TWI684072B - 多帶電粒子束描繪裝置及多帶電粒子束描繪方法 - Google Patents

多帶電粒子束描繪裝置及多帶電粒子束描繪方法 Download PDF

Info

Publication number
TWI684072B
TWI684072B TW107124005A TW107124005A TWI684072B TW I684072 B TWI684072 B TW I684072B TW 107124005 A TW107124005 A TW 107124005A TW 107124005 A TW107124005 A TW 107124005A TW I684072 B TWI684072 B TW I684072B
Authority
TW
Taiwan
Prior art keywords
beams
dose
grid
charged particle
design
Prior art date
Application number
TW107124005A
Other languages
English (en)
Other versions
TW201910932A (zh
Inventor
松本裕史
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW201910932A publication Critical patent/TW201910932A/zh
Application granted granted Critical
Publication of TWI684072B publication Critical patent/TWI684072B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2061Electron scattering (proximity) correction or prevention methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • H01J2237/30461Correction during exposure pre-calculated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本發明的一個態樣,係提供一種於多射束描繪中即使當缺陷射束存在的情形下仍可抑制最大照射時間的增大之多帶電粒子束描繪裝置及多帶電粒子束描繪方法。   本發明一個態樣之多帶電粒子束描繪裝置,具備:分配係數演算處理電路,使用可識別缺陷射束之缺陷射束資訊,對成為多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之剔除缺陷射束的3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定劑量之給該3個以上的射束的各射束之分配係數;及描繪機構,使用照射至各設計網格之預定劑量已各自被分配至相對應的3個以上的射束之多帶電粒子束,來對試料描繪圖樣。

