TWI673493B - 氣體感測器 - Google Patents

氣體感測器 Download PDF

Info

Publication number
TWI673493B
TWI673493B TW107138044A TW107138044A TWI673493B TW I673493 B TWI673493 B TW I673493B TW 107138044 A TW107138044 A TW 107138044A TW 107138044 A TW107138044 A TW 107138044A TW I673493 B TWI673493 B TW I673493B
Authority
TW
Taiwan
Prior art keywords
electrode
layer
gas sensor
sensing layer
current
Prior art date
Application number
TW107138044A
Other languages
English (en)
Other versions
TW202016535A (zh
Inventor
冉曉雯
孟心飛
林于琪
游尚祐
董庭維
吳意筑
毛宇農
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW107138044A priority Critical patent/TWI673493B/zh
Priority to CN201910194927.6A priority patent/CN111103329B/zh
Priority to US16/515,206 priority patent/US11499937B2/en
Application granted granted Critical
Publication of TWI673493B publication Critical patent/TWI673493B/zh
Publication of TW202016535A publication Critical patent/TW202016535A/zh
Priority to US17/975,977 priority patent/US20230049675A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0073Control unit therefor
    • G01N33/0075Control unit therefor for multiple spatially distributed sensors, e.g. for environmental monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector

Abstract

本發明提供一種於較小施加電壓下即可產生較大的感應電流的氣體感測器,包含第一電極、至少一絕緣塊、一感測層,及第二電極單元。該至少一絕緣塊設於該第一電極,該感測層覆蓋該第一電極,並可與預定的一待測氣體分子作用,該第二電極單元可透過該感測層與該第一電極配合電連接,包括至少一第二電極部及一電流輔助層,該至少一第二電極部設於該感測層及該至少一絕緣塊的其中一者上,該電流輔助層由導電的有機材料構成可與該至少一第二電極部及感測層配合用以導通電流。此外,本發明還提供不同結構態樣的氣體感測器。

Description

氣體感測器
本發明是有關於一種感測器,特別是指一種氣體感測器。
近年來由於日益嚴重的空氣汙染問題,使具有高效能的氣體感測器越來越受到重視,其中,具有奈米結構的氣體感測器有優良的氣體感測性,不僅可應用於日常生活,例如一氧化碳偵測器或煙霧偵測器等,亦可應用於工廠中爆炸性或有害氣體的偵測,使用範圍相當廣泛。氣體感測器的作動多半是利用可與待感測氣體反應的材料與待感測氣體作用後,經由電阻值的變化而得量測的結果。
現有多層側壁式的氣體感測器透過改變感測層材料雖可準確地感測待測氣體,然而,此種多層側壁式感測器的靈敏度仍有待提升以增強氣體感測器的效益,因此,如何改善氣體感測器的感測效益,是本技術領域者所待解決的問題之一。
