TWI689954B - Polymer frame for chip with at least one through hole connected in series with capacitor - Google Patents
Polymer frame for chip with at least one through hole connected in series with capacitor Download PDFInfo
- Publication number
- TWI689954B TWI689954B TW104139316A TW104139316A TWI689954B TW I689954 B TWI689954 B TW I689954B TW 104139316 A TW104139316 A TW 104139316A TW 104139316 A TW104139316 A TW 104139316A TW I689954 B TWI689954 B TW I689954B
- Authority
- TW
- Taiwan
- Prior art keywords
- chip
- capacitor
- layer
- array
- frame
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49579—Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49589—Capacitor integral with or on the leadframe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49833—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49861—Lead-frames fixed on or encapsulated in insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
一種由有機基質框架限定的芯片插座,其中所述有機基質框架包括至少一個通孔柱層,其中圍繞插座穿過框架的至少一個通孔包括至少一個電容器,所述電容器包括下電極、介電層和與所述通孔柱接觸的上電極。 A chip socket defined by an organic matrix frame, wherein the organic matrix frame includes at least one through-hole column layer, wherein at least one through hole surrounding the socket through the frame includes at least one capacitor, the capacitor includes a lower electrode, a dielectric layer And an upper electrode in contact with the via post.
Description
本發明涉及改進的芯片封裝,具體涉及芯片封裝中安裝有無源器件例如電容器和濾波器的嵌入式芯片。 The present invention relates to an improved chip package, and in particular to an embedded chip in which passive devices such as capacitors and filters are installed.
在對於越來越複雜的電子器件的小型化需求越來越大的帶動下,諸如計算機和電信設備等消費電子產品的集成度越來越高。這已經導致要求支撐結構如IC基板和IC插件具有通過介電材料彼此電絕緣且高密度的多個導電層和通孔。 Driven by the increasing demand for miniaturization of increasingly complex electronic devices, consumer electronics such as computers and telecommunications equipment have become increasingly integrated. This has led to requirements for supporting structures such as IC substrates and IC inserts to have multiple conductive layers and through holes that are electrically insulated from each other by a dielectric material and have a high density.
這種支撐結構的總體要求是可靠性和適當的電氣性能、薄度、剛度、平坦度、散熱性好和有競爭力的單價。 The overall requirements of this support structure are reliability and proper electrical performance, thinness, rigidity, flatness, good heat dissipation and competitive unit price.
在實現這些要求的各種途徑中,一種廣泛實施的創建層間互連通孔的制造技術是採用激光鑽孔,所鑽出的孔穿透後續布置的介電基板直到最後的金屬層,後續填充金屬,通常是銅,該金屬通過鍍覆技術沈積在其中。這種成孔方法有時也被稱為“鑽填”,由此產生的通孔可稱為“鑽填通孔”。 Among the various ways to achieve these requirements, a widely implemented manufacturing technique for creating interlayer interconnect vias is to use laser drilling. The drilled holes penetrate through the subsequently placed dielectric substrate to the final metal layer and are subsequently filled with metal , Usually copper, where the metal is deposited by plating techniques. This method of forming holes is sometimes referred to as "drill-fill", and the resulting through-hole may be referred to as "drill-fill through-hole".
鑽填通孔方法存在多個缺點。因為每個通孔需要單獨鑽孔,所以生產率受限並且制造複雜的多通孔IC基板和插件的成本變得高昂。在大型陣列中,通過鑽填方法難以生產出高密度和高品質的彼此緊密相鄰且 具有不同的尺寸和形狀的通孔。此外,激光鑽出的通孔具有穿過介電材料厚度的粗糙側壁和內向錐度。該錐度減小了通孔的有效直徑。特別是在超小通孔直徑的情況下,也可能對於在先的導電金屬層的電接觸產生不利影響,由此導致可靠性問題。此外,在被鑽的電介質是包括聚合物基質中的玻璃或陶瓷纖維的複合材料時,側壁特別粗糙,並且這種粗糙可能會產生附加的雜散電感。 There are several disadvantages to the method of drilling and filling through holes. Because each through-hole needs to be drilled separately, productivity is limited and the cost of manufacturing complex multi-through-hole IC substrates and inserts becomes prohibitive. In large arrays, it is difficult to produce high-density and high-quality close to each other and Through holes with different sizes and shapes. In addition, laser drilled through holes have rough sidewalls and inward tapers that pass through the thickness of the dielectric material. This taper reduces the effective diameter of the through hole. Especially in the case of ultra-small via diameters, it may also adversely affect the electrical contact of the previous conductive metal layer, thereby causing reliability problems. In addition, when the dielectric being drilled is a composite material that includes glass or ceramic fibers in a polymer matrix, the sidewalls are particularly rough, and this roughness may create additional stray inductance.
鑽出的通孔的填充過程通常是通過銅電鍍來完成的。電鍍沈積技術會導致凹痕,其中在通孔頂部出現小坑。或者,當通孔通道被填充超過其容納量的銅時,可能造成溢出,從而產生突出超過周圍材料的半球形上表面。凹痕和溢出往往在如制造高密度基板和插件時所需的後續上下堆疊通孔時造成困難。此外,應該認識到,大的通孔通道難以均勻填充,特別是在其位於插件或IC基板設計的同一互連層內的小通孔附近時。 The filling process of drilled through holes is usually done by copper electroplating. Electroplating deposition techniques can cause dents, in which small pits appear at the top of the via. Alternatively, when the via channel is filled with copper exceeding its holding capacity, it may cause overflow, resulting in a hemispherical upper surface protruding beyond the surrounding material. Dimples and overflows often cause difficulties in subsequent stacking of vias up and down as required for manufacturing high-density substrates and inserts. In addition, it should be recognized that large via channels are difficult to fill uniformly, especially when they are located near small vias within the same interconnect layer of an interposer or IC substrate design.
雖然可接受的尺寸和可靠性正在隨著時間的推移而改善,但是上文所述的缺點是鑽填技術的內在缺陷,並且預計會限制可能的通孔尺寸範圍。還應該注意的是,激光鑽孔是制造圓形通孔通道的最好方法。雖然理論上可以通過激光銑削制造狹縫形狀的通孔通道,但是實際上可制造的幾何形狀範圍比較有限,並且在給定支撐結構中的通孔通常是圓柱形的並且是基本相同的。 Although acceptable size and reliability are improving over time, the disadvantages described above are inherent flaws in the drill-fill technique and are expected to limit the range of possible via sizes. It should also be noted that laser drilling is the best method for manufacturing circular through-hole channels. Although it is theoretically possible to manufacture slit-shaped through-hole channels by laser milling, in reality the range of geometries that can be manufactured is relatively limited, and the through-holes in a given support structure are generally cylindrical and are substantially the same.
通過鑽填工藝制造通孔是昂貴的,並且難以利用相對具有成本效益的電鍍工藝用銅來均勻和一致地填充由此形成的通孔通道。 It is expensive to manufacture through-holes through a drill-fill process, and it is difficult to use a relatively cost-effective plating process to uniformly and uniformly fill the thus formed through-hole channels with copper.
在複合介電材料中激光鑽出的孔實際上被限制在60×10-6m直徑,並且由於所涉及的燒蝕過程以及所鑽的複合材料的性質,甚至因此而 遭受到顯著的錐度形狀以及粗糙側壁的不利影響。 Laser-drilled holes in composite dielectric materials are actually limited to a diameter of 60×10 -6 m, and due to the ablation process involved and the nature of the drilled composite material, they are even subject to significant taper shapes And the adverse effects of rough sidewalls.
除了上文所述的激光鑽孔的其它限制外,鑽填技術的另一限制在於難以在同一層中產生不同直徑的通孔,這是因為當鑽出不同尺寸的通孔通道並隨後用金屬填充以制造不同尺寸通孔時,通孔通道的填充速率不同所致。因此,作為鑽填技術的特征性的凹痕或溢出的典型問題被惡化,因為不可能對不同尺寸通孔同時優化沈積技術。 In addition to the other limitations of laser drilling described above, another limitation of drill-fill technology is that it is difficult to create through holes of different diameters in the same layer, because when drilling through holes of different sizes and then using metal When filling to make through holes of different sizes, the filling rate of the via channels is different. As a result, the typical problem of dents or spills that are characteristic of the drill-fill technique is exacerbated because it is not possible to optimize the deposition technique for through holes of different sizes simultaneously.
克服鑽填方法的多個缺點的可選解決方案是利用又稱為“圖案鍍覆”的技術,通過將銅或其它金屬沈積到在光刻膠中形成的圖案內來制造。 An alternative solution to overcome many of the shortcomings of the drill-fill method is to manufacture by depositing copper or other metals into the pattern formed in the photoresist using a technique also known as "pattern plating".
在圖案鍍覆中,首先沈積種子層。然後在其上沈積光刻膠層,隨後曝光形成圖案,並且選擇性地移除以制成暴露出種子層的溝槽。通過將銅沈積到光刻膠溝槽中來形成通孔柱。然後移除剩余的光刻膠,蝕刻掉種子層,並在其上及其周邊層壓通常為聚合物浸漬玻璃纖維氈的介電材料,以包圍所述通孔柱。然後,可以使用各種技術和工藝來平坦化所述介電材料,移除其一部分以暴露出通孔柱的頂部,從而允許由此導電接地,用於在其上形成下一金屬層。可在其上通過重複該過程來沈積後續的金屬導體層和通孔柱,以形成所需的多層結構。 In pattern plating, the seed layer is first deposited. A photoresist layer is then deposited thereon, followed by exposure to form a pattern, and selective removal to make a trench that exposes the seed layer. The via post is formed by depositing copper into the photoresist trench. The remaining photoresist is then removed, the seed layer is etched away, and a dielectric material, usually a polymer-impregnated glass fiber mat, is laminated on and around it to surround the via post. Various techniques and processes can then be used to planarize the dielectric material, removing a portion of it to expose the top of the via post, thereby allowing this conductive ground to be used to form the next metal layer thereon. The subsequent metal conductor layer and via post can be deposited on it by repeating this process to form the desired multilayer structure.
在一個替代但緊密關聯的技術即下文所稱的“面板鍍覆”中,將連續的金屬或合金層沈積到基板上。在基板的頂部沈積光刻膠層,並在其中顯影出圖案。剝除被顯影的光刻膠的圖案,選擇性地暴露出其下的金屬,該金屬可隨後被蝕刻掉。未顯影的光刻膠保護其下方的金屬不被蝕刻掉,並留下直立的特征結構和通孔的圖案。 In an alternative but closely related technique, referred to below as "panel plating", a continuous layer of metal or alloy is deposited onto the substrate. A photoresist layer is deposited on top of the substrate, and a pattern is developed therein. The pattern of the developed photoresist is stripped to selectively expose the metal underneath, which can then be etched away. The undeveloped photoresist protects the metal underneath from being etched away, leaving a pattern of upright features and vias.
在剝除未顯影的光刻膠後,可以在直立的銅特征結構和/或通孔柱上或周邊層壓介電材料,如聚合物浸漬玻璃纖維氈。在平坦化後,可通過重複該過程在其上沈積後續的金屬導體層和通孔柱,以形成所需的多層結構。 After stripping the undeveloped photoresist, a dielectric material, such as a polymer-impregnated glass fiber mat, can be laminated on or around the upright copper features and/or via posts. After planarization, the subsequent metal conductor layer and via post can be deposited thereon by repeating this process to form the desired multilayer structure.
通過上述圖案鍍覆或面板鍍覆方法創建的通孔層通常被稱為“通孔柱”和銅製特徵層。 The via layer created by the above-mentioned pattern plating or panel plating method is generally referred to as a "via pillar" and a copper feature layer.
將會認識到、微電子演化的一般推動力涉及製造更小、更薄、更輕和更大功率的具有高可靠性產品。使用厚且有芯的互連不能得到超輕薄的產品。為了在互連IC基板或“插件”中形成更高密度的結構,需要具有甚至更小連接的更多層。事實上,有時希望彼此交疊地堆疊器件。 It will be recognized that the general impetus for the evolution of microelectronics involves making smaller, thinner, lighter and more powerful products with high reliability. Using thick and cored interconnects does not result in ultra-thin products. In order to form higher density structures in interconnecting IC substrates or "plug-ins", more layers with even smaller connections are needed. In fact, it is sometimes desirable to stack devices on top of each other.
如果在銅或其它合適的犧牲基板上沈積鍍覆層壓結構,則可以蝕刻掉基板,留下獨立的無芯層壓結構。可以在預先附著至犧牲基板上的側面上沈積其它層,由此能夠形成雙面積層,從而最大限度地減少翹曲並有助於實現平坦化。 If a plated laminate structure is deposited on copper or other suitable sacrificial substrate, the substrate can be etched away, leaving a separate coreless laminate structure. Other layers can be deposited on the side previously attached to the sacrificial substrate, thereby enabling formation of a double-area layer, thereby minimizing warpage and helping to achieve planarization.
一種製造高密度互連的靈活技術是構建包括在電介質基質中的金屬通孔或特徵結構在內的圖案或面板鍍覆的多層結構。金屬可以是銅,電介質可以是纖維增強聚合物,通常是具有高玻璃化轉變溫度(Tg)的聚合物,如聚酰亞胺。這些互連可以是有芯的或無芯的,並可包括用於堆疊器件的空腔。它們可具有奇數或偶數層。實現的技術描述在授予Amitec-Advanced Multilayer Interconnect Technologies Ltd.的現有專利中。 A flexible technique for manufacturing high-density interconnects is to build a multi-layer structure with patterns or panel plating including metal vias or features in a dielectric matrix. The metal may be copper and the dielectric may be a fiber-reinforced polymer, usually a polymer with a high glass transition temperature ( Tg ), such as polyimide. These interconnects may be cored or coreless, and may include cavities for stacked devices. They can have odd or even layers. The technology implemented is described in the existing patent granted to Amitec-Advanced Multilayer Interconnect Technologies Ltd.
例如,赫爾維茨(Hurwitz)等人的題為“高級多層無芯支撐結構及其製造方法(Advanced multilayer coreless support structures and method for their fabrication)”的美國專利US 7,682,972描述了一種製造包括在電介質中的通孔陣列的獨立膜的方法,所述膜用作構建優異的電子支撐結構的前體,該方法包括以下步驟:在包圍犧牲載體的電介質中製造導電通孔膜,和將所述膜與犧牲載體分離以形成獨立的層壓陣列。基於該獨立膜的電子基板可通過將所述層壓陣列減薄和平坦化,隨後終止通孔來形成。該公報通過引用全面並入本文。 For example, Hurwitz et al. entitled "Advanced multilayer coreless support structures and method" US Patent 7,682,972 for "their fabrication" describes a method of manufacturing a stand-alone film including a through-hole array in a dielectric, which is used as a precursor for building an excellent electronic support structure, the method includes the following steps: Manufacturing a conductive via film in the dielectric surrounding the sacrificial carrier, and separating the film from the sacrificial carrier to form an independent laminated array. Electronic substrates based on this independent film can be thinned and planarized by the laminated array, Subsequent via hole formation is formed. This bulletin is fully incorporated by reference.
赫爾維茨(Hurwitz)等人的題為“用於芯片封裝的無芯空腔基板及其製造方法(Coreless cavity substrates for chip packaging and their fabrication)”的美國專利US 7,669,320描述了一種製造IC支撐體的方法,所述IC支撐體用於支撐與第二IC芯片串聯的第一IC芯片;所述IC支撐體包括在絕緣周圍材料中的銅特徵結構和通孔的交替層的堆疊,所述第一IC芯片可粘合至所述IC支撐體,所述第二IC芯片可粘合在所述IC支撐體內部的空腔中,其中所述空腔是通過蝕刻掉銅插座和選擇性蝕刻掉累積的銅而形成的。該公報通過引用全部並入本文。 U.S. Patent No. 7,669,320, entitled "Coreless cavity substrates for chip packaging and their fabrication" by Hurwitz et al., "Coreless cavity substrates for chip packaging and their fabrication" Method, the IC support is used to support a first IC chip in series with a second IC chip; the IC support includes a stack of alternating layers of copper features and through holes in the insulating surrounding material, the The first IC chip may be adhered to the IC support body, and the second IC chip may be adhered to a cavity inside the IC support body, wherein the cavity is obtained by etching away the copper socket and selective etching Formed by removing accumulated copper. This gazette is fully incorporated herein by reference.
赫爾維茨(Hurwitz)等人的題為“集成電路支撐結構及其製造方法(integrated circuit support structures and their fabrication)”的美國專利US 7,635,641描述了一種製造電子基板的方法,包括以下步驟:(A)選擇第一基礎層;(B)將蝕刻阻擋層沈積到所述第一基礎層上;(C)形成交替的導電層和絕緣層的第一半堆疊體,所述導電層通過貫穿絕緣層的通孔而互連;(D)將第二基礎層塗覆到所述第一半堆疊體上;(E)將光刻膠保護塗層塗覆到第二基礎層上;(F)蝕刻掉所述第一基礎層;(G)移除所述光刻膠保護塗層;(H)移除所述第一蝕刻阻擋層;(I)形成交替的導電層和絕緣層的第二半堆疊 體,導電層通過貫穿絕緣層的通孔而互連;其中所述第二半堆疊體具有與第一半堆疊體基本對稱的構造;(J)將絕緣層塗覆到交替的導電層和絕緣層的所述第二半堆疊體上;(K)移除所述第二基礎層,以及,(L)通過將通孔末端暴露在所述堆疊體的外表面上並對其塗覆終止物來終止基板。該公報通過引用全部並入本文。 U.S. Patent No. 7,635,641, entitled "Integrated circuit support structures and their fabrication" by Hurwitz et al., describes a method of manufacturing electronic substrates, including the following steps: ( A) Selecting the first base layer; (B) depositing an etch barrier layer on the first base layer; (C) forming a first half-stack of alternating conductive layers and insulating layers, the conductive layers being insulated by penetration Through the layer through holes; (D) apply the second base layer to the first half stack; (E) apply the photoresist protective coating to the second base layer; (F) Etching away the first base layer; (G) removing the photoresist protective coating; (H) removing the first etching barrier layer; (I) forming a second alternating conductive layer and insulating layer Semi-stacked Body, the conductive layer is interconnected by a through hole penetrating the insulating layer; wherein the second half stack has a configuration substantially symmetrical to the first half stack; (J) applying the insulating layer to alternating conductive layers and insulation On the second half of the stack; (K) removing the second base layer, and (L) by exposing the end of the through hole on the outer surface of the stack and coating it with a terminator To terminate the substrate. This gazette is fully incorporated herein by reference.