Description

多帶電粒子束描繪裝置及多帶電粒子束描繪方法
本發明係多帶電粒子束描繪裝置及多帶電粒子束描繪方法,例如有關控制多射束描繪的最大照射時間之方法。
肩負半導體元件微細化發展的微影技術,在半導體製造過程當中是唯一生成圖樣的極重要製程。近年來隨著LSI的高度積體化,對於半導體元件要求之電路線寬正逐年微細化。當中,電子線(電子束)描繪技術在本質上具有優良的解析性,對光罩底板(blanks)等使用電子線來描繪光罩圖樣係行之已久。   舉例來說,有使用多射束的描繪裝置。相較於以一道電子束描繪的情形下,藉由使用多射束,能夠一次照射較多的射束,故能使產出大幅提升。這樣的多射束方式之描繪裝置中,例如會使從電子槍放出的電子束通過具有複數個孔之光罩而形成多射束,然後各自受到遮沒(blanking)控制,未被遮蔽的各射束則被光學系統縮小,如此光罩像被縮小並藉由偏向器被偏向而照射至試料上的期望位置。   多射束描繪中,是藉由照射時間來控制各射束的照射量。然而,由於將多射束於同時期照射,每1擊發的擊發時間,會受到各射束的最大照射時間所侷限。當將描繪中的平台以等速連續移動的情形下,平台速度,是以可達成照射多射束的所有擊發中的最大的照射時間之速度來定義。故,最大的照射時間的擊發,會限制住擊發循環與平台速度。若最大照射時間變大,則相應地描繪裝置的產出會降低。   此處,各射束的照射量,為了修正因鄰近效應(proximity effect)等的現象而產生之尺寸變動,會進行劑量調變。又,多射束中,基於光學系統的特性,在曝光照野(field)會產生扭曲,由於該扭曲等,會導致各個射束的照射位置會偏離理想網格(grid)。但,多射束中,難以將各個射束個別地偏向,故難以個別地控制各個射束於試料面上的位置。因此,會進行藉由劑量調變來修正各射束的位置偏離(例如參照日本特開2016-103557號公報)。若進行該些劑量調變,則往各照射位置照射之照射量的範圍,相對於基準劑量而言,劑量調變的範圍例如會需要數百%。故,最大照射時間又會更加變大。   又,多射束描繪中,會配置將多射束個別地做遮沒控制之和多射束的射束數相符之個別遮沒機構。但,由於個別遮沒機構的故障等,多射束當中可能會產生常時OFF或不能控制曝光時間等的缺陷射束。無法將該缺陷射束使用於描繪,故當缺陷射束存在的情形下,會藉由剔除了缺陷射束之射束來進行描繪處理。在該情形下,應受到缺陷射束照射之處便不會被射束照射,故會發生將該處藉由別的射束予以補足曝光之必要。當將該補足曝光處理追加至通常的描繪處理的情形下,描繪處理動作會被追加,相應地便導致描繪裝置的產出降低。因此,設想一面進行通常的多重描繪處理,一面在其中一個描繪處理當中,藉由別的射束來來補足曝光應藉由缺陷射束而受到照射之處。在該情形下,會發生必須將照射時間設定地較長來因應補足曝光的份量。因此,會導致將最大照射時間增長之必要。故,相應地,描繪裝置的產出會降低。
本發明的一個態樣,係提供一種於多射束描繪中即使當缺陷射束存在的情形下仍可抑制最大照射時間的增大之多帶電粒子束描繪裝置及多帶電粒子束描繪方法。   本發明的一個態樣之多帶電粒子束描繪裝置,具備:   放出源,放出帶電粒子束;及   成形孔徑陣列基板,接受帶電粒子束的照射,形成多帶電粒子束;及   分配係數演算處理電路,使用可識別缺陷射束之缺陷射束資訊,對成為多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之剔除缺陷射束的3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定劑量之給該3個以上的射束的各射束之分配係數;及   描繪機構,使用照射至各設計網格之預定劑量已各自被分配至相對應的3個以上的射束之多帶電粒子束,來對試料描繪圖樣。   本發明的另一態樣之多帶電粒子束描繪裝置,具備:   放出源,放出帶電粒子束;及   成形孔徑陣列基板,接受帶電粒子束的照射,形成多帶電粒子束;及   分配係數演算處理電路,對成為多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定的劑量之給3個以上的射束的各射束之分配係數;及   辨明處理電路,使用可識別缺陷射束之缺陷射束資訊,來辨明缺陷射束;及   再分配處理電路,針對辨明出的缺陷射束,對該缺陷射束的周圍的複數個射束,將分配至該缺陷射束之分配劑量予以再分配;及   描繪機構,使用照射至各設計網格之預定劑量已各自被分配至剔除缺陷射束之相對應的3個以上的射束之多帶電粒子束,來對試料描繪圖樣。   本發明的一個態樣之多帶電粒子束描繪方法,   使用可識別缺陷射束之缺陷射束資訊,對成為多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之剔除缺陷射束的3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定劑量之給3個以上的射束的各射束之分配係數,   使用照射至各設計網格之預定劑量已各自被分配至相對應的3個以上的射束之多帶電粒子束,來對試料描繪圖樣。   本發明的另一態樣之多帶電粒子束描繪方法,   係於使用了多帶電粒子束之描繪中,   不使用劑量異常地少之缺陷射束而藉由增加缺陷射束的周圍的射束的劑量來修正缺陷射束的影響之描繪方法,   使用可識別缺陷射束之缺陷射束資訊,來鑑定缺陷射束與鄰近於缺陷射束之射束的組,   從鄰近於缺陷射束之射束的組選擇複數組3個以上的射束的組,   針對射束的各組,以同一計算式將劑量從缺陷射束移至鄰近之正常射束,   對射束的每一各組,計算於劑量的移動前後之劑量的重心位置的變化量,   選擇射束的各組當中,前述重心位置的變化成為最小的組,   使用被選擇的工程來進行描繪。
以下,實施形態中,說明一種於多射束描繪中即使當缺陷射束存在的情形下仍可抑制最大照射時間的增大之裝置及方法。   此外,以下在實施形態中,作為帶電粒子束的一例,係針對使用電子束之構成來做說明。但,帶電粒子束不限於電子束,也可以是離子束等使用了帶電粒子的射束。 實施形態1.   圖1為實施形態1中的描繪裝置的構成示意概念圖。圖1中,描繪裝置100,具備描繪機構150與控制系統電路160。描繪裝置100為多帶電粒子束描繪裝置的一例。描繪機構150具備電子鏡筒102(多電子束鏡柱)與描繪室103。在電子鏡筒102內,配置有電子槍201、照明透鏡202、成形孔徑陣列基板203、遮沒孔徑陣列機構204、縮小透鏡205、限制孔徑基板206、對物透鏡207、偏向器208、及偏向器209。在描繪室103內配置XY平台105。在XY平台105上,配置有於描繪時成為描繪對象基板之塗布有阻劑的光罩底板(mask blanks)等試料101。試料101包含製造半導體裝置時的曝光用光罩、或供製造半導體裝置的半導體基板(矽晶圓)等。在XY平台105上還配置XY平台105的位置測定用之鏡(mirror)210、及測定各射束的電流量之法拉第杯106。   控制系統電路160,具有控制計算機110、記憶體112、偏向控制電路130、數位/類比變換(DAC)放大器單元132,134、放大器138、平台位置檢測器139及磁碟裝置等的記憶裝置140,142,144。控制計算機110、記憶體112、偏向控制電路130、DAC放大器單元132,134、放大器138、平台位置檢測器139及記憶裝置140,142,144係透過未圖示之匯流排而彼此連接。在偏向控制電路130連接有DAC放大器單元132、134及遮沒孔徑陣列機構204。DAC放大器單元132的輸出,連接至偏向器209。DAC放大器單元134的輸出,連接至偏向器208。平台位置檢測器139,將雷射光照射至XY平台105上的鏡210,並接受來自鏡210的反射光。然後,利用使用了該反射光的資訊之雷射干涉的原理來測定XY平台105的位置。來自法拉第杯106的輸出,連接至放大器138。放大器138,將作為測定對象之射束的電流量的資訊輸出至控制計算機110。   在控制計算機110內,配置有網格化(rasterize)部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、射束電流量對映作成部70、及描繪控制部72。網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、射束電流量對映作成部70、及描繪控制部72這些各「~部」,具有處理電路。該處理電路,例如包含電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置。各「~部」可使用共通的處理電路(同一處理電路),或亦可使用相異的處理電路(個別的處理電路)。對於網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、射束電流量對映作成部70、及描繪控制部72輸出入之資訊及演算中的資訊會隨時被存儲於記憶體112。   此外,描繪資料係從描繪裝置100的外部輸入,被存儲於記憶裝置140。描繪資料中,通常定義用以描繪之複數個圖形圖樣的資訊。具體而言,對每一圖形圖樣,會定義圖形代碼、座標、及尺寸等。   此處,圖1中記載了用以說明實施形態1所必要之構成。對描繪裝置100而言,通常也可具備必要的其他構造。   圖2為實施形態1中的成形孔徑陣列基板的構成示意概念圖。圖2中,在成形孔徑陣列基板203,有縱(y方向)p列×橫(x方向)q列(p, q≧2)的孔(開口部)22以規定之排列間距(pitch)形成為矩陣狀。圖2中,例如於縱橫(x, y方向)形成512×512列的孔22。各孔22均形成為相同尺寸形狀的矩形。或者是相同直徑的圓形亦可。電子束200的一部分各自通過該些複數個孔22,藉此會形成多射束20。此外,孔22的排列方式,亦不限於如圖2般配置成縱橫為格子狀之情形。例如,縱方向(y方向)第k段的列及第k+1段的列的孔,彼此亦可於橫方向(x方向)錯開尺寸a而配置。同樣地,縱方向(y方向)第k+1段的列及第k+2段的列的孔,彼此亦可於橫方向(x方向)錯開尺寸b而配置。   圖3為實施形態1中的遮沒孔徑陣列機構的構成示意截面圖。   圖4為實施形態1中的遮沒孔徑陣列機構的薄膜(membrane)區域內的構成的一部分示意俯視概念圖。另,在圖3及圖4,沒有記載成令控制電極24與相向電極26與控制電路41與墊(pad)43的位置關係一致。遮沒孔徑陣列機構204,如圖3所示,是在支撐台33上配置由矽等所構成之半導體基板31。基板31的中央部,例如從背面側被切削成較薄,而被加工成較薄的膜厚h之薄膜區域330(第1區域)。圍繞薄膜區域330之周圍,成為較厚的膜厚H之外周區域332(第2區域)。薄膜區域330的上面與外周區域332的上面,是形成為同一高度位置或實質上同一高度位置。基板31,是藉由外周區域332的背面而被保持於支撐台33上。支撐台33的中央部係開口,薄膜區域330的位置,位於支撐台33的開口之區域。   在薄膜區域330,於和圖2所示之成形孔徑陣列基板203的各孔22相對應之位置,有供多射束的各個射束通過用之通過孔25(開口部)開口。換言之,在基板31的薄膜區域330,供使用了電子線的多射束的各個相對應的射束通過之複數個通過孔25係以陣列狀形成。   又,在基板31的薄膜區域330上,且在夾著複數個通過孔25當中相對應的通過孔25而相向之位置,各自配置有具有2個電極之複數個電極對。具體而言,在薄膜區域330上,如圖3及圖4所示,於各通過孔25的鄰近位置,夾著該通過孔25而各自配置有遮沒偏向用之控制電極24及相向電極26的組合(遮沒器:遮沒偏向器)。此外,在基板31內部且薄膜區域330上的各通過孔25的鄰近,配置有對各通過孔25用的控制電極24施加偏向電壓之控制電路41(邏輯電路)。各射束用的相向電極26被接地連接。   此外,如圖4所示,各控制電路41,連接至控制訊號用之n位元(例如10位元)的並列配線。各控制電路41,除了控制訊號用之n位元的並列配線以外,還連接至時鐘訊號線、讀入(read)訊號、擊發(shot)訊號及電源用的配線等。時鐘訊號線、讀入(read)訊號、擊發(shot)訊號及電源用的配線等亦可流用並列配線的一部分配線。對於構成多射束之各個射束的每一者,構成由控制電極24及相向電極26及控制電路41所組成之個別遮沒機構47。此外,圖3例子中,控制電極24及相向電極26及控制電路41是配置於基板31的膜厚較薄之薄膜區域330。但,並不限於此。此外,在薄膜區域330以陣列狀形成之複數個控制電路41,例如藉由同一行或同一列而被群組化,群組內的控制電路41群,如圖4所示般被串聯連接。又,來自對每一群組配置的墊43之訊號會被傳遞至群組內的控制電路41。具體而言,在各控制電路41內,配置有未圖示之移位暫存器,例如p×q道的多射束當中例如同一行的射束的控制電路41內的移位暫存器係被串聯連接。又,例如p×q道的多射束的同一行的射束的控制訊號是以序列(series)被發送,例如各射束的控制訊號係藉由p次的時鐘訊號而被存儲於相對應之控制電路41。   圖5為實施形態1的個別遮沒機構的一例示意圖。圖5中,在控制電路41內,配置有放大器46(切換電路之一例)。圖5例子中,作為放大器46之一例,配置CMOS (Complementary MOS)反相器(inverter)電路。又,CMOS反相器電路連接至正的電位(Vdd:遮沒電位:第1電位)(例如5V)(第1電位)與接地電位(GND:第2電位)。CMOS反相器電路的輸出線(OUT)連接至控制電極24。另一方面,相向電極26被施加接地電位。又,可切換地被施加遮沒電位與接地電位之複數個控制電極24,係配置在基板31上,且在夾著複數個通過孔25的各自相對應之通過孔25而和複數個相向電極26的各自相對應之相向電極26相向之位置。   在CMOS反相器電路的輸入(IN),被施加比閾值電壓還低之L(low)電位(例如接地電位)、及閾值電壓以上之H(high)電位(例如1.5V)的其中一者,以作為控制訊號。實施形態1中,在對CMOS反相器電路的輸入(IN)施加L電位之狀態下,CMOS反相器電路的輸出(OUT)會成為正電位(Vdd),而藉由與相向電極26的接地電位之電位差所造成的電場將相對應射束20偏向,並以限制孔徑基板206遮蔽,藉此控制成射束OFF。另一方面,在對CMOS反相器電路的輸入(IN)施加H電位之狀態(有效(active)狀態)下,CMOS反相器電路的輸出(OUT)會成為接地電位,與相向電極26的接地電位之電位差會消失而不會將相對應射束20偏向,故會通過限制孔徑基板206,藉此控制成射束ON。   通過各通過孔的電子束20,會各自獨立地藉由施加於成對之2個控制電極24及相向電極26的電壓而被偏向。藉由該偏向而受到遮沒控制。具體而言,控制電極24及相向電極26之組合,係以藉由作為各自相對應的切換電路之CMOS反相器電路而被切換之電位,將多射束的相對應射束各自個別地遮沒偏向。像這樣,複數個遮沒器,係對通過了成形孔徑陣列基板203的複數個孔22(開口部)的多射束當中分別相對應的射束進行遮沒偏向。   圖6為實施形態1中描繪動作的一例說明用概念圖。如圖6所示,試料101的描繪區域30,例如朝向y方向以規定寬度被假想分割成長條狀的複數個條紋區域32。首先,使XY平台105移動,調整以使得一次的多射束20擊發所能夠照射之照射區域34位於第1個條紋區域32的左端或更左側之位置,開始描繪。在描繪第1個條紋區域32時,例如使XY平台105朝-x方向移動,藉此便相對地朝x方向逐漸進行描繪。令XY平台105例如以等速連續移動。第1個條紋區域32的描繪結束後,使平台位置朝-y方向移動,調整以使得照射區域34相對地於y方向位於第2個條紋區域32的右端或更右側之位置,這次使XY平台105例如朝x方向移動,藉此朝向-x方向以同樣方式進行描繪。在第3個條紋區域32朝x方向描繪,在第4個條紋區域32朝-x方向描繪,像這樣一面交互地改變方向一面描繪,藉此能夠縮短描繪時間。但,並不限於該一面交互改變方向一面描繪之情形,在描繪各條紋區域32時,亦可設計成朝向同方向進行描繪。