル層7から半導体基板2のゲート電極5下の領域に加わる応力の大きさが最も大きくなるエクステンション領域7eの深さ(Y)が大きくなる。   As can be seen from FIG. 2B, each of the two curves has a maximum value, and as X increases, the value of Y that takes the maximum value increases. That is, as the width (X) of the extension region 7e is increased, the depth (Y) of the extension region 7e at which the magnitude of the stress applied from the epitaxial layer 7 to the region under the gate electrode 5 of the semiconductor substrate 2 is the largest is increased. .

ここで、本実施の形態のように半導体層3が形成された場合の、半導体層3の下端の、半導体層3とゲート絶縁膜4との界面からの深さをYとし、図2(b)中に示す。上述したように、エピタキシャル層7から半導体層3へ効果的に応力が加わるようにするためには、エクステンション領域7eの下端が半導体層3の下端よりも深い位置にあることが好ましいため、YがYよりも大きくなるような構成であることが好ましい。 Here, when the semiconductor layer 3 is formed as in the present embodiment, the depth from the interface between the semiconductor layer 3 and the gate insulating film 4 at the lower end of the semiconductor layer 3 is Y 0, and FIG. Shown in b). As described above, in order to effectively apply stress from the epitaxial layer 7 to the semiconductor layer 3, it is preferable that the lower end of the extension region 7 e is located deeper than the lower end of the semiconductor layer 3. it is preferred Y 0 is larger configuration than.

すなわち、エピタキシャル層7をエクステンション領域7eとそれ以外の深い領域の二段構造とし、エピタキシャル層7から半導体基板2のゲート電極5下の領域に加わる応力の大きさが最も大きくなるエクステンション領域7eの深さ(Y)が、半導体層3の下端の、半導体層3とゲート絶縁膜4との界面からの深さ(Y)よりも大きくなるような構造を形成することが好ましい。 That is, the epitaxial layer 7 has a two-stage structure of the extension region 7e and other deep regions, and the depth of the extension region 7e where the magnitude of the stress applied from the epitaxial layer 7 to the region under the gate electrode 5 of the semiconductor substrate 2 is the largest. It is preferable to form a structure in which the length (Y) is larger than the depth (Y 0 ) from the interface between the semiconductor layer 3 and the gate insulating film 4 at the lower end of the semiconductor layer 3.

素子分離領域10は、例えば、SiO等の絶縁材料からなり、STI(Shallow Trench Isolation)構造を有する。 The element isolation region 10 is made of an insulating material such as SiO 2 and has an STI (Shallow Trench Isolation) structure.

なお、半導体層3と、エクステンション領域7eを含むエピタキシャル層7の好ましい組み合わせは、半導体層3がSiGe結晶等のSi結晶よりも格子定数が大きく、内部のキャリア移動度がSi結晶よりも大きい結晶、エピタキシャル層7がSiC結晶等のSi結晶よりも格子定数が小さい結晶である組み合わせである。   A preferable combination of the semiconductor layer 3 and the epitaxial layer 7 including the extension region 7e is a crystal in which the semiconductor layer 3 has a larger lattice constant than a Si crystal such as a SiGe crystal, and has a larger internal carrier mobility than the Si crystal, The combination is such that the epitaxial layer 7 is a crystal having a lattice constant smaller than that of a Si crystal such as a SiC crystal.

以下に、特に好ましい例である、半導体層3がSiGe結晶、エピタキシャル層7がSiC結晶である場合の、n型トランジスタである半導体装置1についての詳細を以下に述べる。   Details of the semiconductor device 1 that is an n-type transistor when the semiconductor layer 3 is a SiGe crystal and the epitaxial layer 7 is a SiC crystal, which is a particularly preferable example, will be described below.

チャネル領域として働く半導体層3がSiGe結晶である場合、SiGe結晶はSi結晶よりも内部における電子の移動度が大きいため、トランジスタの駆動速度を向上させることができる。   When the semiconductor layer 3 serving as the channel region is a SiGe crystal, the SiGe crystal has higher electron mobility inside than the Si crystal, and thus the driving speed of the transistor can be improved.

しかし、一方、SiGe結晶はSi結晶よりも格子定数が大きいため、Si結晶からなる半導体基板2から応力を受けて圧縮歪みが発生する。圧縮歪みが発生すると、内部の電子の移動度が下がるため、SiGe結晶が本来有していた内部の電子の移動度が大きいという性質が弱まる、または打ち消されるおそれがある。   However, since the SiGe crystal has a larger lattice constant than the Si crystal, compressive strain is generated by receiving stress from the semiconductor substrate 2 made of Si crystal. When compressive strain occurs, the mobility of electrons inside decreases, so that the nature of the mobility of electrons inside the SiGe crystal originally is weakened or may be canceled.

図3(a)は、半導体層3に発生する歪みの大きさと、半導体層3の内部の電子の移動度との関係を概略的に表した模式図である。エピタキシャル層7がSiC結晶である場合、SiC結晶はSiGe結晶よりも格子定数が小さいため、半導体層3に引張歪みを発生させる。半導体層3に発生する引張歪みが大きくなるに伴い、内部の電子の移動度が大きくなるが、移動度の上昇はあるところで飽和する。この電子の移動度が飽和するときの歪みの大きさをδmaxとする。 FIG. 3A is a schematic diagram schematically illustrating the relationship between the magnitude of strain generated in the semiconductor layer 3 and the mobility of electrons inside the semiconductor layer 3. When the epitaxial layer 7 is a SiC crystal, the SiC crystal has a lattice constant smaller than that of the SiGe crystal, so that tensile strain is generated in the semiconductor layer 3. As the tensile strain generated in the semiconductor layer 3 increases, the mobility of electrons inside increases, but the increase in mobility saturates at some point. Let δ max be the magnitude of distortion when the electron mobility is saturated.