而為了增加感測材料與待感測氣體間可作用的面積,改善氣體感測器的感測效益,因此,發明人於先前利用於電極上形成奈米微孔,使待感測氣體能深入該等微孔中並與感測材料作用,而提升氣體感測器的靈敏度。
然而,前述具有奈米微孔的電極的製作是利用將多數奈米球體附著於感測器的半成品上,再利用鍍膜的方式鍍上金屬層後,再將該等奈米球體移除而得。然而,要控制奈米球體的穩定分布及附著並不是件易事,奈米球體的分布不均將會影響後續製得的電極的奈米微孔的數量及分布,進而影響感測的結果,使得此種氣體感測器在量產上面臨極大的困難,此外,奈米球體的塗佈及後續的移除步驟,也使得該氣體感測器的製作流程更為冗長,而更加不利於大量生產。
因此,本發明之目的,即在提供一種製程簡易,並可於小電壓下即可具有較大的感應電流的氣體感測器。
於是,本發明氣體感測器包含一第一電極、至少一絕緣塊、一感測層,及一第二電極單元。
該至少一絕緣塊設於該第一電極其中一表面。
該感測層設置該第一電極上,可與預定的一待測氣體分子作用。
該第二電極單元配合該感測層與該第一電極電連接,包括至少一第二電極部及一電流輔助層,該至少一第二電極部設置於該感測層及該至少一絕緣塊的其中一者上,該電流輔助層由導電的有機材料構成,與該感測層的至少部分彼此接觸重疊,且可與該等至少一第二電極部及該感測層配合以導通電流。
此外,本發明的另一目的,在於還提供另一種態樣的氣體感測器。
於是,本發明該氣體感測器包含一感測層、一第一電極、一第二電極單元,及一電流輔助層。
該感測層可與預定的待測氣體分子作用。
該第一電極設於該感測層的其中一表面。
該第二電極單元設於該感測層反向該第一電極的表面,可與該第一電極配合電連接,包括複數設於該感測層遠離該第一電極的表面且彼此成一間隙間隔設置的第二電極部。
該電流輔助層覆蓋該感測層及該等第二電極部裸露的表面,由導電的有機材料組成,且該待測氣體分子可通過該電流輔助層。
此外,本發明的又一目的,在於還提供另一種態樣的氣體感測器。
於是,本發明該氣體感測器包含一第一電極、至少一絕緣、一第二電極、一介面層,及一感測層。
該至少一絕緣塊設於該第一電極的其中一表面,該至少一絕緣塊包括一絕緣本體,及多個自該絕緣本體遠離該第一電極的表面向該第一電極延伸,並令該第一電極露出的凹槽。
該第二電極由金屬或合金金屬為材料構成,設置於該至少一絕緣塊遠離該第一電極的表面,並可與該第一電極配合電連接,包括一第二電極部,及多個自該第二電極部的表面向下凹陷的穿孔,且至少部分的穿孔與該等凹槽相連通。
該介面層與該第一電極及該第二電極的其中至少一相連接。
該感測層覆蓋該介面層,並與該第一電極及該第二電極電連接,由有機材料構成,能與一預定的氣體分子作用並產生電性變化。
其中,該介面層選自有機的載子傳輸材料,當該載子傳輸材料為電洞傳輸材料,其最高己填滿軌域的功函數介於該第一、二電極與該感測層之間,當該載子傳輸材料為電子傳輸材料,最低未填滿軌域的功函數介於該第一、二電極與該感測層之間。
此外,本發明的再一目的,在於還提供另一種態樣的氣體感測器。
於是,本發明該氣體感測器包含一第一電極、一感測層、一附著層,及一第二電極。
該感測層設置於該第一電極的其中一表面,由有機材料構成,能與一預定的氣體分子作用並產生電性變化。
該附著層覆蓋該感測層遠離該第一電極的表面,選自極性且可產生氫鍵的高分子材料並可令氣體分子及電流通過。
第二電極設置於該附著層上,包括一電極部及多個自該電極部的表面向該附著層凹陷並令該附著層露出的穿孔。
本發明之功效在於:藉由間隔設置的該等第二電極部並配合該電流輔助層,可有效提升該氣體感測器的感應電流,且整體製程較簡單,而可更易於大量生產。此外,本發明還藉由引入該介電層,增加載子注入效率,也能進一步增加電流值。
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1、圖2,本發明氣體感測器的一第一實施例包含一基板2、至少一設於該基板2的絕緣塊3、一第二電極單元4,及一感測層5。
詳細地說,該基板2包括一本體21及一形成於該本體21的表面的第一電極22。該本體21為支撐用基板,可選自高分子、玻璃,或陶瓷等絕緣材料,該第一電極22是作為該氣體感測器的其中一電極使用,具有一遠離該本體21的上表面221,可選自金屬、導電金屬化合物,或有機導電材料等可導電的材料,例如該第一電極22可選自金、鋁、銀、鈣、氧化鋅、氧化銦錫、氧化鉬、或氟化鋰等。於該第一實施例中是以該第一電極22的材料為氧化銦錫(indium tin oxide,簡稱ITO)為例說明。