隨著時間的變遷,可以預期鑽填技術和通孔柱沈積技術都將能夠製造出具有更加微型化和更高的通孔和特徵結構密度的基板。然而,顯然的是通孔柱技術的發展很可能將保持競爭優勢。 Over time, it can be expected that both drill-fill technology and through-hole column deposition technology will be able to manufacture substrates with more miniaturized and higher through-hole and feature density. However, it is clear that the development of through-hole column technology is likely to maintain a competitive advantage.
基板能夠實現芯片與其它器件通過接口連接。芯片必須通過組裝過程接合至基板,該組裝過程提供可靠的電連接以實現芯片與基板之間的電通信。 The substrate can connect the chip with other devices through an interface. The chip must be bonded to the substrate through an assembly process that provides a reliable electrical connection to achieve electrical communication between the chip and the substrate.
嵌入在插件內連接外界的芯片能夠縮小芯片封裝,縮短與外界的連接,通過簡化製造工藝即取消了芯片接合基板的組裝過程而提供成本節約,以及潛在地提高可靠性。 A chip embedded in the plug-in to connect to the outside world can shrink the chip package and shorten the connection with the outside world. By simplifying the manufacturing process, the assembly process of the chip-bonding substrate is eliminated to provide cost savings and potentially improve reliability.
實質上,嵌入式有源器件例如模擬、數字和MEMS芯片的概念涉及構建在芯片周圍具有通孔的芯片支撐結構或基板。 In essence, the concept of embedded active devices such as analog, digital, and MEMS chips involves building a chip support structure or substrate with through holes around the chip.
一種實現嵌入式芯片的方法是在芯片上的芯片陣列上製造芯片支撐結構,其中支撐結構的電路大於芯片單元尺寸。此種方法已知為扇出芯片層封裝(FOWLP)。盡管矽晶圓的尺寸不斷增大,但是昂貴的材料模組和製程仍然將晶圓尺寸限製在12英寸,由此限製了在晶圓上可以放置的FOWLP單元數量。盡管事實上正在考慮18英寸的晶圓,但是所需的投資、材料模組和設備仍屬未知。一次可處理的芯片支撐結構的數量受到限製導 致FOWLP單位成本上升,因而對於需要高度競爭的市場,例如無線通信、家用電器和汽車市場而言,成本過高。 One method of implementing an embedded chip is to manufacture a chip support structure on a chip array on the chip, where the circuit of the support structure is larger than the chip unit size. This method is known as fan-out chip layer packaging (FOWLP). Despite the increasing size of silicon wafers, expensive material modules and processes still limit the wafer size to 12 inches, thereby limiting the number of FOWLP units that can be placed on the wafer. Despite the fact that 18-inch wafers are being considered, the required investment, material modules and equipment are still unknown. The number of chip support structures that can be processed at one time is limited. As a result, the unit cost of FOWLP has risen, so the cost is too high for markets that require a high degree of competition, such as the wireless communications, household appliances, and automotive markets.
FOWLP還存在性能限製,這是因為設置在矽晶圓上作為扇出或扇入電路的金屬特徵結構的厚度被限製在幾個微米。這導致電阻問題。 FOWLP also has performance limitations, because the thickness of metal features that are placed on silicon wafers as fan-out or fan-in circuits is limited to a few microns. This causes resistance problems.
一種替代的製造方法涉及切割芯片以分離芯片並將芯片嵌入到由介電層和銅互連構成的面板內。這種替代方法的一個優點在於面板可以做得非常大,從而在一次製程中嵌入多得多的芯片。例如,12英寸芯片能夠實現一次處理2500個尺寸為5mm×5mm的FOWLP芯片,而申請人即珠海越亞目前使用的面板是25英寸×21英寸,能夠實現一次處理10000個芯片。因為處理該面板的價格顯著低於處理晶圓的價格,而且每個面板的產量是晶圓產量的4倍,所以單位價格能夠顯著降低,由此打開新的市場。 An alternative manufacturing method involves cutting the chip to separate the chip and embedding the chip into a panel composed of a dielectric layer and copper interconnects. One advantage of this alternative method is that the panel can be made very large, thereby embedding much more chips in one process. For example, a 12-inch chip can process 2,500 FOWLP chips with a size of 5 mm × 5 mm at a time, while the applicant, Zhuhai Yueya, currently uses a 25-inch × 21-inch panel that can process 10,000 chips at a time. Because the price of processing the panel is significantly lower than the price of processing wafers, and the output of each panel is four times the wafer output, the unit price can be significantly reduced, thereby opening up new markets.
在這兩種技術中,業內採用的線距和導線寬度隨時間而縮小,對於面板而言,標准從15微米減小到10微米,對於晶圓而言,則從5微米減小到2微米。 In these two technologies, the line pitch and wire width used in the industry have shrunk over time. For panels, the standard is reduced from 15 microns to 10 microns, and for wafers, from 5 microns to 2 microns. .
嵌入方式具有許多優點。第一級組裝例如引線接合、倒裝芯片或SMD(表面貼裝器件)焊接的成本得到縮減。由於芯片和基板在單個產品中無縫連接,所以電性能得到改善。封裝芯片變得更薄,得到更佳的形狀因子,並且嵌入芯片封裝的上表面被空出來由於其他用途,包括進一步空間節省構型,例如使用堆疊芯片和PoP(封裝上封裝)技術的用途。 The embedded method has many advantages. The cost of first-level assembly such as wire bonding, flip chip or SMD (surface mount device) soldering is reduced. Since the chip and the substrate are seamlessly connected in a single product, the electrical performance is improved. The packaged chip becomes thinner, resulting in a better form factor, and the upper surface of the embedded chip package is vacated due to other uses, including further space saving configurations, such as the use of stacked chips and PoP (package on package) technology.
在FOWLP和基於面板的嵌入芯片技術這二者中,芯片被封裝成陣列(在基片或面板上),並且在製造完成後,通過切割分離。 In both FOWLP and panel-based embedded chip technology, the chips are packaged in an array (on a substrate or panel) and are separated by dicing after manufacturing is completed.
RF(射頻)技術,例如Wi-Fi、藍牙等,正被廣泛應用於各 種設備中,包括移動電話和汽車。 RF (radio frequency) technology, such as Wi-Fi, Bluetooth, etc., is being widely used in various Such devices include mobile phones and automobiles.
除了基帶處理和存儲器芯片之外,RF裝置還特別需要無源器件,例如各種類型的電容器、電感器和濾波器。這種無源器件可以表面貼裝,但是為了能夠實現更顯著的微型化和成本節約,可將此類器件嵌入在基板內。 In addition to baseband processing and memory chips, RF devices also require passive devices, such as various types of capacitors, inductors, and filters. Such passive devices can be surface-mounted, but in order to achieve more significant miniaturization and cost savings, such devices can be embedded in the substrate.
赫爾維茨(Hurwitz)於2013年8月8日提交的題為“Thin Film Capacitors Embedded in Polymer Dielectric”的US 13/962,075描述了一種含有電容器的基板,所述電容器由金屬電極和陶瓷或金屬氧化物介電層構成,所述電容器嵌入在聚合物基包封材料中並且可以通過設置在所述電容器上的通孔柱來連接電路。
2013年8月8日提交的題為“Multilayer Structures and Embedded Features”的US 13/962,316描述了一種複合電子結構,包括至少一個特徵層和至少一個相鄰的通孔層;所述層在X-Y平面上延伸並且具有高度z,其中所述結構包括與至少一個電感器串聯或並聯連接的至少一個電容器以提供裝至少一個濾波器;所述至少一個電容器夾在至少一個特徵層和至少一個相鄰通孔層中的至少一個通孔之間,使得所述至少一個通孔直立在所述至少電容器上,並且第一特徵層和相鄰通孔層中的至少其一包括在X-Y平面上延伸的至少一個電感器。
赫爾維茨(Hurwitz)於2014年5月5日提交的題為“Interposer Frame with Polymer Matrix and Methods of Fabrication”的US 14/269,884教導了一種由有機基質框架限定的芯片插座陣列,所述框架圍繞從所述有機基質框架中穿過的插座,還包括從所述有機基質框架中穿過的金屬通孔柵格。
芯片可以設置在插座中並隨後通過聚合物基電介質固定就位,由此將芯片嵌入在框架中。
本發明第一方面涉及一種由有機基質框架限定的芯片插座,其中所述有機基質框架包括至少一個通孔柱層,其中穿過包圍所述插座的框架的至少一個通孔包括至少一個電容器,所述至少一個電容器包括下電極、介電層和與所述通孔柱接觸的上電極。 The first aspect of the present invention relates to a chip socket defined by an organic matrix frame, wherein the organic matrix frame includes at least one through-hole column layer, wherein at least one through-hole passing through the frame surrounding the socket includes at least one capacitor, The at least one capacitor includes a lower electrode, a dielectric layer, and an upper electrode in contact with the via post.
通常,所述電容器的電介質包括Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3和Al2O3中的至少一種。 Generally, the dielectric of the capacitor includes at least one of Ta 2 O 5 , TiO 2 , Ba x Sr 1-x TiO 3 , BaTiO 3 and Al 2 O 3 .
通常,所述電容器的下電極包括貴金屬。 Generally, the lower electrode of the capacitor includes a precious metal.
任選地,所述下電極包括選自金、鉑和鉭的金屬。 Optionally, the lower electrode includes a metal selected from gold, platinum, and tantalum.
在一些實施方案中,所述上電極包括選自金、鉑和鉭的金屬。 In some embodiments, the upper electrode includes a metal selected from gold, platinum, and tantalum.
通常,所述至少一個通孔直立在所述至少一個電容器上。 Generally, the at least one through hole stands upright on the at least one capacitor.
任選地,所述上電極包括所述通孔柱。 Optionally, the upper electrode includes the via post.
優選地,所述電容器具有被所述通孔柱的截面積所限定的截面積,該截面積被仔細控製以調節電容器的電容量。 Preferably, the capacitor has a cross-sectional area defined by the cross-sectional area of the via post, which is carefully controlled to adjust the capacitance of the capacitor.
在一些實施方案中,所述至少一個電容器具有1.5pF~300pF的電容量。 In some embodiments, the at least one capacitor has a capacitance of 1.5 pF to 300 pF.
在優選的實施方案中,所述至少一個電容器具有5pF~15pF的電容量。 In a preferred embodiment, the at least one capacitor has a capacitance of 5pF~15pF.
任選地,所述框架還包括至少一個特徵層。 Optionally, the frame also includes at least one feature layer.
任選地,至少一個電子器件嵌入在所述插座中並與所述至少 一個通孔電連接。 Optionally, at least one electronic device is embedded in the socket and One through hole is electrically connected.
任選地,所述至少一個電子器件包括第二電容器。 Optionally, the at least one electronic device includes a second capacitor.
在一些實施方案中,所述第二電容器是分立器件,所述分立器件在其至少一端具有金屬端子。 In some embodiments, the second capacitor is a discrete device having a metal terminal at at least one end.
在一些實施方案中,所述第二電容器是金屬-絕緣體-金屬(MIM)電容器。 In some embodiments, the second capacitor is a metal-insulator-metal (MIM) capacitor.
在一些實施方案中,所述金屬-絕緣體-金屬(MIM)電容器包括由選自Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3和Al2O3中的至少一種電介質構成的介電層。 In some embodiments, the metal-insulator-metal (MIM) capacitor includes at least one dielectric selected from Ta 2 O 5 , TiO 2 , Ba x Sr 1-x TiO 3 , BaTiO 3 and Al 2 O 3 Constitute the dielectric layer.
在一些實施方案中,所述金屬-絕緣體-金屬(MIM)電容器的下電極包括貴金屬。 In some embodiments, the lower electrode of the metal-insulator-metal (MIM) capacitor includes a precious metal.
在一些實施方案中,所述下電極包括選自金、鉑和鉭的金屬。 In some embodiments, the lower electrode includes a metal selected from gold, platinum, and tantalum.
在一些實施方案中,所述金屬-絕緣體-金屬(MIM)電容器的上電極包括選自金、鉑和鉭的金屬。 In some embodiments, the upper electrode of the metal-insulator-metal (MIM) capacitor includes a metal selected from gold, platinum, and tantalum.
任選地,所述金屬-絕緣體-金屬(MIM)電容器附著在絕緣體載體上。 Optionally, the metal-insulator-metal (MIM) capacitor is attached to an insulator carrier.
在一些實施方案中,所述絕緣體載體包括選自矽(Si)、SiO2(二氧化矽)、玻璃、AlN、氧化鋁和c-面藍寶石Al2O3(0001)中的至少一種。 In some embodiments, the insulator carrier includes at least one selected from silicon (Si), SiO 2 (silicon dioxide), glass, AlN, aluminum oxide, and c-plane sapphire Al 2 O 3 (0001).
在一些實施方案中,所述金屬-絕緣體-金屬(MIM)電容器的極板通過特徵層連接至通孔。 In some embodiments, the plate of the metal-insulator-metal (MIM) capacitor is connected to the via via the feature layer.
通常,嵌入在所述插座中的器件通過至少一個特徵層與具有嵌入電容器的至少一個通孔連接。 Generally, the device embedded in the socket is connected to at least one via with an embedded capacitor through at least one feature layer.
任選地,所述系統還包括在所述框架一面上的特徵層,並且所述嵌入器件包括電感器。 Optionally, the system further includes a feature layer on one side of the frame, and the embedded device includes an inductor.
任選地,在所述框架內的嵌入器件、在所述插座內的嵌入器件和在所述特徵層內的至少一個特徵結構提供用作濾波器的電路。 Optionally, the embedded device in the frame, the embedded device in the socket, and at least one feature structure in the feature layer provide a circuit that functions as a filter.
任選地,所述濾波器選自基礎LC低通濾波器(basic LC low pass filters)、LC高通濾波器(LC high pass filters)、LC串聯帶通濾波器(LC series band pass filters)、LC並聯帶通濾波器(LC parallel band pass filters)和低通並聯-切比雪夫濾波器(Low Pass Parallel-Chebyshev filters)。 Optionally, the filter is selected from a basic LC low pass filter, LC high pass filter, LC series band pass filter, LC Parallel band pass filters (LC parallel band pass filters) and low pass parallel-Chebyshev filters (Low Pass Parallel-Chebyshev filters).
任選地,安裝在插座中的芯片通過包括通孔柱的法拉第籠屏蔽電磁輻射,由此最大程度減少電磁干擾。 Optionally, the chip installed in the socket is shielded from electromagnetic radiation by a Faraday cage including a via post, thereby minimizing electromagnetic interference.
在一些實施方案中,所述法拉第籠還包括在所述框架內的特徵層。 In some embodiments, the Faraday cage also includes a feature layer within the frame.
本發明的另一方面涉及一種框架,所述框架包括用於容納多個芯片的多個插座,其中每個插座包括一框架,並且所述框架包括銅通孔柱的柵格和至少一個電容器。 Another aspect of the present invention relates to a frame including a plurality of sockets for accommodating a plurality of chips, wherein each socket includes a frame, and the frame includes a grid of copper via posts and at least one capacitor.
任選地,在第一插座內嵌入處理器芯片並且在第二插座內嵌入包括至少一個電容器的無源芯片。 Optionally, a processor chip is embedded in the first socket and a passive chip including at least one capacitor is embedded in the second socket.
本發明的再一方面涉及一種框架,所述框架包括排列成陣列的多個芯片插座,其中每個芯片插座周圍圍繞有框架。 Yet another aspect of the present invention relates to a frame including a plurality of chip sockets arranged in an array, wherein each chip socket is surrounded by a frame.
任選地,在至少一個插座中嵌入至少一個處理器芯片。 Optionally, at least one processor chip is embedded in at least one socket.
本發明的又一方面涉及一種芯片插座陣列,所述陣列由圍繞插座的框架的有機基質框架所限定,並且還包括穿過所述有機基質框架的 金屬通孔柱柵格,其中至少一個金屬通孔柱與至少一個電容器串聯連接。 Yet another aspect of the invention relates to a chip socket array, the array being defined by an organic matrix frame surrounding the frame of the socket, and further including A grid of metal via columns, wherein at least one metal via column is connected in series with at least one capacitor.
任選地,所述電容器包括下電極和介電層,並且結合在至少一個通孔柱的底部,使得所述至少一個通孔柱直立在所述至少一個電容器上。 Optionally, the capacitor includes a lower electrode and a dielectric layer, and is bonded to the bottom of at least one via post so that the at least one via post stands upright on the at least one capacitor.
任選地,所述至少一個通孔柱包括所述至少一個電容器的上電極。 Optionally, the at least one via post includes an upper electrode of the at least one capacitor.
任選地,所述框架包括至少一個特徵層,其中在所述至少一個特徵層中形成至少一個電感器。 Optionally, the frame includes at least one feature layer, wherein at least one inductor is formed in the at least one feature layer.
通常,所述有機基質框架還包括玻璃纖維束。 Generally, the organic matrix frame also includes glass fiber bundles.
通常,每個通孔具有25微米~500微米的寬度範圍。 Generally, each through hole has a width ranging from 25 microns to 500 microns.