1次的擊發當中,藉由因通過成形孔徑陣列基板203的各孔22而形成之多射束,最大會一口氣形成和形成於成形孔徑陣列基板203的複數個孔22同數量之複數個擊發圖樣。   圖7為實施形態1中的多射束的照射區域與描繪對象像素之一例示意圖。圖7中,在條紋區域32,例如會設定以試料101面上的多射束20的射束尺寸間距被排列成網格狀之複數個控制網格27(設計網格)。例如,合適是設為10nm程度的排列間距。該複數個控制網格27,會成為多射束20的設計上的照射位置。控制網格27的排列間距並不被射束尺寸所限定,亦可和射束尺寸無關而由可控制成為偏向器209的偏向位置之任意大小來構成。又,設定以各控制網格27作為中心之,和控制網格27的排列間距同尺寸而以網目狀被假想分割而成之複數個像素36。各像素36,會成為多射束的每1個射束的照射單位區域。圖7例子中揭示,試料101的描繪區域,例如於y方向以和多射束20一次的照射所能照射之照射區域34(描繪照野)的尺寸實質相同之寬度尺寸被分割成複數個條紋區域32之情形。照射區域34的x方向尺寸,能夠藉由對多射束20的x方向的射束間間距乘上x方向的射束數而成之值來定義。照射區域34的y方向尺寸,能夠藉由對多射束20的y方向的射束間間距乘上y方向的射束數而成之值來定義。另,條紋區域32的寬度不限於此。較佳為照射區域34的n倍(n為1以上之整數)之尺寸。圖7例子中,例如將512×512列的多射束的圖示省略成8×8列的多射束來表示。又,在照射區域34內,揭示一次的多射束20擊發所能夠照射之複數個像素28(射束的描繪位置)。換言之,相鄰像素28間的間距即為設計上的多射束的各射束間的間距。圖7例子中,藉由被相鄰4個像素28所包圍,且包括4個像素28當中的1個像素28之正方形的區域,來構成1個子照射區域29。圖7例子中,揭示各子照射區域29由4×4像素所構成之情形。   圖8為實施形態1中的多射束的描繪方法之一例說明用圖。圖8中,揭示描繪圖7所示條紋區域32的多射束當中,由y方向第3段的座標(1, 3),(2, 3),(3, 3),…,(512, 3)的各射束所描繪之子照射區域29的一部分。圖8例子中,例如揭示XY平台105在移動8射束間距份的距離之期間描繪(曝光)4個像素之情形。   在描繪(曝光)該4個像素的期間,藉由偏向器208將多射束20全體予以一齊偏向,藉此使照射區域34追隨XY平台105之移動,以免照射區域34因XY平台105之移動而與試料101之相對位置偏離。換言之,係進行追蹤(tracking)控制。圖8例子中,揭示在移動8射束間距份的距離之期間描繪(曝光)4個像素,藉此實施1次的追蹤循環之情形。   具體而言,平台位置檢測器139,將雷射照射至鏡210,並從鏡210接受反射光,藉此對XY平台105的位置測長。測長出的XY平台105的位置,會被輸出至控制計算機110。在控制計算機110內,描繪控制部72將該XY平台105的位置資訊輸出至偏向控制電路130。   在偏向控制電路130內,配合XY平台105的移動,演算用來做射束偏向之偏向量資料(追蹤偏向資料)以便追隨XY平台105的移動。身為數位訊號之追蹤偏向資料,被輸出至DAC放大器134,DAC放大器134將數位訊號變換成類比訊號後予以放大,並施加至偏向器208以作為追蹤偏向電壓。   然後,描繪機構150,在該擊發中的多射束的各射束各自的照射時間當中的最大描繪時間Ttr內的和各個控制網格27相對應之描繪時間(照射時間、或曝光時間),對各控制網格27照射多射束20當中和ON射束的各者相對應之射束。   圖8例子中,藉由座標(1, 3)的射束(1),從時刻t=0至t=最大描繪時間Ttr為止之期間,對矚目子照射區域29的例如最下段右邊第1個像素36的控制網格27,進行第1擊發之射束的照射。如此一來,該像素便會受到期望的照射時間的射束之照射。從時刻t=0至t=Ttr為止之期間,XY平台105例如朝 -x方向移動恰好2射束間距份。在此期間,追蹤動作持續。   從該擊發的射束照射開始起算經過該擊發的最大描繪時間Ttr後,藉由偏向器208一面持續用於追蹤控制之射束偏向,一面在用於追蹤控制之射束偏向之外,另藉由偏向器209將多射束20一齊偏向,藉此將各射束的描繪位置(前次的描繪位置)移位至下一各射束的描繪位置(本次的描繪位置)。圖8例子中,在成為了時刻t=Ttr的時間點,將描繪對象控制網格27從矚目子照射區域29的最下段右邊第1個像素36的控制網格27移位至下面數來第1段且右邊數來第1個像素36的控制網格27。在此期間,XY平台105亦定速移動,故追蹤動作持續。   然後,一面持續追蹤控制,一面對已被移位之各射束的描繪位置,以和該擊發的最大描繪時間Ttr內的各自相對應之描繪時間,照射和多射束20當中ON射束的各者相對應之射束。圖8例子中,藉由座標(1, 3)的射束(1),從時刻t=Ttr至t=2Ttr為止之期間,對矚目子照射區域29的例如下面數來第2段且右邊數來第1個像素36的控制網格27,進行第2擊發之射束的照射。從時刻t=Ttr至t=2Ttr為止之期間,XY平台105例如朝-x方向移動恰好2射束間距份。在此期間,追蹤動作持續。   圖8例子中,在成為了時刻t=2Ttr的時間點,藉由偏向器209所做的多射束之一齊偏向,將描繪對象控制網格27從矚目子照射區域29的下面數來第2段且右邊數來第1個像素36的控制網格27移位至下面數來第3段且右邊數來第1個像素36的控制網格27。在此期間,XY平台105亦移動,故追蹤動作持續。然後,藉由座標(1, 3)的射束(1),從時刻t=2Ttr至t=3Ttr為止之期間,對矚目子照射區域29的例如下面數來第3段且右邊數來第1個像素36的控制網格27,進行第3擊發之射束的照射。如此一來,該像素36的控制網格27便會受到期望的照射時間的射束之照射。   從時刻t=2Ttr至t=3Ttr為止之期間,XY平台105例如朝-x方向移動恰好2射束間距份。在此期間,追蹤動作持續。在成為了時刻t=3Ttr的時間點,藉由偏向器209所做的多射束之一齊偏向,將描繪對象像素從矚目子照射區域29的下面數來第3段且右邊數來第1個像素36的控制網格27移位至下面數來第4段且右邊數來第1個像素36的控制網格27。在此期間,XY平台105亦移動,故追蹤動作持續。   然後,藉由座標(1, 3)的射束(1),從時刻t=3Ttr至t=4Ttr為止之期間,對矚目子照射區域29的例如下面數來第4段且右邊數來第1個像素36的控制網格27,進行第4擊發之射束的照射。如此一來,該像素36的控制網格27便會受到期望的照射時間的射束之照射。   從時刻t=3Ttr至t=4Ttr為止之期間,XY平台105例如朝-x方向移動恰好2射束間距份。在此期間,追蹤動作持續。依以上,便結束矚目子照射區域29的右邊數來第1個像素列之描繪。   圖8例子中,對從初始位置被移位了3次後之各射束的描繪位置照射了各個相對應之射束後,DAC放大器單元134會將追蹤控制用的射束偏向予以重置,藉此將追蹤位置返回開始做追蹤控制時之追蹤開始位置。換言之,使追蹤位置朝和平台移動方向相反之方向返回。圖8例子中,在成為了時刻t=4Ttr的時間點,解除矚目子照射區域29的追蹤,將射束擺回至朝x方向挪移了8射束間距份之矚目子照射區域29。另,圖8例子中,係說明了座標(1, 3)的射束(1),但針對其他座標的射束,亦是對各個相對應之子照射區域29同樣地進行描繪。也就是說,座標(n, m)的射束,在t=4Ttr的時間點,對於相對應之子照射區域29結束從右邊數來第1個像素列之描繪。例如,座標(2, 3)的射束(2),對和圖7的射束(1)用的矚目子照射區域29於-x方向相鄰之子照射區域29,結束從右邊數來第1個像素列之描繪。   另,由於各子照射區域29的從右邊數來第1個像素列之描繪已結束,故追蹤重置後,於下次的追蹤循環中,首先偏向器209會將各個相對應的射束的描繪位置予以偏向以便對位(移位)至各子照射區域29的下面數來第1段且右邊數來第2個像素的控制網格27。   像以上這樣,同一追蹤循環中,於藉由偏向器208將照射區域34控制在對試料101而言相對位置成為同一位置之狀態下,藉由偏向器209一面使其每次移位1控制網格27(像素36)一面進行各擊發。然後,追蹤循環結束1循環後,返回照射區域34的追蹤位置,再如圖6的下段所示,例如將第1次的擊發位置對位至挪移了1控制網格(1像素)之位置,一面進行下一次的追蹤控制一面藉由偏向器209使其每次移位1控制網格(1像素)一面進行各擊發。條紋區域32的描繪中,藉由反覆該動作,照射區域34的位置以照射區域34a~34o這樣的方式依序逐一移動,逐一進行該條紋區域之描繪。   當以多射束20描繪試料101時,如上述般,在偏向器208所致之追蹤動作中一面跟隨XY平台105的移動一面將作為擊發射束之多射束20藉由偏向器209所致之射束偏向位置的移動而連續地每次依序照射1控制網格(1像素)。然後,藉由描繪序列來決定多射束的哪一射束照射試料101上的哪一控制網格27(像素36)。又,利用在多射束的x, y方向各自相鄰射束間的射束間距,試料101面上的於x, y方向各自相鄰射束間的射束間距(x方向)×射束間距(y方向)的區域,係由n×n像素的區域(子照射區域29)所構成。   例如,在1次的追蹤動作中,當XY平台105朝-x方向移動恰好射束間距(x方向)的情形下,如上般於y方向藉由1個射束一面挪移照射位置一面描繪n控制網格(n像素)。或是,於x方向或斜方向藉由1個射束一面挪移照射位置一面描繪n控制網格(n像素)亦可。同一n×n像素的區域內的其他n像素,在下次的追蹤動作中藉由和上述射束相異之射束同樣地描繪n像素。像這樣在n次的追蹤動作中藉由各自相異之射束來逐次描繪n像素,藉此描繪1個n×n像素的區域內的所有像素。針對多射束的照射區域內的其他n×n像素的區域,亦在同時期實施同樣的動作,同樣地描繪。   接下來說明描繪裝置100中的描繪機構150的動作。從電子槍201(放出源)放出之電子束200,會藉由照明透鏡202而近乎垂直地對成形孔徑陣列基板203全體做照明。在成形孔徑陣列基板203,形成有矩形的複數個孔(開口部),電子束200係對包含所有複數個孔之區域做照明。照射至複數個孔的位置之電子束200的各一部分,會分別通過該成形孔徑陣列基板203的複數個孔,藉此形成例如矩形形狀的複數個電子束(多射束)20a~e。該多射束20a~e會通過遮沒孔徑陣列機構204的各個相對應之遮沒器(第1偏向器:個別遮沒機構)內。該遮沒器會分別將個別通過之電子束20予以偏向(進行遮沒偏向)。   通過了遮沒孔徑陣列機構204的多射束20a~e,會藉由縮小透鏡205而被縮小,朝向形成於限制孔徑基板206之中心的孔行進。此處,藉由遮沒孔徑陣列機構204的遮沒器而被偏向的電子束20a,其位置會偏離限制孔徑基板206的中心的孔,而被限制孔徑基板206遮蔽。另一方面,未受到遮沒孔徑陣列機構204的遮沒器偏向的電子束20b~20e,會如圖1所示般通過限制孔徑基板206的中心的孔。藉由該個別遮沒機構的ON/OFF,來進行遮沒控制,控制射束的ON/OFF。像這樣,限制孔徑基板206,是將藉由個別遮沒機構47而偏向成為射束OFF狀態之各射束加以遮蔽。然後,對每一射束,藉由從成為射束ON開始至成為射束OFF為止所形成之通過了限制孔徑基板206的射束,形成1次份的擊發的射束。通過了限制孔徑基板206的多射束20,會藉由對物透鏡207而合焦,成為期望之縮小率的圖樣像,然後藉由偏向器208、209,通過了限制孔徑基板206的各射束(多射束20全體)朝同方向一齊被偏向,照射至各射束於試料101上各自之照射位置。一次所照射之多射束20,理想上會成為以成形孔徑陣列基板203的複數個孔22的排列間距乘上上述期望之縮小率而得之間距而並排。   此處,如圖5中說明般,在個別遮沒機構47的控制電路41內,配置有放大器46(切換電路之一例)。若由於放大器46的故障而放大器46的輸出變為常時電位Vdd,則會因控制電極24與相向電極26之電位差而導致通過控制電極24與相向電極26之間的通過孔25之射束變為常時OFF。或是,亦可能導致發生雖成為射束ON但曝光量異常地少之射束、或即使能夠生成射束ON的狀態但由於控制電路41內的故障等而無法控制成期望的照射時間之射束的情形。該些缺陷射束的使用會對描繪精度帶來影響,因此難以使用。   圖9為實施形態1中的描繪方法的主要工程示意流程圖。圖9中,實施形態1中的描繪方法,係實施面積率對映作成工程(S102)、條紋單位的照射量對映作成工程(S104)、射束位置偏離量測定工程(S112)、射束陣列單位的射束位置偏離量對映作成工程(S114)、條紋單位的射束位置偏離量對映作成工程(S116)、個別射束電流量測定工程(S122)、射束陣列單位的射束電流量對映作成工程(S124)、條紋單位的射束電流量對映作成工程(S126)、劑量分配表格作成工程(S128)、條紋單位的照射量對映修正工程(S130)、及描繪工程(S140)這一連串的工程。   作為面積率對映作成工程(網格化處理工程)(S102),網格化部50,從記憶裝置140讀出描繪資料,對每一像素36,演算該像素36內的圖樣面積密度ρ’。該處理,例如是對每一條紋區域32執行。   作為條紋單位的照射量對映作成工程(S104),照射量對映作成部52,首先,將描繪區域(此處例如為條紋區域32)以規定的尺寸予以網目狀地假想分割成複數個鄰近網目區域(鄰近效應修正計算用網目區域)。鄰近網目區域的尺寸,較佳為鄰近效應的影響範圍的1/10程度,例如設定為1μm程度。照射量對映作成部52,從記憶裝置140讀出描繪資料,對每一鄰近網目區域,演算配置於該鄰近網目區域內之圖樣的圖樣面積密度ρ。   接下來,照射量對映作成部52,對每一鄰近網目區域,演算用來修正鄰近效應之鄰近效應修正照射係數Dp(x)(修正照射量)。未知的鄰近效應修正照射係數Dp(x),能夠藉由運用了背向散射係數η、閾值模型的照射量閾值Dth、圖樣面積密度ρ、及分布函數g(x)之和習知手法同樣的鄰近效應修正用的閾值模型來定義。   接著下來,照射量對映作成部52,對每一像素36,演算用來對該像素36照射之入射照射量D(x)(劑量、曝光量)。入射照射量D(x),例如可演算為對事先設定好的基準照射量Dbase乘上鄰近效應修正照射係數Dp及圖樣面積密度ρ’而得之值。基準照射量Dbase,例如能夠由Dth/(1/2+η)定義。依以上,便能得到基於描繪資料中定義的複數個圖形圖樣的佈局之,修正了鄰近效應的原本的期望之入射照射量D(x)。   然後,照射量對映作成部52,以條紋單位作成定義了每一像素36的入射照射量D(x)之照射量對映。該每一像素36的入射照射量D(x),會成為設計上照射至該像素36的控制網格27之預定的入射照射量D(x)。換言之,照射量對映作成部52,以條紋單位作成定義了每一控制網格27的入射照射量D(x)之照射量對映(1)。作成的照射量對映(1),例如被存儲於記憶裝置142。   作為射束位置偏離量測定工程(S112),描繪裝置100,測定多射束20的各射束的和相對應的控制網格27相距之位置偏離量。   圖10A與圖10B為用來說明實施形態1中的射束的位置偏離與位置偏離周期性之圖。多射束20中,如圖10A所示,基於光學系統的特性,在曝光照野會產生扭曲,由於該扭曲等,會導致各個射束的實際的照射位置39偏離照射至理想網格的情形下之照射位置37。鑑此,實施形態1中,測定該各個射束的實際的照射位置39的位置偏離量。具體而言,係在塗布有阻劑之評估基板,照射多射束20,以位置測定器測定藉由將評估基板顯影而生成的阻劑圖樣的位置,藉此測定每一射束的位置偏離量。若依各射束的擊發尺寸,難以藉由位置測定器測定各射束的照射位置之阻劑圖樣的尺寸,則可藉由各射束描繪可藉由位置測定器測定之尺寸的圖形圖樣(例如矩形圖樣),測定圖形圖樣(阻劑圖樣)的兩側的邊緣位置,再由兩邊緣間的中間位置與設計上的圖形圖樣的中間位置之差分來測定對象射束的位置偏離量。然後,獲得的各射束的照射位置的位置偏離量資料,被輸入至描繪裝置100,被存儲於記憶裝置144。