図3(b)は、エピタキシャル層7に含まれるCの濃度と、半導体層3に発生する歪みの大きさとの関係を概略的に表した模式図である。図中の直線αが、半導体層3がSiGe結晶である場合の関係を表す。直線βは、半導体層3の代わりにSi結晶を用いた場合の関係を比較例として表したものである。なお、半導体基板2等に結晶欠陥を発生させずに済むエピタキシャル層7のC濃度の限界は、3原子%程度である。直線α、β上のδmaxとなる点のC濃度c、cは、半導体装置1の構成により変化するが、ゲート長が所定の長さよりも短くなる等の場合には、図3(b)に示すように、c、cは3原子%以下になる。また、図3(b)は模式図であり、α、βは直線でなくてもよい。 FIG. 3B is a schematic diagram schematically showing the relationship between the concentration of C contained in the epitaxial layer 7 and the magnitude of strain generated in the semiconductor layer 3. A straight line α in the figure represents the relationship when the semiconductor layer 3 is a SiGe crystal. A straight line β represents a relationship when a Si crystal is used instead of the semiconductor layer 3 as a comparative example. The limit of the C concentration of the epitaxial layer 7 that does not cause crystal defects in the semiconductor substrate 2 or the like is about 3 atomic%. Although the C concentrations c 1 and c 2 at points δ max on the straight lines α and β vary depending on the configuration of the semiconductor device 1, in the case where the gate length becomes shorter than a predetermined length or the like, FIG. As shown in b), c 1 and c 2 are 3 atomic% or less. FIG. 3B is a schematic diagram, and α and β may not be straight lines.

同図の直線βからわかるように、半導体層3の代わりにSi結晶を用いた場合は、エピタキシャル層7のC濃度が3原子%に達する前に、Si結晶内の電子の移動度の上昇が飽和する大きさの歪みδmaxが発生する。一方、上述したように、半導体層3がSiGe結晶である場合は、エピタキシャル層7から応力を受けていない状態において、電子の移動度が低下する圧縮歪みが内部に発生している。しかし、同図の直線αからわかるように、エピタキシャル層7のC濃度を増加させ、エピタキシャル層7から半導体層3に引張応力を加えることにより、半導体層3内の電子の移動度の上昇が飽和する大きさの歪みδmaxを発生させることができる。 As can be seen from the straight line β in the figure, when the Si crystal is used instead of the semiconductor layer 3, the mobility of electrons in the Si crystal increases before the C concentration of the epitaxial layer 7 reaches 3 atomic%. A distortion δ max having a saturation magnitude is generated. On the other hand, as described above, when the semiconductor layer 3 is a SiGe crystal, a compressive strain in which the mobility of electrons is reduced is generated inside the semiconductor layer 3 in a state where no stress is received from the epitaxial layer 7. However, as can be seen from the straight line α in the figure, the increase in the electron mobility in the semiconductor layer 3 is saturated by increasing the C concentration of the epitaxial layer 7 and applying a tensile stress from the epitaxial layer 7 to the semiconductor layer 3. It is possible to generate a distortion δ max having a magnitude of

つまり、半導体層3がSiGe結晶である場合も、半導体層3の代わりにSi結晶を用いた場合も、内部の電子の移動度の上昇が飽和する歪みの大きさδmaxはほぼ等しいため、当初SiGe結晶からなる半導体層3に圧縮応力が発生していたとしても、結局、歪みによる電子の移動度の上昇の効果を同程度に得ることができる。 That is, in both cases where the semiconductor layer 3 is a SiGe crystal and a Si crystal is used instead of the semiconductor layer 3, the magnitude of strain δ max at which the increase in the mobility of electrons inside is saturated is substantially equal. Even if compressive stress is generated in the semiconductor layer 3 made of SiGe crystal, the effect of increasing electron mobility due to strain can be obtained to the same extent.

また、上述したように、元来(歪みが発生していない状態において)SiGe結晶はSi結晶よりも内部の電子の移動度が大きい。このため、歪みによる電子の移動度の上昇の効果と併せれば、半導体層3がSiGe結晶である場合は、半導体層3の代わりにSi結晶を用いた場合と比べて、電子の移動度をより大きくすることができる。   Moreover, as described above, the SiGe crystal originally has a higher electron mobility than the Si crystal (in a state where no distortion is generated). For this reason, when combined with the effect of increasing electron mobility due to strain, the semiconductor mobility is higher when the semiconductor layer 3 is a SiGe crystal than when a Si crystal is used instead of the semiconductor layer 3. Can be larger.

以下に、本実施の形態に係る半導体装置1の製造方法の一例を示す。   Below, an example of the manufacturing method of the semiconductor device 1 which concerns on this Embodiment is shown.

(半導体装置の製造)
図4A(a)〜(c)、図4B(d)〜(f)、図4C(g)〜(h)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。
(Manufacture of semiconductor devices)
4A (a) to 4 (c), 4B (d) to (f), and 4C (g) to (h) are cross-sectional views showing the manufacturing steps of the semiconductor device according to the first embodiment of the present invention. FIG.