要說明的是,於一些實施例中,當該第一電極22具有支撐性時,該基板2也可不需具有該本體21,而是直接由該第一電極22構成。
該至少一絕緣塊3彼此間隔的設於該基板2的上表面221。於該實施例中是以複數個絕緣快3為例說明,且每一絕緣塊3包括一絕緣本體31,及多個凹槽32。
具體地說,該等絕緣本體31是設置於該第一電極22遠離該本體21的該上表面221,介於該第一電極22與該第二電極單元4之間,用以令該第一電極21與該第二電極單元4彼此間隔。該等凹槽32是自該絕緣本體31遠離該第一電極22的表面朝該第一電極22延伸,並使該第一電極22露出,且該等凹槽32會藉由該絕緣本體31彼此間隔。其中,該等絕緣本體31的材質可選自聚乙烯苯酚(poly(4-vinylphenol),簡稱PVP)或聚甲基丙烯酸甲酯(polymethylmethacrylate,簡稱PMMA)等絕緣材料。
該感測層5設置於該第一電極22上,可與預定的一待測氣體分子作用後產生電性變化,而可經由與該感測層5電連接的該第一電極22及該第二電極單元4量測得到該電性變化的結果。於本實施例中該感測層5是以與待感測分子作用後可產生電阻變化而改變該感測層5的感測電流大小為例。
更具體的說,該感測層5的材料可以是有機材料、無機材料,或有機材料或無機材料混合的複合材料所構成。例如,該感測層5的材料可選自但不限於二噻吩并苯-噻并[3,4-b]噻吩共聚物(Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]],簡稱PTB7)、9,9-二辛基芴-N-(4-丁基苯基)二苯胺共聚物(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl),簡稱TFB)、聚(9,9-二辛基芴)( poly(9,9-dioctylfluorene),簡稱PFO)、9,9-二辛基芴-2,1,3-苯并噻二唑共聚物(9,9-Dioctylfluorene-2,1,3-benzothiadiazole copolymer,簡稱F8BT)、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-交替-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}(poly[4,8-bis(5-(2-ethylhexyl) thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-4-(2-ethylhexyloxycarbonyl)-3-fluoro-thieno[3,4-b]-thiophene))-2,6-diyl],簡稱PBDTTT-EFT)、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-交替-4-(2-乙基己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基)}(poly[4,8-bis(5-(2-ethylhexyl) thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-4-(2-ethylhexanoyl)-thieno[3,4-b]-thiophene)-2,6-diyl],簡稱PBDTTT-CT],或聚(3-己烷噻吩)(Poly(3-hexylthiophene-2,5-diyl,簡稱P3HT)等有機材料,或碳、矽、氧化鋅(ZnO)、氧化鎢(WO 3)、二氧化鈦(TiO 2)、氧化銦鎵(IGZO)等無機材料。
該第二電極單元4配合該感測層與該第一電極22電連接,包括複數個第二電極41及一電流輔助層42。
詳細的說,該等第二電極41分別對應該等絕緣塊3設置。其中,每一個第二電極41具有一第一電極部411,及至少一個自該第一電極部411延伸第二電極部412。於本實施例中該第二電極41具有複數個第二電極部412為例,且該等第二電極部412對應設置於相應的其中一個絕緣本體31遠離該基板2的表面,沿同一方向排列且彼此成一間隙d間隔設置而概成柵狀結構,且至少部分的該等間隙d與該等凹槽32相連通。