此外,多射束描繪中,是於條紋區域32內一面挪移照射區域34一面逐漸進行描繪,因此例如圖8中說明的描繪序列中,如圖6的下段所示,條紋區域32之描繪中,照射區域34的位置會以照射區域34a~34o這樣的情況依序移動,於照射區域34的每次移動,各射束的位置偏離會產生周期性。或是,若為各射束照射各自相對應的子照射區域29內的所有像素36之描繪序列的情形,則如圖10B所示,至少在和照射區域34同尺寸的每一單位區域35(35a、35b、…),各射束的位置偏離會產生周期性。故,只要測定1個照射區域34份的各射束的位置偏離量,便能流用測定結果。換言之,針對各射束,只要能夠測定在相對應的子照射區域29內的各像素36之位置偏離量即可。   另,當存在成為常時射束OFF的缺陷射束的情形下,射束不會到達評估基板,故該情形下,只要將從常時射束OFF的周圍的射束的照射位置做線性內插法而得之位置推定成缺陷射束的照射位置即可。針對雖成為射束ON但曝光量異常地少之缺陷射束或是雖成為射束ON但照射時間不能控制之缺陷射束,如同其他射束般,使用實際的照射位置即可。   作為射束陣列單位的射束位置偏離量對映作成工程(S114),射束位置偏離對映作成部54,首先,作成定義射束陣列單位,換言之定義照射區域34內的各射束的位置偏離量之射束位置偏離量對映(1)(第1射束位置偏離量對映)。具體而言,射束位置偏離對映作成部54,從記憶裝置144讀出各射束的照射位置之位置偏離量資料,將該資料作為對映值來作成射束位置偏離量對映(1)即可。   作為條紋單位的射束位置偏離量對映作成工程(S116),射束位置偏離對映作成部54,接下來作成在條紋區域32內的各像素36的控制網格27之射束位置偏離量對映(2)(第2射束位置偏離量對映)。哪一射束照射條紋區域32內的各像素36的控制網格27,例如如圖8中說明般,是由描繪序列來決定。故,射束位置偏離對映作成部54,因應描繪序列對條紋區域32內的各像素36的每一控制網格27辨明負責照射至該控制網格27之射束,來演算該射束的位置偏離量。然後,射束位置偏離對映作成部54,將對各控制網格27之射束的照射位置的位置偏離量作為對映值,來作成條紋單位的射束位置偏離量對映(2)。如上述般,各射束的位置偏離會產生周期性,故只要流用射束陣列單位的射束位置偏離量對映(1)之值,來作成條紋單位的射束位置偏離量對映(2)即可。   作為個別射束電流量測定工程(S122),藉由描繪控制部72之控制,將多射束20的各射束1道道地照射至法拉第杯106,測定各射束的射束電流量。以對象射束成為射束ON而其他射束成為射束OFF之方式,來使遮沒孔徑陣列機構204動作即可。另,如上述般,各射束的照射位置,雖會從控制網格27偏離,但只要將法拉第杯106的受光面做成比它們的位置偏離量還大,則例如即使發生了位置偏離仍能測定。例如,反覆複數次以事先設定好的每一照射時間將各射束1道道地照射至法拉第杯106之動作,測定將獲得的合計電流量除以反覆數而得之平均電流量。   作為射束陣列單位的射束電流量對映作成工程(S124),射束電流量對映作成部70,作成將測定出的各射束的射束電流量作為對映值之射束電流量對映(1)(第1射束電流量對映)。作成的射束陣列單位的射束電流量對映(1),被存儲於記憶裝置144。   作為條紋單位的射束電流量對映作成工程(S126),射束電流量對映作成部70,作成條紋單位的射束電流量對映(2)(第2射束電流量對映)。哪一射束照射條紋區域32內的各像素36的控制網格27,例如如圖8中說明般,是由描繪序列來決定。故,射束電流量對映作成部70,因應描繪序列對條紋區域32內的各像素36的每一控制網格27辨明負責照射至該控制網格27之射束。作成的條紋單位的射束電流量對映(2),被存儲於記憶裝置144。射束電流量對映(2)中定義的電流量為閾值Qth以下之射束,被判定為缺陷射束。故,射束電流量對映(2),係成為可藉由電流量來識別缺陷射束之缺陷射束資訊的一例。只要流用射束陣列單位的射束電流量對映(1)之值,來作成條紋單位的射束電流量對映(2)即可。   但,缺陷射束資訊並不限於此。例如,亦可描繪裝置100另行輸入定義著可識別多射束20當中哪個是缺陷射束之資訊,而存儲於記憶裝置144。   作為劑量分配表格作成工程(S128),對每一控制網格27,作成用來將設定於該控制網格27的劑量分配至周圍的射束之劑量分配表格。   圖11為實施形態1中的劑量分配表格作成工程的內部工程之一例示意流程圖。圖11中,劑量分配表格作成工程(S128),作為其內部工程,係實施矚目網格選定工程(S202)、鄰近射束探索工程(S204)、組合設定工程(S206)、劑量分配率演算工程(S208)、劑量分配係數演算工程(S210)、及劑量分配表格作成處理工程(S212)這一連串的工程。   作為矚目網格選定工程(S202),選擇部56,選擇(選定)對象條紋區域32內的複數個控制網格27當中矚目之控制網格。   作為鄰近射束探索工程(S204),探索部58,對成為多射束20的設計上的照射位置之複數個控制網格27(設計網格)的每一控制網格27,探索實際的照射位置鄰近於該控制網格27之4個以上的鄰近射束。在該複數個鄰近射束當中,合適是亦包含和該控制網格27略一致之射束,例如該控制網格27位於照射區域內之射束。   圖12為用來說明實施形態1中的鄰近射束的探索手法之圖。照射於各控制網格27之射束,如上述般,會發生位置偏離,因此如圖12所示各射束的實際的照射位置(實際照射位置),會成為偏離該射束負責之控制網格27的位置。因此,圖12中,在座標d(i, j)所示之矚目的控制網格27(矚目網格)(黑)的周圍,存在複數個實際照射位置39(白)。鄰近射束的數量為4個以上即可,而實施形態1中說明探索並選擇4個鄰近射束之情形。   探索部58(鄰近射束選擇部),對每一控制網格27(設計網格),探索並選擇對應於從藉由通過該控制網格27的角度相異之2直線而被分割之4個區域起算各自最鄰近的照射位置之射束,以作為實際的照射位置鄰近於該控制網格27之4個鄰近射束。實際的照射位置,能夠從射束位置偏離量對映(2)求出。在該情形下,探索部58,從記憶裝置144讀出射束電流量對映(2)(缺陷射束資訊的一例),將被定義的電流量為閾值Qth以下之射束作為缺陷射束11,而從探索對象剔除。圖12例子中,作為角度相異之2直線,例如使用通過座標(1, j)所示矚目的控制網格27(矚目網格)之平行於x方向的直線43a與平行於y方向的直線43b。換言之,以矚目網格作為中心而設定x軸與y軸。然後,將矚目網格周邊的區域分割成藉由x軸與y軸而被分割之4個區域(第1象限~第4象限)。然後,探索部58(鄰近射束選擇部),選擇對應於第1象限(A)中最鄰近的照射位置39b之射束、及對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束、及對應於第4象限(D)中最鄰近的照射位置39d之射束。另,圖12例子中,成為第1象限(A)中最鄰近的照射位置者為缺陷射束11,故會辨明將該缺陷射束11剔除後之對應於照射位置39b之射束。   圖13為實施形態1中的控制網格與各射束的實際的照射位置之一例示意圖。圖13例子中,揭示了對應於中心所示矚目的控制網格27之射束的實際的照射位置39朝左上側(-x, +y方向)引發位置偏離之情形(U)。此外,圖13例子中,揭示了對應於矚目的控制網格27的於-x方向鄰接的控制網格之射束的實際的照射位置39朝左上側(+x, -y方向)引發位置偏離之情形(V)。此外,圖13例子中,揭示了對應於矚目的控制網格27的於+x方向鄰接的控制網格之射束的實際的照射位置39朝左上側(-x, -y方向)引發位置偏離之情形(W)。此外,圖13例子中,揭示了對應於矚目的控制網格27的於+y方向相鄰2個的控制網格之射束的實際的照射位置39朝比控制網格間距還更左上側(+x, -y方向)引發位置偏離之情形(Z)。如圖13例子般,對應於各控制網格27(黑)之射束的位置偏離方向並非一致。此外,對應於各控制網格27(黑)之射束的實際的照射位置39(白),未必一定存在於矚目網格與鄰接於矚目網格的控制網格之間。也可能有位置偏離發生得比控制網格間距還更遠之情形。探索部58,不拘於控制網格27與射束之對應關係,只要分別選擇實際的照射位置39是位於各象限中剔除缺陷射束11之最鄰近的位置的射束即可。   劑量分配係數演算部64(分配係數演算部),使用定義了缺陷射束11之缺陷射束資訊,對每一控制網格27,對於實際的照射位置鄰近或是略一致於該控制網格27之剔除缺陷射束11之3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該控制網格27位置及照射至該控制網格27的預定劑量之方式,來演算用來分配照射至該控制網格27的預定劑量之給該3個以上的射束的各射束之分配係數wk。實施形態1中,如以下說明般,作為一例,說明將4個鄰近射束分成各3個的射束之組,而對每一組合演算出分配率wk’後,求出給4個鄰近射束之分配係數wk之情形。   作為組合設定工程(S206),組合設定部60,對成為多射束20的設計上的照射位置之複數個控制網格27的每一控制網格27,使用實際的照射位置39鄰近或是略一致於該控制網格27之4個以上的射束,來設定藉由實際的照射位置39是包圍該控制網格27之各3個射束而組合而成之複數個組合42a,41b。圖12例子中,能夠藉由對應於第1象限(A)中最鄰近的照射位置39b之射束、及對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束這3個鄰近射束來設定1個組合42a。此外,能夠藉由對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束、及對應於第4象限(D)中最鄰近的照射位置39d之射束這3個鄰近射束來設定另1個組合42b。由於是包圍矚目的控制網格27(矚目網格),當從各象限各選擇1個鄰近射束的情形下,通常會存在2個組合。   作為劑量分配率演算工程(S208),劑量分配率演算部62(第1分配係數演算部),對複數個組合的每一組合,對於構成該組合之3個射束,以分配後的各分配劑量的重心位置及總和會一致於該控制網格27位置及照射至該控制網格27的預定劑量之方式,來演算用來分配照射至該控制網格27的預定劑量之給構成該組合的3個射束的各射束之分配率wk’(第1分配係數)。   圖14A至圖14D為用來說明實施形態1中的往周圍3個鄰近射束的劑量分配方式之圖。圖14A中,揭示了照射至矚目網格(控制網格27)(黑)的周圍之3個射束的實際的照射位置39(白)。3個射束的照射位置39的座標,分別以(x1 , y1 )、(x2 , y2 )、(x3 , y3 )表示。此外,當將該3個射束的照射位置39的座標表示成以矚目網格(控制網格27)的座標(x, y)作為原點之相對位置的情形下,相對座標分別以(Δx1 , Δy1 )、(Δx2 , Δy2 )、(Δx3 , Δy3 )表示。當將照射至座標(x, y)的矚目網格(控制網格27)之劑量d分配至該3個射束的情形下,為了讓分配後的各劑量d1 , d2 , d3 (分配劑量)的重心位置成為座標(x, y),讓分配後的各劑量d1 , d2 , d3 (分配劑量)的總和成為劑量d,只要滿足圖14B所示行列式即可。換言之,係以滿足以下式(1)~(3)之方式來決定分配後的各劑量d1 , d2 , d3 。   (1) x1 ・d1 +x2 ・d2 +x3 ・d3 =x   (2) y1 ・d1 +y2 ・d2 +y3 ・d3 =y   (3) d1 +d2 +d3 =d   故,分配後的各劑量d1 , d2 , d3 (分配劑量),能夠由圖14C所示行列式來演算。換言之,分配後的各劑量dk(分配劑量),能夠藉由對圖14D所示分配率wk’乘上照射至矚目網格(控制網格27)的劑量d而得之值來定義。故,給矚目網格(控制網格27)(黑)的周圍的3個射束之分配率wk’,能夠藉由演算圖14C來求出。換言之,給3個射束之分配率wk’,滿足以下式(4)~(7)。   (4) d1 =w1 ’・d   (5) d2 =w2 ’・d   (6) d3 =w3 ’・d   (7) w1 ’+w2 ’+w3 ’=1   作為劑量分配係數演算工程(S210),劑量分配係數演算部64(第2分配係數演算部),對4個以上的射束(此處例如為4個射束)的每一射束,演算把將對應於該射束之分配率wk’(第1分配係數)合計而成之值除以複數個組合的數量而得之,對於該控制網格27(設計網格)之4個以上的射束(此處例如為4個射束)的各射束的分配係數wk(第2分配係數)。劑量分配率演算工程(S208)的階段中,對每一組合,只演算給構成該組合的3個射束之各自的分配率wk’。但,對於矚目網格(控制網格27)(黑)用而言,係兼用射束同時存在複數個組合。故,例如從4象限獲得的4個射束當中的2個射束,會成為被使用於2個組合的雙方的構成之射束。圖12例子中,照射位置39a的射束,被使用於組合42a與組合42b雙方。同樣地,照射位置39c的射束,被使用於組合42a與組合42b雙方。故,對於照射位置39a的射束與照射位置39c的射束,會分別演算組合42a的情形下之分配率wk’與組合42b的情形下之分配率wk’。另一方面,照射位置39b的射束,雖被使用於組合42a,但未被使用於組合42b。故,對於照射位置39b的射束,雖會演算組合42a的情形下之分配率wk’,但不會演算組合42b的情形下之分配率wk’。反之,照射位置39d的射束,雖被使用於組合42b,但未被使用於組合42a。故,對於照射位置39d的射束,雖會演算組合42b的情形下之分配率wk’,但不會演算組合42a的情形下之分配率wk’。此外,針對矚目網格(控制網格27)(黑)用而被選擇的4個射束所演算出的分配率wk’的合計,會成為和組合數相同之「2」。鑑此,將在各組合分配的劑量各設為(1/組合數)。藉由該演算,對每一矚目網格(控制網格27)(黑),便獲得用來將照射至該控制網格27之預定劑量d分配給被選擇的4個射束之給各個射束之分配係數wk。   作為劑量分配表格作成處理工程(S212),劑量分配表格作成部66,作成令對每一矚目網格(控制網格27)(黑)演算出的給4個射束之分配係數wk關連至矚目網格(控制網格27)而定義而成之劑量分配表格。   圖15為實施形態1中的劑量分配表格之一例示意圖。圖15例子中,對每一座標(i, j)的矚目網格(控制網格27)(黑),定義分配目標之4個射束的識別座標(ik , jk )與給作為分配目標之4個射束的分配係數wk。   然後,一旦作成了針對1個矚目網格(控制網格27)(黑)之劑量分配表格,便依序將下一控制網格27設為矚目網格,反覆從矚目網格選定工程(S202)至劑量分配表格作成處理工程(S212)為止之各工程,直到針對該條紋區域內的所有控制網格作成劑量分配表格為止。   作為條紋單位的照射量對映修正工程(S130),劑量調變部68,從記憶裝置142讀出條紋單位的照射量對映作成工程(S104)中作成之定義了每一控制網格27的入射照射量D之照射量對映(1),對每一控制網格27,使用劑量分配表格,將對該控制網格27用的入射照射量D各自乘上演算出的作為分配目標之4個射束的分配係數wk而得之分配劑量,各自分配至作為該分配目標之4個射束於設計上成為照射位置之控制網格27。劑量調變部68,藉由該分配,將照射量對映的每一控制網格27的入射照射量D藉由調變予以修正,作成修正後的調變照射量對映(2)。又,劑量調變部68,可將每一控制網格27的修正後的調變入射照射量D變換成以規定的量子化單位Δ被階度化而成之照射時間t,來定義調變照射量對映(2)。   作為描繪工程(S140),描繪機構150,使用照射至各控制網格27之預定劑量d已各自被分配至相對應的3個以上的射束之多射束20,來對試料101描繪圖樣。圖15例子中,使用照射至各控制網格27(設計網格)之預定劑量d已各自被分配至相對應的4個射束之多射束20,來對試料101描繪圖樣。具體而言係如下述般動作。給描繪對象的條紋區域32的各控制網格27之射束的照射時間t,係被定義於調變照射量對映(2)。