TWI683915B - Cu核球、焊接頭、焊膏及泡沫焊料 - Google Patents
Cu核球、焊接頭、焊膏及泡沫焊料 Download PDFInfo
- Publication number
- TWI683915B TWI683915B TW108120076A TW108120076A TWI683915B TW I683915 B TWI683915 B TW I683915B TW 108120076 A TW108120076 A TW 108120076A TW 108120076 A TW108120076 A TW 108120076A TW I683915 B TWI683915 B TW I683915B
- Authority
- TW
- Taiwan
- Prior art keywords
- solder
- ball
- less
- mass
- core
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/30—Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/30—Coating alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
本發明係提供利用金屬層被覆實現高真球度與低硬度、且經抑制變色Cu焊球的Cu核球。
本發明的Cu核球,係具備有:Cu焊球、與被覆在Cu焊球表面的焊料層;其中,Cu焊球係Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm、其餘係Cu及其他雜質元素;上述Cu焊球的純度係99.995質量%以上且99.9995質量%以下,真球度達0.95以上,焊料層係Ag含量超過0質量%且4.0質量%以下、Cu含量超過0質量%且3.0質量%以下、其餘為Sn。
Description
本發明係關於利用金屬層被覆Cu焊球的Cu核球、及使用該Cu核球的焊接頭、焊膏及泡沫焊料。
近年,隨小型資訊機器的發達,所搭載的電子零件正急遽朝小型化演進。電子零件因小型化要求而採取連接端子窄小化、安裝面積縮小化因應,因而採用在背面設置電極的球柵陣列封裝(以下稱「BGA」)。
採用BGA的電子零件係有如半導體封裝。半導體封裝係將具有電極的半導體晶片利用樹脂密封。在半導體晶片的電極上形成焊料凸塊。該焊料凸塊係藉由將焊球接合於半導體晶片的電極而形成。採用BGA的半導體封裝係藉由將利用加熱而熔融的焊料凸塊、與印刷電路基板的導電性島予以接合,而搭載於印刷電路基板上。又,為因應更進一步高密度安裝的要求,針對半導體封裝朝高度方向重疊的三次元高密度安裝進行檢討。
電子零件高密度安裝會因α線進入半導體積體電路(IC)的記憶單元中,導致引發記憶內容被重寫的「軟錯誤」。所以,近年有進行開發降低放射性同位素含量的低α線焊料材料或Cu焊球。專利文獻1有揭示:含有Pb、Bi、純度99.9%以上且99.995%以下,且低α線量的Cu焊球。專利文獻2有揭示實現:純度99.9%以上且99.995%以下、真球度0.95以上、維氏硬度20HV以上且60HV以下的Cu焊球。
但是,因為Cu焊球係若晶粒微細,則維氏硬度會變大,因而對來自外部應力的耐久性會降低,導致耐墜落碰撞性變差。所以,針對電子零件安裝所使用的Cu焊球,要求既定的柔軟度,即既定值以下的維氏硬度。
為製造柔軟的Cu焊球,慣例係採取提升Cu的純度。理由係因為雜質元素具有Cu焊球中之結晶核的功能,因而若雜質元素減少,則晶粒會大幅成長,結果導致Cu焊球的維氏硬度降低之緣故。但是,若提升Cu焊球的純度,則會導致Cu焊球的真球度降低。
若Cu焊球的真球度偏低,則在將Cu焊球安裝於電極上之時,會有無法確保自對準性的可能性,且在半導體晶片安裝時,會有Cu焊球的高度呈不均勻,導致引發接合不良的情況。
專利文獻3所揭示的Cu焊球,係Cu質量比例超過99.995%、P與S的質量比例合計3ppm以上且30ppm以下,且具有較佳的真球度與維氏硬度。
再者,當三次元高密度安裝的半導體封裝係BGA,在半導體晶片的電極上載置焊球並施行迴焊處理時,會有因半導體封裝的自重導致焊球崩潰的情形。若發生此種情形,會有焊料從電極滲出,導致電極間相接觸而發生電極間短路的可能性。
為防止此種短路事故,便有提案不會因自重而崩潰、或在焊料熔融時不會變形的焊料凸塊。具體而言,有提案:將由金屬等所成形的焊球使用為核,再將由焊料被覆該核的核材料使用為焊料凸塊。
[先行技術文獻]
[專利文獻]
[專利文獻1]日本專利第5435182號公報
[專利文獻2]日本專利第5585751號公報
[專利文獻3]日本專利第6256616號公報
(發明所欲解決之課題)
然而,新發現含S達既定量以上的Cu焊球,在加熱時會形成硫化物、硫氧化物,導致容易變色的問題。Cu焊球的變色係導致潤濕性惡化的肇因,潤濕性惡化會造成發生不會潤濕、自對準性劣化。依此,容易變色的Cu焊球,會因Cu焊球表面與金屬層的密接性降低,且金屬層表面的氧化、反應性提高等因素,導致不適用於利用金屬層進行被覆。另一方面,若Cu焊球的真球度偏低,則利用金屬層被覆Cu焊球的Cu核球之真球度亦會降低。
緣是,本發明目的在於提供:利用金屬層被覆實現高真球度與低硬度、且經抑制變色Cu焊球的Cu核球,以及使用該Cu核球的焊接頭、焊膏及泡沫焊料。
(解決課題之手段)
本發明係如下述。
(1)一種Cu核球,係具備有:Cu焊球、與被覆在Cu焊球表面的焊料層;其中,Cu焊球係Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm、其餘係Cu及其他雜質元素;上述Cu焊球的純度係99.995質量%以上且99.9995質量%以下,真球度達0.95以上,焊料層係Ag含量超過0質量%且4.0質量%以下、Cu含量超過0質量%且3.0質量%以下、其餘為Sn。
(2)如上述(1)所記載的Cu核球,其中,焊料層的Ag含量係0.1質量%以上且2.0質量%以下。
(3)如上述(1)所記載的Cu核球,其中,焊料層的Cu含量係0.1質量%以上且1.0質量%以下。
(4)如上述(2)所記載的Cu核球,其中,焊料層的Cu含量係0.1質量%以上且1.0質量%以下。
(5)如上述(1)~(4)中任一項所記載的Cu核球,其中,真球度係0.98以上。
(6)如上述(1)~(4)中任一項所記載的Cu核球,其中,真球度係0.99以上。
(7)如上述(1)~(4)中任一項所記載的Cu核球,其中,α線量係0.0200cph/cm
2以下。
(8)如上述(1)~(4)中任一項所記載的Cu核球,其中,α線量係0.0010cph/cm
2以下。
(9)如上述(5)所記載的Cu核球,其中,α線量係0.0010cph/cm
2以下。
(10)如上述(1)~(4)中任一項所記載的Cu核球,其中,具備有被覆Cu焊球表面的金屬層;利用焊料層被覆在金屬層表面,真球度達0.95以上。
(11)如上述(10)所記載的Cu核球,其中,真球度係0.98以上。
(12)如上述(10)所記載的Cu核球,其中,真球度係0.99以上。
(13)如上述(10)所記載的Cu核球,其中,α線量係0.0200cph/cm
2以下。
(14)如上述(10)所記載的Cu核球,其中,α線量係0.0010cph/cm
2以下。
(15)如上述(1)~(4)中任一項所記載的Cu核球,其中,Cu焊球的直徑係1μm以上且1000μm以下。
(16)如上述(10)所記載的Cu核球,其中,Cu焊球的直徑係1μm以上且1000μm以下。
(17)一種焊接頭,係使用上述(1)~(16)中任一項所記載的Cu核球。
(18)一種焊膏,係使用上述(1)~(16)中任一項所記載的Cu核球。
(19)一種泡沫焊料,係使用上述(1)~(16)中任一項所記載的Cu核球。
[發明效果]
根據本發明,實現Cu焊球的高真球度與低硬度,且抑制Cu焊球變色。藉由實現Cu焊球的高真球度,便可實現利用金屬層被覆Cu焊球的Cu核球之高真球度,便可確保Cu核球安裝於電極上之時的自對準性,且能抑制Cu核球的高度變動。又,藉由實現Cu焊球的低硬度,即便利用金屬層被覆Cu焊球的Cu核球,仍可提升耐墜落碰撞性。又,因為抑制Cu焊球的變色,因而可抑制因硫化物、硫氧化物對Cu焊球的不良影響,俾適用於於利用金屬層被覆,且潤濕性良好。
以下針對本發明進行更詳細說明。本說明書中,Cu核球的金屬層組成相關單位(ppm、ppb、及%),在無特別指定前提下,係表示相對於金屬層質量的比例(質量ppm、質量ppb、及質量%)。又,Cu焊球組成相關單位(ppm、ppb、及%),在無特別指定前提下,係表示相對於Cu焊球質量的比例(質量ppm、質量ppb、及質量%)。
圖1所示係本發明第1實施形態的Cu核球11A構成一例。如圖1所示,本發明第1實施形態的Cu核球11A,係具備有:Cu焊球1、及被覆在Cu焊球1表面的焊料層3。
圖2所示係本發明第2實施形態的Cu核球11B構成一例。如圖2所示,本發明第2實施形態的Cu核球11B,係具備有:Cu焊球1、被覆Cu焊球1的表面且由從Ni、Co、Fe、Pd中選擇1以上元素構成的1層以上之金屬層2、以及被覆在金屬層2表面的焊料層3。
圖3所示係使用本發明實施形態的Cu核球11A或Cu核球11B,將半導體晶片10搭載於印刷電路基板40上的電子零件60之構成一例。如圖3所示,Cu核球11A或Cu核球11B係藉由在半導體晶片10的電極100上塗佈助焊劑,使熔融的焊料層3潤濕展佈,在安裝於半導體晶片10的電極100上。本例中,將在半導體晶片10的電極100上安裝Cu核球11A或Cu核球11B的構造,稱為「焊料凸塊30」。半導體晶片10的焊料凸塊30係經由熔融的焊料層3、或由在電極41上所塗佈焊膏熔融的焊料,接合於印刷電路基板40的電極41上。本例,將焊料凸塊30安裝於印刷電路基板40的電極41上之構造,稱為「焊接頭50」。
各實施形態的Cu核球11A、11B,Cu焊球1係Fe、Ag及Ni中之至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm、其餘為Cu與其他雜質元素,Cu焊球1的純度係4N5(99.995質量%)以上且5N5(99.9995質量%)以下,真球度達0.95以上。
本發明第1實施形態的Cu核球11A係藉由提高利用焊料層3被覆的Cu焊球1之真球度,便可提高Cu核球11A的真球度。又,本發明第2實施形態的Cu核球11B,係藉由提高利用金屬層2與焊料層3所被覆Cu焊球1的真球度,便可提高Cu核球11B的真球度。以下,針對構成Cu核球11A、11B的Cu焊球1之較佳態樣進行說明。