該第二電極41的材料可選自金屬、導電金屬化合物,或有機導電材料等可導電的材料所構成且可為單層或多層。該金屬例如鋁、金、銀,或鎳等,該金屬化合物例如氧化銦錫、氧化鋅、氧化鉬,或氟化鋰等,該有機導電材料例如聚二氧乙基噻吩-聚苯乙烯磺酸(PEDOT:PSS),由於可用於電極的導電材料為本領域習知,因此不再多加說明,於該第一實施例中,該第二電極41的材料是以鋁為例作說明。
該電流輔助層42由導電的有機材料構成,與該感測層5的至少部分彼此接觸重疊,可與該等第二電極部412及該感測層5配合以導通電流,且該感測層5與該電流輔助層42彼此接觸重疊的區域的至少部分頂面與相鄰接的表面具有一高度差從而形成一側壁結構。
更詳細的說,該電流輔助層42是選自導電且不影響待感測氣體分子通過的有機材料,例如:聚二氧乙基噻吩(poly(3,4-ethylenedioxythiophene,簡稱PEDOT)、聚吡咯(Polypyrrole,簡稱PPY)、聚噻吩(Polythiophene,簡稱PT)、聚苯硫醚(Polyphenylene sulfide,簡稱PPS)、聚苯胺(Polyaniline,簡稱PANI)、聚乙炔(polyacetylene,簡稱PAC),及聚苯基乙炔(Poly(p-phenylene vinylene),簡稱PPV)等其中至少一種導電有機材料。
於該第一實施例中,該感測層5覆蓋該等第二電極部412、該等絕緣塊3,及該第一電極22裸露的表面,並同時經由該第二電極41的該等間隙d延伸進入該等凹槽32,而與該第一電極22連接。該電流輔助層42則是全面覆蓋該感測層5遠離該基板2的表面而位於最外層,且與感測層5的重疊區域可藉由該等絕緣塊3及該等凹槽32產生多個可用以感測氣體的側壁結構,且該電流輔助層42可與該等第二電極41配合以導通該感測層5產生的感應電流。
要說明的是,前述該等第二電極部412的目的是為了可與該電流輔助層42共同配合以導通該感測層5產生的感應電流,因此,該等第二電極部412位置除了如圖1所示可以是直接設置於該絕緣本體31的表面之外,也可以是設置於該感測層5與該電流輔助層42之間,或是如圖3所示,設置在該電流輔助層42遠離該基板2的表面而位於最外層,同樣也可達成本發明的目的。
本發明藉由設置該電流輔助層42並配合令該第二電極41成柵狀結構,由於該電流輔助層42是由可導電的高分子所構成,因此當施加電壓於該氣體感測器時,該電流輔助層42可與該第二電極41相配合,使該電流輔助層42與該等第二電極41可被共同當成電極使用,因此,感測電流可藉由該等第二電極41收集與導通,此外,感測電流除了可於該感測層5鄰近該等絕緣本體31的區域流通外,亦可在該感測層5鄰近該電流輔助層42的區域流通,而使感測電流於該感測層5的流通面積增加,因此可提高感測的電流而提升感測的靈敏度。
此外,由於該等第二電極部412可由鍍膜及微影製程製作,相較於習知氣體感測器利用奈米球製作具有奈米微孔的上電極的方式,不僅製作成本較低且容易控制該等第二電極部412的間隙d,使後續製成的元件間於感測氣體時差異較小,且製程步驟較為簡單,可更有利於大量生產。
前述該第一實施例的製作,是先於該本體21上依序製作該第一電極22及該等絕緣塊3後,利用微影及鍍膜方式製得具有柵狀結構的該第二電極41,最後再依序塗佈該感測層5及該電流輔助層42,即可得如圖1所示的氣體感測器。
此外,要說明的是,圖1是以該等凹槽32為經由該絕緣本體31彼此間隔為例,然而,該等凹槽32也可以是彼此連通,而令該絕緣本體31形成具有如圖4所示的多個絕緣本體部311,且該等絕緣本體部311經由該凹槽32彼此間隔。
要再說明的是,由於該等第二電極部412可利用微影及鍍膜方式製作,因此可視元件的尺寸及設計而調整該等間隙d的大小,例如該間隙d可介於1微米至1公分,只要能使感測電流於該等第二電極部412及該第一電極22間導通即可,並無一定限制,於一些實施例中,利用將該等第二電極部412的間隙d控制在不大於300微米,令該等第二電極部412的距離較近,因此,可使得在施加較小的電壓於該氣體感測器時,該電流輔助層42與該等第二電極部412即可有良好的耦合效果,而可有較高的感測電流。較佳地,該等第二電極部412的間隙d介於1微米至200微米,較佳地,該等第二電極部412的間隙d介於5微米至80微米,較佳地,該等第二電極部412的間隙d介於10微米至80微米。更佳地,該等第二電極部412的間隙d介於5微米至30微米更佳地,該等第二電極部412的間隙d介於10微米至30微米。