鑑此,首先,描繪控制部72,將調變照射量對映(2)中定義的照射時間t資料循著描繪序列依擊發順序重排。然後,依擊發順序將照射時間t資料轉送至偏向控制電路130。偏向控制電路130,對遮沒孔徑陣列機構204依擊發順序輸出遮沒控制訊號,並且對DAC放大器單元132、134依擊發順序輸出偏向控制訊號。然後,描繪機構150,以照射各控制網格27之方式,如上述般使用多射束20描繪試料101。實際上,如上述般,照射各控制網格27之射束的照射位置39,其位置會偏離設計上的控制網格27,但由於受到劑量調變,因此能夠修正曝光後形成之阻劑圖樣上形成的圖樣的位置偏離。   像以上這樣,實施形態1中,利用各射束的照射位置的位置偏離來進行劑量調變,藉此即使存在缺陷射束11的情形下,仍能如該缺陷射束11不存在般,藉由剩下的射束來描繪期望的圖樣。因此,便能夠無需為了缺陷射束11的補足曝光而將劑量調變的調變幅度增大。   圖16A至圖16C為藉由實施形態1中的劑量分配而被描繪之圖樣邊緣位置的一例示意圖。圖16A中,為比較例中不進行給鄰近射束之劑量分配而描繪的情形下形成之圖樣邊緣的一例示意圖。黑圓表示控制網格27,正記號表示射束照射位置,圍繞正記號的圓表示射束照射的劑量。針對控制網格的一部分,以實線及虛線表示進行劑量分配之組。縱軸與橫軸是以微米單位表示光罩上的X、Y座標。Y座標在從81.88微米至81.92微米之區域為寬幅40nm的線圖樣。故此圖樣上的控制網格、及從該處被分配到劑量之射束會被分派非為0之劑量。以虛線表示從線圖樣的邊端起算±1nm的位置。又,以實線表示由射束對阻劑賦予之劑量所計算出的圖樣邊端位置。這和將射束對阻劑賦予之劑量分布以20nm的高斯函數進行摺積積分而求出之涵括了顯影製程的影響在內之劑量分布的等高線當中之顯影閾值一致。比較例中,各射束未照射至試料面上的期望的控制網格27,故如圖16A所示,在圖樣邊緣位置發生位置偏離。相對於此,按照實施形態1,進行給鄰近射束之劑量分配,故如圖16B所示,能夠在圖樣邊緣位置減低位置偏離。此外,比較例中,必須以別的射束來照射應藉由缺陷射束11而被照射之照射位置,因此需要追加描繪,會導致產出劣化。進行了多重描繪的情形下,同樣地不得不在其中一個描繪道次中,以別的射束額外照射未藉由缺陷射束11被照射之劑量,而將照射時間至少增長相當於1道次份的劑量之時間。故,會導致最大照射時間變長而產出劣化。相對於此,按照實施形態1,即使存在缺陷射束11的情形下,仍像是該缺陷射束11不存在般藉由剩下的射束來描繪,故最大照射時間無需增長相當於藉由缺陷射束11照射之預定劑量之時間份。因此,能夠減小劑量調變的調變幅度。故,比起比較例,能夠使產出提升。   像以上這樣,按照實施形態1,即使當多射束描繪中存在缺陷射束的情形下仍能將劑量調變的調變幅度抑制得較小。故,能夠抑制最大照射時間的增大。其結果,能夠減低產出的劣化。另,圖11所示劑量分配表格作成工程的內部工程中,當有位置略一致於矚目的控制網格之射束的情形下,只要於S208的劑量分配率演算工程中將對應於前述射束之分配率wk’設為1,將對應於其以外的射束之分配率設為0即可。 實施形態2.   實施形態1中,說明了當從各控制網格27對鄰近射束做劑量分配的情形下,將缺陷射束11從最初便剔除而進行之情形,但並不限於此。實施形態2中,說明涵括缺陷射束11在內來做劑量分配的情形下之構成。   圖17為實施形態2中的描繪裝置的構成示意概念圖。圖17中,在控制計算機110內,更配置了辨明部73、探索部74、設定部75、再分配部76、重心演算部77、選擇部78、及修正部79,除這點以外和圖1相同。   故,網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、描繪控制部72、辨明部73、探索部74、設定部75、再分配部76、重心演算部77、選擇部78、及修正部79這些各「~部」,具有處理電路。該處理電路,例如包含電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置。   各「~部」可使用共通的處理電路(同一處理電路),或亦可使用相異的處理電路(個別的處理電路)。對於網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、描繪控制部72、辨明部73、探索部74、設定部75、再分配部76、重心演算部77、選擇部78、及修正部79輸出入之資訊及演算中之資訊會隨時被存儲於記憶體112。   圖18為實施形態2中的描繪方法的主要工程示意流程圖。圖18中,除了在劑量分配表格作成工程(S128)、與條紋單位的照射量對映修正工程(S130)之間追加了劑量分配表格調整工程(S129)這點以外,和圖9相同。此外,以下除特別說明的點以外之內容,均與實施形態1相同。   面積率對映作成工程(S102)、條紋單位的照射量對映作成工程(S104)、射束位置偏離量測定工程(S112)、射束陣列單位的射束位置偏離量對映作成工程(S114)、及條紋單位的射束位置偏離量對映作成工程(S116)之各工程的內容,和實施形態1相同。   劑量分配表格作成工程(S128)中,當從各控制網格27對鄰近射束做劑量分配的情形下,實施形態2中,即使存在缺陷射束的情形下,仍對涵括缺陷射束在內之3個以上的鄰近射束做劑量分配。換言之,劑量分配係數演算部64(分配係數演算部),無論有無缺陷射束11,對每一控制網格27,對於實際的照射位置鄰近或是略一致於該控制網格27之3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該控制網格27位置及照射至該控制網格27的預定劑量之方式,來演算用來分配照射至該控制網格27的預定劑量之給該3個以上的射束的各射束之分配係數wk。實施形態2中,如以下說明般,如同實施形態1般,作為一例,說明將4個鄰近射束分成各3個的射束之組,而對每一組合演算出分配率wk’後,求出給4個鄰近射束之分配係數wk之情形。   作為矚目網格選定工程(S202),選擇部56,如同實施形態1般,選擇(選定)對象條紋區域32內的複數個控制網格27當中矚目之控制網格。   作為鄰近射束探索工程(S204),探索部58,對成為多射束20的設計上的照射位置之複數個控制網格27(設計網格)的每一控制網格27,探索實際的照射位置鄰近或是略一致於該控制網格27之4個以上的鄰近射束。   圖12例子中,實施形態1中,是辨明對應於第1象限(A)中成為最鄰近的照射位置之剔除了缺陷射束11的照射位置39b之射束,但實施形態2中,探索部58(鄰近射束選擇部)是辨明第1象限(A)中成為最鄰近的照射位置之缺陷射束11。此外,探索部58,除此以外,還探索並選擇對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束、及對應於第4象限(D)中最鄰近的照射位置39d之射束。其他內容和實施形態1相同。   劑量分配係數演算部64(分配係數演算部),使用定義了缺陷射束11之缺陷射束資訊,對每一控制網格27,對於實際的照射位置鄰近或是略一致於該控制網格27之3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該控制網格27位置及照射至該控制網格27的預定劑量之方式,來演算用來分配照射至該控制網格27的預定劑量之給該3個以上的射束的各射束之分配係數wk。   作為組合設定工程(S206),組合設定部60,對成為多射束20的設計上的照射位置之複數個控制網格27的每一控制網格27,使用實際的照射位置39鄰近或是略一致於該控制網格27之4個以上的射束,來設定藉由實際的照射位置39是包圍該控制網格27之各3個射束而組合而成之複數個組合42a,41b。圖12例子中,能夠藉由對應於第1象限(A)中最鄰近的照射位置之缺陷射束11、及對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束這3個鄰近射束來設定1個組合42a。此外,能夠藉由對應於第2象限(B)中最鄰近的照射位置39a之射束、及對應於第3象限(C)中最鄰近的照射位置39c之射束、及對應於第4象限(D)中最鄰近的照射位置39d之射束這3個鄰近射束來設定另1個組合42b。由於是包圍矚目的控制網格27(矚目網格),當從各象限各選擇1個鄰近射束的情形下,通常會存在2個組合。   作為劑量分配率演算工程(S208),劑量分配率演算部62(第1分配係數演算部),對複數個組合的每一組合,對於構成該組合之3個射束,以分配後的各分配劑量的重心位置及總和會一致於該控制網格27位置及照射至該控制網格27的預定劑量之方式,來演算用來分配照射至該控制網格27的預定劑量之給構成該組合的3個射束的各射束之分配率wk’(第1分配係數)。分配率wk’的演算手法和實施形態1相同。   作為劑量分配係數演算工程(S210),劑量分配係數演算部64(第2分配係數演算部),對4個以上的射束(此處例如為4個射束)的每一射束,演算把將對應於該射束之分配率wk’(第1分配係數)合計而成之值除以複數個組合的數量而得之,對於該控制網格27(設計網格)之4個以上的射束(此處例如為4個射束)的各射束的分配係數wk(第2分配係數)。劑量分配率演算工程(S208)的階段中,對每一組合,只演算給構成該組合的3個射束之各自的分配率wk’。但,對於矚目網格(控制網格27)(黑)用而言,係兼用射束同時存在複數個組合。故,例如從4象限獲得的4個射束當中的2個射束,會成為被使用於2個組合的雙方的構成之射束。圖12例子中,照射位置39a的射束,被使用於組合42a與組合42b雙方。同樣地,照射位置39c的射束,被使用於組合42a與組合42b雙方。故,對於照射位置39a的射束與照射位置39c的射束,會分別演算組合42a的情形下之分配率wk’與組合42b的情形下之分配率wk’。另一方面,缺陷射束11,雖被使用於組合42a,但未被使用於組合42b。故,對於缺陷射束11,雖會演算組合42a的情形下之分配率wk’,但不會演算組合42b的情形下之分配率wk’。反之,照射位置39d的射束,雖被使用於組合42b,但未被使用於組合42a。故,對於照射位置39d的射束,雖會演算組合42b的情形下之分配率wk’,但不會演算組合42a的情形下之分配率wk’。此外,針對矚目網格(控制網格27)(黑)用而被選擇的4個射束所演算出的分配率wk’的合計,會成為和組合數相同之「2」。鑑此,將在各組合分配的劑量各設為(1/組合數)。藉由該演算,對每一矚目網格(控制網格27)(黑),便獲得用來將照射至該控制網格27之預定劑量d分配給被選擇的4個射束之給各個射束之分配係數wk。   作為劑量分配表格作成處理工程(S212),劑量分配表格作成部66,作成令對每一矚目網格(控制網格27)(黑)演算出的給4個射束之分配係數wk關連至矚目網格(控制網格27)而定義而成之劑量分配表格。   然後,一旦作成了針對1個矚目網格(控制網格27)(黑)之劑量分配表格,便依序將下一控制網格27設為矚目網格,反覆從矚目網格選定工程(S202)至劑量分配表格作成處理工程(S212)為止之各工程,直到針對該條紋區域內的所有控制網格作成劑量分配表格為止。   依以上方式作成的每一控制網格的劑量分配表格當中,亦可存在定義缺陷射束11作為分配目標者。鑑此,實施形態2中,於劑量分配表格調整工程(S129),會以將分配至該缺陷射束11之劑量予以再分配至缺陷射束11的周圍的射束之方式,來調整劑量分配表格。   圖19為實施形態2中的劑量分配表格調整工程的內部工程示意流程圖。圖19中,劑量分配表格調整工程(S129),作為內部工程,係實施缺陷射束辨明工程(S222)、鄰近射束探索工程(S224)、組合設定工程(S226)、劑量再分配工程(S228)、重心演算工程(S230)、組合選擇工程(S232)、及劑量分配表格修正工程(S234)這一連串的工程。   作為缺陷射束辨明工程(S222),辨明部73,使用可識別缺陷射束之缺陷射束資訊,來辨明缺陷射束。具體而言係如以下般動作。辨明部73,從記憶裝置144讀出射束電流量對映(2),將電流量為閾值Qth以下的射束辨明作為缺陷射束。   作為鄰近射束探索工程(S224),探索部74,針對辨明出的缺陷射束,對每一辨明出的缺陷射束,探索鄰近於該缺陷射束的周圍之複數個鄰近射束。   圖20為用來說明實施形態2中的鄰近於缺陷射束之鄰近射束的探索手法之圖。探索部74,從包圍該缺陷射束11的照射位置之4個控制網格27a~27d來探索並選擇對應於接受劑量分配的複數個照射位置之射束。具體而言,探索部74,是探索將該缺陷射束11訂為分配目標之控制網格27的劑量分配表格。通常,是探索包圍缺陷射束11之4個控制網格27a~27d的劑量分配表格。然後,探索部74,針對包圍缺陷射束11之4個控制網格27a~27d,從記憶裝置142讀出對每一控制網格27(a~d)已作成之劑量分配表格,而探索並選擇對應於從該控制網格27被分配之例如4個照射位置之射束即可。藉由該動作,圖20例子中,探索部74,從控制網格27a辨明除該缺陷射束11以外受到劑量分配之射束46a、46b、46g。此外,探索部74,從控制網格27b辨明除該缺陷射束11以外受到劑量分配之射束46b、46d、46c。此外,探索部74,從控制網格27c辨明除該缺陷射束11以外受到劑量分配之射束46c、46e、46f。此外,探索部74,從控制網格27d辨明除該缺陷射束11以外受到劑量分配之射束46f、46h、46g。依以上方式,探索部74,辨明、選擇該缺陷射束11的周圍之例如8個射束46a~h。從各自的控制網格27(a~d)辨明出的除該缺陷射束11以外之複數個射束多會有重複被抽出之情形。藉由使用已作成的劑量分配表格,能夠容易地辨明該缺陷射束11的周圍之例如8個射束46a~h。   此處,當將缺陷射束11的劑量做再分配的情形下,能夠使用以下手法作為簡易的手法。使用定義該缺陷射束11作為分配目標之已被作成的4個控制網格27(a~d)用的劑量分配表格,來選擇該4個控制網格27(a~d)當中其中1者。然後,對定義於被選擇的控制網格27用的分配目標之4個射束當中該缺陷射束11以外之剩下的射束做再分配。具體而言係如以下般動作。   作為組合設定工程(S226),設定部75,設定藉由每一控制網格27(a~d)的已作成之劑量分配表格中定義的該缺陷射束11與剩下的3個射束來形成各自的組合之複數個組合。換言之,對每一劑量分配表格,設定組。   作為劑量再分配工程(S228),再分配部76,針對辨明出的缺陷射束11,對該缺陷射束11的周圍的複數個射束,將分配至該缺陷射束之分配劑量予以再分配。具體而言係如以下般動作。再分配部76,對每一組合,針對該組合的4個射束的該缺陷射束11以外之3個射束,從劑量分配係數wk較小者開始依序,於到達事先設定好的閾值wth以前,將缺陷射束11的劑量分配係數wk的一部予以演算、分派作為再分配劑量,直到缺陷射束11的劑量分配係數wk成為零為止。或是,再分配部76,合適是亦可設計成對每一組合,演算將缺陷射束11的劑量分配係數wk除以個數J(此處為3個)而得之值wk/J作為再分配劑量,而對該組合的該缺陷射束11以外之剩下J個(此處為3個)的射束各自均等地分派。   作為重心演算工程(S230),重心演算部77,對每一組合,演算再分配至各射束後之劑量分配表格中定義的例如4個射束的各分配劑量的重心位置。此處,作為分配劑量,可使用對劑量分配係數wk乘上標準化後的基準劑量「1」而得之值來演算重心位置。   作為組合選擇工程(S232),選擇部78(再分配射束選擇部),作為成為再分配目標之複數個鄰近射束,係從複數個組合當中選擇再分配所造成之重心位置的偏離盡可能地小之組合的鄰近射束群。具體而言係如以下般動作。選擇再分配後的各分配劑量的重心位置從對應於該組合之控制網格27偏離之位置偏離量會盡可能地小之組合。定義該辨明射束45作為分配目標之劑量分配表格,存在4個的情形較多。因此,會藉由組合選擇工程(S232),從該4個劑量分配表格當中,選擇當將劑量做了再分配的情形下重心偏離只需最少之劑量分配表格。   