・Cu焊球的真球度:0.95以上
本發明中,所謂「真球度」係表示偏離真球的偏移度。真球度係500個Cu焊球的各直徑除以長徑時所計算出的算術平均值,越接近該值上限的1.00,則表示越接近真球。真球度係利用例如:最小平方圓法(LSC法)、最小環帶圓法(MZC法)、最大內切圓法(MIC法)、最小外接圓法(MCC法)等各種方法求取。本發明所謂「長徑長度」、及「直徑長度」係指利用MITUTOYO公司製Ultra Qucik Vision、ULTRA QV350-PRO測定裝置所測定的長度。
Cu焊球1係就從保持基板間適當空間的觀點,較佳係真球度達0.95以上、更佳係真球度達0.98以上、特佳係0.99以上。若Cu焊球1的真球度未滿0.95,則因為Cu焊球1呈不定形狀,因而在凸塊形成時會形成高度不均勻的凸塊,導致發生接合不良的可能性提高。若真球度達0.95以上,因為Cu焊球1在焊接溫度下並不會熔融,因而可抑制焊接頭50的高度變動。藉此,可確實防止半導體晶片10與印刷電路基板40的接合不良。
・Cu焊球的純度:99.995質量%以上且99.9995質量%以下
一般純度低的Cu相較於純度高的Cu之下,前者較能確保成為Cu焊球1之結晶核的雜質元素存在於Cu中,因而提高真球度。另一方面,純度低的Cu焊球1係導電率與熱導率差。
所以,若Cu焊球1的純度為99.995質量%(4N5)以上且99.9995質量%(5N5)以下,便可確保充分的真球度。又,若Cu焊球1的純度為4N5以上且5N5以下,便可充分降低α線量,且可抑制因純度降低所導致的Cu焊球1之導電率與熱導率劣化。
製造Cu焊球1時,在既定形狀小片上所形成金屬材料一例的Cu材,利用加熱而熔融,熔融Cu利用表面張力形成球形,再經急冷而凝固便形成Cu焊球1。熔融Cu在從液體狀態凝固的過程中,晶粒會在球形熔融Cu中成長。此時,若雜質元素較多,則該雜質元素會成為結晶核,而抑制晶粒的成長。所以,球形熔融Cu便利用經抑制成長的微細晶粒,成為高真球度的Cu焊球1。另一方面,若雜質元素較少,則成為結晶核者相對性減少,導致晶粒成長會朝未受抑制的方向性成長。結果,球形熔融Cu突出於表面其中一部分並凝固,導致真球度降低。雜質元素係可認為例如:Fe、Ag、Ni、P、S、Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au、U、Th等。
以下,針對規定Cu焊球1之純度與真球度的雜質含量進行說明。
・Fe、Ag及Ni中至少1種的含量合計:5.0質量ppm以上且50.0質量ppm以下
Cu焊球1所含有的雜質元素中(特別係Fe、Ag及Ni中)至少1種的含量合計,較佳係5.0質量ppm以上且50.0質量ppm以下。即,當含有Fe、Ag及Ni中之任1種的情況,1種的含量較佳係5.0質量ppm以上且50.0質量ppm以下,又若含有Fe、Ag及Ni中之2種以上的情況,2種以上的合計含量較佳係5.0質量ppm以上且50.0質量ppm以下。Fe、Ag及Ni係在Cu焊球1的製造步驟中,於熔融時將成為結晶核,因而若Cu中含有一定量的Fe、Ag或Ni,便可製造高真球度的Cu焊球1。所以,Fe、Ag及Ni中之至少1種係屬於推定雜質元素含量的重要元素。又,藉由Fe、Ag及Ni中之至少1種的含量合計為5.0質量ppm以上且50.0質量ppm以下,便可抑制Cu焊球1出現變色,即便未施行在Cu焊球1徐緩加熱後進行漸冷,使Cu焊球1徐緩再結晶的退火步驟,仍可實現所需的維氏硬度。
・S含量:0質量ppm以上且1.0質量ppm以下
S含有達既定量以上的Cu焊球1,在加熱時會形成硫化物、硫氧化物,導致容易變色,造成潤濕性降低,因而S含量必需設為0質量ppm以上且1.0質量ppm以下。形成越多硫化物、硫氧化物的Cu焊球1,則Cu焊球表面的亮度越暗。所以,後有詳述,若Cu焊球表面的亮度測定結果在既定值以下,便可判斷硫化物、硫氧化物的形成受抑制,潤濕性良好。
・P含量:0質量ppm以上且未滿3.0質量ppm
P會變化為磷酸、或成為Cu錯合物,導致對Cu焊球1造成不良影響。又,因為含有既定量P的Cu焊球1之硬度會變大,因而P含量較佳係0質量ppm以上且未滿3.0質量ppm、更佳係未滿1.0質量ppm。
・其他雜質元素
Cu焊球1所含有除上述雜質元素以外,例如Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au等雜質元素(以下稱「其他雜質元素」)的含量,分別較佳係0質量ppm以上且未滿50.0質量ppm。
另外,Cu焊球1係如上述,以Fe、Ag及Ni中之至少1種為必要元素並含有。但是,在Cu焊球1中,依目前的技術並無法防止Fe、Ag、Ni以外的元素混入,因而實質含有Fe、Ag、Ni以外的其他雜質元素。但,當其他雜質元素的含量未滿1質量ppm時,因各元素添加所造成的效果、影響不易顯現。又,分析Cu焊球中所含元素時,若雜質元素的含量未滿1質量ppm時,該值係在分析裝置的檢測極限能力以下。所以,當Fe、Ag及Ni中之至少1種的含量合計為50質量ppm時,若其他雜質元素的含量未滿1質量ppm,則Cu焊球1的純度便實質為4N5(99.995質量%)。又,當Fe、Ag及Ni中之至少1種的含量合計為5質量ppm時,若其他雜質元素的含量未滿1質量ppm,則Cu焊球1的純度便實質為5N5(99.9995質量%)。
・Cu焊球之維氏硬度:55.5HV以下
Cu焊球1的維氏硬度較佳係55.5HV以下。維氏硬度較大時,對來自外部應力的耐久性會降低,導致耐墜落碰撞性變差,且容易發生龜裂。又,當在形成三次元安裝之凸塊、接頭時賦予加壓等輔助力之際,若使用硬Cu焊球,便會有引發電極崩潰等可能性。又,理由係若Cu焊球1的維氏硬度較大時,因晶粒縮小至一定以上,便會導致導電性劣化的緣故。若Cu焊球1的維氏硬度在55.5HV以下,則耐墜落碰撞性佳、且可抑制龜裂,亦能抑制電極崩潰等,更亦能抑制導電性劣化。本實施例,維氏硬度的下限較佳係超過0HV、更佳係達20HV以上。
・Cu焊球之α線量:0.0200cph/cm
2以下
電子零件在高密度安裝時,為設定為軟錯誤不會構成問題程度的α線量,因而Cu焊球1的α線量較佳係0.0200cph/cm
2以下。α線量就從更進一步抑制高密度安裝時的軟錯誤觀點,較佳係0.0100cph/cm
2以下、更佳係0.0050cph/cm
2以下、特佳係0.0020cph/cm
2以下、最佳係0.0010cph/cm
2以下。為抑制因α線量造成的軟錯誤,U、Th等放射性同位素的含量較佳係未滿5質量ppb。
・耐變色性:亮度達55以上
Cu焊球1的亮度較佳係達55以上。所謂「亮度」係指L
*a
*b
*表色系的L
*值。表面有形成源自S的硫化物、硫氧化物之Cu焊球1,因為亮度會降低,因而若亮度達55以上,可謂硫化物、硫氧化物受抑制。又,亮度達55以上的Cu焊球1,則安裝時的潤濕性良好。相對於此,若Cu焊球1的亮度未滿55,則可謂硫化物、硫氧化物形成未受充分抑制的Cu焊球1。硫化物、硫氧化物係會對Cu焊球1造成不良影響,且當Cu焊球1直接接合於電極上時會導致潤濕性惡化。潤濕性惡化會導致發生不會潤濕、與自對準性劣化。
・Cu焊球之直徑:1μm以上且1000μm以下
Cu焊球1的直徑較佳係1μm以上且1000μm以下、更佳係50μm以上且300μm。若在此範圍內,便可穩定地製造球狀Cu焊球1,且可抑制端子間呈窄間距時的連接短路情形。此處,例如Cu焊球1被使用於糊膏時,「Cu焊球」亦可稱為「Cu粉」。當「Cu焊球」係使用於「Cu粉」時,一般Cu焊球的直徑較佳係1~300μm。
其次,針對本發明第1實施形態的Cu核球11A中,被覆Cu焊球1的焊料層3,以及第2實施形態的Cu核球11B中,被覆金屬層2的焊料層3進行說明。
・焊料層
焊料層3係由以Sn為主成分的合金之電鍍層構成,可例如:Sn-Ag-Cu系焊料合金、及在其中添加任意合金元素者。Sn含量較佳係40質量%以上。任意添加的合金元素係可例如:Ni、In、Co、Sb、Ge、P、Fe、Pb、Zn、Ga等。
相關Ag含量係超過0質量%且在4.0質量%以下。若Ag含量在4.0質量%以下,則相較於未含Ag的情況下,可抑制接合強度降低,且能獲得低成本化的效果。相關Ag含量較佳係0.1質量%以上且2.0質量%以下。
相關Cu含量係超過0質量%且3.0質量%以下。當未含Cu的情況,熔融溫度部會充分降低,將接合材接合於基板時需要高溫加熱,會有導致對基板造成熱損傷的可能性。又,潤濕性亦不足,接合時的焊料不會潤濕展佈。又,若Cu含量超過3.0質量%,則熔融溫度會上升,且潤濕性亦會降低。相關Cu含量較佳係0.1質量%以上且1.0質量%以下。
Cu核球11A、11B係藉由焊料層3使用低α線量的焊料合金,因而亦可構成低α線的Cu核球11A、11B。又,焊料層3的膜厚T1並無特別的限制,較佳係若單側在100μm以下便足夠,更佳係單側為20~50μm。
其次,針對本發明第2實施形態的Cu核球11B中,被覆Cu焊球1的金屬層2進行說明。
・金屬層
金屬層2係由例如:Ni電鍍層、Co電鍍層、Fe電鍍層、Pd電鍍層、或含有Ni、Co、Fe、Pd等元素中之2以上的電鍍層(單層或複數層)構成。金屬層2係Cu核球11B使用於焊料凸塊時,在焊接溫度下不會熔融而殘留,對焊接頭的高度具有貢獻,因而構成真球度高、直徑變動少。又,就從抑制軟錯誤的觀點,最好構成α線量較低。
・金屬層之組成與膜厚
當金屬層2的組成係由單一的Ni、Co、Fe或Pd構成金屬層2時,若剔除不可避免的雜質,則Ni、Co、Fe、Pd係100%。又,金屬層2所使用的金屬並不僅侷限於單一金屬,亦可使用由Ni、Co、Fe或Pd中之2元素以上組合的合金。又,金屬層2亦可由:由單一的Ni、Co、Fe或Pd所構成之層、及由Ni、Co、Fe或Pd中之2元素以上組合的合金所構成之層,適當組合的複數層構成。金屬層2的膜厚T2係例如1μm~20μm。
・Cu核球之α線量:0.0200cph/cm
2以下
本發明第1實施形態的Cu核球11A及第2實施形態的Cu核球11B之α線量,較佳係0.0200cph/cm
2以下。此係在電子零件高密度安裝時,軟錯誤不會構成問題程度的α線量。本發明第1實施形態的Cu核球11A之α線量,係藉由構成Cu核球11A的焊料層3之α線量設在0.0200cph/cm