通常,每個通孔是圓柱形的並且具有25微米~500微米的直徑。 Generally, each through hole is cylindrical and has a diameter of 25 microns to 500 microns.
通常,圍繞至少一個插座的框架包括交替的通孔柱和特徵層,並且包括至少一個通孔柱層和一個特徵層。 Generally, the frame surrounding at least one socket includes alternating via columns and feature layers, and includes at least one via column layer and one feature layer.
通常,所述有機基質框架包括多個層並且所述柵格包括多個通孔柱層,其中每一對連續的通孔柱層被特徵層分隔開。 Typically, the organic matrix frame includes multiple layers and the grid includes multiple via column layers, where each pair of consecutive via column layers is separated by a feature layer.
在一些實施方案中,圍繞至少一個插座的框架包括交替的通孔柱和特徵結構的連續線圈,跨越至少一個通孔柱層和一個特徵層。 In some embodiments, the frame surrounding the at least one socket includes alternating via columns and continuous coils of features spanning at least one via column layer and one feature layer.
任選地,至少一個通孔柱包括伸長的通孔柱。 Optionally, the at least one via post includes an elongated via post.
任選地,伸長的通孔柱的連續線圈跨越多個通孔柱層。 Optionally, a continuous coil of elongated via columns spans multiple via column layers.
任選地,所述陣列包括不同外形尺寸的相鄰芯片插座。 Optionally, the array includes adjacent chip sockets of different physical dimensions.
任選地,所述陣列包括不同尺寸的相鄰芯片插座。 Optionally, the array includes adjacent chip sockets of different sizes.
任選地,所述陣列包括不同形狀的相鄰芯片插座。 Optionally, the array includes adjacent chip sockets of different shapes.
任選地,所述框架包括至少一個特徵層和至少一個相鄰通孔層,所述層在X-Y平面中延伸並且具有高度z,其中所述複合電子結構包括與至少一個電感器連接的至少一個電容器,所述至少一個電容器包括下電極和介電層,設置在通孔層的底部,夾在至少一個特徵層和通孔柱之間,使得所述至少一個通孔直立在所述至少一個電容器上並且任選地形成上電極,其中所述通孔層嵌入在聚合物基質中,以及其中所述至少一個電感器形成在第一特徵層和相鄰通孔層的至少其一之中。 Optionally, the frame includes at least one feature layer and at least one adjacent via layer, the layer extending in the XY plane and having a height z, wherein the composite electronic structure includes at least one connected to at least one inductor A capacitor, the at least one capacitor includes a lower electrode and a dielectric layer, is disposed at the bottom of the via layer, is sandwiched between at least one feature layer and the via post, such that the at least one via hole stands upright in the at least one capacitor An upper electrode is optionally formed, wherein the via layer is embedded in a polymer matrix, and wherein the at least one inductor is formed in at least one of the first feature layer and the adjacent via layer.
任選地,至少一個電容器和至少一個電感器串聯連接。 Optionally, at least one capacitor and at least one inductor are connected in series.
任選地,所述框架包括在所述通孔層上方的至少第二特徵層,並且所述至少一個電容器和所述至少一個電感器通過所述特徵層並聯連接。 Optionally, the frame includes at least a second feature layer above the via layer, and the at least one capacitor and the at least one inductor are connected in parallel through the feature layer.
任選地,所述至少一個電感器製造在所述特徵層中。 Optionally, the at least one inductor is fabricated in the feature layer.
任選地,所述至少一個電感器是螺旋卷繞線圈。 Optionally, the at least one inductor is a spirally wound coil.
任選地,所述電感器的電感值是至少0.1nH。 Optionally, the inductance of the inductor is at least 0.1 nH.
任選地,所述電感器的電感值小於50nH。 Optionally, the inductance of the inductor is less than 50nH.
任選地,在通孔層中製造另一電感器。 Optionally, another inductor is fabricated in the via layer.
任選地,所述另一電感器的電感值為至少0.1nH。 Optionally, the inductance value of the other inductor is at least 0.1 nH.
任選地,至少一個電感器和所述至少一個電容器提供濾波器,所述濾波器選自基礎LC低通濾波器(basic LC low pass filters)、LC高通濾波器(LC high pass filters)、LC串聯帶通濾波器(LC series band pass filters)、LC並聯帶通濾波器(LC parallel band pass filters)和低通並聯-切比雪夫濾波 器(Low Pass Parallel-Chebyshev filters)。 Optionally, at least one inductor and the at least one capacitor provide a filter selected from a basic LC low pass filter, LC high pass filter, LC LC series band pass filters, LC parallel band pass filters and low-pass parallel-Chebyshev filters Device (Low Pass Parallel-Chebyshev filters).
任選地,至少一個插座包含芯片,所述芯片包括在聚合物基質內的至少一個電容器和框架,芯片被減薄以暴露出通孔的端部,通過在減薄的聚合物基質的兩面上布設光刻膠以及在光刻膠圖案中沈積銅焊盤來施加連接和端子,隨後剝除光刻膠並且在銅焊盤之間布設焊料掩模,隨後施加保護塗層。 Optionally, at least one socket contains a chip that includes at least one capacitor and frame within a polymer matrix, the chip is thinned to expose the end of the through-hole, through both sides of the thinned polymer matrix A photoresist is laid and copper pads are deposited in the photoresist pattern to apply connections and terminals, then the photoresist is stripped and a solder mask is placed between the copper pads, and then a protective coating is applied.
本發明的另一方面涉及一種包括芯片插座陣列的面板,每個面板被有機基質框架所圍繞和限定,所述有機基質框架包括穿過所述有機基質框架的銅通孔柱柵格,其中所述面板包括具有容納一種類型芯片的第一組外形尺寸插座的至少一個區域和具有容納第二類型芯片的第二組外形尺寸插座的第二區域,其中至少一個通孔柱包括薄膜電容器。 Another aspect of the present invention relates to a panel including an array of chip sockets, each panel being surrounded and defined by an organic matrix frame including a grid of copper via columns passing through the organic matrix frame, wherein The panel includes at least one area having a first set of sockets for accommodating one type of chip and a second area having a second set of sockets for accommodating a second type of chip, wherein at least one via post includes a film capacitor.
任選地,利用所述面板使得至少一個通孔柱直立在所述薄膜電容器上。 Optionally, the panel is used to make at least one via post stand upright on the film capacitor.
任選地,所述至少一個通孔柱包括薄膜電容器的上電極。 Optionally, the at least one via post includes the upper electrode of the film capacitor.
任選地,所述面板包括緊密相鄰的具有兩種不同插座類型的區域。 Optionally, the panel includes closely adjacent areas with two different socket types.
圍繞芯片插座具有內建電容器的框架組合提供廣泛用於例如移動電話和汽車的RF(射頻)技術如Wi-Fi、藍牙等技術的更高程度的微型化、製造經濟性和增強的可靠性。 The combination of frames with built-in capacitors around the chip socket provides a higher degree of miniaturization, manufacturing economy, and enhanced reliability of RF (radio frequency) technologies such as Wi-Fi, Bluetooth, etc., which are widely used in mobile phones and automobiles, for example.
所述保護塗層可選自ENEPIG和有機清漆。 The protective coating may be selected from ENEPIG and organic varnishes.
術語微米或μm是指10-6m。 The term micron or μm refers to 10 -6 m.
1‧‧‧框架 1‧‧‧Frame
2‧‧‧插座 2‧‧‧Socket
3‧‧‧電介質 3‧‧‧dielectric
4‧‧‧通孔 4‧‧‧Through hole
5、6、7‧‧‧通孔柱 5, 6, 7‧‧‧ through-hole column
8、9‧‧‧電容器 8, 9‧‧‧ capacitor
10‧‧‧聚合物 10‧‧‧polymer
11、12‧‧‧特徵結構 11.12‧‧‧Characteristic structure
13‧‧‧電感器 13‧‧‧Inductor
14‧‧‧基板 14‧‧‧ substrate
20‧‧‧電容器 20‧‧‧Capacitor
21‧‧‧基板 21‧‧‧ substrate
22‧‧‧介電層 22‧‧‧Dielectric layer
24‧‧‧特徵層 24‧‧‧Feature layer
26 28 30 32‧‧‧銅柱 26 28 30 32‧‧‧Copper pillar
34‧‧‧介電材料 34‧‧‧Dielectric material
38‧‧‧特徵層 38‧‧‧Feature layer
40‧‧‧電感器 40‧‧‧Inductor
42‧‧‧通孔柱 42‧‧‧Through hole column
44‧‧‧電感器 44‧‧‧Inductor
52‧‧‧通孔柱 52‧‧‧Through hole column
54‧‧‧電容器 54‧‧‧Capacitor
56‧‧‧電感通孔 56‧‧‧Inductance via
60‧‧‧第一電感器 60‧‧‧First inductor
62‧‧‧通孔柱 62‧‧‧Through hole column
64‧‧‧電容器 64‧‧‧Capacitor
66‧‧‧第二電感器 66‧‧‧Second inductor
70‧‧‧電感器 70‧‧‧Inductor
71‧‧‧通孔柱 71‧‧‧Through hole column
72‧‧‧通孔柱 72‧‧‧Through hole column
74‧‧‧電容器 74‧‧‧Capacitor
78‧‧‧接頭 78‧‧‧Connector
80‧‧‧電感器 80‧‧‧Inductor
82‧‧‧通孔柱 82‧‧‧Through hole column
84‧‧‧電容器 84‧‧‧Capacitor
86‧‧‧電感通孔 86‧‧‧Inductance via
88‧‧‧跡線 88‧‧‧Trace
210‧‧‧載體 210‧‧‧Carrier
212‧‧‧阻擋層 212‧‧‧ barrier
214‧‧‧薄銅層 214‧‧‧thin copper layer
216‧‧‧第一電極 216‧‧‧First electrode
218‧‧‧介電層 218‧‧‧dielectric layer
220‧‧‧第二電極 220‧‧‧Second electrode
222‧‧‧銅層 222‧‧‧copper layer
224‧‧‧光刻膠 224‧‧‧Photoresist
226‧‧‧銅種子層 226‧‧‧Copper seed layer
228‧‧‧光刻膠層 228‧‧‧Photoresist layer
230‧‧‧光刻膠厚層 230‧‧‧Thick layer of photoresist
232‧‧‧銅互連 232‧‧‧Copper interconnect
234‧‧‧聚合物基電介質基質 234‧‧‧polymer-based dielectric matrix
236‧‧‧銅種子層 236‧‧‧Copper seed layer
238‧‧‧光刻膠層 238‧‧‧Photoresist layer
240‧‧‧上銅層 240‧‧‧upper copper layer
242‧‧‧光刻膠層 242‧‧‧Photoresist layer
244‧‧‧銅通孔 244‧‧‧copper through hole
246‧‧‧聚合物基電介質基質 246‧‧‧polymer-based dielectric matrix
248‧‧‧電容器 248‧‧‧Capacitor
250‧‧‧複合結構 250‧‧‧Composite structure
252‧‧‧鈦層 252‧‧‧Titanium layer
254‧‧‧銅層 254‧‧‧copper layer
256‧‧‧光刻膠層 256‧‧‧Photoresist layer
258‧‧‧光刻膠層 258‧‧‧Photoresist layer
260‧‧‧銅埠 260‧‧‧Bronze Port
262‧‧‧銅埠 262‧‧‧Bronze Port
264‧‧‧焊料掩模 264‧‧‧Solder mask
266‧‧‧ENEPIG 266‧‧‧ENEPIG
1200‧‧‧銅線圈 1200‧‧‧copper coil
1202‧‧‧介電框架 1202‧‧‧Dielectric frame
1204‧‧‧空腔 1204‧‧‧ Cavity
1206、1207、1208‧‧‧通孔柱層 1206, 1207, 1208
1209、1210‧‧‧垂直元件 1209、1210‧‧‧Vertical components
1250‧‧‧電容器 1250‧‧‧Capacitor
P1、P2、P3、P4‧‧‧埠 P1, P2, P3, P4 ‧‧‧ port
L‧‧‧電感器 L‧‧‧Inductor
C、C2、C3‧‧‧電容器 C, C2, C3 ‧‧‧ capacitor
300‧‧‧基礎LC低通濾波器 300‧‧‧Basic LC low-pass filter
V2、V3‧‧‧通孔柱 V2, V3 ‧‧‧ through hole column
1010‧‧‧陣列 1010‧‧‧Array
1012、1012’‧‧‧芯片插座陣列 1012、1012’‧‧‧Chip socket array
1014‧‧‧銅通孔 1014‧‧‧copper through hole
1016‧‧‧聚合物 1016‧‧‧polymer
1018‧‧‧框架 1018‧‧‧Frame
1020‧‧‧面板 1020‧‧‧Panel
1021、1022、1023、1024‧‧‧方塊 1021, 1022, 1023, 1024‧‧‧ block
1025‧‧‧水準杆 1025‧‧‧level rod
1026‧‧‧垂直杆 1026‧‧‧Vertical pole
1027‧‧‧外框 1027‧‧‧Outer frame
1028‧‧‧插座 1028‧‧‧Socket
1029‧‧‧插座 1029‧‧‧Socket
1030‧‧‧陣列 1030‧‧‧Array
1035‧‧‧芯片 1035‧‧‧chip
1036‧‧‧聚合物 1036‧‧‧polymer
1038‧‧‧框架 1038‧‧‧Frame
1040‧‧‧框架 1040‧‧‧frame
1042、1043‧‧‧銅佈線層 1042, 1043‧‧‧ Copper wiring layer
1045‧‧‧切割工具 1045‧‧‧Cutting tool
1048‧‧‧芯片 1048‧‧‧chip
1055‧‧‧芯片 1055‧‧‧chip
1057‧‧‧焊球 1057‧‧‧solder ball
1080‧‧‧銅載體 1080‧‧‧Copper carrier
1082‧‧‧銅種子層 1082‧‧‧Copper seed layer
1084‧‧‧抗蝕層 1084‧‧‧Anti-corrosion layer
1086‧‧‧銅種子層 1086‧‧‧Copper seed layer
1088‧‧‧光刻膠 1088‧‧‧Photoresist
1090‧‧‧銅通孔 1090‧‧‧copper through hole
1092‧‧‧聚合物電介質 1092‧‧‧ Polymer Dielectric
1094‧‧‧抗蝕材料 1094‧‧‧Anti-corrosion material
1100‧‧‧覆銅層壓板 1100‧‧‧Copper-clad laminate
1102‧‧‧孔 1102‧‧‧hole
1104‧‧‧鍍覆通孔 1104‧‧‧plated through hole
1106、1108‧‧‧表面銅層 1106, 1108‧‧‧surface copper layer
1110‧‧‧層壓板 1110‧‧‧Laminate
1112‧‧‧插座 1112‧‧‧Socket
2000‧‧‧框架 2000‧‧‧frame
2002‧‧‧濾波器 2002‧‧‧filter
2004‧‧‧佈線通孔 2004‧‧‧Wiring via
2006‧‧‧插座 2006‧‧‧Socket
圖1是一個限定插座的聚合物基介電框架的前端截面的示意圖,其中所述框架具有嵌入的通孔柱,其中至少一個通孔柱包括薄膜電容器。 FIG. 1 is a schematic diagram of a front-end cross-section of a polymer-based dielectric frame defining a socket, wherein the frame has embedded via posts, wherein at least one via post includes a film capacitor.
圖2是一個限定插座的聚合物基介電框架的示意性剖視圖,其中所述框架具有嵌入的通孔柱,至少一個嵌入通孔柱包括薄膜電容器,所述插座包括嵌入器件,所述嵌入器件在此包括附加的電容器,其中在框架中具有嵌入電容器的通孔柱與在插座中的嵌入電容器通過包括電感器的特徵層連接。 2 is a schematic cross-sectional view of a polymer-based dielectric frame defining a socket, wherein the frame has embedded via posts, at least one embedded via post includes a film capacitor, and the socket includes an embedded device, the embedded device In this case, additional capacitors are included, in which the via column with the embedded capacitor in the frame and the embedded capacitor in the socket are connected by a characteristic layer including an inductor.
在圖3-7中,為了清楚起見,示出的通孔和特徵結構沒有周圍的電介質。 In FIGS. 3-7, for clarity, the vias and features are shown without surrounding dielectric.
圖3是在特徵層中的電感器和在通孔柱層中直立在於所述電感器串聯連接的電容器上的相鄰通孔柱的示意圖。 FIG. 3 is a schematic diagram of an inductor in a feature layer and an adjacent via column standing on a capacitor connected in series with the inductor in a via column layer.
圖4是在通孔柱的基部與電容器串聯連接的在通孔層中的電感器通孔的示意圖。 4 is a schematic diagram of an inductor via in a via layer connected in series with a capacitor at the base of a via post.
圖5是一對電感器的示意圖,一個在特徵層中,另一個在通孔層中,彼此串聯連接並且在所述通孔電感器的通孔層內的通孔柱的基部與電容器串聯連接。 5 is a schematic diagram of a pair of inductors, one in a feature layer and another in a via layer, connected in series with each other and the base of a via post in the via layer of the via inductor is connected in series with a capacitor .
圖6是在特徵層中的電感器的示意圖,所述電感器與電容器並聯連接,所述電容器和所述電感器通過通孔柱和在第二上特徵層中的或所述多層結構外部的引線連接在一起。 6 is a schematic diagram of an inductor in a feature layer, the inductor and a capacitor being connected in parallel, the capacitor and the inductor passing through a via post and in the second upper feature layer or outside the multilayer structure The leads are connected together.
圖7是在特徵層中的電感器的示意圖,其與電感通孔串聯連接並且與電容器並聯連接,所述電容器和所述電感通孔通過第二上 特徵層中或多層結構外部的引線連接在一起。 7 is a schematic diagram of an inductor in a feature layer, which is connected in series with an inductance via and in parallel with a capacitor, the capacitor and the inductance via pass through the second The leads in the feature layer or outside the multilayer structure are connected together.