於一些實施例中,該等絕緣塊3也可以是不具有該等凹槽32。此時,該感測層5則可以是直接覆蓋於該等絕緣塊3表面,並延伸至該第一電極22表面。
參閱圖5,於一些實施例中,該感測層5與該電流輔助層42包覆該至少一絕緣塊3並延伸至該第一電極22表面,該等第二電極41設置該感測層5上,並與該至少一絕緣塊3沿一水平方向間隔設置。於圖x中,是以該每一個第二電極41具有一第二電極部412為例,然而,該每一個第二電極41也可以是如前所述,具有多個呈柵狀結構設置的第二電極部412。
參閱圖6,本發明氣體感測器的一第二實施例包含該感測層5、分別設於該感測層5的兩相反表面的該第一電極22和該第二電極41,及覆蓋該第二電極41的該電流輔助層42,上述該第一電極22、該第二電極41,及該電流輔助層42與該第一實施例中的該第一電極22、該第二電極41,及該電流輔助層42的細部結構、材料及功能相同,故不再多加說明。以下僅就該感測層5加以說明。
具體地說,於該第二實施例中,該感測層5是由一具有支撐性的吸附體及吸附於該吸附體的氣體感測材料所共同構成,該感測層5具有一第一表面511及一與該第一表面511反向的第二表面512。該第一電極22及該第二電極單元4分別設於該第一表面511及該第二表面512且彼此配合電連接,該電流輔助層42覆蓋該感測層5裸露的該第二表面512及該等第二電極部412裸露的表面。
較佳地,該吸附體具有多孔性。
於製作該第二實施例時,是先利用該吸附體吸附氣體感測材料,令氣體感測材料吸附於該吸附體後製成該感測層5,之後再利用鍍膜及微影製程於該感測層5的該第一表面511及該第二表面512分別製作該第一電極22及該第二電極41,最後於該感測層5裸露的該第二表面512,及該等第二電極部412裸露的表面覆蓋該電流輔助層42,即可得如圖5所示的氣體感測器。要說明的是,該吸附體可為例如吸油紙或棉紙等,只要具有支撐性並可吸附該氣體感測材料即可,並無一定限制,於該第二實施例中是以該吸附體為吸油紙為例作說明。
要再說明的是,由於該感測層5是利用吸附體吸附氣體感測材料而製成,因此,除了可用於感測氣體分子外也具備支撐的效果,據此,該第一電極22及該第二電極41可直接製作於該感測層5上,使該氣體感測器的整體製程更加簡單。
參閱圖7~圖9,圖7~圖9中,該等氣體感測器的該等第二電極部412的間隙d依序為10微米、20微米及80微米,(I)表示第一型氣體感測器的電流/電壓量測結果,(II)表示第二型氣體感測器的電流/電壓量測結果,其中,該第一型氣體感測器為該第一實施例的氣體感測器,該電流輔助層42為PEDOT,且該感測層5的材料為PTB7;該第二型氣體感測器與該第一型氣體感測器的結構及材料大致相同,差別僅在於該第二型氣體感測器無覆蓋該電流輔助層42。
參閱圖10~圖12,圖10~圖12中,該等氣體感測器的該等第二電極部412的間隙d依序為10微米、20微米及80微米,(III)表示第三型氣體感測器的電流/電壓量測結果,(IV)表示第四型氣體感測器的電流/電壓量測結果,其中,該第三型氣體感測器為該第一實施例的氣體感測器(電流輔助層42為PEDOT),且該感測層5的材料為P3HT,該第四型氣體感測器與該第三型氣體感測器的結構及材料大致相同,差別僅在於該第四型氣體感測器無覆蓋該電流輔助層42。
要說明的是,前述圖7至圖12中的(I)~(IV)的多條實驗曲線分別代表於相同製程下製得的多個氣體感測器於相同條件下量測電流對電壓的結果,由圖7至圖12的結果可知於相同施加電壓下,不論該感測層5的材料為何,該第一型及第三型氣體感測器可有較高的電流,顯示該電流輔助層42確實可與該第二電極41相配合而提升感測電流。此外,由圖7至圖12也可得知,利用微影及鍍膜方式製得並具有相同間隙d的氣體感測器間的量測結果彼此差異不大,而有利於大量生產。