2以下而達成。所以,本發明第1實施形態的Cu核球11A,因為係被此種焊料層3所被覆,因而呈現低α線量。本發明第2實施形態的Cu核焊球11B之α線量,係藉由構成Cu核球11B的金屬層2與焊料層3之α線量設在0.0200cph/cm
2以下而達成。所以,本發明第2實施形態的Cu核球11B,因為被此種金屬層2與焊料層3所被覆,因而呈低α線量。α線量係就從更加抑制高密度安裝時的軟錯誤觀點,較佳係0.0100cph/cm
2以下、更佳係0.0050cph/cm
2以下、特佳係0.0020cph/cm
2以下、最佳係0.0010cph/cm
2以下。金屬層2與焊料層3的U及Th含量,係為能將Cu焊球1的α線量設在0.0200cph/cm
2以下,因而分別設在5ppb以下。又,就從抑制目前或未來高密度安裝時的軟錯誤之觀點,U及Th的含量分別較佳係2ppb以下。
・Cu核球之真球度:0.95以上
利用焊料層3被覆Cu焊球1的本發明第1實施形態Cu核球11A、與利用金屬層2及焊料層3被覆Cu焊球1的本發明第2實施形態Cu核球11B之真球度,較佳係達0.95以上、真球度更佳係達0.98以上、特佳係達0.99以上。若Cu核球11A、11B的真球度未滿0.95,則因為Cu核球11A、11B呈不定形狀,因而在將Cu核球11A、11B搭載於電極上並施行迴焊時,會引發Cu核球11A、11B出現位置偏移,且自對準性亦惡化。若Cu核球11A、11B的真球度達0.95以上,則將Cu核球11A、11B安裝於半導體晶片10的電極100等之時,可確保自對準性。而,藉由Cu焊球1的真球度亦達0.95以上,則Cu核球11A、11B因為Cu焊球1與金屬層2在焊接溫度下不會熔融,因而可抑制焊接頭50的高度變動。藉此,可確實防止半導體晶片10與印刷電路基板40的接合不良。
當為形成以Sn為主成分的焊料層,而使用Ag等貴金屬施行電鍍時,容易在Cu焊球側析出Ag。依此的話,電鍍層表面側的Ag會變少,形成接近Sn100%的電鍍狀態。特別係若低Ag組成的話,此種傾向更為明顯。若Ag等Sn以外的元素較少,則焊料層中的晶粒會成長,導致真球度降低。所以,若Cu核球的焊料層係使用低Ag組成,因晶粒的成長會導致真球度降低。
再者,若Cu焊球的粒徑縮小,則焊料層的膜厚不會均勻,且會導致Cu核球中的Cu焊球出現偏心、焊料層表面的凹凸變大、Cu核球之真球度降低。
所以,焊料層的Ag含量在2質量%以下時,特別係Cu焊球的粒徑在230μm以下時,最好藉由在電鍍液中添加光澤劑形成焊料層,而使焊料層中含有光澤劑。
藉由在焊料層形成時所使用電鍍液中添加光澤劑,便可調整(抑制)電鍍的成長方向,俾能促進焊料層的晶粒平均粒徑微細化,故可提供高真球度的Cu核球。
在形成焊料層的電鍍液中所添加的光澤劑,係可使用例如:醛化合物、縮合環化合物、酮類、希夫鹼縮合化合物類、水溶性高分子等。
醛化合物係可使用例如:脂肪族醛、芳香族醛等。具體係可舉例如:1-萘甲醛、2-萘甲醛、鄰氯苯甲醛、間氯苯甲醛、對氯苯甲醛、乙醛、水楊醛、2-噻吩甲醛、3-噻吩甲醛、鄰大茴香醛、間大茴香醛、對大茴香醛、水楊醛烯丙醚、苯甲醛、2,4,6-三氯苯甲醛、對硝化苯甲醛、糠醛、2-羥基-1-萘甲醛、3-苊并醛、苯亞甲基丙酮、伸二氫吡啶丙酮、亞糠基丙酮、桂皮醛、大茴香醛、巴豆醛、丙烯醛、戊二醛、三聚乙醛、4-羥-3-甲氧苯甲醛、戊醛、對羥基苯甲醛、2-羥基-1-萘甲醛、4-羥基-1-萘甲醛、2-氯-1-萘甲醛、4-氯-1-萘甲醛、2-噻吩羧醛、3-噻吩羧醛、2-糠醛、3-糠醛、3-吲哚羧醛、鄰苯二甲醛、甲醛、丙醛、丁醛、異丁醛、戊醛、己醛、丙醛、正戊醛、琥珀二醛、己醛、異戊醛、百合醛(lily aldehyde)、2-氯苯甲醛、2,4-二氯苯甲醛、4-甲基-1-萘甲醛、2-氯-1-萘甲醛、4-氯-1-萘甲醛、烯丙醛、苄基巴豆醛、乙二醛、1-苯亞甲基-7-庚醛、2,4-己二烯醛、藜蘆醛、對甲苯甲醛、2,4-二氯苯甲醛、2,6-二氯苯甲醛、2,4-二氯苯甲醛、單羥基苯甲醛、二羥基苯甲醛、α-萘甲醛、β-萘甲醛等。
縮合環化合物係可使用例如:三類、三唑類、苯并噻唑類等。具體係可舉例如:三、咪唑、吲哚、喹啉、2-乙烯吡啶、苯胺、菲咯啉、新亞銅試劑、吡啶羧酸、硫脲類、N-(3-羥基亞丁基)對胺苯磺酸、N-亞丁基胺苯磺酸、N-亞桂皮基胺苯磺酸、2,4-二胺基-6-(2'-甲基咪唑基(1'))乙基-1,3,5-三、2,4-二胺基-6-(2'-乙基-4-甲基咪唑基(1'))乙基-1,3,5-三、2,4-二胺基-6-(2'-十一烷基咪唑基(1'))乙基-1,3,5-三、水楊酸苯酯、苯并噻唑、2-巰基苯并噻唑、2-甲基苯并噻唑、2-胺基苯并噻唑、2-胺基-6-甲氧基苯并噻唑、2-甲基-5-氯苯并噻唑、2-羥基苯并噻唑、2-胺基-6-甲基苯并噻唑、2-氯苯并噻唑、2,5-二甲基苯并噻唑、5-羥基-2-甲基苯并噻唑、2-(甲巰基)苯并噻唑、2-羥基苯并噻唑、2-氯苯并噻唑、6-硝基-2-巰基苯并噻唑、2-苯并噻唑硫醋酸等。
酮類係可使用例如:脂肪族酮類、芳香族酮類等。具體係可舉例如:亞糠基丙酮(furfurylidene acetone)、大茴香丙酮、苯亞甲基甲基異丁酮、3-氯苯亞甲基丙酮、亞吡啶丙酮(pyridinylidene)、亞呋喃基丙酮(furfurylidine acetone)、噻吩亞甲基丙酮、苯亞甲基乙醯丙酮、亞苄丙酮、4-(1-萘基)-3-丁烯-2-酮、4-(2-糠偶醯)-3-丁烯-2-酮、4-(2-硫苯基)-3-丁烯-2-酮、苯乙酮、2,4-二氯苯乙酮、3,4-二氯苯乙酮、苯亞甲基苯乙酮、乙烯基苯酮等。
希夫鹼縮合化合物類係可舉例如:鄰甲苯胺、乙醛與鄰甲苯胺的反應生成物、乙醛與苯胺的反應生成物、醛醇與鄰硝化苯胺的反應生成物、單乙醇胺與鄰4-羥-3-甲氧苯甲醛的反應物等。
水溶性高分子係可舉例如:聚乙二醇、聚乙烯醇、聚乙烯吡咯啶酮、明膠等。
另外,光澤劑係除上述所例示之外,尚亦可使用下述材料。可使用例如:α-萘酚、β-萘酚、β-萘磺酸、聚蛋白腖、菲咯啉系化合物、聯吡啶、醛醇、乙醯丙酮、胺-醛縮合物、亞異丙基酮、異佛爾酮、二乙醯、己二酮-3,4-薑黃素、2-桂醯基噻吩、2-(ω-苯甲醯基)乙烯呋喃、丙烯酸、甲基丙烯酸、乙基丙烯酸、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、巴豆酸、丙烯-1,3-二羧酸、肉桂酸、鄰甲苯胺、間甲苯胺、對甲苯胺、鄰胺基苯胺、對胺基苯胺、鄰氯苯胺、對氯苯胺、2,5-氯甲基苯胺、3,4-氯甲基苯胺、N-單甲基苯胺、4,4'-二胺基二苯甲烷、N-苯基-α-萘胺、N-苯基-3-萘胺、甲基苯并三唑、1,2,3-三、1,2,4-三、1,3,5-三、1,2,3-苯并三、兒茶酚、氫醌、間苯二酚、聚伸乙亞胺、伸乙二胺四醋酸二鈉、乙二醛、2-氧基-3-甲氧基苯甲醛等。
另外,金屬層2亦係藉由在金屬層形成時所使用的電鍍液中添加上述光澤劑,便可調整(抑制)電鍍的成長方向,便可促進金屬層的晶粒平均粒徑微細化,故能提供高真球度的Cu核球。
・金屬層之阻障功能
迴焊時,若Cu焊球的Cu擴散於為將Cu核球與電極間予以接合而使用的焊料(糊膏)中,則焊料層中與連接界面處會大量形成硬脆的Cu
6Sn
5、Cu
3Sn之金屬化合物,當呈受衝撃時會促進龜裂,有導致破壞連接部的可能性。所以,為能獲得充分的連接強度,最好抑制(阻障)Cu從Cu焊球擴散於焊料。所以,第2實施形態的Cu核球11B,將具有阻障層功能的金屬層2形成於Cu焊球1的表面上,便可抑制Cu焊球1的Cu擴散於糊膏的焊料中。
・焊膏、泡沫焊料、焊接頭
再者,藉由使Cu核球11A或Cu核球11B含於焊料中,亦可構成焊膏。藉由使Cu核球11A或Cu核球11B分散於焊料中,便可構成泡沫焊料。Cu核球11A或Cu核球11B亦可使用於將電極間予以接合的焊接頭形成時。
・Cu焊球之製造方法
其次,針對Cu焊球1之製造方法一例進行說明。金屬材料一例係將Cu材放置於如陶瓷之類的耐熱性板(以下稱「耐熱板」)上,並與耐熱板一起在爐中加熱。耐熱板設有底部呈半球狀的多數圓形溝。溝的直徑與深度係配合Cu焊球1的粒徑再行適當設定,例如直徑0.8mm、深度0.88mm。又,將由切斷Cu細線所獲得的碎片形狀Cu材,一個個丟入耐熱板的溝內。溝內已有丟入Cu材的耐熱板,在經填充氨分解氣體的爐內升溫至1100~1300℃,施行30~60分鐘的加熱處理。此時,若爐內溫度達Cu的熔點以上,Cu材便熔融形成球狀。然後,將爐內冷卻,藉由Cu焊球1在耐熱板的溝內急冷而成形。
再者,另一方法係有如:從坩堝底部所設置的節流孔滴下熔融Cu,該液滴急冷至室溫(例如25℃),而造球成Cu焊球1的噴霧法;利用熱電漿將Cu切割金屬加熱至1000℃以上而造球的方法。
Cu焊球1之製造方法中,在造球成Cu焊球1前,亦可將Cu焊球1原料的Cu材依800~1000℃施行加熱處理。
Cu焊球1原料的Cu材,係可使用例如點熔接塊材、焊線材、板材等。Cu材的純度,就從不會降低Cu焊球1之純度的觀點,較佳超過4N5且在6N以下。
依此當使用高純度Cu材時,亦可未施行前述加熱處理,而與習知同樣地將熔融Cu的保持溫度降低至1000℃程度。依此,前述加熱處理亦可配合Cu材的純度、α線量,而適當省略或變更。又,當製造高α線量Cu焊球1、或異形Cu焊球1時,亦可將該等Cu焊球1再利用為原料,便可更進一步降低α線量。
在Cu焊球1上形成焊料層3的方法,係可採用公知的電鍍法等方法。公知電鍍法係可例如:電解電鍍法;由電鍍槽所連接的泵使電鍍槽中的電鍍液產生亂流,再利用電鍍液的亂流,於球狀核上形成電鍍被膜的方法;在電鍍槽中設置振動板,藉由使依既定頻率振動,而亂流攪拌電鍍液,再利用電鍍液的亂流,於球狀核上形成電鍍被膜的方法等。
在Cu焊球1上形成金屬層2的方法,係可採用公知的電解電鍍法等方法。例如形成鍍鎳層的情況,針對鍍鎳的浴種,使用Ni基底金屬或Ni金屬鹽調整鎳鍍液,將Cu焊球1浸漬於該鎳鍍液中,藉由使析出而在Cu焊球1的表面上形成鍍鎳層。又,形成鍍鎳層等金屬層2的其他方法,亦可採用公知的無電解電鍍法等。當在金屬層2的表面利用Sn合金形成焊料層3時,便可採用上述公知的電鍍法。
[實施例]
以下,針對本發明實施例進行說明,惟本發明並不僅侷限於該等。依照以下的表1、表2所示組成製作實施例1~22及比較例1~12的Cu焊球,測定該Cu焊球的真球度、維氏硬度、α線量及耐變色性。
再者,將上述實施例1~22的Cu焊球,利用依表3所示組成例1~4的焊料合金形成之焊料層被覆,而製作實施例1A~22A的Cu核球,測定該Cu核球的真球度及α線量。又,將上述實施例1~22的Cu焊球,利用金屬層及由依表4所示組成例1~4的焊料合金形成之焊料層被覆,而製作實施例1B~22B的Cu核球,測定該Cu核球的真球度及α線量。