圖8是連接在特徵層之間的通孔柱層的示意性截面圖,其中所示的一個通孔柱具有集成的電感器。 8 is a schematic cross-sectional view of a via post layer connected between feature layers, where one via post shown has an integrated inductor.
圖9示出一種製造具有嵌入式濾波器的基板的方法的流程圖,所述濾波器由電容器和電感器構成。 FIG. 9 shows a flowchart of a method of manufacturing a substrate with an embedded filter, which is composed of a capacitor and an inductor.
圖9(i)-圖9(xxxi)是一系列示意性截面圖,示出一種製造具有由電容器和電感器構成的嵌入式濾波器的基板的方法,每幅圖對應於圖9中相應的步驟。 9(i)-FIG. 9(xxxi) are a series of schematic cross-sectional views showing a method of manufacturing a substrate with an embedded filter composed of capacitors and inductors, each of which corresponds to the corresponding one in FIG. 9 step.
圖10是示出圖8的濾波器形成端子的方法的流程圖。 FIG. 10 is a flowchart showing a method of the filter of FIG. 8 to form a terminal.
圖10(xxxii)-圖10(xL)是一系列示意性截面圖,示出具有嵌入式濾波器的基板形成端子的方法,每幅圖對應於圖10的相應步驟。 10(xxxii)-FIG. 10(xL) are a series of schematic cross-sectional views showing a method of forming a terminal of a substrate with an embedded filter, and each figure corresponds to the corresponding step of FIG. 10.
圖11是框架的示意圖,所述框架具有嵌入其中的三層由伸長的通孔構成的線圈並且包括嵌入的電容器,示出製造技術的靈活性以及其如何用於製造嵌入式濾波器等的方法。 11 is a schematic diagram of a frame having three layers of coils composed of elongated through-holes embedded therein and including embedded capacitors, showing the flexibility of manufacturing technology and how it can be used to manufacture embedded filters and the like .
圖12a是基礎LC低通濾波器的三維示意圖。 Fig. 12a is a three-dimensional schematic diagram of a basic LC low-pass filter.
圖12b示出圖12a的基礎LC低通濾波器可如何表示為LC濾波器電路。 Figure 12b shows how the basic LC low-pass filter of Figure 12a can be represented as an LC filter circuit.
圖12c是圖12a的基礎LC低通濾波器的示意性截面圖。 12c is a schematic cross-sectional view of the basic LC low-pass filter of FIG. 12a.
圖12d是圖12a的基礎LC低通濾波器的示意性截面圖,其中電容器的尺寸與其上方的通孔柱相匹配,這限定了電容器額有效電容量。 FIG. 12d is a schematic cross-sectional view of the basic LC low-pass filter of FIG. 12a, where the size of the capacitor matches the via post above it, which defines the effective capacitance of the capacitor.
圖12e是圖12a的基礎LC低通濾波器的示意性截面圖,其 中上電極是其上方的通孔柱。 12e is a schematic cross-sectional view of the basic LC low-pass filter of FIG. 12a, which The upper middle electrode is the via column above it.
圖13a是基礎LC高通濾波器的三維示意圖。 Fig. 13a is a three-dimensional schematic diagram of a basic LC high-pass filter.
圖13b示出圖13a的基礎LC高通濾波器可如何表示為LC濾波器電路器件。 Figure 13b shows how the basic LC high-pass filter of Figure 13a can be represented as an LC filter circuit device.
圖14a是基礎LC帶通濾波器的三維示意圖。 Fig. 14a is a three-dimensional schematic diagram of a basic LC bandpass filter.
圖14b示出圖14a的基礎LC帶通濾波器可如何表示為LC濾波器電路器件。 Figure 14b shows how the basic LC bandpass filter of Figure 14a can be represented as an LC filter circuit device.
圖15a是包括電容器和電感器的基礎LC帶通並聯濾波器的三維示意圖。 Fig. 15a is a three-dimensional schematic diagram of a basic LC bandpass parallel filter including a capacitor and an inductor.
圖15b示出圖15a的基礎LC帶通並聯濾波器可如何表示為LC濾波器電路器件。 Figure 15b shows how the basic LC bandpass parallel filter of Figure 15a can be represented as an LC filter circuit device.
圖16a是低通並聯-切比雪夫濾波器的三維示意圖;圖16b示出圖16a的低通並聯-切比雪夫濾波器可如何表示為LC濾波器。 Fig. 16a is a three-dimensional schematic diagram of a low-pass parallel-Chebyshev filter; Fig. 16b shows how the low-pass parallel-Chebyshev filter of Fig. 16a can be represented as an LC filter.
圖17是具有芯片插座的聚合物或複合材料柵格的一部分的示意圖,其中還具有圍繞插座的直通孔。 17 is a schematic view of a portion of a polymer or composite grid with a chip socket, which also has a straight through hole surrounding the socket.
圖18是用於製造具有環繞直通孔的嵌入式芯片的面板的示意圖,示出部分面板IT IS可如何具有用於不同類型芯片的插座。 FIG. 18 is a schematic diagram of a panel used for manufacturing an embedded chip surrounding a through hole, showing how a part of the panel IT IS can have sockets for different types of chips.
圖19是圖17的聚合物或複合材料框架的一部分的示意圖,在每個插座中容納有芯片,通過聚合物或複合材料例如模塑料將芯片保持在合適位置中。 Fig. 19 is a schematic view of a portion of the polymer or composite material frame of Fig. 17, with a chip contained in each socket, the chip being held in place by a polymer or composite material such as molding compound.
圖20是框架的一部分的示意性截面圖,示出在每個插座 中由聚合物保持的嵌入芯片,還示出在面板兩面上的直通孔和焊盤。 20 is a schematic cross-sectional view of a portion of the frame, shown in each socket In the embedded chip held by the polymer, the through holes and pads on both sides of the panel are also shown.
圖21是包含嵌入芯片的裸芯片的的示意性截面圖。 21 is a schematic cross-sectional view of a bare chip containing embedded chips.
圖22是在相鄰插座中包含一對不相似的裸芯片的封裝體的示意性截面圖。 22 is a schematic cross-sectional view of a package including a pair of dissimilar bare chips in adjacent sockets.
圖23是如圖21所示的封裝體的底視圖。 Fig. 23 is a bottom view of the package shown in Fig. 21.
圖24是示出包括直通孔陣列的聚合物或複合材料面板的製造方法的流程圖。 24 is a flowchart showing a method of manufacturing a polymer or composite material panel including an array of through holes.
圖24(a)-圖24(n)是流程圖24的每一步驟之後得到的中間子結構的示意圖。
24(a)-FIG. 24(n) are schematic diagrams of the intermediate sub-structure obtained after each step of
圖25是可如何使用鑽填技術對沖壓插座產生鍍覆通孔的流程圖。 FIG. 25 is a flow chart of how a drilled-and-fill technique can be used to create plated through holes for a punched socket.
圖25(a)-25(e)是流程圖25的每一步驟之後得到的中間子結構的示意圖。
25(a)-25(e) are schematic diagrams of the intermediate substructure obtained after each step of
圖26是具有嵌入在芯片插座旁邊的濾波器的框架的平面圖。 Fig. 26 is a plan view of a frame with a filter embedded next to a chip socket.
應當理解的是,附圖僅是示意性的,並非按比例繪製。極薄的層可能會顯得很厚。特徵結構的寬度可表現為與其長度不成比例,等等。 It should be understood that the drawings are only schematic and are not drawn to scale. Very thin layers may appear very thick. The width of the feature structure may appear to be disproportionate to its length, and so on.
具體而言,應當注意的是,由於期望更進一步微型化的緣故,可以設置出具有極為不同的空間排列的等同結構,並且可能由此看起來有所不同。 Specifically, it should be noted that, since further miniaturization is desired, an equivalent structure having extremely different spatial arrangements may be provided, and may therefore look different.
為了更好地理解本發明並示出本發明的實施方式,純粹以舉例的方式參照附圖。 For a better understanding of the invention and to show embodiments of the invention, reference is made purely to the drawings.
現在具體參照附圖,必須強調的是,具體圖示僅為示例且出於示意性討論本發明優選實施方案的目的,提供圖示的原因是確信附圖是最有用且易於理解本發明的原理和概念的說明。就此而言,沒有試圖將本發明的結構細節以超出對本發明基本理解所必需的詳細程度來圖示;參照附圖的說明使本領域技術人員能夠知曉本發明的幾種實施方式可如何實施。 With specific reference now to the drawings, it must be emphasized that the specific drawings are only examples and for the purpose of schematically discussing the preferred embodiment of the present invention, the reason for providing the drawings is to make sure that the drawings are the most useful and easy to understand the principles of the present invention And concept description. In this regard, no attempt is made to illustrate the structural details of the present invention beyond the level of detail necessary for a basic understanding of the present invention; the description with reference to the accompanying drawings enables those skilled in the art to know how several embodiments of the present invention can be implemented.
在下文中,涉及用於嵌入芯片的插座。插座結構包括介電基質中的金屬通孔,特別是在聚合物基質中的銅通孔,所述本發明涉及具有壓電膜的芯片插座,所述介電基質例如是玻璃纖維增強的聚酰亞胺、環氧樹脂或BT樹脂(雙馬來酰亞胺/三嗪)或其共混物。 In the following, it refers to a socket for embedding a chip. The socket structure includes metal through holes in a dielectric matrix, especially copper through holes in a polymer matrix. The present invention relates to a chip socket with a piezoelectric film, such as a glass fiber reinforced polyacryl Imine, epoxy resin or BT resin (bismaleimide/triazine) or blends thereof.
下文所述的插座結構還包括構建在插座框架內的電容器。這類電容器通常是金屬-絕緣體-金屬(M-I-M)電容器,包括下金屬電極(可以是金、鈦或鉭)以及無機介電層(可以是例如Ta2O5、TiO2、BaxSr1-x、TiO3、BaTiO3或Al2O3)。電容器可包括專用上電極(常是金、鈦或鉭),或者可以在電容器上沈積通孔(通常是銅通孔)作為上電極。 The socket structure described below also includes a capacitor built within the socket frame. Such capacitors are usually metal-insulator-metal (MIM) capacitors, including a lower metal electrode (which can be gold, titanium or tantalum) and an inorganic dielectric layer (which can be, for example, Ta 2 O 5 , TiO 2 , Ba x Sr 1- x , TiO 3 , BaTiO 3 or Al 2 O 3 ). The capacitor may include a dedicated upper electrode (often gold, titanium, or tantalum), or a through hole (usually a copper through hole) may be deposited on the capacitor as the upper electrode.
因為平行板電容器包括夾在電極之間的介電材料,而該介電材料通常是具有極高介電常數的材料,所以用於包封的介電材料在下文中稱為包封電介質,以與電容器的電介質相區別。 Since the parallel plate capacitor includes a dielectric material sandwiched between electrodes, and the dielectric material is usually a material with an extremely high dielectric constant, the dielectric material used for encapsulation is hereinafter referred to as an encapsulating dielectric to The dielectric of the capacitor is different.
附圖是說明性的,並非意圖按比例繪製。此外,示出的是少量的通孔、單個電容器和濾波器,然而插座框架可以包括多個電容 器和濾波器以及大量的通孔。事實上,通常共同製造插座框架的大型陣列。 The drawings are illustrative and are not intended to be drawn to scale. In addition, a few vias, a single capacitor and filter are shown, however the socket frame may include multiple capacitors Filters and filters and a large number of through holes. In fact, large arrays of socket frames are commonly co-manufactured.
當採用鑽填技術製造通孔時,通孔通常具有基本圓形的截面,因為通孔是通過首先在電介質中鑽出激光孔來製造的。因為包封介質是非均勻和各向異性的並且由聚合物基質以及無機填料和玻璃纖維增強體構成,所以通孔的圓形截面通常具有粗糙邊緣並且還可能略微變形而偏離真正的圓形。此外,通常鑽填通孔趨於發生一些傾斜,成為逆截頭圓錐形,而不是圓柱形。 When drilling and filling techniques are used to manufacture through holes, the through holes generally have a substantially circular cross section because the through holes are manufactured by first drilling laser holes in the dielectric. Because the encapsulating medium is non-uniform and anisotropic and is composed of a polymer matrix as well as inorganic fillers and glass fiber reinforcements, the circular cross-section of the through holes usually has rough edges and may also be slightly deformed to deviate from the true circle. In addition, the drilled and filled through-holes tend to have some inclination and become reverse frusto-conical rather than cylindrical.
使用“鑽填”方法,由於截面控製和形狀的困難,導致不可能製造出非圓形通孔。由於激光鑽孔的限製,最小通孔尺寸也只能是約50-60微米。這些困難描述在上文的背景技術部分中,尤其涉及由於銅通孔填充電鍍過程導致的凹陷和/或圓頂形狀、由於激光鑽孔過程導致的通孔傾斜形狀和側壁粗糙以及由於在“布線(routing)”模式中使用昂貴的激光鑽孔機進行銑槽以在聚合物/玻璃電介質產生溝槽導致高昂的成本。 Using the "drill-and-fill" method, due to the difficulty of cross-section control and shape, it is impossible to manufacture non-circular through holes. Due to the limitation of laser drilling, the minimum via size can only be about 50-60 microns. These difficulties are described in the background section above, especially related to the depression and/or dome shape due to the copper via filling electroplating process, the inclined shape of the via hole due to the laser drilling process and the roughness of the side wall and the The "routing" mode uses expensive laser drilling machines for slot milling to create trenches in the polymer/glass dielectric resulting in high costs.
除了上文所述的激光鑽孔的限製之外,鑽填技術的另一限製在於難以在同一層中產生不同直徑的通孔,這是因為當鑽出不同尺寸的通孔通道並同時填充金屬以同時製造不同尺寸通孔時,通孔通道的填充速率不同。因此,作為鑽填技術的特徵的凹坑或過填充(圓頂)的典型問題進一步惡化,因為不可能同時對不同尺寸的通孔同時優化沈積技術。因而,在實際應用中,鑽填通孔具有基本圓形的截面,盡管由於基板的非均勻特性導致有時有些扭曲,並且所有通孔具有相同的截面。 In addition to the limitations of laser drilling described above, another limitation of drilling and filling technology is that it is difficult to create through holes of different diameters in the same layer, because when drilling through holes of different sizes and filling metal at the same time When the through holes of different sizes are manufactured at the same time, the filling rate of the via channels is different. Therefore, the typical problem of pits or overfill (dome), which is a feature of the drill-fill technique, is further exacerbated because it is impossible to simultaneously optimize the deposition technique for through holes of different sizes. Therefore, in practical applications, the drill-filled through-holes have a substantially circular cross-section, although sometimes they are somewhat distorted due to the non-uniform characteristics of the substrate, and all the through-holes have the same cross-section.
此外,應該注意的是,在複合材料電介質例如聚酰亞胺/玻璃或環氧樹脂/玻璃或BT(雙馬來酰亞胺/三嗪)/玻璃或它們與陶瓷和/或其它填料顆粒的共混物中激光鑽出的通孔實際上被限製在約60×10-6m直徑,即使如此由於所鑽孔的複合材料的特徵以及所涉及的燒蝕過程的緣故,通孔還存在顯著的傾斜形狀以及粗糙側壁的缺點。 In addition, it should be noted that in composite dielectrics such as polyimide/glass or epoxy/glass or BT (bismaleimide/triazine)/glass or their and ceramic and/or other filler particles The laser drilled through holes in the blend are actually limited to about 60×10-6m in diameter. Even so, due to the characteristics of the composite material being drilled and the ablation process involved, there are still significant through holes Disadvantages of inclined shapes and rough sidewalls.
如通過引用並入本文的Hurwitz等人的US7,682,972、US7,669,320和US7,635,641所述,珠海越亞公司的光刻膠和圖案或面板鍍覆和層壓技術的特徵是對於特徵結構的面內直徑沒有實際的上限。 As described in US 7,682,972, US 7,669,320 and US 7,635,641 of Hurwitz et al., which are incorporated herein by reference, the features of the photoresist and pattern or panel plating and lamination technology of Zhuhai Yueya Company are for the feature structure There is no practical upper limit for the in-plane diameter.
一種比鑽填技術更精確更靈活的替代製造技術包括在光刻膠內顯影的圖案中鍍覆銅通孔層和特徵層二者(圖案鍍覆),或者面板鍍覆銅層然後選擇性蝕刻掉多余的材料。這兩種方法都留下直立的通孔柱和直立的特徵結構。這些直立的器件可隨後通過在其上層壓電介質進行包封,通常是在直立的特徵結構和通孔柱上覆蓋介電預浸料並隨後使預浸料的樹脂固化。 An alternative manufacturing technique that is more accurate and flexible than the drill-fill technique includes plating both copper via layers and feature layers in patterns developed in the photoresist (pattern plating), or copper plating on the panel and then selective etching Remove excess material. Both methods leave upright via columns and upright features. These upstanding devices can then be encapsulated by a piezoelectric layer on top of them, usually by covering the upstanding features and via posts with a dielectric prepreg and then curing the resin of the prepreg.