作為劑量分配表格修正工程(S234),修正部79,修正被選擇之組合的劑量分配表格中定義的4個射束的分配係數wk。   圖21為實施形態2中的修正後的劑量分配表格之一例示意圖。圖21中,對於對應於被選擇之組合的座標(i,j)的每一矚目網格(控制網格27)(黑),給分配目標的識別座標(ik ,jk )的4個射束之分配係數wk各自被修正成分配係數wk’。具體而言,將受到再分配之份量的係數Δ加算至受到再分配之例如3個射束的分配係數wk。然後,針對缺陷射束11的分配係數,不用說當然成為零。依閾值wth而定,缺陷射束11的分配係數亦可能有不會到達零之情形,但只要事先設定可到達零之閾值wth即可。藉此,便修正被選擇之組合的劑量分配表格。   或是,作為變形例,無關乎每一劑量分配表格的組合,來進行劑量的再分配亦合適。該情形下,係如以下般動作。   作為組合設定工程(S226),設定部75,設定從探索到的m個鄰近射束當中事先設定好的各J個的射束所造成之複數個組合。圖20例子中,探索到該缺陷射束11的周圍的例如8個鄰近射束46a~h,故從該8個鄰近射束46a~h當中隨機以例如各5個的鄰近射束來設定各組合。複數個組合,可從m個鄰近射束當中以循環法(round robin)選擇J個鄰近射束來組合。   作為劑量再分配工程(S228),再分配部76,針對辨明出的缺陷射束11,對該缺陷射束11的周圍的複數個射束,將分配至該缺陷射束之分配劑量予以再分配。具體而言係如以下般動作。再分配部76,對每一組合,針對該組合的J個鄰近射束從劑量分配係數wk較小者開始依序,於到達事先設定好的閾值wth以前分別將缺陷射束11的劑量分配係數wk的一部予以分派作為再分配劑量,直到缺陷射束11的劑量分配係數wk成為零為止。或是,再分配部76,合適是亦可設計成對每一組合,演算將缺陷射束11的劑量分配係數wk除以個數J而得之值wk/J作為再分配劑量,而對該組合的J個的射束各自均等地分派。此處,能夠任意設定構成組合之射束數J,故能夠將受到再分配之再分配劑量(劑量分配係數wk的一部分)減小。   作為重心演算工程(S230),重心演算部77,對每一組合,演算被再分配至各鄰近射束之劑量的重心位置。此處,作為再分配劑量,可使用對劑量再分配係數wk”乘上標準化後的基準劑量「1」而得之值來演算重心位置。   作為組合選擇工程(S232),選擇部78(再分配射束選擇部),作為成為再分配目標之複數個鄰近射束,係從複數個組合當中選擇再分配所造成之重心位置的偏離盡可能地小之組合的鄰近射束群。具體而言係如以下般動作。作為成為再分配目標之J個(複數)鄰近射束,係選擇受到再分配之各再分配劑量的重心位置從該缺陷射束11的照射位置偏離之位置偏離量會盡可能地小之組合的鄰近射束群(J個射束)。   作為劑量分配表格修正工程(S234),修正部79,對被選擇之組合的鄰近射束群(J個射束)的每一射束,讀出定義該鄰近射束作為分配目標之複數個劑量分配表格,以下述方式做修正,即,各自把將相當於受到再分配之再分配劑量的係數(再分配劑量分配係數wk”)除以分配目標的數量而得之再分配係數Δ,予以加算至各自的劑量分配表格中定義的原本的分配係數。例如,若相當於對被選擇之組合的鄰近射束群的1者再分配之再分配劑量的係數為0.4,而分配目標的劑量分配表格的數有4個,則對相對應之每一劑量分配表格各加算0.1即可。   此外,針對缺陷射束11的分配係數,係讀出定義被選擇之組合的鄰近射束群(J個射束)的劑量分配表格,將各自的劑量分配表格中的缺陷射束11的分配係數wk設為零。藉此,便修正和被選擇之組合的鄰近射束群相關連的各劑量分配表格。   條紋單位的照射量對映修正工程(S130)以後的各工程的內容和實施形態1相同。換言之,作為描繪工程(S140),描繪機構150,使用照射至各控制網格27之預定劑量已各自被分配至剔除缺陷射束11之相對應的3個以上的射束之多射束20,來對試料101描繪圖樣。   實施形態2中,是將原本以重心位置不會變化之方式分配之劑量的一部分,予以挪動重心位置而做再分配,故比起圖16B所示實施形態1的圖樣邊緣,如圖16C所示般雖會發生些許的位置偏離,但即使如此仍能極力地減小位置偏離量。   按照實施形態2,便能夠無需為了缺陷射束11的補足曝光而將劑量調變的調變幅度增大。因此,即使涵括缺陷射束11而做劑量分配的情形下,仍能藉由再分配而將劑量調變的調變幅度抑制地較小。故,能夠抑制最大照射時間的增大。其結果,能夠減低產出的劣化。 實施形態3.   實施形態2中,說明了在調變和實際的描繪圖樣相應的照射量之前的階段以將缺陷射束的劑量做再分配之方式來修正劑量分配表格之情形,但並不限於此。實施形態3中,說明使用劑量分配表格在調變和實際的描繪圖樣相應的照射量之後的階段,將缺陷射束的劑量做再分配之手法。   圖22為實施形態3中的描繪裝置的構成示意概念圖。圖22中,在控制計算機110內,更配置了辨明部80、探索部81、設定部82、再分配部83、重心演算部84、選擇部85、及調變部86,除這點以外和圖1相同。故,網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、描繪控制部72、辨明部80、探索部81、設定部82、再分配部83、重心演算部84、選擇部85、及調變部86這些各「~部」,具有處理電路。該處理電路,例如包含電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置。各「~部」可使用共通的處理電路(同一處理電路),或亦可使用相異的處理電路(個別的處理電路)。對於網格化部50、照射量對映作成部52、射束位置偏離對映作成部54、選擇部56、探索部58、組合設定部60、劑量分配率演算部62、劑量分配係數演算部64、劑量分配表格作成部66、劑量調變部68、描繪控制部72、辨明部80、探索部81、設定部82、再分配部83、重心演算部84、選擇部85、及調變部86輸出入之資訊及演算中之資訊會隨時被存儲於記憶體112。   圖23為實施形態3中的描繪方法的主要工程示意流程圖。圖23中,除了在條紋單位的照射量對映修正工程(S130)、與描繪工程(S140)之間追加了缺陷射束修正工程(S132)這點以外,和圖9相同。此外,以下除特別說明的點以外之內容,均與實施形態1相同。   面積率對映作成工程(S102)、條紋單位的照射量對映作成工程(S104)、射束位置偏離量測定工程(S112)、射束陣列單位的射束位置偏離量對映作成工程(S114)、及條紋單位的射束位置偏離量對映作成工程(S116)、劑量分配表格作成工程(S118)、及條紋單位的照射量對映修正工程(S130)之各工程的內容,和實施形態1相同。   作為缺陷射束修正工程(S132),係調整已被作成的照射量對映(2),以能夠不使用缺陷射束11而描繪之方式,來將劑量分配的方式做一部分修正。具體而言係如以下般動作。   辨明部80,從記憶裝置144讀出射束電流量對映(2),將電流量為閾值Qth以下的射束辨明作為缺陷射束。   接下來、探索部81,針對辨明出的缺陷射束11,對每一缺陷射束11,探索鄰近於該射束的周圍之複數個鄰近射束。具體而言係如以下般動作。辨明位於缺陷射束11的周圍之複數個鄰近射束。實施形態3中,如同實施形態2般,探索部81,從包圍該缺陷射束11的照射位置(此處為推定照射位置)之4個控制網格27a~27d來探索並選擇對應於接受劑量分配的複數個照射位置之射束。實施形態3中,如同實施形態2般,探索部81,藉由使用已作成的劑量分配表格,能夠容易地辨明該缺陷射束11的周圍之例如8個射束46a~h。   設定部82,設定從探索到的m個鄰近射束當中事先設定好的各J個的射束所造成之複數個組合。圖20例子中,探索到該缺陷射束11的周圍的例如8個鄰近射束46a~h,故從該8個鄰近射束46a~h當中隨機以例如各5個的鄰近射束來設定各組合。複數個組合,可從m個鄰近射束當中以循環法(round robin)選擇J個鄰近射束來組合。   接下來,再分配部83,對每一組合,針對該組合的J個鄰近射束,從相對應的J個控制網格27的入射照射量D較小者開始依序,於到達事先設定好的閾值Dth以前分別將缺陷射束11的入射照射量D的一部予以分派作為再分配劑量,直到缺陷射束11的入射照射量D成為零為止。或是,再分配部83,合適是亦可設計成對每一組合,把將缺陷射束11的入射照射量D除以個數J而得之再分配劑量D/J予以分別均等地分派至對應於該組合的J個鄰近射束之控制網格27。此處,能夠任意設定構成組合之射束數J,故能夠實質地消弭缺陷射束11的入射照射量D的再分配剩餘之發生。   接下來,重心演算部84,對每一組合,演算被再分配至各鄰近射束之劑量的重心位置。   接下來,選擇部85(再分配射束選擇部),作為成為再分配目標之複數個鄰近射束,係從複數個組合當中選擇再分配所造成之重心位置的偏離盡可能地小之組合的鄰近射束群。具體而言係如以下般動作。作為成為再分配目標之J個(複數)鄰近射束,係選擇受到再分配之各再分配劑量的重心位置從該缺陷射束11的照射位置(此處為推定照射位置)偏離之位置偏離量會盡可能地小之組合的鄰近射束群(J個射束)。   調變部86,對被選擇之組合的鄰近射束群(J個射束)的每一鄰近射束,進行劑量調變,即對對應於該鄰近射束之控制網格27的入射照射量D分別加算再分配劑量。同樣地,將對應於缺陷射束11之控制網格27的入射照射量D調變為零。   藉由以上,便能將缺陷射束11從描繪處理所使用的射束群當中實質地消弭。描繪工程(S140)的內容和實施形態1相同。   實施形態3中,是將原本以重心位置不會變化之方式分配之劑量的一部分,予以挪動重心位置而做再分配,故雖會發生些許的位置偏離,但即使如此仍能極力地減小位置偏離量。   按照實施形態3,便能夠無需為了缺陷射束11的補足曝光而將劑量調變的調變幅度增大。因此,即使涵括缺陷射束11而做劑量分配的情形下,仍能藉由再分配而將劑量調變的調變幅度抑制地較小。故,能夠抑制最大照射時間的增大。其結果,能夠減低產出的劣化。   以上已一面參照具體例一面針對實施形態做了說明。但,本發明並非限定於該些具體例。例如,上述例子中,當選擇再分配之組合的情形下,是演算重心位置的偏離,但並不限於此。亦可選擇對相距對象基準位置(例如控制網格的位置)的距離的平方乘上再分配後的劑量而得之值的合計為最小之組合。   此外,上述例子中,揭示輸入10位元的控制訊號以供各控制電路41的控制用之情形,但位元數可適當設定。例如亦可使用2位元、或3位元~9位元的控制訊號。另,亦可使用11位元以上的控制訊號。   此外,針對裝置構成或控制手法等對於本發明說明非直接必要之部分等雖省略記載,但能夠適當選擇使用必要之裝置構成或控制手法。例如,有關控制描繪裝置100之控制部構成雖省略其記載,但當然可適當選擇使用必要之控制部構成。   其他具備本發明之要素,且所屬技術領域者可適當變更設計之所有多帶電粒子束描繪裝置及多帶電粒子束描繪方法,均包含於本發明之範圍。   雖已說明了本發明的幾個實施形態,但該些實施形態僅是提出作為例子,並非意圖限定發明範圍。該些新穎之實施形態,可以其他各種形態來實施,在不脫離發明要旨之範圍內,能夠進行各種省略、置換、變更。該些實施形態或其變形,均包含於發明範圍或要旨當中,且包含於申請專利範圍所記載之發明及其均等範圍內。
11‧‧‧缺陷射束20(20a~e)‧‧‧電子束(多射束)22‧‧‧孔(開口部)24‧‧‧控制電極25‧‧‧通過孔26‧‧‧相向電極27(27a~27d)‧‧‧控制網格(設計網格)29‧‧‧子照射區域30‧‧‧描繪區域31‧‧‧基板32‧‧‧條紋區域33‧‧‧支撐台330‧‧‧薄膜區域332‧‧‧外周區域34(34a~34o)‧‧‧照射區域35(35a、35b、…)‧‧‧單位區域36‧‧‧像素39(39a~39d)‧‧‧照射位置41‧‧‧控制電路42a、42b‧‧‧(鄰近射束的)組合43‧‧‧墊45‧‧‧辨明射束46‧‧‧放大器46a~46h‧‧‧(受到劑量分配之)射束47‧‧‧個別遮沒機構50‧‧‧網格化部52‧‧‧照射量對映作成部54‧‧‧射束位置偏離對映作成部56‧‧‧選擇部58‧‧‧探索部60‧‧‧組合設定部62‧‧‧劑量分配率演算部64‧‧‧劑量分配係數演算部66‧‧‧劑量分配表格作成部68‧‧‧劑量調變部70‧‧‧射束電流量對映作成部72‧‧‧描繪控制部73‧‧‧辨明部74‧‧‧探索部75‧‧‧設定部76‧‧‧再分配部77‧‧‧重心演算部78‧‧‧選擇部79‧‧‧修正部80‧‧‧辨明部81‧‧‧探索部82‧‧‧設定部83‧‧‧再分配部84‧‧‧重心演算部85‧‧‧選擇部86‧‧‧調變部100‧‧‧描繪裝置101‧‧‧試料102‧‧‧電子鏡筒103‧‧‧描繪室105‧‧‧XY平台106‧‧‧法拉第杯110‧‧‧控制計算機112‧‧‧記憶體130‧‧‧偏向控制電路132、134‧‧‧數位/類比變換(DAC)放大單元138‧‧‧放大器139‧‧‧平台位置檢測器140、142、144‧‧‧記憶裝置150‧‧‧描繪機構160‧‧‧控制系統電路200‧‧‧電子束201‧‧‧電子槍202‧‧‧照明透鏡203‧‧‧成形孔徑陣列基板204‧‧‧遮沒孔徑陣列機構205‧‧‧縮小透鏡206‧‧‧限制孔徑基板207‧‧‧對物透鏡208、209‧‧‧偏向器210‧‧‧鏡
圖1為實施形態1中的描繪裝置的構成示意概念圖。   圖2為實施形態1中的成形孔徑陣列基板的構成示意概念圖。   圖3為實施形態1中的遮沒孔徑陣列機構的構成示意截面圖。   圖4為實施形態1中的遮沒孔徑陣列機構的薄膜(membrane)區域內的構成的一部分示意俯視概念圖。   圖5為實施形態1的個別遮沒機構的一例示意圖。   圖6為實施形態1中描繪動作的一例說明用概念圖。   圖7為實施形態1中的多射束的照射區域與描繪對象像素之一例示意圖。   圖8為實施形態1中的多射束的描繪方法之一例說明用圖。   圖9為實施形態1中的描繪方法的主要工程示意流程圖。   圖10A與圖10B為用來說明實施形態1中的射束的位置偏離與位置偏離周期性之圖。   圖11為實施形態1中的劑量分配表格作成工程的內部工程之一例示意流程圖。   圖12為用來說明實施形態1中的鄰近射束的探索手法之圖。   圖13為實施形態1中的控制網格與各射束的實際的照射位置之一例示意圖。   圖14A至圖14D為用來說明實施形態1中的往周圍3個鄰近射束的劑量分配方式之圖。   圖15為實施形態1中的劑量分配表格之一例示意圖。   圖16A至圖16C為藉由實施形態1中的劑量分配而被描繪之圖樣邊緣位置的一例示意圖。   圖17為實施形態2中的描繪裝置的構成示意概念圖。   圖18為實施形態2中的描繪方法的主要工程示意流程圖。   圖19為實施形態2中的劑量分配表格調整工程的內部工程示意流程圖。   圖20為用來說明實施形態2中的鄰近於缺陷射束之鄰近射束的探索手法之圖。   圖21為實施形態2中的修正後的劑量分配表格之一例示意圖。   圖22為實施形態3中的描繪裝置的構成示意概念圖。   圖23為實施形態3中的描繪方法的主要工程示意流程圖。
20a~e‧‧‧電子束(多射束)
50‧‧‧網格化部
52‧‧‧照射量對映作成部
54‧‧‧射束位置偏離對映作成部
56‧‧‧選擇部
58‧‧‧探索部
60‧‧‧組合設定部
62‧‧‧劑量分配率演算部
64‧‧‧劑量分配係數演算部
66‧‧‧劑量分配表格作成部
68‧‧‧劑量調變部
70‧‧‧射束電流量對映作成部
72‧‧‧描繪控制部
100‧‧‧描繪裝置
101‧‧‧試料
102‧‧‧電子鏡筒
103‧‧‧描繪室
105‧‧‧XY平台
106‧‧‧法拉第杯
110‧‧‧控制計算機
112‧‧‧記憶體
130‧‧‧偏向控制電路
132、134‧‧‧數位/類比變換(DAC)放大單元
138‧‧‧放大器
139‧‧‧平台位置檢測器
140、142、144‧‧‧記憶裝置
150‧‧‧描繪機構
160‧‧‧控制系統電路
200‧‧‧電子束
201‧‧‧電子槍
202‧‧‧照明透鏡
203‧‧‧成形孔徑陣列基板
204‧‧‧遮沒孔徑陣列機構
205‧‧‧縮小透鏡
206‧‧‧限制孔徑基板
207‧‧‧對物透鏡
208、209‧‧‧偏向器
210‧‧‧鏡