まず、図4A(a)に示すように、半導体基板2内に素子分離領域10を形成し、半導体基板2上に半導体膜11、ゲート絶縁膜4、ゲート電極5およびキャップ膜12を形成する。   First, as shown in FIG. 4A (a), the element isolation region 10 is formed in the semiconductor substrate 2, and the semiconductor film 11, the gate insulating film 4, the gate electrode 5, and the cap film 12 are formed on the semiconductor substrate 2.

ここで、半導体膜11は、エピタキシャル成長法等により形成される。また、半導体膜11には導電型不純物が注入されるが、エピタキシャル成長時にインサイチュで注入されてもよいし、エピタキシャル成長後にイオン注入法等により注入されてもよい。ここで、半導体膜11に注入される導電型不純物は、p型トランジスタを形成する場合は、B、BF等のp型不純物イオンを用い、n型トランジスタを形成する場合は、As、P等のn型不純物イオンを用いる。その後、RTA(Rapid Thermal Annealing)等の熱処理を行い、注入した導電型不純物を活性化させる。 Here, the semiconductor film 11 is formed by an epitaxial growth method or the like. Moreover, although the conductivity type impurity is implanted into the semiconductor film 11, it may be implanted in situ at the time of epitaxial growth, or may be implanted by an ion implantation method or the like after the epitaxial growth. Here, the conductive impurities implanted into the semiconductor film 11 use p-type impurity ions such as B and BF 2 when forming a p-type transistor, and As and P when forming an n-type transistor. N-type impurity ions are used. Thereafter, heat treatment such as RTA (Rapid Thermal Annealing) is performed to activate the implanted conductive impurities.

また、ゲート絶縁膜4、ゲート電極5およびキャップ膜12は、それぞれの材料膜をCVD法等により半導体膜11上に積層した後、これらの材料膜を、例えば、フォトリソグラフィー法とRIE(Reactive Ion Etching)法によりパターニングすることにより形成される。   The gate insulating film 4, the gate electrode 5, and the cap film 12 are formed by laminating the respective material films on the semiconductor film 11 by the CVD method or the like, and then, for example, photolithography and RIE (Reactive Ion). Etching) is performed by patterning.

なお、半導体膜11、ゲート絶縁膜4、ゲート電極5およびキャップ膜12を形成する前に、半導体膜11に注入する導電型不純物と異なる導電型の不純物をイオン注入法により半導体基板2に注入し、ウェル(図示しない)を形成してもよい。その後、RTA等の熱処理を行い、注入した導電型不純物を活性化させる。   Before forming the semiconductor film 11, the gate insulating film 4, the gate electrode 5, and the cap film 12, an impurity having a conductivity type different from that implanted into the semiconductor film 11 is implanted into the semiconductor substrate 2 by an ion implantation method. Wells (not shown) may be formed. Thereafter, heat treatment such as RTA is performed to activate the implanted conductivity type impurities.

次に、図4A(b)に示すように、ゲート絶縁膜4、ゲート電極5およびキャップ膜12の側面にオフセットスペーサ6を形成する。   Next, as shown in FIG. 4A (b), offset spacers 6 are formed on the side surfaces of the gate insulating film 4, the gate electrode 5, and the cap film 12.

ここで、オフセットスペーサ6は、オフセットスペーサ6の材料膜をCVD法等により半導体基板2、ゲート絶縁膜4、ゲート電極5およびキャップ膜12の表面を覆うように形成した後、これをRIE法等によりエッチング加工することにより形成する。   Here, the offset spacer 6 is formed by covering the surface of the semiconductor substrate 2, the gate insulating film 4, the gate electrode 5 and the cap film 12 with the material film of the offset spacer 6 by the CVD method or the like, and then forming the material film by the RIE method or the like. It is formed by etching.

次に、図4A(c)に示すように、オフセットスペーサ6およびキャップ膜12をマスクとして用いて、RIE法等により半導体膜11をエッチングし、半導体層3に加工する。   Next, as shown in FIG. 4A (c), using the offset spacer 6 and the cap film 12 as a mask, the semiconductor film 11 is etched by the RIE method or the like to be processed into the semiconductor layer 3.

次に、図4B(d)に示すように、オフセットスペーサ6およびキャップ膜12をマスクとして用いて、RIE法等により半導体基板2上面をエッチングし、溝13を形成する。なお、図4A(c)に示した半導体層3の加工と、図4B(d)に示した溝13の形成は、RIE法等により連続的に行うことができる。   Next, as shown in FIG. 4B (d), the upper surface of the semiconductor substrate 2 is etched by the RIE method or the like using the offset spacer 6 and the cap film 12 as a mask to form a groove 13. Note that the processing of the semiconductor layer 3 shown in FIG. 4A (c) and the formation of the groove 13 shown in FIG. 4B (d) can be performed continuously by the RIE method or the like.

次に、図4B(e)に示すように、オフセットスペーサ6および半導体層3の側面、および半導体基板2の溝13の内側面に相当する部分上にダミー側壁14を形成する。   Next, as shown in FIG. 4B (e), dummy sidewalls 14 are formed on portions corresponding to the side surfaces of the offset spacer 6 and the semiconductor layer 3 and the inner surface of the groove 13 of the semiconductor substrate 2.