又,將上述比較例1~12的Cu焊球,利用依表5所示組成例1~4的焊料合金形成之焊料層被覆,而製作比較例1A~12A的Cu核球,測定該Cu核球的真球度及α線量。又,將上述比較例1~12的Cu焊球,利用金屬層及由依表6所示組成例1~4的焊料合金形成之焊料層被覆,而製作比較例1B~12B的Cu核球,測定該Cu核球的真球度及α線量。
下述表中,沒有單位的數字係表示質量ppm或質量ppb。詳言之,表中表示Fe、Ag、Ni、P、S、Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au含有比例的數值,係表示質量ppm。「<1」係表示相對於該雜質元素的Cu焊球含有比例未滿1質量ppm。又,表中表示U、Th含有比例的數值,係表示質量ppb。「<5」係表示相對於該雜質元素的Cu焊球含有比例未滿5質量ppb。「雜質合計量」係表示Cu焊球所含有雜質元素的合計比例。
・Cu焊球之製作
檢討Cu焊球的製作條件。金屬材料一例的Cu材,係準備點熔接塊材。實施例1~13、22、與比較例1~12的Cu材係使用純度6N者,實施例14~21的Cu材係使用純度5N者。各Cu材丟入坩堝中之後,將坩堝溫度升溫至1200℃,加熱45分鐘而使Cu材熔融,從坩堝底部所設置的節流孔滴下熔融Cu,所生成的液滴急冷至室溫(18℃)而造球為Cu焊球。藉此,製得平均粒徑成為下述各表所示值得Cu焊球。元素分析係若使用感應耦合電漿質譜(ICP-MS分析)、輝光放電質量分析(GD-MS分析),便可高精度分析,本例係利用ICP-MS分析實施。相關Cu焊球的焊球徑,施例1~實施例17、實施例21、實施例22、比較例1~12係設為300μm,實施例18係設為200μm、實施例19係設為100μm、實施例20係設為50μm。
・Cu核球之製作
使用上述實施例1~22的Cu焊球,相關實施例1A~17A、21A、22A係在實施例1~17、21、22的Cu焊球上,由組成例1~4的焊料合金依單側23μm的厚度形成焊料層,而製作實施例1A~17A、21A、22A的Cu核球。相關實施例18A~20A的Cu核球,因為Cu焊球的焊球徑不同,因而在實施例18的Cu焊球上,由組成例1~4的焊料合金依單側20μm的厚度形成焊料層,而製作實施例18A的Cu核球。又,在實施例19、20的Cu焊球上,由組成例1~4的焊料合金依單側15μm的厚度形成焊料層,而製作實施例19A、20A的Cu核球。
再者,使用上述實施例1~22的Cu焊球,相關實施例1B~17B、21B、22B係在實施例1~17、21、22的Cu焊球,依單側2μm的厚度形成當作金屬層用的鍍鎳層,更由組成例1~4的焊料合金依單側23μm的厚度形成焊料層,而製作實施例1B~17B、21B、22B的Cu核球。相關實施例18B~20B的Cu核球,因為Cu焊球的焊球徑不同,因而在實施例18的Cu焊球上,依單側2μm的厚度形成當作金屬層用的鍍鎳層,更由組成例1~4的焊料合金依單側20μm的厚度形成焊料層,而製作實施例18B的Cu核球。又,在實施例19、20的Cu焊球上,依單側2μm的厚度形成當作金屬層用的鍍鎳層,更由組成例1~4的焊料合金依單側15μm的厚度形成焊料層,而製作實施例19B、20B的Cu核球。
更,使用上述比較例1~12的Cu焊球,由組成例1~4的焊料合金依單側23μm的厚度形成焊料層,而製作比較例1A~12A的Cu核球。又,使用上述比較例1~12的Cu焊球,依單側2μm的厚度形成當作金屬層用的鍍鎳層,更由組成例1~4的焊料合金依單側23μm的厚度形成焊料層,而製作比較例1B~12B的Cu核球。
以下,針對Cu焊球及Cu核球的真球度、α線量、Cu焊球之維氏硬度、及耐變色性的各評價方法進行詳述
・真球度
Cu焊球及Cu核球的真球度係利用CNC影像測定系統進行測定。裝置係MITUTOYO公司製的Ultra Qucik Vision、ULTRA QV350-PRO。
[真球度之評價基準]
下述各表中,Cu焊球與Cu核球的真球度評價基準,係如下。
○○○:真球度達0.99以上
○○:真球度0.98以上且未滿0.99
○:真球度0.95以上且未滿0.98
×:真球度未滿0.95
・維氏硬度
Cu焊球之維氏硬度係根據「維氏硬度試驗-試驗方法 JIS Z2244」進行測定。裝置係使用明石製作所製的微小維氏硬度測試器、AKASHI微小硬度計MVK-F 12001-Q。
[維氏硬度之評價基準]
下述各表中,Cu焊球之維氏硬度的評價基準,係如下。
○:超過0HV且在55.5HV以下
×:超過55.5HV
・α線量
Cu焊球及Cu核球的α線量之測定方法係如下。α線量測定時係使用氣流氣正比計數管的α線測定裝置。測定樣品係在300mm×300mm平面淺底容器中填鋪Cu焊球直到看不到容器底部為止。將該測定樣品放入α線測定裝置內,在PR-10氣體流動中放置24小時後,測定α線量。針對Cu核球亦依照同樣方法測定α線量。
[α線量之評價基準]
下述各表中,Cu焊球及Cu核球的α線量評價基準係如下。
○:α線量在0.0200cph/cm
2以下
×:α線量超過0.0200cph/cm
2
另外,測定時所使用的PR-10氣體(氬90%-甲烷10%)係將PR-10氣體填充於氣體鋼瓶中之後經3周以上者。使用經放置3周以上鋼瓶的理由係為使不會因進入氣體鋼瓶的大氣中之氡產生α線,而依照JEDEC(Joint Electron Device Engineering Council)所規定的JEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials JESD221。
・耐變色性
為測定Cu焊球的耐變色性,將Cu焊球使用大氣環境下的恆溫槽,設定為200℃施行420秒鐘加熱,測定亮度變化,評價是否屬於能充分承受經時變化的Cu焊球。亮度係使用Konica Minolta製CM-3500d型分光測色計,依D65光源、10度視野,根據JIS Z 8722「顏色之測定方法-反射及穿透物體色」測定分光穿透率,再從色彩值(L
*,a
*,b
*)求取。另外,(L
*,a
*,b
*)係JIS Z 8729「顏色之顯示方法-L
*a
*b
*表色系及L
*u
*v
*表色系」所規定。L
*係亮度,a
*係紅色色度,b
*係黃色色度。
[耐變色性之評價基準]
下述各表中,Cu焊球的耐變色性評價基準係如下。
○:經420秒後的亮度達55以上
×:經420秒後的亮度未滿55。
・綜合評價
將依照上述評價方法與評價基準,所獲得真球度、維氏硬度、α線量及耐變色性均為○或○○或○○○的Cu焊球,綜合評價評為「○」。另一方面,將真球度、維氏硬度、α線量及耐變色性中有任一項為×的Cu焊球,綜合評價評為「×」。
再者,將依照上述評價方法與評價基準,所獲得真球度及α線量均為○或○○或○○○的Cu核球,同Cu焊球的評價將綜合評價評為「○」。另一方面,將真球度與α線量中有任一項為×的Cu核球,綜合評價評為「×」。又,將Cu焊球的評價中,真球度、維氏硬度、α線量及耐變色性中有任一項為×的Cu核球,綜合評價評為「×」。
另外,因為Cu核球的維氏硬度係依存於焊料層、金屬層一例的鍍鎳層,因而未評價Cu核球的維氏硬度。但,Cu核球中,若Cu焊球的維氏硬度在本發明所規定範圍內,則即便Cu核球亦係耐墜落碰撞性良好、能抑制龜裂、亦能抑制電極崩潰等,且亦能抑制導電性劣化。
另一方面,Cu核球係當Cu焊球的維氏硬度大於本發明所規定範圍時,對來自外部應力的耐久性降低,耐墜落碰撞性變差,且無法解決容易發生龜裂的課題。
所以,使用比較例8~11,維氏硬度超過55.5HV之Cu焊球的Cu核球,因為不適於維氏硬度評價,所以綜合評價評為「×」。
再者,因為Cu核球的耐變色性係依存於焊料層、金屬層一例的鍍鎳層,因而Cu核球的耐變色性並未評價。但,若Cu焊球的亮度在本發明所規定範圍內,則Cu焊球表面的硫化物、硫氧化物受抑制,適用於焊料層、鍍鎳層等金屬層的被覆。
另一方面,若Cu焊球的亮度低於本發明所規定範圍,則Cu焊球表面的硫化物、硫氧化物未受抑制,不適用於焊料層、鍍鎳層等金屬層的被覆。
所以,因為使用比較例1~6,經420秒後亮度未滿55之Cu焊球的Cu核球,並不適用於耐變色性評價,因而綜合評價評為「×」。
[表1]
元素 | 實施例1 | 實施例2 | 實施例3 | 實施例4 | 實施例5 | 實施例6 | 實施例7 | 實施例8 | 實施例9 | 實施例10 | 實施例11 | 實施例12 | 實施例13 | 實施例14 | 實施例15 | 實施例6 | 實施例17 | 實施例18 | 實施例19 | 實施例20 | 實施例21 | 實施例22 | |
Cu焊球 | Cu | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal |
Fe | 5.0 | 10.0 | 49.0 | 50.0 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 5.0 | 1.7 | 1.7 | 2.5 | 2.3 | 2.3 | 2.3 | 2.3 | 5.8 | 5.5 | |
Ag | <1 | <1 | <1 | <1 | 5.0 | 10.0 | 49.0 | 50.0 | <1 | <1 | <1 | <1 | 5.0 | 10.1 | 9.3 | 9.5 | 10.7 | 10.7 | 10.7 | 10.7 | <1 | 10.1 | |
Ni | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 5.0 | 10.0 | 49.0 | 50.0 | 5.0 | 3.8 | 4.2 | 0.8 | 1.2 | 1.2 | 1.2 | 1.2 | <1 | 5.7 | |
Fe+Ag+Ni | 5.0 | 10.0 | 49.0 | 50.0 | 5.0 | 10.0 | 49.0 | 50.0 | 5.0 | 10.0 | 49.0 | 50.0 | 15.0 | 15.6 | 15.2 | 12.8 | 14.2 | 14.2 | 14.2 | 14.2 | 5.8 | 21.3 | |
S | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
P | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <t | <1 | <1 | <1 | <1 | <1 | <1 | 2.9 | |