Claims (10)

  1. 一種多帶電粒子束描繪裝置,具備:放出源,放出帶電粒子束;及成形孔徑陣列基板,接受前述帶電粒子束的照射,形成多帶電粒子束;及分配係數演算處理電路,使用可識別缺陷射束之缺陷射束資訊,對成為前述多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之剔除前述缺陷射束的3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定的前述劑量之給前述3個以上的射束的各射束之分配係數;及描繪機構,使用照射至各設計網格之預定的前述劑量已各自被分配至相對應的前述3個以上的射束之多帶電粒子束,來對試料描繪圖樣。
  2. 如申請專利範圍第1項所述之多帶電粒子束描繪裝置,其中,更具備:鄰近射束選擇處理電路,將前述3個以上的射束設定為4個射束,對每一前述設計網格,作為前述實際的照射位置鄰近於該設計網格之前述4個射束,係選擇對應於從藉由通過該設計網格的角度相異之2直線而被分 割之4個區域起算各自最鄰近的照射位置之射束。
  3. 如申請專利範圍第1項所述之多帶電粒子束描繪裝置,其中,更具備:射束位置偏離對映作成處理電路,作成定義前述多帶電粒子束的各射束的位置偏離量之第1射束位置偏離量對映。
  4. 如申請專利範圍第3項所述之多帶電粒子束描繪裝置,其中,前述射束位置偏離對映作成處理電路,更使用前述第1射束位置偏離量對映來作成每一前述設計網格的第2射束位置偏離量對映。
  5. 如申請專利範圍第4項所述之多帶電粒子束描繪裝置,其中,更具備:射束電流量對映作成處理電路,作成將前述多帶電粒子束的各射束的射束電流量作為對映值之第1射束電流量對映。
  6. 如申請專利範圍第5項所述之多帶電粒子束描繪裝置,其中,前述射束電流量對映作成處理電路,更使用前述第1射束電流量對映來作成每一前述設計網格的第2射束電流量對映。
  7. 一種多帶電粒子束描繪裝置,具備:放出源,放出帶電粒子束;及 成形孔徑陣列基板,接受前述帶電粒子束的照射,形成多帶電粒子束;及分配係數演算處理電路,對成為前述多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定的前述劑量之給前述3個以上的射束的各射束之分配係數;及辨明部,使用可識別缺陷射束之缺陷射束資訊,來辨明前述缺陷射束;及再分配處理電路,針對辨明出的前述缺陷射束,對該缺陷射束的周圍的複數個射束,將分配至該缺陷射束之分配劑量予以再分配;及描繪機構,使用照射至各設計網格之預定的前述劑量已各自被分配至剔除前述缺陷射束之相對應的3個以上的射束之多帶電粒子束,來對試料描繪圖樣。
  8. 如申請專利範圍第7項所述之多帶電粒子束描繪裝置,其中,更具備:再分配射束選擇處理電路,作為成為再分配目標之前述複數個射束,係選擇受到再分配之各再分配劑量的重心位置從該缺陷射束的照射位置偏離之位置偏離量會盡可能地小之組合的射束群。
  9. 一種多帶電粒子束描繪方法,係使用可識別缺陷射束之缺陷射束資訊,對成為多帶電粒子束的設計上的照射位置之複數個設計網格的每一設計網格,對於實際的照射位置鄰近或略一致於該設計網格之剔除前述缺陷射束的3個以上的射束,以分配後的各分配劑量的重心位置及總和會一致於該設計網格位置及照射至該設計網格的預定劑量之方式,來演算用來分配照射至該設計網格的預定的前述劑量之給前述3個以上的射束的各射束之分配係數,使用照射至各設計網格之預定的前述劑量已各自被分配至相對應的前述3個以上的射束之多帶電粒子束,來對試料描繪圖樣。
  10. 一種多帶電粒子束描繪方法,係於使用了多帶電粒子束之描繪中,不使用劑量異常地少之缺陷射束而藉由增加缺陷射束的周圍的射束的劑量來修正缺陷射束的影響之描繪方法,使用可識別缺陷射束之缺陷射束資訊,來鑑定缺陷射束與鄰近於缺陷射束之射束的組,從鄰近於缺陷射束之射束的組選擇複數組3個以上的射束的組,針對前述射束的各組,以同一計算式將劑量從缺陷射束移至鄰近之正常射束,對前述射束的每一各組,計算於劑量的移動前後之劑 量的重心位置的變化量,選擇前述射束的各組當中,前述重心位置的變化成為最小的組,使用前述被選擇的工程來進行描繪。
TW107124005A 2017-08-04 2018-07-12 多帶電粒子束描繪裝置及多帶電粒子束描繪方法 TWI684072B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151690A JP7002243B2 (ja) 2017-08-04 2017-08-04 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2017-151690 2017-08-04