ここで、ダミー側壁14は、ダミー側壁14の材料膜をCVD法等により半導体基板2、オフセットスペーサ6、およびキャップ膜12の表面を覆うように形成した後、これをRIE法等によりエッチング加工することにより形成する。   Here, the dummy sidewall 14 is formed by covering the surfaces of the semiconductor substrate 2, the offset spacer 6 and the cap film 12 with the material film of the dummy sidewall 14 by the CVD method or the like, and then etching it by the RIE method or the like. To form.

次に、図4B(f)に示すように、ダミー側壁14およびキャップ膜12をマスクとして用いて、RIE法等により半導体基板2上面をエッチングし、溝13の一部をより深くする。   Next, as shown in FIG. 4B (f), the upper surface of the semiconductor substrate 2 is etched by the RIE method or the like using the dummy side wall 14 and the cap film 12 as a mask to make a part of the groove 13 deeper.

次に、図4C(g)に示すように、ダミー側壁14を除去した後、半導体基板2の溝13により露出した表面を下地として導電型不純物を含んだ結晶であるエピタキシャル層7をエピタキシャル成長させる。ここで、エピタキシャル層7は、半導体層3の側面に接する高さまで成長させる。   Next, as shown in FIG. 4C (g), after removing the dummy side wall 14, the epitaxial layer 7 which is a crystal containing a conductive impurity is epitaxially grown on the surface exposed by the groove 13 of the semiconductor substrate 2 as a base. Here, the epitaxial layer 7 is grown to a height in contact with the side surface of the semiconductor layer 3.

ここで、p型トランジスタを形成する場合、例えば、Siの原料としてモノシラン(SiH)またはジクロロシラン(SiHCl)、Geの原料として水素化ゲルマニウム(GeH)、Bの原料としてジボラン(B)を用いて、水素ガス等の雰囲気中で700〜850℃の温度条件下でBを含んだSiGe結晶を気相エピタキシャル成長させ、p型のエピタキシャル層7を形成する。 Here, when forming a p-type transistor, for example, monosilane (SiH 4 ) or dichlorosilane (SiH 2 Cl 2 ) as a Si source, germanium hydride (GeH 4 ) as a Ge source, and diborane (B) as a B source. Using B 2 H 6 ), a SiGe crystal containing B is vapor-phase epitaxially grown at 700 to 850 ° C. in an atmosphere of hydrogen gas or the like to form a p-type epitaxial layer 7.

一方、n型トランジスタを形成する場合、例えば、Siの原料としてモノシラン(SiH)またはジクロロシラン(SiHCl)、Cの原料としてアセチレン(C)、Asの原料としてアルシン(AsH)を用いて、水素ガス等の雰囲気中で700〜850℃の温度条件下でAsを含んだSiC結晶を気相エピタキシャル成長させ、n型のエピタキシャル層7を形成する。 On the other hand, when forming an n-type transistor, for example, monosilane (SiH 4 ) or dichlorosilane (SiH 2 Cl 2 ) as a Si source, acetylene (C 2 H 2 ) as a C source, and arsine (AsH) as an As source. 3 ), an SiC crystal containing As is vapor-phase epitaxially grown under a temperature condition of 700 to 850 ° C. in an atmosphere of hydrogen gas or the like to form an n-type epitaxial layer 7.

なお、導電型不純物を含まないエピタキシャル層7をエピタキシャル成長させた後、イオン注入法等により導電型不純物を注入してもよい。   In addition, after epitaxially growing the epitaxial layer 7 containing no conductive impurities, the conductive impurities may be implanted by an ion implantation method or the like.

次に、図4C(h)に示すように、キャップ層12を除去し、オフセットスペーサ6の側面にゲート側壁8を形成する。   Next, as shown in FIG. 4C (h), the cap layer 12 is removed, and the gate sidewall 8 is formed on the side surface of the offset spacer 6.

ここで、キャップ層12は、リン酸を用いたウェットエッチング等により除去される。なお、このときに、オフセットスペーサ6が同時に除去されてもよい。この場合、ゲート側壁8はゲート電極5の側面に形成される。   Here, the cap layer 12 is removed by wet etching or the like using phosphoric acid. At this time, the offset spacer 6 may be removed at the same time. In this case, the gate sidewall 8 is formed on the side surface of the gate electrode 5.

また、ゲート側壁8は、ゲート側壁8の材料膜をエピタキシャル層7、オフセットスペーサ6およびキャップ層12の表面を覆うように堆積させた後、これをRIE法等によりエッチング加工することにより形成する。   Further, the gate sidewall 8 is formed by depositing the material film of the gate sidewall 8 so as to cover the surfaces of the epitaxial layer 7, the offset spacer 6 and the cap layer 12, and then etching this by the RIE method or the like.

(第1の実施の形態の効果)
本発明の第1の実施の形態によれば、Si結晶よりも内部におけるキャリア移動度が大きい半導体層3と、半導体層3に内部のキャリア移動度が上昇する方向の歪みを与えるエピタキシャル層7を組み合わせて用いることにより、半導体層3が半導体基板2から受ける歪みによる内部のキャリア移動度が低下する効果を打ち消し、大きなキャリア移動度を得ることができる。これにより、半導体装置1の駆動速度を向上させることができる。
(Effects of the first embodiment)
According to the first embodiment of the present invention, the semiconductor layer 3 having higher carrier mobility inside than the Si crystal, and the epitaxial layer 7 that imparts strain to the semiconductor layer 3 in the direction in which the internal carrier mobility increases are provided. By using in combination, it is possible to cancel the effect of reducing the internal carrier mobility due to the strain that the semiconductor layer 3 receives from the semiconductor substrate 2 and to obtain a large carrier mobility. Thereby, the drive speed of the semiconductor device 1 can be improved.