Sb | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Bi | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Zn | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Al | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
As | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Cd | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1. | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Pb | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 13.2 | <1 | |
Sn | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 30.3 | <1 | |
In | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Au | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
U | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
Th | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
雜質合計量 | 5.0 | 10.0 | 49.0 | 50.0 | 5.0 | 10.0 | 49.0 | 50.0 | 5.0 | 10.0 | 49.0 | 50.0 | 15.0 | 15.6 | 15.2 | 12.8 | 14.2 | 14.2 | 14.2 | 14.2 | 49.3 | 24.2 | |
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 200μm | 100μm | 50μm | 300μm | 300μm | |
Cu焊球評價 | 真球度 | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ |
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
耐變色性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
[表2]
元素 | 比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 | |
Cu焊球 | Cu | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal | Bal |
Fe | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 50.0 | 42 | 52.0 | 5.7 | 1.2 | |
Ag | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 50.0 | 29.1 | 51.7 | 30.5 | <1 | |
Ni | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 50.0 | 14.7 | 49.9 | 12.3 | <1 | |
Fe+Ag+Ni | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150.0 | 48.0 | 153.6 | 48.5 | 1.2 | |
S | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | <1 | <1 | <1 | <1 | <1 | <1 | |
P | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 211.5 | 10.2 | 199.9 | <1 | |
Sb | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 23.3 | 20.5 | <1 | <1 | |
Bi | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 51.9 | 17.9 | <1 | <1 | |
Zn | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 13.0 | 5.7 | <1 | <1 | <1 | |
Al | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
As | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 51.2 | <1 | <1 | <1 | |
Cd | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 6.5 | <1 | <1 | <1 | |
Pb | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 11.2 | 31.4 | <1 | <1 | <1 | |
Sn | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 151.0 | 58.7 | <1 | <1 | <1 | |
In | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
Au | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | |
U | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
Th | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
雜質合計量 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 0.0 | 325.2 | 488.2 | 202.2 | 248.4 | 1.2 | |
球徑ψ | 300μm | 3α3μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | |
Cu焊球評價 | 真球度 | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × |
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | × | × | × | ○ | |
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
耐變色性 | × | × | × | × | × | × | ○ | ○ | ○ | ○ | ○ | ○ | |
綜合評價 | × | × | × | × | × | × | × | × | × | × | × | × |
[表3]
實施例1A | 實施例2A | 實施例3A | 實施例4A | 實施例5A | 實施例6A | 實施例7A | 實施例8A | 實施例9A | 實施例10A | 實施例11A | ||||
Cu焊球 | 材料 | 實施例1 | 實施例2 | 實施例3 | 實施例4 | 實施例5 | 實施例6 | 實施例7 | 實施例8 | 實施例9 | 實施例10 | 實施例11 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | |||
Cu核球 | 焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | ||
Cu焊球評價 | 真球度 | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ |
組成例2 | Sn-2.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
α線量 | 組成例1 | Sn-1.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
實施例12A | 實施例13A | 實施例14A | 實施例15A | 實施例16A | 實施例17A | 實施例18A | 實施例19A | 實施例20A | 實施例21A | 實施例22A | ||||
Cu焊球 | 材料 | 實施例12 | 實施例13 | 實施例14 | 實施例15 | 實施例16 | 實施例17 | 實施例18 | 實施例19 | 實施例20 | 實施例21 | 實施例22 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 200μm | 100μm | 50μm | 300μm | 300μm | |||
Cu核球 | 焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 20μm | 15μm | 15μm | 23μm | 23μm | ||
Cu焊球 評價 | 真球度 | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ |
組成例2 | Sn-2.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
α線量 | 組成例1 | Sn-1.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
[表4]