參閱圖13至圖18,圖13至圖18為使用第三型氣體感測器與第四型氣體感測器,進行不同濃度氨氣感測的電流變化圖,其中,圖13及14的氣體感測器的該等第二電極部412間隙d為10微米,感測時施加的電壓為5伏特;圖15及16的氣體感測器的該等第二電極部412間隙d為20微米,感測時施加的電壓為5伏特;圖17及18的氣體感測器的該等第二電極部412間隙d為80微米,感測時施加的電壓為10伏特,圖13~圖18的差別在於:圖13、15、17的氣體感測器的該感測層5材料為P3HT,且有覆蓋該電流輔助層42(第三型氣體感測器);圖14、16、18的氣體感測器的該感測層5材料為P3HT,但無覆蓋該電流輔助層42(第四型氣體感測器)。
由圖13至圖18中的感測電流比較可知,該電流輔助層42確實可與該等第二電極部412配合而增加感測電流,而可令本發明的氣體感測器於低電壓時可具有較大的感測電流。
參閱圖19至圖24,圖19至圖24為使用該第一型氣體感測器與該第二型氣體感測器進行不同濃度氨氣感測的電流變化圖。其中,圖19及20的氣體感測器的該等第二電極部412間隙d為10微米,感測時施加的電壓為5伏特。圖21及22的氣體感測器的該等第二電極部412間隙d為20微米,感測時施加的電壓為5伏特。圖23及24的氣體感測器的該等第二電極部412間隙d為80微米,感測時施加的電壓為10伏特,圖19~圖24的差別在於:圖19、21、23的氣體感測器的該感測層5的材料為PTB7,且有覆蓋該電流輔助層42(第一型氣體感測器),而圖20、22、24的氣體感測器的該感測層5的材料為PTB7,但無覆蓋該電流輔助層42(第二型氣體感測器)。
由圖19至圖24中的感測電流比較可知,於不同的施加電壓及不同的間隙d條件下,該電流輔助層42皆可與該等第二電極部412配合而增加感測電流,而可令本發明的氣體感測器於低電壓時可具有較大的感測電流。
參閱圖25,本發明氣體感測器的一第三實施例包含一基板2、至少一絕緣塊3、一第二電極43、一感測層5,及一介面層6。
該基板2包括一本體21及一形成於該本體21的表面的第一電極22。該至少一絕緣塊3設於該基板2的該上表面221,於該第三實施例中是以一個絕緣塊3為例說明。
其中,該絕緣塊3包括一絕緣本體31及多個凹槽32。該第二電極43設置於該絕緣本體31遠離該基板2的表面。該介面層6與該第一電極22及該第二電極41的至少其中一個連接,於該第三實施例中是以該介面層6同時覆蓋該第二電極部431、該第二電極43該絕緣本體31,及該第一電極22裸露的表面,且該感測層5會覆蓋該介面層6為例說明。
由於該第三實施例的該基板2、該絕緣塊3、該第二電極43及該感測層5的材料與該第一實施例相同,且該基板2及該絕緣塊3的結構也與該第一實施例大致相同,因此,不再多加說明,下列僅就該第三實施例與該第一實施例不同處加以說明。
於該第三實施例中,該第二電極43設置於該絕緣本體31遠離該第一電極22的表面,包括一成連續狀的第二電極部431,及多個自該第二電極部431的表面向下凹陷的穿孔432,且至少部分的穿孔432與該絕緣本體31的該等凹槽32相連通。該介面層6覆蓋該第二電極部431表面並延伸進入該等穿孔432,同時經由該等穿孔432延伸至該等凹槽32而與自該等凹槽32裸露的該第一電極22的表面相連接,該感測層5覆蓋該介面層6的表面,而與該第一電極22及該第二電極43電連接。
本發明該第三實施例藉由在該感測層5與該第一電極22及/或第二電極43之間引入該介面層6,提升載子自該第一電極22及/或第二電極43注入該感測層5並幫助載子傳輸的能力,而可有效降低電壓並提升電流。
該介面層6的材料可選自聚3-己基噻吩(P3HT)、聚二氧乙基噻吩:聚苯硫醚(PEDOT:PSS)、聚十二烷基四氢噻吩(Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene -5,5'-diyl],PQT-12)、乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP),或前述之其中一組合。