利用包括在圖案化的光刻膠中電鍍隨後層壓(或者面板鍍覆、選擇性蝕刻以及層壓)的自下而上技術的靈活性,可以成本有效地製造寬範圍的通孔形狀和尺寸。此外,可以在同一層中製造不同形狀和尺寸的通孔。這在使用銅圖案鍍覆方法的情況下特別有利,首先沈積金屬種子層,然後沈積光刻膠材料並在其中顯影出光滑筆直的非傾斜溝槽,隨後可以通過在暴露的種子層上進行圖案鍍覆在這些溝槽中沈積銅從而進行填充。與鑽填通孔方法相比,通孔柱技術能夠在待填充的光刻膠層中形成溝槽以得到更少凹坑和更少圓頂的銅連接體。在銅沈積之 後,接著剝除光刻膠,移除技術種子層,以及在其上和周圍施加永久的聚合物-玻璃複合材料包封材料。由此產生的“通孔導體”結構可使用如Hurwitz等人的US7,682,972、US7,669,320和US7,635,641中所述的工藝流程。 Utilizing the flexibility of bottom-up technology including electroplating in patterned photoresist followed by lamination (or panel plating, selective etching and lamination), a wide range of via shapes and sizes can be cost-effectively manufactured . In addition, through holes of different shapes and sizes can be manufactured in the same layer. This is particularly advantageous in the case of using a copper pattern plating method, first depositing a metal seed layer, then depositing a photoresist material and developing a smooth and straight non-inclined trench in it, which can then be patterned on the exposed seed layer Plating deposits copper in these trenches for filling. Compared with the method of drilling and filling through holes, the through hole column technology can form trenches in the photoresist layer to be filled to obtain fewer copper holes with fewer pits and fewer domes. Deposited on copper Then, the photoresist is stripped, the technology seed layer is removed, and a permanent polymer-glass composite encapsulation material is applied on and around it. The resulting "via conductor" structure can use the process flow described in US 7,682,972, US 7,669,320, and US 7,635,641 of Hurwitz et al.
利用光刻膠通過電鍍製造通孔的自下而上電鍍技術的另一特徵可以是比鑽填技術製造的通孔更小。目前,最小的鑽填通孔的直徑是約60微米。利用光刻膠的電鍍技術可實現優於50微米的分辨率,甚至小到25微米。將IC連接到這樣的基板上是挑戰性的。一種倒裝芯片連接方法是提供與電介質表面齊平的銅焊盤。這種方法記載在本發明人的US 13/9142,652中。
Another feature of the bottom-up electroplating technique that uses photoresist to make through holes by electroplating may be smaller than the via holes made by the drill-fill technique. Currently, the diameter of the smallest drilled through hole is about 60 microns. The electroplating technology using photoresist can achieve a resolution better than 50 microns, and even as small as 25 microns. Connecting ICs to such substrates is challenging. One flip chip connection method is to provide a copper pad flush with the surface of the dielectric. This method is described in
除了通孔導體和特徵結構之外,發現還可以在結構內製造無源器件例如電容器和濾波器,這包括通孔柱技術,利用電鍍、PVD和包封技術製造電容器和濾波器。 In addition to through-hole conductors and features, it has been found that passive devices such as capacitors and filters can also be fabricated within the structure. This includes through-hole column technology, using electroplating, PVD and encapsulation technologies to manufacture capacitors and filters.
參照圖1,在示意圖中示出限定有插座2的聚合物基電介質框架1,其中框架1的前部被截去。框架1具有嵌入的通孔柱5、6、7,通孔柱5中的至少一個包括薄膜電容器6。通過電鍍製造的通孔柱不必是圓形的,可以在一個面內方向上延伸。所示的一個通孔柱是伸長的通孔柱7,其在X-Y平面內延伸並且可以用作電感器。
Referring to FIG. 1, a polymer-based
圖2是圖1所示的限定插座2的聚合物基電介質框架1的示意性截面圖,但是其中插座2包括一個或多個嵌入器件,在該情況下是附加電容器8、9,其中在框架1中具有嵌入的金屬絕緣體金屬(MIM)電容器6的通孔柱5通過特徵層的特徵結構11、12連接至插座2內的嵌入電
容器8、9.嵌入電容器9可以製造在絕緣基板14例如矽(Si)、二氧化矽(SiO2)、玻璃、AlN、α-氧化鋁或c-面氧化鋁(藍寶石)上。此外,在包括電感器13的填充的插座2上沈積第二特徵層。圖2中不包括圖1所示的附加常規通孔柱4,或至少不是在圖1所顯示的位置上。然而,應該理解的是,本發明的框架1可包括一個或多個常規通孔柱4、立在電容器6上的通孔柱5和電感通孔柱7。
2 is a schematic cross-sectional view of the polymer-based
在框架1的通孔5內的MIM電容器和在插座內嵌入的MIM電容器8、9均可包括下金屬電極和無機介電層,其中例如,下金屬電極可以是金、鉭或鈦,無機介電層可以是Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3或α-Al2O3。
Both the MIM capacitor in the through
電容器可以包括專用的上電極,通常是金、鉭或鈦,或者通常是銅的通孔5可以沈積在電介質6上並且其本身用作上電極。類似地,嵌入框架的嵌入電容器8、9可以包括金、鉭或鈦電極以及無機電介質,其可以是Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3或Al2O3。該嵌入電容器8、9可製造在無機基板例如c-面氧化鋁(藍寶石)上。
The capacitor may include a dedicated upper electrode, usually gold, tantalum or titanium, or a through
電容器和電感器的組合可用作濾波器,用以保護芯片免受波動電流和噪聲的影響。對於RF通訊例如WIFI、藍牙等,濾波器具有特別的重要性。濾波器可用於將電路的一部分與其它器件隔離,以防止干擾。 The combination of capacitor and inductor can be used as a filter to protect the chip from fluctuating current and noise. For RF communications such as WIFI, Bluetooth, etc., filters are of particular importance. The filter can be used to isolate part of the circuit from other devices to prevent interference.
參照圖3,示出在特徵層內的電感器40和在直立於電容器44上的通孔柱層中與電感器40串聯連接的相鄰通孔柱42的示意圖。為了清楚起見,沒有示出周圍的包封介電材料。僅示出金屬結構和電容器。
圖3的結構可由銅製成,其中電容器44包括介電材料例如Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3或Al2O3,並且通常具有鉭或其它貴金屬的電極。通常,通孔柱42會被包封在聚合物電介質內,該聚合物電介質可包括填料並且可以利用織造纖維預浸料來製造。可以首先沈積包括電感器40的特徵層,同時在其上層積電容器44和通孔柱42。可以在特徵結構40和通孔柱42上層壓聚合物基電介質材料,該電介質材料可以是聚合物膜或織造纖維預浸料。作為選擇,可以製造通孔柱42和電容器44並層壓聚合物電介質,然後可以在其上沈積在特徵層中的電感器40,或者如圖所示在其下方沈積電感器40,不進行層壓使之成為表面迹線,例如圖2的電感器13,或者可以隨後層壓,也可與另外的通孔層一起層壓,圖中未示出。因此,電感器40可以包括在作為框架(1,圖1)一部分的特徵層中或者是在框架(1,圖1)上方或下方的表面層中,例如圖2的部件13。此外,繼續參照圖2,如果在框架1之外並且在諸如模塑料或預浸料的聚合物電介質10中嵌入器件8和9之後填充空腔2,則電感器40(13)可以部分沈積在填充的空腔上。
Referring to FIG. 3, a schematic diagram of the
應該理解的是,特徵層是非常薄的,通常厚度為約10微米。然而,通孔層可以遠厚於此。圖4是延伸在通孔層中在通孔柱52的基部與電感器54串聯連接的電感器通孔56的示意圖。電容器54與電感器通孔56之間通過沈積在特徵層中或在框架表面上的迹線58連接,在圖4中迹線58在底表面上。電感器通孔56的厚度可為約30微米並且具有與圖3的特徵層電感器40不同的特性。通常,電感器通孔40是電感範圍約0.1nH~約10nH的高Q電感器。如圖所示,通孔柱電感器56可以是一個相當緊密
的線圈。然而,應該理解的是,該線圈可以形成在框架1內並且完全圍繞框架1的插座2,或者可以嵌入在插座旁邊的框架一側內。
It should be understood that the feature layer is very thin, usually about 10 microns thick. However, the via layer can be much thicker than this. FIG. 4 is a schematic diagram of an inductor via 56 extending in series with the
參照圖5,應該理解的是,濾波器可以製造成包括一對電感器,即特徵層中的第一電感器60和通孔柱層中的第二電感器66。再次參照圖1和2,第一電感器60可以表面安裝在框架1上,或者如同圖2中的電感器13那樣表面安裝在填充有聚合物10的空腔2上方的填充框架上,或者可以在包括特徵結構11和12的層中或實際上在後續層中的填充腔下方沈積。圖5所示的濾波器包括在通孔層中的第二電感器66,所述通孔層還包括常規通孔柱。第二電感器66可以完全製造在包圍空腔2的框架1內。電感器60、66可彼此串聯並且在通孔電感器66的通孔層內的通孔柱62的基部與電容器64連接。
Referring to FIG. 5, it should be understood that the filter may be manufactured to include a pair of inductors, that is, the
應該理解的是,對於某些濾波用途需要並聯連接器件。 It should be understood that for certain filtering applications, devices need to be connected in parallel.
例如,圖6是特徵層中的電感器70的示意圖,電感器70在通孔柱71的基部與電容器74並聯連接。電容器74和電感器70通過通孔柱71、72以及在第二上特徵層中或在多層結構外部的迹線78連接在一起。再次參照圖2,通孔柱71、72將定位在框架1內。電感器70和接頭78可以沈積在框架的特徵中,如果框架是多層的話,或者可以通過電鍍沈積到圖2的填充框架1外部的光刻膠中,可以鋪展在空腔2的填料10的上方(或下方)。
For example, FIG. 6 is a schematic diagram of the
圖7是在(框架1的)特徵層或(沈積在框架1上並且可以沈積在填充的空腔2,例如圖2的電感器13上的)電感器88的示意圖,其余電感通孔86串聯,如圖1和2的通孔7,並且與電容器84並聯。電容器
84和電感器86通過迹線88連接在一起,迹線88在框架的第二(如圖,上方)特徵層中或在框架1外側上(可以跨越空腔2)。
7 is a schematic diagram of a characteristic layer (of frame 1) or an inductor 88 (deposited on
參照圖8,示出基板21(例如圖1的框架1)的截面圖,包括由夾在銅特徵層24和銅柱26之間的介電材料層22構成的一層平行板電容器20。任選地,介電層22沈積在銅特徵層24上,然後從介電層22上生長出銅柱26。介電材料可以是例如Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3或Al2O3,可以通過物理氣相沈積法如濺射法或化學氣相沈積法進行沈積。
Referring to FIG. 8, a cross-sectional view of a substrate 21 (eg,
為了獲得高品質電容器,介電材料可以包括可通過物理氣相沈積法沈積的Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3或Al2O3,還可以包括預先或後續沈積的一個鋁層,該鋁層可以通過在電介質陶瓷旁側濺射沈積。在任選的鋁沈積之後,可以將結構在氧存在下在加熱爐或烘箱中或者暴露在遠紅外輻射中進行加熱。這樣,鋁就原位轉變成氧化鋁(Al2O3)。因為Al2O3的密度低於鋁的密度,所以其覆蓋在陶瓷層上並密封陶瓷層之後的缺陷,從而確保高介電常數以及防止泄漏。 In order to obtain high-quality capacitors, the dielectric material may include Ta 2 O 5 , TiO 2 , Ba x Sr 1-x TiO 3 , BaTiO 3 or Al 2 O 3 that can be deposited by physical vapor deposition, and may also include pre- or An aluminum layer deposited subsequently, which can be deposited by sputtering next to the dielectric ceramic. After optional aluminum deposition, the structure can be heated in the presence of oxygen in a furnace or oven or exposed to far infrared radiation. In this way, aluminum is converted into alumina (Al 2 O 3 ) in situ. Because the density of Al 2 O 3 is lower than that of aluminum, it covers the ceramic layer and seals the defects after the ceramic layer, thereby ensuring a high dielectric constant and preventing leakage.
銅柱26、28、30、32被包封在包封介電材料34中。當銅柱26、28、30、32通過在光刻膠之後電鍍(或面板鍍覆和蝕刻)並且隨後層壓製成通孔柱時,包封介電材料34可以作為玻璃纖維增強聚合物樹脂預浸料應用,層壓在銅柱26、28、30、32上。
利用倒置圖案或面板鍍覆,多個銅柱28、32中的一個可以是擴展電感通孔柱,例如圖1和2的電感通孔柱7。
Using an inverted pattern or panel plating, one of the plurality of
銅特徵層24可以具有約15微米厚度,公差約+-5微米。每
個通孔柱層通常具有約40微米寬度,但範圍可以是約20微米至80微米。可以用作端子焊盤的外特徵層24、38通常也具有約15微米寬度,但範圍可以是約10微米至25微米。
The
衆所周知,電容器的電容值是由介電層的介電常數乘以電容器表面積(即通孔柱26的面積)除以介電層22的厚度來確定的。
As is well known, the capacitance value of a capacitor is determined by the dielectric constant of the dielectric layer multiplied by the surface area of the capacitor (ie, the area of the via post 26) divided by the thickness of the
對於圖8的簡單的單層電容器20,可以優化介電材料22的厚度及其沈積方法。電容值是介電材料22的介電常數和金屬電極面積的屬性,在此金屬電極面積為銅柱26的截面積。
For the simple
在典型的實施方案中,貴金屬電極(通常為鉭製,但任選由金或鉑製成)施加到介電層的兩側上。因此,電容器被引入到通孔柱基部處的通孔層中。保持介電層的厚度和特性不變,此時通孔柱限定上電極,其限定電容值並且可以用來微調電容值。 In a typical embodiment, noble metal electrodes (usually made of tantalum, but optionally made of gold or platinum) are applied on both sides of the dielectric layer. Therefore, the capacitor is introduced into the via layer at the base of the via post. Keeping the thickness and characteristics of the dielectric layer unchanged, the via post defines the upper electrode, which defines the capacitance value and can be used to fine-tune the capacitance value.
下文中將詳細說明,即使使用鉭電極,沈積仔細調整尺寸的通孔柱能夠實現電容器的電極和介電層的等離子體蝕刻,只保留通過移除鉭和氧化鉭但不損傷銅的選擇性蝕刻例如氟化氫或氧蝕刻得到的電容器。此外,因為通孔柱可以通過電鍍形成,所以通孔柱不必是圓柱形的,可以具有矩形或其它截面現狀。 As will be explained in detail below, even if tantalum electrodes are used, depositing carefully sized vias can achieve plasma etching of capacitor electrodes and dielectric layers, leaving only selective etching by removing tantalum and tantalum oxide without damaging copper For example, capacitors etched by hydrogen fluoride or oxygen. In addition, because the via post may be formed by electroplating, the via post does not have to be cylindrical, and may have a rectangular or other cross-section status quo.
參照圖8和圖9(i)~9(xxxi),具體示出了一種製造在通孔柱下方嵌入在聚合物電介質中的薄膜電容器的方法。應該理解的是,圖示方法可以用於共沈積包括框架內薄膜電容器的通孔柱陣列。可以在同一通孔層中沈積常規的基本圓柱形通孔柱(例如圖1的通孔柱4)和電感通孔柱(例如圖1的電感通孔柱7)。但是,為了保持附圖簡潔,未示出在
以下說明中可能涉及的其它通孔柱。
Referring to FIGS. 8 and 9(i) to 9(xxxi), a method of manufacturing a thin film capacitor embedded in a polymer dielectric under a via post is specifically shown. It should be understood that the illustrated method can be used to co-deposit an array of via columns including thin film capacitors in the frame. Conventional substantially cylindrical via posts (such as via
在圖9(xx)中所示的電容器248具有不同材料的專用電極,通常是貴金屬如金,、金或鉭。通常使用鉭,,因為它比金和金便宜。然而,在替代構造中,上電極可以是在其上電鍍的通孔柱232。
The
首先,取得載體210-步驟9(i)。載體210通常是犧牲銅基板。在一些實施方案中,它可以是銅載體以及附著在銅上的快速釋放薄膜。
First, the
在銅載體210上沈積阻擋層212-步驟9(ii)。該阻擋金屬層212可以由鎳、金、錫、鉛、鈀、銀以及它們的組合製成。在一些實施方案中,阻擋金屬層的厚度範圍為1微米至10微米的。通常,阻擋層212包括鎳。薄的鎳阻擋層212可通過物理氣相沈積工藝或通過化學沈積工藝來沈積,通常濺射或電鍍到銅載體210上。為了加快處理過程,阻擋層212可以被電鍍。為了確保平面性和平滑的表面,可隨後進行平坦化-步驟9(iii)(圖9(iii)與圖9(ii)相同,例如通過化學機械研磨(CMP)進行)。
A
接著,可以將薄層銅214沈積到阻擋層212上-步驟9(iv)。銅層214的厚度通常為幾個微米,並且可以通過濺射或通過電鍍來製造。
Next, a thin layer of
接著,沈積第一電極216-步驟9(v)。例如,第一電極216可以由鉭通過濺射製造。
Next, the
然後,沈積介電層218-步驟9(vi)。對於高性能電容器,介電層218必須保持盡可能薄,同時沒有使電荷泄漏發生故障的風險。
有多種候選材料可以使用。這些材料包括Ta2O5、BaO4SrTi和TiO2,例如可通過濺射進行沈積。通常,介電層218的厚度範圍為0.1至0.3微米。
Then, a
現在可以沈積第二電極220-步驟9(vii)。例如,第二電極220可以由鉭通過濺射製造。
The
在一個變化的方法中,不施加第二貴金屬電極220。而是,在電介質上直接沈積銅通孔,其覆蓋區限定電容器的上電極,由此限定電容器的有效面積和電容值。
In a variant method, the second
然而,這種方法難以製造不存在可能導致電荷泄漏這一缺陷的Ta2O5、BaO4SrTi或TiO2的薄介電層。為了克服這個問題,在一些實施方案中,在沈積Ta2O5、TiO2、BaxSr1-xTiO3、BaTiO3層之前或之後沈積一鋁層(未示出)(任選的步驟9(v)b或任選的步驟9(vi)b-見圖9),並通過在氧氣環境中加熱,使鋁層被氧化成高介電陶瓷氧化鋁((Al2O3)。氧化鋁比鋁的密度小,並擴展進入相鄰的空隙中。以這種方式,可以客服缺陷並且確保連續的薄電介質分隔電極。 However, this method is difficult to fabricate a thin dielectric layer of Ta 2 O 5, BaO 4 SrTi, or TiO 2 that does not have the defect that may cause charge leakage. To overcome this problem, in some embodiments, an aluminum layer (not shown) is deposited before or after the deposition of Ta 2 O 5 , TiO 2 , Ba x Sr 1-x TiO 3 , BaTiO 3 layers (optional step) 9(v)b or optional step 9(vi)b-see Figure 9), and by heating in an oxygen atmosphere, the aluminum layer is oxidized into high dielectric ceramic alumina ((Al 2 O 3 ). Oxidation Aluminum has a lower density than aluminum and expands into adjacent voids. In this way, defects can be serviced and continuous thin dielectric separation electrodes can be ensured.