實施例1B | 實施例2B | 實施例3B | 實施例4B | 實施例5B | 實施例6B | 實施例7B | 實施例8B | 實施例9B | 實施例10B | 實施例11B | ||||
Cu焊球 | 材料 | 實施例1 | 實施例2 | 實施例3 | 實施例4 | 實施例5 | 實施例6 | 實施例7 | 實施例8 | 實施例9 | 實施例10 | 實施例11 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | |||
Cu核球 | 鍍鎳厚:單側 | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | ||
焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | |||
Cu焊球評價 | 真球度 | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ |
組成例2 | Sn-2.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
α線量 | 組成例1 | Sn-1.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
實施例12B | 實施例13B | 實施例14B | 實施例15B | 實施例16B | 實施例17B | 實施例18B | 實施例19B | 實施例20B | 實施例21B | 實施例22B | ||||
Cu焊球 | 材料 | 實施例12 | 實施例13 | 實施例14 | 實施例15 | 實施例16 | 實施例17 | 實施例18 | 實施例19 | 實施例20 | 實施例21 | 實施例22 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 200μm | 100μm | 50μm | 300μm | 300μm | |||
Cu核球 | 鍍鎳厚:單側 | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | ||
焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 20μm | 15μm | 15μm | 23μm | 23μm | |||
Cu焊球 評價 | 真球度 | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ |
組成例2 | Sn-2.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | ||
α線量 | 組成例1 | Sn-1.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
[表5]
比較例1A | 比較例2A | 比較例3A | 比較例4A | 比較例5A | 比較例6A | 比較例7A | 比較例8A | 比較例9A | 比較例10A | 比較例11A | 比較例12A | ||||
Cu焊球 | 材料 | 比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | |||
Cu核球 | 焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | ||
Cu焊球評價 | 真球度 | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | × | × | × | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | × | × | × | × | × | × | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | × | × | × | × | × | × | × | × | × | × | × | × | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Ag-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × |
組成例2 | Sn-2.0Ag-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
α線量 | 組成例1 | Sn-1.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Ag-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Ag-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | × | × | × | × | × | × | × | × | × | × | × | × |
[表6]
比較例1B | 比較例2B | 比較例3B | 比較例4B | 比較例5B | 比較例6B | 比較例7B | 比較例8B | 比較例9B | 比較例10B | 比較例11B | 比較例12B | ||||
Cu焊球 | 材料 | 比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 | ||
球徑ψ | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | 300μm | |||
Cu核球 | 鍍鎳厚:單側 | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | 2μm | ||
焊料層;單側 | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | 23μm | |||
Cu焊球評價 | 真球度 | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
維氏硬度 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | × | × | × | ○ | |||
α線量 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |||
耐變色性 | × | × | × | × | × | × | ○ | ○ | ○ | ○ | ○ | ○ | |||
綜合評價 | × | × | × | × | × | × | × | × | × | × | × | × | |||
Cu核球評價 | 真球度 | 組成例1 | Sn-1.0Bg-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × |
組成例2 | Sn-2.0Bg-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○○ | ○○○ | ○○○ | ○○○ | ○○○ | ○○○ | × | ○○○ | ○○○ | ○○○ | ○○○ | × | ||
α線量 | 組成例1 | Sn-1.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | |
組成例2 | Sn-2.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例3 | Sn-3.0Bg-0.5Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
組成例4 | Sn-4.0Bg-0.7Cu | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||
綜合評價 | × | × | × | × | × | × | × | × | × | × | × | × |
如表1所示,純度4N5以上且5N5以下的各實施例Cu焊球,綜合評價均可獲得良好的結果。此現象可謂Cu焊球的純度較佳係4N5以上且5N5以下。
以下,針對評價的詳細結果進行說明,如實施例1~12、21,純度4N5以上且5N5以下、且Fe、Ag或Ni含有5.0質量ppm以上且50.0質量ppm以下的Cu焊球,真球度、維氏硬度、α線量及耐變色性的綜合評價獲得良好結果。如實施例13~20、22所示,純度4N5以上且5N5以下、且Fe、Ag及Ni合計含有5.0質量ppm以上且50.0質量ppm以下的Cu焊球,亦是真球度、維氏硬度、α線量及耐變色性的綜合評價均獲得良好的結果。另外,雖表中無記載,由實施例1、18~22分別將Fe含量變更為0質量ppm以上且未滿5.0質量ppm、Ag含量變更為0pp以上且未滿5.0質量ppm、Ni含量變更為0質量ppm以上、Fe、Ag及Ni合計設為5.0質量ppm以上的Cu焊球,亦是真球度、維氏硬度、α線量及耐變色性的綜合評價均獲得良好的結果。
再者,如實施例21所示,Fe、Ag或Ni含有5.0質量ppm以上且50.0質量ppm以下、且其他雜質元素的Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au分別在50.0質量ppm以下的實施例21之Cu焊球,亦是真球度、維氏硬度、α線量及耐變色性的綜合評價均獲得良好結果。
相關Cu核球,如表3、表4所示,利用由含有Ag:1.0質量%、Cu:0.5質量%、其餘為Sn之組成例1的焊料合金所形成焊料層,被覆實施例1~實施例22之Cu焊球的實施例1A~22A之Cu核球,以及利用鍍鎳層被覆實施例1~實施例22之Cu焊球,更被覆依由組成例1之焊料合金所形成焊料層的實施例1B~22B之Cu核球,亦是真球度與α線量的綜合評價獲得良好結果。
利用由含有Ag:2.0質量%、Cu:0.5質量%、其餘為Sn之組成例2的焊料合金所形成焊料層,被覆實施例1~實施例22之Cu焊球的實施例1A~22A之Cu核球,以及利用鍍鎳層被覆實施例1~實施例22之Cu焊球,更被覆依由組成例2之焊料合金所形成焊料層的實施例1B~22B之Cu核球,亦是真球度與α線量的綜合評價獲得良好結果。