〔第2の実施の形態〕
本発明の第2の実施の形態は、第1の実施の形態における半導体層3に対応する第1の半導体層15とゲート絶縁膜4の間に第2の半導体層が形成される点において第1の実施の形態と異なる。なお、他の部材の構成や製造工程等、第1の実施の形態と同様の点については、簡単のために説明を省略する。
[Second Embodiment]
The second embodiment of the present invention is different in that a second semiconductor layer is formed between the first semiconductor layer 15 corresponding to the semiconductor layer 3 in the first embodiment and the gate insulating film 4. Different from the first embodiment. In addition, about the point similar to 1st Embodiment, such as a structure of another member and a manufacturing process, description is abbreviate | omitted for simplicity.

(半導体装置の構成)
図5は、本発明の第2の実施の形態に係る半導体装置の断面図である。
(Configuration of semiconductor device)
FIG. 5 is a sectional view of a semiconductor device according to the second embodiment of the present invention.

第1の半導体層15は、第1の実施の形態における半導体層3と同様の材料からなり、半導体層3と同様にチャネル領域として働く。   The first semiconductor layer 15 is made of the same material as that of the semiconductor layer 3 in the first embodiment, and functions as a channel region like the semiconductor layer 3.

第2の半導体層16は、Si結晶等の半導体層3よりも内部のキャリア移動度が小さい材料からなる。また、第2の半導体層16は、第1の半導体層15とゲート絶縁膜4の間に形成される。   The second semiconductor layer 16 is made of a material having lower internal carrier mobility than the semiconductor layer 3 such as Si crystal. The second semiconductor layer 16 is formed between the first semiconductor layer 15 and the gate insulating film 4.

なお、第2の半導体層16の厚さは2nm以下であることが好ましい。第2の半導体層16の厚さが2nmを超えると、チャネル領域の第2の半導体層16内に形成される割合が大きくなりすぎるためである。   Note that the thickness of the second semiconductor layer 16 is preferably 2 nm or less. This is because if the thickness of the second semiconductor layer 16 exceeds 2 nm, the ratio of the channel region formed in the second semiconductor layer 16 becomes too large.

また、第1の半導体層15の厚さと第2の半導体層16の厚さの合計は、半導体装置1の動作時に発生する反転層の厚さ以下であることが好ましい。第1の半導体層15の厚さと第2の半導体層16の厚さの合計が反転層の厚さよりも厚い場合、第1の半導体層15の反転層よりも下方にある領域をキャリアは移動しないため、半導体装置1の動作速度はほとんど変わらないためである。また、第1の半導体層15が、半導体基板2から受ける応力により内部におけるキャリアの移動度が低下する方向に歪みが生じる結晶である場合は、第1の半導体層15を厚くするほどこの歪みが大きくなってキャリアの移動度が低下する。なお、反転層の厚さは、例えば2〜3nmである。   The total thickness of the first semiconductor layer 15 and the second semiconductor layer 16 is preferably equal to or less than the thickness of the inversion layer generated during the operation of the semiconductor device 1. When the sum of the thickness of the first semiconductor layer 15 and the thickness of the second semiconductor layer 16 is thicker than the thickness of the inversion layer, carriers do not move in a region below the inversion layer of the first semiconductor layer 15. Therefore, the operation speed of the semiconductor device 1 is hardly changed. In addition, when the first semiconductor layer 15 is a crystal that is distorted in a direction in which the mobility of carriers in the interior decreases due to the stress received from the semiconductor substrate 2, the distortion increases as the thickness of the first semiconductor layer 15 increases. It becomes larger and the mobility of the carrier decreases. Note that the thickness of the inversion layer is, for example, 2 to 3 nm.

以下に、本実施の形態に係る半導体装置1の製造方法の一例を示す。   Below, an example of the manufacturing method of the semiconductor device 1 which concerns on this Embodiment is shown.

(半導体装置の製造)
図6A(a)〜(c)、図6B(d)〜(f)、図6C(g)〜(h)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図である。
(Manufacture of semiconductor devices)
6A (a) to (c), FIGS. 6B (d) to (f), and FIGS. 6C (g) to (h) are cross sections showing manufacturing steps of the semiconductor device according to the second embodiment of the present invention. FIG.

まず、図6A(a)に示すように、半導体基板2内に素子分離領域10を形成し、半導体基板2上に第1の半導体膜17、第2の半導体膜18、ゲート絶縁膜4、ゲート電極5およびキャップ膜12を形成する。   First, as shown in FIG. 6A (a), an element isolation region 10 is formed in a semiconductor substrate 2, and a first semiconductor film 17, a second semiconductor film 18, a gate insulating film 4, a gate are formed on the semiconductor substrate 2. Electrode 5 and cap film 12 are formed.