該載子傳輸材料可選自電洞傳輸材料或電子傳輸材料,該電洞傳輸材料例如但不限於:聚(3-己基□吩-2,5-二基)(Poly(3-hexylthiophene-2,5-diyl),簡稱P3HT)、聚(3,4-乙烯二氧□吩)( Poly-3,4-Ethylenedioxythiophene,簡稱PEDOT)、聚苯乙烯磺酸(polystyrene sulfonate,簡稱PSS)、2-(4-聯苯基)-5-(-4-叔丁基苯基)-1,3,4-噁二唑)( [2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole],簡稱PBD)、二苯基二萘基聯苯二胺(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine,簡稱NPB)、苯基-C61-丁酸甲酯([6,6]-phenyl-C61-butyric acid methyl ester ,簡稱PCBM),或前述其中一組合。該電子傳輸材料例如但不限於:2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-噁二唑(2,2'-(1,3-Phenylene)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole],簡稱OXD-7)、8-羥基喹啉鋁(Tris(8-hydroxyquinolinato)aluminium,簡稱Alq3)、1,3,5-三(N-苯基-苯并咪唑-2)苯(2,2',2''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole,簡稱TPBi),或4,7-二苯基-1,10-菲咯啉 (4,7-diphenyl-1,10-phenanthroline,簡稱Bphen)、三苯胺衍生物(triphenylamine derivatives,TPD)、三唑衍生物(TAZ),或前述其中一組合。
前述該第三實施例的製作,是先於基板2的該第一電極22表面,利用絕緣材料塗布、乾燥後形成該絕緣本體31,接著於該絕緣塊3遠離該基板2的表面塗布形成一層由多數奈米小球構成的奈米小球層後,再利用鍍膜方式於形成該奈米小球層的該絕緣塊3表面形成一層導電層,然後移除奈米小球,令該導電層形成複數奈米等級的穿孔432,製得該第二電極43,再藉由蝕刻於該絕緣本體31形成該等凹槽32。接著,於該第二電極43表面塗佈形成該介面層6,最後再形成一覆蓋該介面層6的該感測層5,即可得到該氣體感測器。
要說明的是,本發明該介面層6除了可以如圖25所示僅設置於該感測層5與該第二電極43之間,也可以是僅設置於該感測層5與該第一電極22之間(圖未示),或是同時設置於該感測層5與該第一電極22及該第二電極43之間(圖未示),只要是依照該介面層6的設置位置選擇相配合的載子傳輸材料即可,其設置位置並無需特別限制。
參閱圖26,於一些實施例中,當該第二電極43是設置於該絕緣塊3表面時,該第二電極43與該絕緣本體31之間還可進一步具有一附著層7。該附著層7選自極性、可產生氫鍵,並可令氣體分子與電流通過的高分子材料。
由於該第二電極43的該等穿孔432是利用製程過程的該等奈米小球所造成,然而因為奈米小球一般是由聚苯乙烯(PS)或PMMA(聚甲基丙烯酸甲酯)等低極性高分子材料構成,與該絕緣塊3間的吸附性不佳,因此,不易控制形成於該絕緣塊3表面的奈米小球數量,導致製程穩定性不佳的問題。因此,本發明藉由先於該絕緣塊3表面塗布一層由極性且可產生氫鍵的高分子材料所構成的附著層7,利用該附著層7具有極性且可產生氫鍵的特性,因此,可有效的將該等奈米小球吸附並固定於該絕緣塊3的表面,而可穩定後續形成於該附著層7的奈米穿孔432數量,以更穩定後續金屬層的鍍膜製程。
較佳地,該附著層7的材料可選自聚3-己基噻吩(P3HT)、聚二氧乙基噻吩:聚苯硫醚(PEDOT:PSS)、聚十二烷基四氢噻吩(Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene -5,5'-diyl],PQT-12)、乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP),或前述之其中一組合,且該附著層7的厚度不大於1μm。