利用由含有Ag:3.0質量%、Cu:0.5質量%、其餘為Sn之組成例3的焊料合金所形成焊料層,被覆實施例1~實施例22之Cu焊球的實施例1A~22A之Cu核球,以及利用鍍鎳層被覆實施例1~實施例22之Cu焊球,更被覆依由組成例3之焊料合金所形成焊料層的實施例1B~22B之Cu核球,亦是真球度與α線量的綜合評價獲得良好結果。
利用由含有Ag:4.0質量%、Cu:0.7質量%、其餘為Sn之組成例4的焊料合金所形成焊料層,被覆實施例1~實施例22之Cu焊球的實施例1A~22A之Cu核球,以及利用鍍鎳層被覆實施例1~實施例22之Cu焊球,更被覆依由組成例4之焊料合金所形成焊料層的實施例1B~22B之Cu核球,亦是真球度與α線量的綜合評價獲得良好結果。
另外,雖表中無記載,將由實施例1、18~22分別將Fe含量變更為0質量ppm以上且未滿5.0質量ppm、Ag含量變更為0pp以上且未滿5.0質量ppm、Ni含量變更為0質量ppm以上且未滿5.0質量ppm、Fe、Ag及Ni合計設為5.0質量ppm以上的Cu焊球,利用由組成例1~組成例4任一焊料合金形成的焊料層被覆之Cu核球,以及將同Cu焊球利用鍍鎳層被覆,更利用由組成例1~組成例4任一焊料合金形成的焊料層被覆之Cu核球,亦是真球度及α線量的綜合評價均獲得良好結果。
另一方面,比較例7的Cu焊球係Fe、Ag及Ni的含量合計未滿5.0質量ppm,且U,Th含有未滿5質量ppb,其他雜質元素亦係未滿1質量ppm,將比較例7的Cu焊球利用由各組成例焊料合金所形成焊料層被覆的比較例7A之Cu核球,以及將比較例7的Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的比較例7B之Cu核球,真球度係未滿0.95。又,即便未含有雜質元素,但Fe、Ag及Ni中至少1種的含量合計未滿5.0質量ppm的比較例12之Cu焊球,將比較例12的Cu焊球利用由各組成例焊料合金所形成焊料層被覆的比較例12A之Cu核球,以及將比較例12的Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的比較例12B之Cu核球,亦是真球度未滿0.95。由該等結果,可謂Fe、Ag及Ni中至少1種的含量合計未滿5.0質量ppm的Cu焊球,以及將該Cu焊球利用由各組成例焊料合金所形成焊料層被覆的Cu核球、及將該Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的Cu核球,均無法實現高真球度。
再者,比較例10的Cu焊球,雖Fe、Ag及Ni的含量合計153.6質量ppm、其他雜質元素的含量分別在50質量ppm以下,但維氏硬度超過55.5HV,無法獲得良好的結果。又,比較例8的Cu焊球,係Fe、Ag及Ni的含量合計為150.0質量ppm,且其他雜質元素的含量,特別係Sn為151.0質量ppm,大幅超過50.0質量ppm,維氏硬度超過55.5HV,無法獲得良好的結果。所以,即便純度4N5以上且5N5以下的Cu焊球,但若Fe、Ag及Ni中至少1種的含量合計超過50.0質量ppm之Cu焊球,會導致維氏硬度變大,可謂無法實現低硬度。依此,Cu焊球之維氏硬度過大超過本發明所規定範圍時,針對來自外部應力的耐久性降低,耐墜落碰撞性變差,且無法解決容易發生龜裂的課題。又,可謂其他雜質元素亦係最好分別不要含有超過50.0質量ppm範圍。
由該等結果可謂純度4N5以上且5N5以下、且所含有Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下的Cu焊球,能實現高真球度及低硬度,且抑制變色。將此種Cu焊球利用由各組成例焊料合金所形成焊料層被覆的Cu核球,以及將此種Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的Cu核球,可實現高真球度,且藉由Cu焊球實現低硬度,則即便Cu核球亦係耐墜落碰撞性良好、能抑制龜裂、亦能抑制電極崩潰等,且亦能抑制導電性劣化。又,藉由抑制Cu焊球變色,便適用於利用焊料層、鍍鎳層等金屬層被覆。其他雜質元素的含量分別較佳係50.0質量ppm以下。
實施例18~20的Cu焊球,雖與實施例17的Cu焊球相同組成,但焊球徑不同,任一者的真球度、維氏硬度、α線量及耐變色性之綜合評價均獲得良好的結果。將實施例18~20的Cu焊球利用由各組成例焊料合金所形成焊料層被覆的Cu核球,以及將實施例18~20的Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的Cu核球,亦是真球度與α線量的綜合評價均獲得良好的結果。雖表中未記載,若與該等實施例相同組成、焊球徑1μm以上且1000μm以下的Cu焊球,任一者的真球度、維氏硬度、α線量及耐變色性之綜合評價均能獲得良好的結果。由此現象,Cu焊球的焊球徑可謂較佳係1μm以上且1000μm以下、更佳係50μm以上且300μm以下。
實施例22的Cu焊球係Fe、Ag及Ni的含量合計5.0質量ppm以上且50.0質量ppm以下,P含有2.9質量ppm,真球度、維氏硬度、α線量及耐變色性的綜合評價獲得良好結果。將實施例22的Cu焊球利用由各組成例焊料合金所形成焊料層被覆的Cu核球,以及將實施例22的Cu焊球利用鍍鎳層被覆,更利用由各組成例焊料合金所形成焊料層被覆的Cu核球,亦是真球度與α線量的綜合評價獲得良好的結果。比較例11的Cu焊球,雖Fe、Ag及Ni的含量合計係與實施例22的Cu焊球同樣均在50.0質量ppm以下,但維氏硬度超過5.5HV,便獲得與實施例22之Cu焊球不同的結果。又,比較例9亦是維氏硬度超過5.5HV。理由可認為比較例9、11的P含量明顯增多的緣故所致,由該結果得知,若P含量增加,則維氏硬度會變大。所以,P含量可謂較佳係未滿3質量ppm、更佳係未滿1質量ppm。
各實施例的Cu焊球及Cu核球係α線量在0.0200cph/cm
2以下。所以,當電子零件的高密度安裝係使用各實施例的Cu核球時,可抑制軟錯誤。
比較例7的Cu焊球係耐變色性可獲得良好的結果,另一方面,比較例1~6的耐變色性卻無法獲得良好的結。若將比較例1~6的Cu焊球、與比較例7的Cu焊球進行比較,該等的組成差異僅在於S含量而已。所以,可謂為使耐變色性能獲得良好結果,S含量必需設成未滿1質量ppm。各實施例的Cu焊球均係S含量未滿1質量ppm,可謂S含量較佳係未滿1質量ppm。
接著,為確認S含量與耐變色性的關係,便將實施例14、比較例1及比較例5的Cu焊球依200℃加熱,拍攝加熱前、經加熱60秒後、180秒後、420秒後的照片,且測定亮度。表7與圖4係各Cu焊球的加熱時間與亮度之關係圖。
[表7]
No. | Ini | 200℃-加熱時間[sec] | ||
0 | 60 | 180 | 420 | |
實施例14 | 64.2 | 64.0 | 62.8 | 55.1 |
比較例1 | 63.3 | 63.3 | 61.1 | 49.5 |
比較例5 | 65.1 | 63.2 | 60.0 | 42.3 |
由該表得知,若將加熱前的亮度、與經加熱420秒後的亮度進行比較,則實施例14、比較例1、5的亮度,在加熱前呈現接近64、65附近的數值。若經加熱420秒後,S含有30.0質量ppm的比較例5之亮度變為最低,其次依序係S含有10.0質量ppm的比較例1、S含量未滿1質量ppm的實施例14。由此現象可謂S含量越多,則加熱後的亮度越低。比較例1、5的Cu焊球,因為亮度低於55,因而S含有達10.0質量ppm以上的Cu焊球,可謂在加熱時會形成硫化物、硫氧化物,而容易變色。又,若S含量係0質量ppm以上且1.0質量ppm以下,則可謂硫化物、硫氧化物的形成受抑制,且潤濕性良好。另外,將實施例14的Cu焊球安裝於電極上,呈現良好的潤濕性。
如上述,純度4N5以上且5N5以下、且Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm的本實施例Cu焊球,因為真球度均達0.95以上,因而可實現高真球度。藉由實現高真球度,可確保Cu焊球安裝於電極等之時的自對準性,且可抑制Cu焊球的高度變動。將本實施例Cu焊球利用焊料層被覆的Cu核球,以及將本實施例Cu焊球利用金屬層被覆,更將金屬層利用焊料層被覆的Cu核球,亦均可獲得同樣的效果。
再者,本實施例的Cu焊球,因為維氏硬度均在55HV以下,因而可實現低硬度。藉由實現低硬度,便可提升Cu焊球的耐墜落碰撞性。藉由實現Cu焊球的低硬度,將本實施例的Cu焊球利用焊料層被覆的Cu核球,以及將本實施例的Cu焊球利用金屬層被覆,更將金屬層利用焊料層被覆的Cu核球,耐墜落碰撞性亦均良好、且能抑制龜裂、亦能抑制電極崩潰等,亦能抑制導電性劣化。
再者,本實施例的Cu焊球,變色均受抑制。藉由抑制Cu焊球的變色,便可抑制因硫化物、硫氧化物所造成對Cu焊球的不良影響,並可提升將Cu焊球安裝於電極上之時的潤濕性。藉由抑制Cu焊球的變色,便適用於焊料層、鍍鎳層等金屬層的被覆。
另外,本實施例的Cu材係使用純度超過4N5且在6N以下的Cu點熔接塊材,製作純度4N5以上且5N5以下的Cu焊球,但即便使用超過4N5且在6N以下的焊線材、板材等,相關Cu焊球、Cu核球雙方在綜合評價時亦均能獲得良好的結果。
1 Cu焊球
11A、11B Cu核球
2 金屬層
3 焊料層
10 半導體晶片
100、41 電極
30 焊料凸塊
40 印刷電路基板
50 焊接頭
60 電子零件
[圖1]係本發明第1實施形態的Cu核球;
[圖2]係本發明第2實施形態的Cu核球;
[圖3]係使用本發明各實施形態Cu核球的電子零件構成例;
[圖4]係實施例與比較例的Cu焊球依200℃施行加熱時,加熱時間與亮度的關係圖。
無。
Claims (19)
- 一種Cu核球,係具備有: Cu焊球;及 被覆在上述Cu焊球表面的焊料層; 其中,上述Cu焊球係 Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下; S含量0質量ppm以上且1.0質量ppm以下; P含量0質量ppm以上且未滿3.0質量ppm; 其餘係Cu及其他雜質元素;上述Cu焊球的純度係99.995質量%以上且99.9995質量%以下; 真球度達0.95以上; 上述焊料層係Ag含量超過0質量%且4.0質量%以下、Cu含量超過0質量%且3.0質量%以下、其餘為Sn。
- 如申請專利範圍第1項之Cu核球,其中,上述焊料層的Ag含量係0.1質量%以上且2.0質量%以下。
- 如申請專利範圍第1項之Cu核球,其中,上述焊料層的Cu含量係0.1質量%以上且1.0質量%以下。