在主過程中,在第二電極220上沈積另一銅層222-步驟9(viii)。該另一銅層222可以用例如濺射或電鍍的方法沈積。該另一銅層222可以通過面板鍍覆沈積到圖案化的光刻膠中,光刻膠圖案可以通過印刷和蝕刻來製造以提供例如焊盤、導體和電感器。光刻膠層208可施加在銅載體210的下方,第二光刻膠層224施加在另一銅層222上方並顯影成圖案-步驟9(ix)。
In the main process, another
將另一銅層222上未被圖案化光刻膠224保護的區域蝕刻掉-步驟9(x)。可使用濕蝕刻。例如,將另一銅層222上未被圖案化光刻
膠224保護蝕刻掉的一種方法包括將犧牲基板暴露於升溫的氫氧化銨溶液。作為選擇方案,也可使用氯化銅或濕式三氯化鐵蝕刻。
The area on the
暴露出的電極層216,220和介電層218可以利用等離子體蝕刻工藝通過幹蝕刻移除-步驟9(xi)。例如,氟化氫和氧等離子蝕刻可以用於蝕刻TiO2或Ta2O5,氟化氫和氬等離子蝕刻可以用於蝕刻BaO4SrTi(BST)。CF4:O2的典型濃度比範圍是在50:50~95:5之間,其中95是CF4的濃度。CF4:Ar的典型濃度比可以是50:50至5:95之間的任何比率,其中95是氬的濃度。
The exposed
在一個變化的方法中,如上所述,不沈積上電極220。而是直接在介電材料上製造銅通孔。無論是利用模板或激光圖案化的光刻膠都能夠精確控製通孔的橫截面尺寸和形狀,該通孔用作上電極並限定電容器的電容值,這是因為電容值與通孔電極的有效面積成正比。
In a variant method, as described above, the
在主過程中,接著剝除圖案化光刻膠224-步驟9(xii),通常如同第二光刻膠層208一樣。然而,由於第二光刻膠層208短暫地被類似的光刻膠層228替代-因此它可以替代地保留。
In the main process, the patterned
在電容器和暴露的銅層214上和周圍沈積銅種子層226-步驟9(xiii)。為了有助於粘附,可以先沈積第一鈦種子層。
A
現在參照不同比例尺的圖9(xiv),施加另一光刻膠層228以保護銅基板(假設圖9(ix)所示的層208被移除),在種子層226上沈積並圖案化一光刻膠厚層230沈積(步驟9(xiv))。在光刻膠230產生的圖案中電鍍形成銅互連232-步驟9(xv)。
Now referring to FIG. 9(xiv) of different scales, another
接著,剝除光刻膠層228(208),230-步驟9(xvii),由
此暴露出電容器248,其被種子層226短路,並且銅通孔柱232互連。
Next, strip the photoresist layer 228 (208), 230-step 9 (xvii), by
This exposes the
現在,蝕刻掉種子層226-步驟9(xvii),進行快速蝕刻以盡量減少對銅層214和通孔層232的損傷,但確保銅層214和銅通孔232彼此被電容器248隔離開。
Now, the
該方法能夠有許多變化。例如,參照圖9(xviii),在銅基板和通孔上層壓聚合物基介電材料234之前,該結構可以進行等離子體蝕刻,所用的等離子體蝕刻方法是銅耐受蝕刻,但鉭和氧化鈦容易被蝕刻的,例如氟化氫和氧氣的混合-步驟9(xviii)。這將電容器348的尺寸減小至通孔柱232的尺寸。因為通孔柱232是通過在光刻膠中電鍍製成的,這提供了一種高精度製造幾乎任何尺寸和形狀的可能性,並且形狀可以是正方形或矩形,而不僅是圓形,以使得堆積密度可以更高。移除過量的電容器材料使得組件之間的高堆積密度成為可能。
This method can have many variations. For example, referring to FIG. 9 (xviii), before laminating the polymer-based
然後,通過在銅基板和通孔上層壓一層聚合物基介電材料234,將電容器348或電容器248嵌入在聚合物基介電材料234中-步驟9(xix)。該聚合物基介電材料234通常是聚酰亞胺、環氧樹脂或BT(雙馬來酰亞胺/三嗪)或它們的共混物,並且可以用玻璃纖維增強。在一些實施方案中,可以使用一個由聚合物樹脂浸漬織造纖維墊的預浸料。聚合物基質可以包括無機顆粒填料,通常具有0.5微米至30微米的平均粒徑,並且該聚合物通常包括15wt%~30wt%的顆粒。
Then, by laminating a layer of polymer-based
雖然有時被稱為是電介質,但是聚合物基介電材料234具有顯著低於電容器248的電介質層218的介電常數,通常這是更奇特材料例如Ta2O5或BaO4SrTi或TiO2等的特性。
Although sometimes referred to as a dielectric, the polymer-based
然後,將固化的聚合物基介電材料234減薄和平坦化-步驟9(xx),例如通過化學機械研磨(CMP),由此暴露出銅通孔232的端部。接著,在聚合物基電介質材料234以及銅通孔232的端部上沈積另一銅種子層236-步驟9(xxi)。在種子層236上施加光刻膠層238病將光刻膠層238圖案化-步驟9(xxii)。然後在圖案中電鍍另一銅層240-步驟9(xxiii)。
Then, the cured polymer-based
現在可以剝除光刻膠層238-步驟9(xxiv)。
The
在該階段,下銅層214經由嵌入在銅互連232中的電容器248通過銅互連232連接到上銅層240。
At this stage, the
可以沈積和圖案化另一光刻膠層242-步驟9(xxv),以及可以在圖案中電鍍銅通孔244-步驟9(xxvi)。
Another
光刻膠層242可以被剝離,留下直立的銅通孔244-步驟9(xxvii),然後蝕刻掉銅種子層236-步驟9(xxviii)。銅種子層可以通過幹法等離子體蝕刻或利用例如氯化銅或氯化銨溶液的短時間蝕刻來移除。
The
參照圖9(xxix),可將介電材料234層壓在直立通孔244上。
Referring to FIG. 9 (xxix), the
銅載體210現在可以被蝕刻掉,一般使用氯化銅或氯化銨溶液進行-步驟9(xxx),利用阻擋層212(通常是鎳)作為蝕刻停止層。
The
然後,可以利用合適的蝕刻技術如等離子體蝕刻或利用特殊化學蝕刻劑來移除阻擋層212-步驟9(xxxi)。例如,為了蝕刻掉鎳而不除去銅,可以使用硝酸和過氧化氫的混合物。可以使用的溶解鎳的其它替代品包括鹽酸+過氧化氫、熱濃硫酸和鹽酸酸化的氯化鐵(Ⅲ)。
Then, the
接著,將聚合物層246減薄和平坦化-步驟9(xxxii),以暴露出銅通孔244的端部。可以使用研磨、抛光或組合的化學機械研磨(CMP)。
Next, the
到目前為止,已經示出了可以如何將先進的高性能電容器248嵌入到複合結構250中,該複合結構250包括直立在薄膜電容器248上的包含銅通孔232的銅通孔層,但是,正如圖1所示,還可以包括電感通孔7以及常規通孔柱4。
So far, it has been shown how the advanced high-
如果框架1包括單個通孔層,則在步驟9(xx)後,在框架中沖壓出空腔2(圖1),將組件(例如圖2中的8和9)定位在框架1內並利用聚合物基介電材料10將其嵌入,聚合物基介電材料10可以是纖維增強的聚合物填料或作為織造纖維預型體施加。
If the
在這種情況下,特徵層240和上通孔層244上可沈積在填充的框架上,填充的框架利用CMP研磨光滑並處理成基板用於進一步積層。
In this case, the
另外,框架可以包括特徵層240,或許可以包括第二通孔層244,甚至包括嵌入在聚合物基介電基質234,246中的其它層。然後,可以在多層框架中沖壓或切割出空腔。
In addition, the frame may include a
由於電容器板和電介質的面內形狀是由圖案化的光刻膠確定的,所以應該認識到電容器可以製成幾乎任何形狀。通常,電容器是正方形或矩形的,但是也可以是圓形的,或者實際上可以是幾乎任何其它形狀。電容器可具有一層、二層、三層或更多層。電介質的厚度可以仔細控製,因此可以對該方法製造的電容器進行定製,使其具有在 大範圍內的基本上任何電容值,並且可以精確地控製電容值,針對特定運行頻率進行優化。 Since the in-plane shape of the capacitor plate and dielectric is determined by the patterned photoresist, it should be recognized that the capacitor can be made in almost any shape. Generally, the capacitor is square or rectangular, but it can also be round, or indeed it can be almost any other shape. The capacitor may have one layer, two layers, three layers or more layers. The thickness of the dielectric can be carefully controlled, so the capacitor manufactured by this method can be customized to have Basically any capacitance value in a wide range, and the capacitance value can be accurately controlled and optimized for a specific operating frequency.
還應當指出的是,通孔244不限製為簡單圓柱形通孔柱,因為它不是由鑽填技術製造的。通過利用在光刻膠242的圖案中電鍍來製造,通孔244也可以具有基本上任何形狀和尺寸。因為通孔244可以是在通孔層內的廣泛導線,所以通孔244可以是電感器,並且可以是電感值為約0.1nH~約10nH的高Q電感器。
It should also be noted that the through-
應該理解的是,電容器248和電感器244的組合能夠提供RF濾波器。
It should be understood that the combination of
參照步驟10(xxxiii)到步驟10(xL)和對應的圖(xxxiii)到10(xL),以下說明一種用於製造濾波器端口的方法。 Referring to step 10 (xxxiii) to step 10 (xL) and the corresponding figures (xxxiii) to 10 (xL), a method for manufacturing a filter port is explained below.
應該理解的是,這樣的端口可以沈積在框架1上,但通常是沈積到結構上,該結構包括框架1和框架1所包圍的填充空腔2,以及嵌入的組件8,9和通常在兩側的附加層。
It should be understood that such ports can be deposited on the
參照步驟10(xxxiii),現在在基質246和銅(電感器)通孔244的暴露端部上濺射鈦種子層252。參照步驟10(xxxiv),在鈦層252上濺射銅層254。
Referring to step 10 (xxxiii), a
參照步驟10(xxxv),在複合結構250的兩面上施加光刻膠層256,258並圖案化。參照步驟10(xxxvi),在圖案化的光刻膠層256,258中電鍍銅260,262來創建端口。
Referring to step 10 (xxxv), photoresist layers 256, 258 are applied on both sides of the
參照步驟10(xxxvii),現在剝除光刻膠層256,258,留下直立的銅端口260,262。參照步驟10(xxxviii),蝕刻掉鈦層252和銅層254。
(在這個過程中,銅焊盤260,262將略微受損)。
Referring to step 10 (xxxvii), the photoresist layers 256, 258 are now stripped away, leaving
由此形成的空洞可填充焊料掩模264-步驟10(xxxix),以及用ENEPIG 266保護銅-步驟10(xL)或其它合適的端子技術。 The cavity thus formed can be filled with solder mask 264-step 10 (xxxix), and protecting copper with ENEPIG 266-step 10 (xL) or other suitable terminal technology.
如上文所述,使用優選的通孔柱技術,沈積在光刻膠中並隨後層壓的電鍍通孔可具有大範圍的形狀和尺寸。此外,框架可以包括被焊盤分隔開的2個或更多的通孔層。 As described above, using the preferred via post technique, electroplated vias deposited in photoresist and then laminated can have a wide range of shapes and sizes. In addition, the frame may include 2 or more via layers separated by pads.
參照圖11,這種靈活性使得能夠嵌入銅線圈1200,通常包括通孔柱,嵌入在圍繞空腔1204的介電框架1202內。僅作為示例,所示的線圈1200具有三個延伸的通孔柱層1206、1207、1208,通孔柱可以沈積在特徵層上。層1206、1207、1208通過垂直器件1209、1210連接在一起。垂直器件1209、1210可以是通孔柱或特徵層或在特徵層上的通孔柱。
Referring to FIG. 11, this flexibility enables the embedding of copper coils 1200, usually including via posts, embedded in the dielectric frame 1202 surrounding the
電容器1250可以被製造在電感器的下方或其內,通常在通孔柱1209的基部。上文參照圖8和9描述了電容器的製造方法。實踐中,銅通孔柱線圈1200通常包括通過特徵層連接在一起的細長通孔柱或通過通孔柱連接在一起的細長特徵層。通常,必須層層構建交替的通孔柱層和特徵層以及線圈。 The capacitor 1250 may be fabricated under or in the inductor, usually at the base of the via post 1209. The method of manufacturing the capacitor has been described above with reference to FIGS. 8 and 9. In practice, the copper via-pillar coil 1200 generally includes elongated via-pillars connected together by a feature layer or elongated vias connected by a via-pillar. In general, it is necessary to build layers of alternating via columns and feature layers and coils.
通過組合電容器和電感器,可以提供濾波器。濾波器的實例示於圖12-16。應當理解的是,任何這些濾波器或類似物可製造在芯片插座的框架內並且與嵌入式芯片組合來提供包括芯片和濾波器的嵌入式電路。基板可以包括用於兩個以上芯片的兩個以上插座,所述芯片例如是處理器芯片和存儲器芯片。此外,某些層可以被製造在嵌入芯片 上,例如可以在芯片上沈積在特徵層中的電容器或電感器。 By combining capacitors and inductors, filters can be provided. Examples of filters are shown in Figures 12-16. It should be understood that any of these filters or the like can be manufactured within the framework of a chip socket and combined with an embedded chip to provide an embedded circuit that includes a chip and a filter. The substrate may include more than two sockets for more than two chips, such as processor chips and memory chips. In addition, certain layers can be fabricated on embedded chips For example, capacitors or inductors that can be deposited in the feature layer on the chip.
參照圖12a,該三維視圖示出圖10(xL)的結構,圖12b是等效電路圖,圖12c是圖10(xL)的結構的平面示意圖,應該理解的是,由此產生的結構本質上是一種具有四個端口P1、P2、P3、P4、電容器C和電感器L的基礎LC低通濾波器300。
Referring to FIG. 12a, the three-dimensional view shows the structure of FIG. 10(xL), FIG. 12b is an equivalent circuit diagram, and FIG. 12c is a schematic plan view of the structure of FIG. 10(xL). It should be understood that the essence of the resulting structure Above is a basic LC low-
參照圖12d,在使用圖9(xviii)中所示的等離子體蝕刻步驟的變型製造技術中,通孔V2的覆蓋區限定了電容器C2的電容值和尺寸,其中多余的材料通過等離子體蝕刻方式蝕刻掉。因此,圖12d是等同於圖12a的基礎LC低通濾波器的示意性橫截面,其中通孔柱V2限定了電容器的電極和介電層的尺寸,如同圖3-7的結構中一樣。 Referring to FIG. 12d, in a variant manufacturing technique using the plasma etching step shown in FIG. 9 (xviii), the coverage area of the via V2 defines the capacitance value and size of the capacitor C2, wherein the excess material is etched by plasma Etch away. Therefore, FIG. 12d is a schematic cross-section equivalent to the basic LC low-pass filter of FIG. 12a, wherein the via post V2 defines the dimensions of the capacitor electrode and the dielectric layer, as in the structure of FIGS. 3-7.
圖12e是另一種圖12a的基礎LC低通濾波器的示意性橫截面,其中電容器C3的上電極是通孔柱V3,而不是首先沈積貴金屬的上電極。在這種結構的製造中,必須注意從電介質中移除所有的銅種子層。 Fig. 12e is a schematic cross section of another basic LC low-pass filter of Fig. 12a, in which the upper electrode of the capacitor C3 is a via post V3 instead of the upper electrode where noble metal is first deposited. In the manufacture of this structure, care must be taken to remove all copper seed layers from the dielectric.
應該理解的是,在圖9和圖9(i)至圖9(xxxii)以及圖10(xxxiii)到圖10(xL)中詳細描述的技術可用於創建寬範圍內具有不同特性的濾波器電路。如圖2所示,許多這些電路可以包括嵌入在空腔2中的電容器8、9或保護嵌入在空腔2中的有源器件。
It should be understood that the techniques detailed in Figures 9 and 9(i) to 9(xxxii) and 10(xxxiii) to 10(xL) can be used to create filter circuits with different characteristics over a wide range . As shown in FIG. 2, many of these circuits may include
例如,參照圖13a和13b,可以製造一種基礎LC高通濾波器。參照圖14a和14b,可以製造一種基礎LC串聯帶通濾波器,如同參照圖15a和15b,可以製造一種基礎LC並聯帶通濾波器。參照圖16a和16b,利用適當的變化方案,經過必要的修正,可以製造低通並聯-切比雪夫濾波器。 For example, referring to FIGS. 13a and 13b, a basic LC high-pass filter can be manufactured. Referring to FIGS. 14a and 14b, a basic LC series bandpass filter can be manufactured, as with reference to FIGS. 15a and 15b, a basic LC parallel bandpass filter can be manufactured. Referring to FIGS. 16a and 16b, with appropriate modification schemes, after necessary modification, a low-pass parallel-Chebyshev filter can be manufactured.