Publications (2)

Publication Number Publication Date
TW201910932A TW201910932A (zh) 2019-03-16
TWI684072B true TWI684072B (zh) 2020-02-01

Family

ID=65231185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124005A TWI684072B (zh) 2017-08-04 2018-07-12 多帶電粒子束描繪裝置及多帶電粒子束描繪方法

Country Status (5)

Country Link
US (1) US10453652B2 (zh)
JP (1) JP7002243B2 (zh)
KR (1) KR102093808B1 (zh)
CN (1) CN109388032B (zh)
TW (1) TWI684072B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239282B2 (ja) * 2018-08-03 2023-03-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7180515B2 (ja) * 2019-04-11 2022-11-30 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7159970B2 (ja) * 2019-05-08 2022-10-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP7196792B2 (ja) * 2019-07-11 2022-12-27 株式会社ニューフレアテクノロジー マルチビーム描画方法及びマルチビーム描画装置
JP7238672B2 (ja) 2019-07-25 2023-03-14 株式会社ニューフレアテクノロジー マルチビーム描画方法及びマルチビーム描画装置
US11869746B2 (en) * 2019-07-25 2024-01-09 Nuflare Technology, Inc. Multi-beam writing method and multi-beam writing apparatus
JP7421423B2 (ja) * 2020-06-12 2024-01-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7482742B2 (ja) 2020-10-06 2024-05-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2023056384A (ja) * 2021-10-07 2023-04-19 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2023130984A (ja) * 2022-03-08 2023-09-21 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2023177932A (ja) * 2022-06-03 2023-12-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201719291A (zh) * 2015-09-14 2017-06-01 Nuflare Technology Inc 多重帶電粒子束描繪方法及多重帶電粒子束描繪裝置
TW201727703A (zh) * 2015-10-07 2017-08-01 Nuflare Technology Inc 多重帶電粒子束描繪方法及多重帶電粒子束描繪裝置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467211A (en) * 1981-04-16 1984-08-21 Control Data Corporation Method and apparatus for exposing multi-level registered patterns interchangeably between stations of a multi-station electron-beam array lithography (EBAL) system
JP2006245176A (ja) * 2005-03-02 2006-09-14 Hitachi High-Technologies Corp 電子ビーム描画装置
JP6014342B2 (ja) * 2012-03-22 2016-10-25 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US20150069260A1 (en) * 2013-09-11 2015-03-12 Ims Nanofabrication Ag Charged-particle multi-beam apparatus having correction plate
JP2015106605A (ja) * 2013-11-29 2015-06-08 キヤノン株式会社 描画装置、描画方法及び物品の製造方法
EP2913838B1 (en) * 2014-02-28 2018-09-19 IMS Nanofabrication GmbH Compensation of defective beamlets in a charged-particle multi-beam exposure tool
JP6438280B2 (ja) * 2014-11-28 2018-12-12 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6453072B2 (ja) * 2014-12-22 2019-01-16 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6523767B2 (ja) * 2015-04-21 2019-06-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6603108B2 (ja) * 2015-11-18 2019-11-06 株式会社ニューフレアテクノロジー 荷電粒子ビームの照射量補正用パラメータの取得方法、荷電粒子ビーム描画方法、及び荷電粒子ビーム描画装置
JP6854215B2 (ja) * 2017-08-02 2021-04-07 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US11569064B2 (en) * 2017-09-18 2023-01-31 Ims Nanofabrication Gmbh Method for irradiating a target using restricted placement grids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201719291A (zh) * 2015-09-14 2017-06-01 Nuflare Technology Inc 多重帶電粒子束描繪方法及多重帶電粒子束描繪裝置
TW201727703A (zh) * 2015-10-07 2017-08-01 Nuflare Technology Inc 多重帶電粒子束描繪方法及多重帶電粒子束描繪裝置

Also Published As

Publication number Publication date
CN109388032A (zh) 2019-02-26
KR102093808B1 (ko) 2020-03-26
US20190043693A1 (en) 2019-02-07
JP2019033117A (ja) 2019-02-28
TW201910932A (zh) 2019-03-16
KR20190015129A (ko) 2019-02-13
JP7002243B2 (ja) 2022-01-20
CN109388032B (zh) 2020-12-08
US10453652B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
TWI684072B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TWI690971B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TWI612553B (zh) 多重帶電粒子束描繪裝置及多重帶電粒子束描繪方法
TWI664659B (zh) Multi-charged particle beam exposure method and multi-charged particle beam exposure device
TWI729445B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TWI617898B (zh) 多重帶電粒子束描繪方法及多重帶電粒子束描繪裝置
TWI584333B (zh) Charged particle beam rendering device and charged particle beam rendering method
TWI655514B (zh) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
TWI700720B (zh) 多帶電粒子束描繪方法及多帶電粒子束描繪裝置
TWI613530B (zh) 多重帶電粒子束描繪裝置及多重帶電粒子束描繪方法
TWI793574B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TW202215471A (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TWI639180B (zh) 多重帶電粒子束曝光方法及多重帶電粒子束曝光裝置
TWI844911B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
WO2023234178A1 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
TW202331777A (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法