ここで、第1の半導体膜17および第2の半導体膜18は、エピタキシャル成長法等により形成される。また、第1の半導体膜17および第2の半導体膜18には導電型不純物が注入されるが、エピタキシャル成長時にインサイチュで注入されてもよいし、エピタキシャル成長後にイオン注入法等により注入されてもよい。ここで、第1の半導体膜17および第2の半導体膜18に注入される導電型不純物は、p型トランジスタを形成する場合は、B、BF等のp型不純物イオンを用い、n型トランジスタを形成する場合は、As、P等のn型不純物イオンを用いる。その後、RTA等の熱処理を行い、注入した導電型不純物を活性化させる。 Here, the first semiconductor film 17 and the second semiconductor film 18 are formed by an epitaxial growth method or the like. The first semiconductor film 17 and the second semiconductor film 18 are implanted with conductive impurities, but may be implanted in situ during epitaxial growth, or may be implanted after the epitaxial growth by an ion implantation method or the like. Here, when forming a p-type transistor, the p-type impurity ions such as B and BF 2 are used as the conductive impurities implanted into the first semiconductor film 17 and the second semiconductor film 18, and the n-type transistor is used. Is used, n-type impurity ions such as As and P are used. Thereafter, heat treatment such as RTA is performed to activate the implanted conductivity type impurities.

また、ゲート絶縁膜4、ゲート電極5およびキャップ膜12は、それぞれの材料膜をCVD法等により半導体膜11上に積層した後、これらの材料膜を、例えば、フォトリソグラフィー法とRIE法によりパターニングすることにより形成される。   The gate insulating film 4, the gate electrode 5, and the cap film 12 are formed by laminating respective material films on the semiconductor film 11 by a CVD method or the like, and then patterning these material films by, for example, a photolithography method and an RIE method. It is formed by doing.

なお、第1の半導体膜17、第2の半導体膜18、ゲート絶縁膜4、ゲート電極5およびキャップ膜12を形成する前に、半導体膜11に注入する導電型不純物と異なる導電型の不純物をイオン注入法により半導体基板2に注入し、ウェル(図示しない)を形成してもよい。その後、RTA等の熱処理を行い、注入した導電型不純物を活性化させる。   Note that before forming the first semiconductor film 17, the second semiconductor film 18, the gate insulating film 4, the gate electrode 5, and the cap film 12, impurities having a conductivity type different from that implanted into the semiconductor film 11 are introduced. A well (not shown) may be formed by implanting into the semiconductor substrate 2 by ion implantation. Thereafter, heat treatment such as RTA is performed to activate the implanted conductivity type impurities.

次に、図6A(b)に示すように、ゲート絶縁膜4、ゲート電極5およびキャップ膜12の側面にオフセットスペーサ6を形成する。   Next, as shown in FIG. 6A (b), offset spacers 6 are formed on the side surfaces of the gate insulating film 4, the gate electrode 5, and the cap film 12.

ここで、オフセットスペーサ6は、オフセットスペーサ6の材料膜をCVD法等により半導体基板2、ゲート絶縁膜4、ゲート電極5およびキャップ膜12の表面を覆うように形成した後、これをRIE法等によりエッチング加工することにより形成する。   Here, the offset spacer 6 is formed by covering the surface of the semiconductor substrate 2, the gate insulating film 4, the gate electrode 5 and the cap film 12 with the material film of the offset spacer 6 by the CVD method or the like, and then forming the material film by the RIE method or the like. It is formed by etching.

次に、図6A(c)に示すように、オフセットスペーサ6およびキャップ膜12をマスクとして用いて、RIE法等により第1の半導体膜17および第2の半導体膜18をエッチングし、第1の半導体層15および第2の半導体層16にそれぞれ加工する。   Next, as shown in FIG. 6A (c), the first semiconductor film 17 and the second semiconductor film 18 are etched by the RIE method or the like using the offset spacer 6 and the cap film 12 as a mask. The semiconductor layer 15 and the second semiconductor layer 16 are processed.

次に、図6B(d)に示すように、オフセットスペーサ6およびキャップ膜12をマスクとして用いて、RIE法等により半導体基板2上面をエッチングし、溝13を形成する。なお、図6A(c)に示した第1の半導体層15および第2の半導体層16の加工と、図6B(d)に示した溝13の形成は、RIE法等により連続的に行うことができる。   Next, as shown in FIG. 6B (d), the upper surface of the semiconductor substrate 2 is etched by the RIE method or the like using the offset spacer 6 and the cap film 12 as a mask to form the grooves 13. Note that the processing of the first semiconductor layer 15 and the second semiconductor layer 16 shown in FIG. 6A (c) and the formation of the groove 13 shown in FIG. 6B (d) are performed continuously by the RIE method or the like. Can do.

次に、図6B(e)に示すように、オフセットスペーサ6、第1の半導体層15および第2の半導体層16の側面、および半導体基板2の溝13の内側面に相当する部分上にダミー側壁14を形成する。   Next, as shown in FIG. 6B (e), the dummy is formed on portions corresponding to the side surfaces of the offset spacer 6, the first semiconductor layer 15 and the second semiconductor layer 16, and the inner side surface of the groove 13 of the semiconductor substrate 2. Sidewall 14 is formed.

ここで、ダミー側壁14は、ダミー側壁14の材料膜をCVD法等により半導体基板2、第1の半導体層15、第2の半導体層16、オフセットスペーサ6およびキャップ膜12の表面を覆うように形成した後、これをRIE法等によりエッチング加工することにより形成する。   Here, the dummy sidewall 14 covers the surface of the semiconductor substrate 2, the first semiconductor layer 15, the second semiconductor layer 16, the offset spacer 6, and the cap film 12 by a CVD method or the like. After the formation, this is formed by etching using the RIE method or the like.

次に、図6B(f)に示すように、ダミー側壁14およびキャップ膜12をマスクとして用いて、RIE法等により半導体基板2上面をエッチングし、溝13の一部をより深くする。   Next, as shown in FIG. 6B (f), the upper surface of the semiconductor substrate 2 is etched by the RIE method or the like using the dummy side wall 14 and the cap film 12 as a mask to make a part of the groove 13 deeper.