雖然單個過濾器已得到說明,但應該理解的是,實踐中是在大板上共同製造這種濾波器的大型陣列,然後可將其單個化。其它器件可與濾波器一起共同製造。濾波器260可以表面安裝在基板上或通過在其周圍沈積其它的特徵層和通孔層而嵌入到基板中。
Although a single filter has been described, it should be understood that in practice, a large array of such filters is co-manufactured on a large board, which can then be singulated. Other devices can be manufactured together with the filter. The
如下文所述,在一些實施方案中,前述的濾波器可以嵌入在基板中並且在基板上開孔形成插座用於容納芯片,如處理器芯片或存儲器芯片,以實現製造全嵌入式RF電路,其可以包括例如處理器和濾波器。 As described below, in some embodiments, the aforementioned filter may be embedded in a substrate and a hole is formed in the substrate to form a socket for accommodating a chip, such as a processor chip or a memory chip, to achieve manufacturing of a fully embedded RF circuit, It may include, for example, a processor and a filter.
通常,盡管嵌入提高集成度的優點明顯,但是應該理解,嵌入式器件存在固有的缺點,即只要任何部分出現錯誤,則該器件及其嵌入其中的結構都必須被丟棄。有時,診斷問題的路徑原因可能是困難的,因為其中的器件不能被分離和單獨進行測試。但是,由於對基板表面上昂貴面積的需求以及小型化的普遍趨勢,嵌入式濾波器等無源器件以及有源器件例如處理器和存儲器具有顯著優勢。 In general, although the advantages of embedding to improve integration are obvious, it should be understood that embedded devices have inherent shortcomings, that is, as long as any part has an error, the device and its embedded structure must be discarded. Sometimes, diagnosing the path cause of a problem may be difficult because the devices in it cannot be separated and tested separately. However, due to the demand for expensive areas on the substrate surface and the general trend of miniaturization, passive devices such as embedded filters and active devices such as processors and memories have significant advantages.
本發明的一個特徵在於濾波器等無源器件可以製造成用於表面安裝的獨立產品。然而,一旦進行優化,該處理過程可以集成到基板的製造過程中用以嵌入這樣的器件。 One feature of the present invention is that passive devices such as filters can be manufactured as stand-alone products for surface mounting. However, once optimized, this process can be integrated into the manufacturing process of the substrate to embed such devices.
應該理解的是,電容器的電容值取決於電極板面積、電介質的厚度及其介電常數。通常,RF濾波器的電容器具有介於約5pF至約1pF的電容值。使用本文所述的技術,可以將電容值控製在窄範圍內,如9~12pF,甚至10~11pF。 It should be understood that the capacitance value of the capacitor depends on the electrode plate area, the thickness of the dielectric and its dielectric constant. Generally, the capacitor of the RF filter has a capacitance value between about 5 pF and about 1 pF. Using the technique described in this article, the capacitance value can be controlled within a narrow range, such as 9~12pF, or even 10~11pF.
本發明的電感器可具有納亨利的電感範圍。即0.2nH ~300nH,但通常是1nH~約10nH。 The inductor of the present invention may have an inductance range of nano-henry. 0.2nH ~300nH, but usually 1nH ~ about 10nH.
這些電感器的電感值可以控製在窄範圍內,如約4nH~約8nH,或者甚至在需要的範圍小於1納亨利時,即約5nH~約6nH。 The inductance of these inductors can be controlled within a narrow range, such as about 4nH to about 8nH, or even when the required range is less than 1 nanoHenry, that is, about 5nH to about 6nH.
如上所述,可以製造具有嵌入式無源器件的基板。利用下文中更充分描述的技術,有源器件例如芯片可以表面安裝在這樣的基板上或嵌入在該基板的插座內。本發明的實施方案提出一種在圍繞插座的框架中製造嵌入式無源器件的方法,隨後可以在插座中嵌入芯片,如存儲器芯片或處理器芯片。 As described above, a substrate with embedded passive devices can be manufactured. Using techniques described more fully below, active devices such as chips can be surface mounted on such a substrate or embedded in a socket of the substrate. Embodiments of the present invention propose a method of manufacturing embedded passive devices in a frame surrounding a socket, and then a chip, such as a memory chip or a processor chip, can be embedded in the socket.
這樣的框架可以布置在包圍插座陣列的大框架中。陣列中的每個插座可以是相同的,用於容納相同的芯片。作為替代方案,陣列可以包括在圍繞插座的一些或全部框架中具有不同的嵌入式無源器件的不同插座。例如,陣列可以包括交替的用於存儲和處理芯片的插座。插座還可以容納包括無源器件如電容器或濾波器的芯片。無源和有源器件都可以嵌入到插座中。例如,多插座框架可包括一個或多個用於無源器件的插座和一個或多個用於有源器件如存儲器芯片或處理器芯片的插座。為了便於製造,這樣的芯片可以由機器人沈積到插座中,然後通過在其周圍傾倒聚合物電介質將芯片保持在適當位置,聚合物電介質可包括纖維增強材料。在一些情況下,芯片可以通過在其上層壓聚合物膜而保持在適當位置。 Such a frame may be arranged in a large frame surrounding the socket array. Each socket in the array can be the same and used to house the same chip. Alternatively, the array may include different sockets with different embedded passive devices in some or all of the frames surrounding the socket. For example, the array may include alternating sockets for storing and processing chips. The socket may also accommodate chips including passive devices such as capacitors or filters. Both passive and active devices can be embedded in the socket. For example, a multi-socket frame may include one or more sockets for passive devices and one or more sockets for active devices such as memory chips or processor chips. For ease of manufacturing, such a chip can be deposited into a socket by a robot, and then held in place by pouring a polymer dielectric around it, which may include fiber-reinforced materials. In some cases, the chip can be held in place by laminating a polymer film thereon.
用於連接芯片與內插件的所有方法都是成本高昂的。引線鍵合和倒裝芯片技術都是高成本的並且斷開連接會導致故障。嵌入芯片而不是表面安裝可以降低製造成本並提高可靠性和良品率。 All methods for connecting the chip and the interposer are costly. Both wire bonding and flip chip technology are costly and disconnection can cause failures. Embedding chips instead of surface mounting can reduce manufacturing costs and improve reliability and yield.
以下描述用於製造插座和將芯片嵌入這種插座的技術。 The following describes techniques for manufacturing sockets and embedding chips in such sockets.
參照圖17,示出由框架限定的芯片插座1012的陣列1010的一部分,該框架框架聚合物基質1016和穿過聚合物基質框架1016的金屬通孔1014的陣列。
Referring to FIG. 17, there is shown a portion of an
陣列1010可以是包括芯片插座1012的陣列面板的一部分,每一個插座被聚合物基質框架1018包圍和限定,框架1018包括穿過聚合物基質框架1018的聚合物1016的銅通孔1014的柵格。聚合物基質1016通常包括玻璃纖維增強材料,並且最典型的是由樹脂浸漬織造纖維預浸料製造。
The
因此,每個芯片插座1012被聚合物基質1016的框架1018包圍,穿過框架1018的多個銅通孔排列在插座1012'周圍。
Therefore, each
框架1018可以由聚合物製成,作為聚合物片材應用,或也可以是玻璃纖維增強的聚合物,作為預浸料應用。更多細節可以在參照圖22和23在下文中找到,其中討論了製造方法。 The frame 1018 may be made of a polymer and applied as a polymer sheet, or it may be a glass fiber-reinforced polymer and applied as a prepreg. More details can be found below with reference to FIGS. 22 and 23, where the manufacturing method is discussed.
參照圖18,申請人珠海越亞的面板1020通常劃分成方塊1021、1022、1023、1024的2×2陣列,所述方塊通過主框架彼此分隔開,主框架包括水平杆1025、垂直杆1026和外框1027。這些方塊包括芯片插座1012的陣列-圖17。假設採用5mm x 5mm芯片插座和珠海越亞的21” x 25”面板,這種製造技術實現了在每個面板上封裝10000個芯片。與之相對,應注意的是,在本行業目前使用的最大的12”晶圓上製造芯片封裝僅使實現一次處理2500個芯片,使用珠海越亞技術在大面板上的規模經濟性將是令人驚歎的。
Referring to FIG. 18, the
然而,適用於該技術的面板自尺寸上可以進行一些變化。通常,面板是在約12" x 12"和24" x 30"之間。目前使用的一些標准尺寸是20" x 16"、20.3" x 16.5"和24.7" x 20.5"。 However, the panel suitable for this technology can be changed in size. Usually, the panel is between about 12" x 12" and 24" x 30". Some standard sizes currently in use are 20" x 16", 20.3" x 16.5" and 24.7" x 20.5".
不是面板1020的所有方塊都需要具有尺寸相同的芯片插座1012。例如,在圖18的示意圖中,右上方塊1022的芯片插座1028大於其它方塊1021、1023、1024的芯片插座1029。此外,不僅一個或多個方塊1022可用於容納不同尺寸芯片的不同尺寸插座,而且可以使用任何尺寸的任何子陣列來製造任何特定的芯片封裝,所以盡管生產量大,但是可以製造小批量的少量芯片封裝,實現為不同特定客戶同時加工處理不同的芯片封裝,或為不同的客戶製造不同的封裝。因此,面板1020可以包括具有用於容納第一類芯片的第一組尺寸插座1028的至少一個區域1022和具有用於容納第二類型芯片的第二組尺寸插座1029的第二區域1021。
Not all squares of the
如上文參照圖17所述,每個芯片插座1012(1028、1029,圖18)被聚合物框架1018包圍並且處於每個方塊(1021、1022、1023、1024-圖18)中,插座1028(1029)的陣列被定位。 As described above with reference to FIG. 17, each chip socket 1012 (1028, 1029, FIG. 18) is surrounded by the polymer frame 1018 and in each square (1021, 1022, 1023, 1024-FIG. 18), the socket 1028 (1029 ) Is positioned.
參照圖19,芯片1035可以被定位在每個插座1012中,芯片1035周圍的空間可以填充有聚合物1036或聚合物基複合材料,該聚合物可以是或可以不是與用於製造框架1016的聚合物相同的聚合物。例如,可以是模塑料。在一些實施方案中,填料聚合物1036的基質和框架1016的基質可以使用類似的聚合物,但具有不同的增強纖維。例如,框架可以包括增強纖維,而用作插座填料的聚合物1036可以不含纖維。
Referring to FIG. 19, a
典型的芯片尺寸可為約1.5mm x 1.5mm,至多為約31mm x 31mm,插座尺寸稍大以容納預定的芯片並具有間隙。內插件框架的厚度至少必須等於芯片的深度,優選10微米至100微米。通常,框架的深度是芯片厚度+20微米。 A typical chip size may be about 1.5 mm x 1.5 mm, at most about 31 mm x 31 mm, and the socket size is slightly larger to accommodate a predetermined chip and have a gap. The thickness of the interposer frame must be at least equal to the depth of the chip, preferably 10 microns to 100 microns. Generally, the depth of the frame is the chip thickness + 20 microns.
由於在插座1012中嵌入芯片1035,所以每個單獨的芯片均被框架1038包圍,框架1038具有穿過其中並且圍繞每個芯片邊緣排列的通孔1014。
Since the
利用珠海越亞的技術,無論是圖案鍍覆或面板鍍覆再選擇性蝕刻,通孔1014可以製造成通孔柱並隨後層壓介電材料,該介電材料使用聚合物膜或為了增加穩定性使用包括聚合物基質中的織造玻璃纖維束的預浸料。在一個實施方案中,介電材料是Hitachi 705G。在另一個實施方案中,使用MGC 832 NXA NSFLCA。在第三實施方案中,可以使用Sumitomo GT-K。在另一個實施方案中,使用Sumitomo LAZ-4785系列膜。在另一個實施方案中,使用Sumitomo LAZ-6785系列。替代性材料包括例如Taiyo HBI和Zaristo-125。 Using Zhuhai Yueya's technology, whether it is pattern plating or panel plating and then selective etching, the via 1014 can be fabricated as a via post and then laminated with a dielectric material that uses a polymer film or in order to increase stability A prepreg that includes woven glass fiber bundles in a polymer matrix is used. In one embodiment, the dielectric material is Hitachi 705G. In another embodiment, MGC 832 NXA NSFLCA is used. In the third embodiment, Sumitomo GT-K can be used. In another embodiment, Sumitomo LAZ-4785 series membranes are used. In another embodiment, Sumitomo LAZ-6785 series is used. Alternative materials include, for example, Taiyo HBI and Zaristo-125.
作為可選擇的方案,通孔可以使用通常稱為鑽填技術的方法來製造。首先,製造聚合物或纖維增強的聚合物基質,然後在固化後對其鑽孔,通過機械鑽孔或通過激光鑽孔。然後,可將鑽孔通過電鍍來填充銅。 As an alternative, the through hole can be manufactured using a method commonly known as drill-fill technology. First, a polymer or fiber-reinforced polymer matrix is manufactured, and then it is drilled after curing, by mechanical drilling or by laser drilling. Then, the hole can be filled with copper by electroplating.
然而,利用通孔柱技術而不是鑽填技術製造通孔具有許多優點。在通孔柱技術中,因為所有的通孔可以同時製造,所以通孔柱技術要比單獨鑽孔的鑽填技術快得多。此外,鑽出的通孔基本上是圓柱 形的,而通孔柱可以具有任何形狀。在實踐中,所有鑽填充通孔具有相同的直徑(公差範圍內),而通孔柱可具有不同的形狀和大小。而且,為了增強剛度,優選聚合物基質是纖維增強的,通常用玻璃纖維編織束增強。當聚合物預浸料中的纖維施加在直立通孔柱上並被固化時,通孔柱的特性在於具有光滑且垂直的側面。然而,鑽填通孔在鑽取複合材料時通常具有一些錐度;通孔通常具有粗糙的表面,從而導致造成噪聲的雜散電感。 However, the use of through-hole column technology rather than drilling and filling technology to produce through-holes has many advantages. In the through-hole column technology, because all the through-holes can be manufactured at the same time, the through-hole column technology is much faster than the drilling and filling technology of drilling alone. In addition, the drilled through holes are basically cylindrical Shaped, while the via post may have any shape. In practice, all drill-filled through-holes have the same diameter (within tolerance), while the through-hole columns can have different shapes and sizes. Moreover, in order to enhance the rigidity, it is preferred that the polymer matrix is fiber reinforced, usually reinforced with glass fiber woven bundles. When the fibers in the polymer prepreg are applied to an upright through-hole column and cured, the through-hole column is characterized by having smooth and vertical sides. However, drilling and filling through holes usually has some taper when drilling composite materials; through holes usually have rough surfaces, resulting in stray inductance that causes noise.
通常,通孔1014的寬度是在40微米至500微米的範圍內。如果是圓柱形,例如鑽填技術所要求的以及如在通孔柱技術中所常見的,每個通孔可具有25微米至500微米的直徑。
Generally, the width of the through
進一步參照圖19,在具有嵌入通孔的聚合物基質框架1016後,可以通過CNC或沖壓來製造插座1012。可替代地,使用面板鍍覆或圖案鍍覆,可以沈積犧牲銅塊。如果銅通孔柱1014被選擇性地屏蔽,例如使用光刻膠,則該犧牲銅塊可以被蝕刻掉以形成插座1012。
With further reference to FIG. 19, after having a
在每個插座1012周圍的框架1038中具有通孔1014插座陣列聚合物框架1038可以用於創建單個或多個芯片封裝,包括多芯片封裝和層積多層芯片封裝,如封裝上封裝“PoP”陣列。
There are through
一旦芯片1035被定位在插座1012中,則可以使用聚合物1036例如模塑料、幹膜或預浸料將其固定在適當位置。
Once the
參照圖20,可以在嵌入有芯片1035的框架1040的一面或兩面上製造銅布線層1042、1043。通常,芯片1035是倒裝芯片並被連接到扇出超出芯片1035邊緣的焊盤1043上。利用通孔1014,在上表面上的
焊盤1042允許連接用於PoP封裝的另一芯片層等。本質上,應該理解的是,上下焊盤1042、1043使得能夠層積另外的通孔柱和布線層,以創建更複雜的結構。
Referring to FIG. 20,
示出切割工具1045。應當理解,面板1040上的封裝芯片1035陣列容易被切割成單個芯片1048,如圖21所示。
The cutting tool 1045 is shown. It should be understood that the array of packaged
參照圖22,在一些實施方案中,相鄰的芯片插座可具有不同的尺寸形狀,包括不同尺寸和/或不同的形狀。例如,處理器芯片1035可以被定位在一個插座中並連接到定位在相鄰插座中的存儲器芯片1055。當該陣列被劃片切割時,相鄰的插座可保持在一起。因此,一個封裝可包括多於一個的芯片,並且可以包括不同的芯片,其中可包括無源濾波器芯片,但應注意的是利用上述用於製造電容器和濾波器的技術,可以作為框架的一部分而共同製造。
Referring to FIG. 22, in some embodiments, adjacent chip sockets may have different sizes and shapes, including different sizes and/or different shapes. For example, the
焊盤1042、1043可通過球柵陣列BGA或接點柵格陣列LGA連接到芯片。在本領域的當前狀態中,通孔柱的長度可以是約130微米。當芯片1035、1055的厚度大於約130微米時,可能有必要在一個通孔頂端堆疊另一個通孔。用於堆疊通孔的技術是已知的,特別是在赫爾維茨等人的共同未決申請USSN 13/482099和USSN 13/483185中進行了討論。
The
參照圖23,從下方示出芯片封裝1048,包括在聚合物框架1016中的芯片1055,使得芯片1055被框架1016包圍,並且提供圍繞在芯片1055周邊的穿過框架1016的通孔1014。芯片定位在插座中並通過第二聚合物1036保持在適當位置。框架1016通常由纖維增強預浸料製成以
保證穩定性。第二聚合物1036也可以是預浸料,但也可以是聚合物膜或模塑料。通常,如圖所示,通孔1014是簡單的圓柱形孔,但它們可具有不同的形狀和大小。芯片1055上焊球1057的球柵陣列的一部分通過扇出構型的焊盤1043連接到通孔1014。如圖所示,可以具有直接連接到芯片下方基板的附加焊球。在一些實施方案中,為了通信和數據處理,至少一個通孔是同軸通孔。在其他實施方案中,至少一個通孔是傳輸線。例如,在共同未決申請US 13/483185中給出了用於製造同軸通孔的技術。例如,在US 13/483234中提供了用於製造傳輸線的技術。
Referring to FIG. 23, a
除了提供用於芯片堆疊的觸點以外,可以利用圍繞芯片的通孔1014將芯片與其周圍環境隔離開,從而提供法拉第屏蔽。這樣的屏蔽通孔可以連接到焊盤,使得芯片上的屏蔽通孔互連並為芯片提供屏蔽。
In addition to providing contacts for chip stacking,
圍繞芯片可以有多於一排的通孔,並且內排可用於發送信號,外排用於屏蔽。外排可以連接到製造在芯片上的固體銅塊,由此可用作熱沈以耗散芯片產生的熱。可採取這種方式封裝不同的芯片。應當特別指出的是,一個或多個通孔可以是延伸的電感器,電容器可以共同製造並嵌入到框架中,以使電感器和電容器一起提供濾波器。 There can be more than one row of through holes around the chip, and the inner row can be used to send signals and the outer row can be used for shielding. The outer row can be connected to a solid copper block fabricated on the chip, and thus can be used as a heat sink to dissipate the heat generated by the chip. Different chips can be packaged in this way. It should be particularly noted that one or more through-holes may be extended inductors, and capacitors may be co-manufactured and embedded into the frame so that the inductor and capacitor together provide a filter.