- 如申請專利範圍第2項之Cu核球,其中,上述焊料層的Cu含量係0.1質量%以上且1.0質量%以下。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,真球度係0.98以上。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,真球度係0.99以上。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,α線量係0.0200cph/cm 2以下。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,α線量係0.0010cph/cm 2以下。
- 如申請專利範圍第5項之Cu核球,其中,α線量係0.0010cph/cm 2以下。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,具備有被覆上述Cu焊球表面的金屬層;利用上述焊料層被覆在上述金屬層表面,真球度達0.95以上。
- 如申請專利範圍第10項之Cu核球,其中,真球度係0.98以上。
- 如申請專利範圍第10項之Cu核球,其中,真球度係0.99以上。
- 如申請專利範圍第10項之Cu核球,其中,α線量係0.0200cph/cm 2以下。
- 如申請專利範圍第10項之Cu核球,其中,α線量係0.0010cph/cm 2以下。
- 如申請專利範圍第1至4項中任一項之Cu核球,其中,上述Cu焊球的直徑係1μm以上且1000μm以下。
- 如申請專利範圍第10項之Cu核球,其中,上述Cu焊球的直徑係1μm以上且1000μm以下。
- 一種焊接頭,係使用申請專利範圍第1至16項中任一項之Cu核球。
- 一種焊膏,係使用申請專利範圍第1至16項中任一項之Cu核球。
- 一種泡沫焊料,係使用申請專利範圍第1至16項中任一項之Cu核球。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-111873 | 2018-06-12 | ||
JP2018111873A JP6493603B1 (ja) | 2018-06-12 | 2018-06-12 | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202000935A TW202000935A (zh) | 2020-01-01 |
TWI683915B true TWI683915B (zh) | 2020-02-01 |
Family
ID=65999156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108120076A TWI683915B (zh) | 2018-06-12 | 2019-06-11 | Cu核球、焊接頭、焊膏及泡沫焊料 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10888959B2 (zh) |
JP (1) | JP6493603B1 (zh) |
TW (1) | TWI683915B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6485580B1 (ja) * | 2018-06-12 | 2019-03-20 | 千住金属工業株式会社 | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ |
US11581239B2 (en) * | 2019-01-18 | 2023-02-14 | Indium Corporation | Lead-free solder paste as thermal interface material |
JP6892621B1 (ja) * | 2020-09-10 | 2021-06-23 | 千住金属工業株式会社 | 核材料、電子部品及びバンプ電極の形成方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201436904A (zh) * | 2012-12-06 | 2014-10-01 | Senju Metal Industry Co | 銅質球 |
TW201504459A (zh) * | 2013-06-19 | 2015-02-01 | Senju Metal Industry Co | Cu核球 |
TW201540394A (zh) * | 2014-02-04 | 2015-11-01 | Senju Metal Industry Co | 銅球、銅核球、軟焊接頭、軟焊膏及泡沫焊料 |
TW201642973A (zh) * | 2014-12-26 | 2016-12-16 | Senju Metal Industry Co | 接合構件、焊接材料、焊膏、泡沫焊料、助焊劑塗覆材料及焊接接頭 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5590259B1 (ja) | 2014-01-28 | 2014-09-17 | 千住金属工業株式会社 | Cu核ボール、はんだペーストおよびはんだ継手 |
JP6256616B2 (ja) | 2015-04-22 | 2018-01-10 | 日立金属株式会社 | 金属粒子およびその製造方法、被覆金属粒子、金属粉体 |
JP6341330B1 (ja) | 2017-12-06 | 2018-06-13 | 千住金属工業株式会社 | Cuボール、OSP処理Cuボール、Cu核ボール、はんだ継手、はんだペースト、フォームはんだ及びCuボールの製造方法 |
-
2018
- 2018-06-12 JP JP2018111873A patent/JP6493603B1/ja active Active
-
2019
- 2019-06-10 US US16/435,818 patent/US10888959B2/en active Active
- 2019-06-11 TW TW108120076A patent/TWI683915B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201436904A (zh) * | 2012-12-06 | 2014-10-01 | Senju Metal Industry Co | 銅質球 |
TW201504459A (zh) * | 2013-06-19 | 2015-02-01 | Senju Metal Industry Co | Cu核球 |
TW201540394A (zh) * | 2014-02-04 | 2015-11-01 | Senju Metal Industry Co | 銅球、銅核球、軟焊接頭、軟焊膏及泡沫焊料 |
TW201642973A (zh) * | 2014-12-26 | 2016-12-16 | Senju Metal Industry Co | 接合構件、焊接材料、焊膏、泡沫焊料、助焊劑塗覆材料及焊接接頭 |
Also Published As
Publication number | Publication date |
---|---|
TW202000935A (zh) | 2020-01-01 |
US20190375053A1 (en) | 2019-12-12 |
JP2019214756A (ja) | 2019-12-19 |
JP6493603B1 (ja) | 2019-04-03 |
US10888959B2 (en) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI659788B (zh) | Soldering materials, solder paste, foam solder, flux coating materials and solder joints | |
TWI683915B (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 | |
TWI544095B (zh) | Nuclear ball, solder paste, foam solder, flux coated nuclear ball and solder joints | |
US20170312860A1 (en) | Solder Material, Solder Paste, Solder Preform, Solder Joint and Method of Managing the Solder Material | |
TW202000934A (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 | |
TWI761683B (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 | |
JP5576004B1 (ja) | OSP処理Cuボール、はんだ継手、フォームはんだ、およびはんだペースト | |
KR102649199B1 (ko) | Cu 볼, OSP 처리 Cu 볼, Cu 핵 볼, 납땜 조인트, 땜납 페이스트, 폼 땜납, 및 Cu 볼의 제조 방법 | |
JP5680773B1 (ja) | Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト | |
JP6572997B1 (ja) | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ | |
TW202000936A (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 | |
JP6485581B1 (ja) | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ | |
TWI770385B (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 | |
TW202006147A (zh) | Cu核球、焊接頭、焊膏及泡沫焊料 |