次に、図6C(g)に示すように、ダミー側壁14を除去した後、半導体基板2の溝13により露出した表面を下地として導電型不純物を含んだ結晶であるエピタキシャル層7をエピタキシャル成長させる。ここで、エピタキシャル層7は、第1の半導体層15および第2の半導体層16の側面に接する高さまで成長させる。   Next, as shown in FIG. 6C (g), after removing the dummy side wall 14, the epitaxial layer 7 which is a crystal containing conductive impurities is epitaxially grown on the surface exposed by the groove 13 of the semiconductor substrate 2 as a base. Here, the epitaxial layer 7 is grown to a height in contact with the side surfaces of the first semiconductor layer 15 and the second semiconductor layer 16.

次に、図6C(h)に示すように、キャップ層12を除去し、オフセットスペーサ6の側面にゲート側壁8を形成する。   Next, as shown in FIG. 6C (h), the cap layer 12 is removed, and the gate sidewall 8 is formed on the side surface of the offset spacer 6.

ここで、キャップ層12は、リン酸を用いたウェットエッチング等により除去される。なお、このときに、オフセットスペーサ6が同時に除去されてもよい。この場合、ゲート側壁8はゲート電極5の側面に形成される。   Here, the cap layer 12 is removed by wet etching or the like using phosphoric acid. At this time, the offset spacer 6 may be removed at the same time. In this case, the gate sidewall 8 is formed on the side surface of the gate electrode 5.

また、ゲート側壁8は、ゲート側壁8の材料膜をエピタキシャル層7、オフセットスペーサ6およびキャップ層12の表面を覆うように堆積させた後、これをRIE法等によりエッチング加工することにより形成する。   Further, the gate sidewall 8 is formed by depositing the material film of the gate sidewall 8 so as to cover the surfaces of the epitaxial layer 7, the offset spacer 6 and the cap layer 12, and then etching this by the RIE method or the like.

(第2の実施の形態の効果)
本発明の第2の実施の形態によれば、第1の半導体層15とゲート絶縁膜4との間に、第1の半導体層15よりも内部のキャリア移動度が小さい第2の半導体層16を形成することにより、ゲート絶縁膜4と接触しない第2の半導体層16がチャネル領域として働く。このため、チャネル領域とゲート絶縁膜4との界面における表面ラフネスに起因するチャネル領域内のキャリアの散乱を抑え、移動度の低下を抑えることができる。
(Effect of the second embodiment)
According to the second embodiment of the present invention, the second semiconductor layer 16 having lower internal carrier mobility than the first semiconductor layer 15 between the first semiconductor layer 15 and the gate insulating film 4. As a result, the second semiconductor layer 16 not in contact with the gate insulating film 4 serves as a channel region. For this reason, the scattering of carriers in the channel region due to the surface roughness at the interface between the channel region and the gate insulating film 4 can be suppressed, and the decrease in mobility can be suppressed.

〔他の実施の形態〕
本発明は、上記各実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
[Other Embodiments]
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.

また、発明の主旨を逸脱しない範囲内において上記各実施の形態の構成要素を任意に組み合わせることができる。   In addition, the constituent elements of the above embodiments can be arbitrarily combined without departing from the spirit of the invention.

本発明の第1の実施の形態に係る半導体装置の断面図である。1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. (a)、(b)は、参考例としての、エクステンション領域の幅、深さとエピタキシャル層から半導体基板のゲート電極下の領域に加わる応力の大きさの関係を概略的に示す図およびグラフである。(A), (b) is the figure and graph which show roughly the relationship of the magnitude | size of the stress added to the area | region under the gate electrode of a semiconductor substrate from the width of an extension area | region, and an epitaxial layer as a reference example. . (a)は、半導体層に発生する歪みの大きさと、半導体層の内部の電子の移動度との関係を概略的に表した模式図であり、(b)は、エピタキシャル層に含まれるCの濃度と、半導体層に発生する歪みの大きさとの関係を概略的に表した模式図である。(A) is the schematic diagram showing the relationship between the magnitude | size of the distortion which generate | occur | produces in a semiconductor layer, and the mobility of the electron inside a semiconductor layer, (b) is C of C contained in an epitaxial layer. It is the schematic diagram which represented roughly the relationship between the density | concentration and the magnitude | size of the distortion generate | occur | produced in a semiconductor layer. (a)〜(c)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. (d)〜(f)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。(D)-(f) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. (g)、(h)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。(G), (h) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on the 2nd Embodiment of this invention. (a)〜(c)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図。(A)-(c) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 2nd Embodiment of this invention. (d)〜(f)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図。(D)-(f) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 2nd Embodiment of this invention. (g)、(h)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図。(G), (h) is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 半導体装置
2 半導体基板
3 半導体層
4 ゲート絶縁膜
5 ゲート電極
7 エピタキシャル層
15 第1の半導体層
16 第2の半導体層
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Semiconductor substrate 3 Semiconductor layer 4 Gate insulating film 5 Gate electrode 7 Epitaxial layer 15 1st semiconductor layer 16 2nd semiconductor layer

Claims (5)