利用本文所述的具有通孔的框架的嵌入式芯片技術特別適合於模擬處理,因為觸點很短並且每個芯片的觸點數量相對少。 The embedded chip technology using the frame with through holes described herein is particularly suitable for analog processing because the contacts are short and the number of contacts per chip is relatively small.
應當理解的是,本文描述的技術不限於封裝IC芯片。在一些實施方案中,芯片包括選自保險絲、電容器、電感器和濾波器的器件。在赫爾維茨等人的共同未決申請USSN 13/962316中描述了製造電感
器和濾波器的技術。
It should be understood that the technology described herein is not limited to packaging IC chips. In some embodiments, the chip includes a device selected from fuses, capacitors, inductors, and filters. The manufacturing of inductors is described in the
參照圖24和圖24(a)至24(l),一種製造由有機基質框架包圍的芯片插座陣列的方法包括以下步驟:獲得犧牲載體1080-24(a)。 24 and 24(a) to 24(l), a method of manufacturing a chip socket array surrounded by an organic matrix frame includes the following steps: obtaining a sacrificial carrier 1080-24(a).
任選地,在銅載體1080上施加銅種子層1082-24(b)。在種子層1082上施加抗蝕層1084-24(c),通常由鎳構成並且通常通過物理氣相法如濺射法進行沈積。作為替代方案,例如也可以通過電鍍或化學鍍來沈積。其他的候選材料包括鉭、鎢、鈦、鈦-鎢合金、錫、鉛、錫-鉛合金,所有這些材料都可以濺射,並且錫和鉛也可以電鍍或化學鍍,阻擋金屬層的厚度通常為0.1~1微米。(每個候選阻擋層材料後續利用適當的溶劑或等離子體蝕刻條件進行移除)。在施加阻擋層之後,施加另一銅種子層1086-24(d)。銅種子層的厚度通常為約0.2微米~5微米。
Optionally, a copper seed layer 1082-24(b) is applied on the
優選步驟24(b)至24(d)以確保阻擋層與基板粘附良好,通孔的良好粘附和生長,並且使得能夠通過蝕刻後續移除基板而不損傷通孔。雖然最好的結果包括這些步驟,但是這些步驟是任選的,一個或多個步驟可以不被使用。 Steps 24(b) to 24(d) are preferred to ensure that the barrier layer adheres well to the substrate, good adhesion and growth of the vias, and enables subsequent removal of the substrate by etching without damaging the vias. Although the best results include these steps, these steps are optional and one or more steps may not be used.
然後施加光刻膠層1088-步驟24(e),圖24(e),將其圖案化為具有銅通孔圖案-22(f)。然後,在圖案中鍍入銅1090-24(g),接著剝除光刻膠層1088-24(h)。用聚合物電介質1092層壓直立的銅通孔1090-24(i),該電介質可以是纖維增強聚合物基質預浸料。將層壓的通孔陣列進行減薄和平坦化以暴露出銅通孔的端部-24(j)。然後移除該載體。
Then a
任選且優選地,通過施加抗蝕材料1094來保護具有暴露的銅通孔端部的平坦化聚合物電介質-24(k),抗蝕材料例如是光刻膠或
電介質膜,然後移除銅載體1080-24(l)。通常,載體是銅載體1080,通過溶解銅而移除。可以使用氫氧化銨或氯化銅來溶解銅。
Optionally and preferably, the planarized polymer dielectric-24(k) with exposed copper vias ends is protected by applying a resist
然後,可以蝕刻掉阻擋層-24(m),接著可以移除蝕刻保護層1094-步驟24(n)。 Then, the barrier layer-24(m) can be etched away, and then the etch protection layer 1094-step 24(n) can be removed.
盡管在本文中沒有描述,但應該理解的是,直立銅通孔可以通過面板鍍覆和選擇性蝕刻多余的銅以保留通孔來製造。事實上,插座也可以備選地通過在屏蔽通孔的同時選擇性蝕刻掉銅面板的一部分來製造。 Although not described in this article, it should be understood that upright copper vias can be fabricated by panel plating and selective etching of excess copper to retain the vias. In fact, the socket can alternatively be manufactured by selectively etching away a part of the copper panel while shielding the through hole.
如前文所述,應該理解的是,一個或多個通孔1090可以是圖1所示的改進通孔5,其中包括電容器6。此外,一個或多個通孔可以是圖1中的電感器7。
As described above, it should be understood that the one or more through
雖然通孔柱技術是優選的,但是如果只需要簡單通孔1090而不是圖1中的其中包括電容器6的改進通孔5或圖1中的電感器通孔7,則在只需要簡單圓柱形通孔時也可以使用鑽填技術。
Although the via-pillar technique is preferred, if only a simple via 1090 is required instead of the modified via 5 in FIG. 1 which includes the
參照圖25和圖25(a)至25(e),在另一種變化方法中,獲取由覆銅板(CCL)1100構成的載體-25(a)。CCL的厚度為十幾微米到幾百微米。一個典型的厚度是150微米。穿過CCL鑽出孔1102-25(b)。孔1102可具有十幾微米至幾百微米的直徑。通常,孔的直徑為150微米。
Referring to FIGS. 25 and 25(a) to 25(e), in another variation method, a carrier-25(a) composed of a copper clad laminate (CCL) 1100 is obtained. The thickness of the CCL is from a dozen microns to hundreds of microns. A typical thickness is 150 microns. Drill holes 1102-25(b) through the CCL. The
接著,鍍覆通孔以創建鍍覆通孔1104-25(c)。 Next, the through holes are plated to create plated through holes 1104-25(c).
然後,研磨或蝕刻覆銅層壓板1100以除去表面銅層1106、1108,得到具有鍍覆通孔(Pth)銅通孔1104的層壓板1110-25(d)。
Then, the copper-clad
然後,利用CNC或沖壓,通過層壓板製造用於容納芯片 的插座1112-25(e)。 Then, using CNC or stamping, the laminate is manufactured to accommodate the chip Socket 1112-25(e).
參照圖26,示出其中具有嵌入式濾波器2002的框架2000和多個布線通孔2004的平面圖,框架可包括插座2006,用於容納芯片如處理器芯片或存儲器芯片。這樣的框架2000可以製成大陣列的一部分,例如圖17-19中所示的那些。如圖所示的框架2000包括一個插座2006,用於容納單個芯片。然而,應該理解的是,框架可以包括兩個或更多的插座,用於容納兩個或更多的芯片。這種插座2006可用於嵌入處理器芯片、存儲器芯片或無源芯片,在無源芯片中嵌入有濾波器等。
Referring to FIG. 26, a plan view of a
在本說明書中,已經詳細描述了電感器和電容器可以如何被製造為嵌入在有機基板內的無源器件。這樣電容器和電感器的組合可以提供濾波器。本說明書隨後繼續解釋了具有嵌入通孔的聚合物框架可如何製造以及它們可如何用作用於嵌入式有源器件的插座。這些技術的結合實現了包括一個或多個嵌入芯片和嵌入濾波器的封裝的製造,其用於極小且高度集成的RF器件,包括有源和無源器件。 In this specification, it has been described in detail how inductors and capacitors can be manufactured as passive devices embedded in an organic substrate. This combination of capacitor and inductor can provide a filter. This specification then continues to explain how polymer frames with embedded vias can be manufactured and how they can be used as sockets for embedded active devices. The combination of these technologies enables the manufacture of packages that include one or more embedded chips and embedded filters, which are used for extremely small and highly integrated RF devices, including active and passive devices.
上文的描述僅是說明性的。應當理解的是,本發明能夠具有許多變化方案。 The above description is only illustrative. It should be understood that the present invention can have many variations.
已經描述了本發明的幾個實施方案。然而,應該理解的是,可以進行各種修改而不脫離本發明的實質和範圍。因此,其它實施方案落在所附請求項書的範圍之內。 Several embodiments of the present invention have been described. However, it should be understood that various modifications can be made without departing from the spirit and scope of the invention. Therefore, other embodiments fall within the scope of the attached claims.
本領域技術人員將會認識到,本發明不限於上文中具體圖示和描述的內容。而且,本發明的範圍由所附請求項限定,包括上文所述的各個技術特徵的組合和子組合以及其變化和改進,本領域技術人 員在閱讀前述說明後將會預見到這樣的組合、變化和改進。 Those skilled in the art will recognize that the present invention is not limited to what is specifically illustrated and described above. Moreover, the scope of the present invention is defined by the appended claims, including combinations and sub-combinations of the various technical features described above, as well as changes and improvements thereof. After reading the foregoing description, the staff will anticipate such combinations, changes and improvements.
在請求項書中,術語“包括”及其變體例如“包含”、“含有”等是指所列舉的組件被包括在內,但一般不排除其他組件。 In the request, the term "include" and its variants such as "include", "include", etc. mean that the listed components are included, but generally do not exclude other components.
1‧‧‧框架 1‧‧‧Frame
2‧‧‧插座 2‧‧‧Socket
3‧‧‧電介質 3‧‧‧dielectric
4‧‧‧通孔 4‧‧‧Through hole
5、6、7‧‧‧通孔柱 5, 6, 7‧‧‧ through-hole column
Claims (61)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/555,633 US10446335B2 (en) | 2013-08-08 | 2014-11-27 | Polymer frame for a chip, such that the frame comprises at least one via in series with a capacitor |
US14/555633 | 2014-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201630008A TW201630008A (en) | 2016-08-16 |
TWI689954B true TWI689954B (en) | 2020-04-01 |
Family
ID=56089679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104139316A TWI689954B (en) | 2014-11-27 | 2015-11-26 | Polymer frame for chip with at least one through hole connected in series with capacitor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6695066B2 (en) |
CN (1) | CN105655316A (en) |
TW (1) | TWI689954B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106158835B (en) * | 2016-07-08 | 2018-09-28 | 西安理工大学 | A kind of low-pass filter based on silicon hole technology |
US10141908B2 (en) * | 2016-08-18 | 2018-11-27 | Qualcomm Incorporated | Multi-density MIM capacitor for improved passive on glass (POG) multiplexer performance |
JP6838328B2 (en) * | 2016-09-15 | 2021-03-03 | 大日本印刷株式会社 | Inductors and how to manufacture inductors |
US9953931B1 (en) * | 2016-10-25 | 2018-04-24 | Advanced Semiconductor Engineering, Inc | Semiconductor device package and a method of manufacturing the same |
CN108231747A (en) * | 2016-12-21 | 2018-06-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and preparation method thereof, electronic device |
KR102099310B1 (en) * | 2018-03-23 | 2020-04-09 | 주식회사 아모텍 | Combo antenna module |
CN109981068B (en) * | 2019-05-08 | 2024-03-01 | 合肥博元电子科技有限公司 | Novel filter and isolation structure thereof |
CN111696879B (en) * | 2020-06-15 | 2021-08-31 | 西安微电子技术研究所 | Bare chip KGD screening method based on switching substrate |
CN111769095B (en) * | 2020-06-18 | 2022-06-21 | 复旦大学 | Three-dimensional capacitance inductor based on high-functional-density silicon through hole structure and preparation method |
CN111769096B (en) * | 2020-06-18 | 2023-01-06 | 复旦大学 | Universal substrate based on three-dimensional capacitance and inductance and preparation method |
CN111968972B (en) * | 2020-07-13 | 2024-03-26 | 深圳市汇芯通信技术有限公司 | Integrated chip, manufacturing method thereof and integrated circuit |
WO2022267051A1 (en) * | 2021-06-25 | 2022-12-29 | 京东方科技集团股份有限公司 | Preparation method for conductive via hole, and conductive via hole and passive device |
US20240321724A1 (en) * | 2023-03-23 | 2024-09-26 | Qualcomm Incorporated | Metal-insulator-metal (mim) capacitor interconnect for high-quality (q) inductor-capacitor (lc) filter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6876021B2 (en) * | 2002-11-25 | 2005-04-05 | Texas Instruments Incorporated | Use of amorphous aluminum oxide on a capacitor sidewall for use as a hydrogen barrier |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001291958A (en) * | 2000-04-07 | 2001-10-19 | Denso Corp | Laminated wiring board |
CN100468719C (en) * | 2003-06-03 | 2009-03-11 | 卡西欧计算机株式会社 | Semiconductor package having semiconductor constructing body and method of manufacturing the same |
JP4899645B2 (en) * | 2006-06-02 | 2012-03-21 | 株式会社村田製作所 | Module parts and manufacturing method thereof |
US20080099910A1 (en) * | 2006-08-31 | 2008-05-01 | Ati Technologies Inc. | Flip-Chip Semiconductor Package with Encapsulant Retaining Structure and Strip |
US7936567B2 (en) * | 2007-05-07 | 2011-05-03 | Ngk Spark Plug Co., Ltd. | Wiring board with built-in component and method for manufacturing the same |
JP5358928B2 (en) * | 2007-11-14 | 2013-12-04 | パナソニック株式会社 | 3D printed circuit board |
JP5286988B2 (en) * | 2007-07-09 | 2013-09-11 | パナソニック株式会社 | Rigid flexible printed wiring board and manufacturing method thereof |
JP2009055019A (en) * | 2007-07-30 | 2009-03-12 | Renesas Technology Corp | Multi-layered substrate, package substrate for semiconductor integrated circuit, and printed wiring board for semiconductor integrated circuit packaging |
JP4752825B2 (en) * | 2007-08-24 | 2011-08-17 | カシオ計算機株式会社 | Manufacturing method of semiconductor device |
JP4974009B2 (en) * | 2008-02-14 | 2012-07-11 | 日立金属株式会社 | Electronic components |
JP5659592B2 (en) * | 2009-11-13 | 2015-01-28 | ソニー株式会社 | Method for manufacturing printed circuit board |
US10014843B2 (en) * | 2013-08-08 | 2018-07-03 | Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. | Multilayer electronic structures with embedded filters |
-
2015
- 2015-02-26 JP JP2015037224A patent/JP6695066B2/en active Active
- 2015-11-25 CN CN201510836740.3A patent/CN105655316A/en active Pending
- 2015-11-26 TW TW104139316A patent/TWI689954B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6876021B2 (en) * | 2002-11-25 | 2005-04-05 | Texas Instruments Incorporated | Use of amorphous aluminum oxide on a capacitor sidewall for use as a hydrogen barrier |
Also Published As
Publication number | Publication date |
---|---|
JP6695066B2 (en) | 2020-05-20 |
TW201630008A (en) | 2016-08-16 |
JP2016103623A (en) | 2016-06-02 |
CN105655316A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI689954B (en) | Polymer frame for chip with at least one through hole connected in series with capacitor | |
US10446335B2 (en) | Polymer frame for a chip, such that the frame comprises at least one via in series with a capacitor | |
US10236854B2 (en) | Multilayer electronic structures with embedded filters | |
TWI658542B (en) | Manufacturing method of polymer frame with rectangular cavity array | |
JP6090295B2 (en) | Method for fabricating embedded chip | |
JP6296331B2 (en) | Thin film capacitor embedded in polymer dielectric, and method for producing the capacitor | |
US8710669B2 (en) | Semiconductor device manufacture in which minimum wiring pitch of connecting portion wiring layer is less than minimum wiring pitch of any other wiring layer | |
KR101680593B1 (en) | Embedded chips package structure | |
US9949373B2 (en) | Interposer frame with polymer matrix and methods of fabrication | |
TWI471991B (en) | Semiconductor packages | |
TW201423926A (en) | Single Layer Coreless Substrate | |
KR101770148B1 (en) | Interposer frame with polymer matrix and methods of fabraication | |
KR20150126767A (en) | Polymer frame for a chip, such that the frame comprises at least one via series with a capacitor | |
JP2006186037A (en) | Inductor chip, its manufacturing method, and packaging method |