半導体基板と、
前記半導体基板上に形成され、内部におけるキャリアの移動度がSi結晶よりも大きい第1の結晶からなる半導体層と、
前記半導体層上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、
前記半導体層を挟んで形成され、前記半導体層に前記半導体層内のキャリアの移動度が上昇する方向に歪みを与える第2の結晶を含み、前記半導体層に接する深さの浅い領域であるソース・ドレインエクステンション領域を有するソース・ドレイン領域と、
を有することを特徴とする半導体装置。
A semiconductor substrate;
A semiconductor layer formed on the semiconductor substrate and made of a first crystal in which the mobility of carriers inside is larger than that of the Si crystal;
A gate insulating film formed on the semiconductor layer;
A gate electrode formed on the gate insulating film;
A source that is formed with the semiconductor layer in between and includes a second crystal that distorts the semiconductor layer in a direction in which the mobility of carriers in the semiconductor layer increases, and is a shallow region in contact with the semiconductor layer A source / drain region having a drain extension region;
A semiconductor device comprising:
前記第1の結晶は、Si結晶上に形成した場合に、内部におけるキャリアの移動度が低下する方向に歪みが生じる結晶であることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein when the first crystal is formed over a Si crystal, the first crystal is a crystal that is distorted in a direction in which the mobility of carriers inside the first crystal decreases. 前記第1の結晶はSiGe結晶であり、前記第2の結晶はSiC結晶であることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the first crystal is a SiGe crystal, and the second crystal is a SiC crystal. 前記ソース・ドレインエクステンション領域の下端は、前記半導体層の下端よりも深い位置にあることを特徴とする請求項1から3のいずれかに記載の半導体装置。   4. The semiconductor device according to claim 1, wherein a lower end of the source / drain extension region is deeper than a lower end of the semiconductor layer. 5. 前記半導体層と前記ゲート絶縁膜の間に、内部におけるキャリアの移動度が前記第1の結晶よりも小さい結晶からなる他の半導体層が形成されたことを特徴とする請求項1から4のいずれかに記載の半導体装置。   5. The semiconductor layer according to claim 1, wherein another semiconductor layer made of a crystal having carrier mobility therein smaller than that of the first crystal is formed between the semiconductor layer and the gate insulating film. A semiconductor device according to claim 1.
JP2007274302A 2007-10-22 2007-10-22 Semiconductor device Withdrawn JP2009105163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274302A JP2009105163A (en) 2007-10-22 2007-10-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274302A JP2009105163A (en) 2007-10-22 2007-10-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2009105163A true JP2009105163A (en) 2009-05-14

Family

ID=40706574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274302A Withdrawn JP2009105163A (en) 2007-10-22 2007-10-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2009105163A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103434A (en) * 2009-11-10 2011-05-26 Taiwan Semiconductor Manufacturing Co Ltd Source/drain engineering of devices with high-mobility channels
JP2013513945A (en) * 2009-12-23 2013-04-22 インテル コーポレイション Techniques and configurations for distorting integrated circuit devices
US8455860B2 (en) 2009-04-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US8617976B2 (en) 2009-06-01 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
US8674341B2 (en) 2009-04-01 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
US8816391B2 (en) 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
US9768305B2 (en) 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590068B2 (en) 2009-04-01 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
US10109748B2 (en) 2009-04-01 2018-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
US8674341B2 (en) 2009-04-01 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
US8816391B2 (en) 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
US8927371B2 (en) 2009-04-01 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
US8455860B2 (en) 2009-04-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US8674408B2 (en) 2009-04-30 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US10269970B2 (en) 2009-05-29 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US9768305B2 (en) 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US8617976B2 (en) 2009-06-01 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
US9006788B2 (en) 2009-06-01 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
TWI451552B (en) * 2009-11-10 2014-09-01 Taiwan Semiconductor Mfg Integrated circuit structures
JP2011103434A (en) * 2009-11-10 2011-05-26 Taiwan Semiconductor Manufacturing Co Ltd Source/drain engineering of devices with high-mobility channels
JP2013513945A (en) * 2009-12-23 2013-04-22 インテル コーポレイション Techniques and configurations for distorting integrated circuit devices

Similar Documents

Publication Publication Date Title
US8237226B2 (en) Semiconductor device and method of fabricating the same
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US9514995B1 (en) Implant-free punch through doping layer formation for bulk FinFET structures
JP5173582B2 (en) Semiconductor device
US10115826B2 (en) Semiconductor structure and the manufacturing method thereof
TWI545761B (en) Semiconductor devices and methods for manufacturing the same and pmos transistors
US9812530B2 (en) High germanium content silicon germanium fins
US9224734B2 (en) CMOS devices with reduced leakage and methods of forming the same
JP4664950B2 (en) Semiconductor device
US9660035B2 (en) Semiconductor device including superlattice SiGe/Si fin structure
JP2009099702A (en) Semiconductor device and its manufacturing method
JP2009105163A (en) Semiconductor device
JP2007281038A (en) Semiconductor device
US20100078654A1 (en) Semiconductor device and method of fabricating the same
JP2008198715A (en) Semiconductor device
JP2011066042A (en) Semiconductor device and method of manufacturing the same
JP5070779B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2009064875A (en) Semiconductor device
JP2011199112A (en) Semiconductor device, and method of manufacturing the same
JP2008171999A (en) Semiconductor device and its manufacturing method
US11088263B2 (en) Method of forming vertical field effect transistor device
JP2010010382A (en) Semiconductor device and its method for manufacturing
JP2009176876A (en) Semiconductor device
JP2010010403A (en) Semiconductor device and its method for manufacturing
JP2010050402A (en) Method for manufacturing semiconductor apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100924

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104