參閱圖27、28,圖26、27分別是有、無利用該附著層7製作該第二電極43時,於該第二電極43形成的孔洞432的光學顯微鏡照片。由圖27可知,當有該附著層7(以P3HT為材料),由於該附著層7可有效吸附該等奈米小球,因此,可令後續該第二電極43形成的穿孔432數量有效增加;而直接於該絕緣塊3表面形成奈米小球時,由於奈米小球不易吸附於該絕緣塊3,因此,由圖27可明顯看出該第二電極的穿孔432數量明顯不足。
參閱圖29,本發明該氣體感測器的一第四實施例,其中,該第四實施例與該第三實施例的相關材料均相同,不同處在於該氣體感測器是呈平面結構。茲僅就該第四實施例的結構說明如下。
該第四實施例包含該基板2、該感測層5、該附著層7,及該第二電極43。其中,該感測層5是直接設置在該第一電極22的表面,該附著層7是覆蓋該感測層5遠離該基板2的表面,該第二電極43形成於該附著層7的表面具有一成連續狀的第二電極部431及多數自該第二電極部431表面向下形成的穿孔432。由於該第四實施例各膜層的製作方式與該第三實施例大致相同因此不再贅述。當利用該第四實施例進行氣體感測時,待感測的氣體分子可穿過該等穿孔432並通過該附著層7與該感測層5作用而被量測。
本發明該第四實施例同樣可藉由該附著層7輔助製程過程中該等奈米小球的吸附穩定性,因此可更穩定該第二電極43形成的該等穿孔432及穿孔432的數量,而可更穩定該氣體感測器的感測靈敏度。
此外,要說明的是,當該附著層7的構成材料為選自具有極性、可產生氫鍵且同時該材料的最低未填滿軌域(LUMO)的功函數介於該第一電極22、第二電極43與該感測層5之間時,該附著層7也同時具有提升載子自該第二電極43注入該感測層5並幫助載子傳輸的能力,而可進一步降低電壓並提升電流。
於一些實施例中,前述該第二電極41、43除了可由單層的金屬或合金金屬的導電材料 (例如單層的鋁金屬)構成之外,也可以是如圖30所示,由多層的導電材料堆疊構成。圖30為以該第四實施例為例說明該第二電極43為具有第一電極層433與第二電極層434的雙層結構。其中,該第一電極層433介於該感測層5與該第二電極層434之間,材料選自功函數介於該第一電極22的透明導電金屬氧化物與該第二電極層434的金屬之間的導電材料。例如,當該第二電極層434為鋁,該第一電極層433的材料則可選用三氧化鉬(MoO 3)。藉由設置由三氧化鉬所構成的該第一電極層434,能降低該第二電極層434(鋁)與該第二電極22(導電金屬氧化物)之間的功函數差,增加電流注入的效率,進而增進該氣體感測器的效益。
參閱圖31~33,圖31~33為以該第三實施例的該氣體感測器結構為主的氣體感測器的電流-電壓量測結果。圖31~33中,該具體例1、2、3的介面層6為3-己基噻吩(P3HT),差別在於該感測層5材料分別為TFB、PBDTTT-CT、PBDTTT-FET,且該比較例1、2、3與該具體例1、2、3的不同處在於該等比較例沒有該介面層6。
由圖31~33可知,當於該氣體感測器引進該介面層6時(具體例1~3),無論該感測層5材料的材料為何,相較沒有該介面層6(比較例1~3)的氣體感測器,在較小驅動電壓下即可量測得到較大的電流。
此外,再參閱圖34、35,圖34及35是分別將前述該具體例2與比較例2的氣體感測器於空氣下儲存不同時間(2、7、9、15、19、23天)後對氨氣的感測結果。由圖34及35的結果可看出,比較例1(單層元件)的感測電流隨著元件的儲存時間變長,電流值會一直下降,而具體例1(雙層元件)的電流感測值在儲存7-22天之間,均可保持穩定的I-V特性,顯示雙層元件在空氣下較為穩定不易變質,而可維持穩定的電特性。
接著,再參閱圖36~39,圖36及37是將前述該第三實施例的該具體例2(感測層: PBDTTT-CT、介面層P3HT)與比較例2(感測層:PBDTTT-CT)的氣體感測器於空氣下儲存不同時間(2、7、9、15、19、23天)後對不同濃度(100、300、500、1000ppb)氨氣的反應結果。而圖38及39則是利用將該具體例2及比較例2的氣體感測器在不同儲存時間(2、7、9、15、19、23天)後對不同濃度(100、300、500、1000ppb)的氨氣反應隨時間的變化所作成的檢量線。由圖36~39的結果可看出,單層元件(比較例1,圖37、39)對不同濃度氣體的感測電流,會隨著元件的儲存時間變長而一直下降。然而雙層元件(具體例2,圖36、38)的電流感測值在儲存7天後(~22天之間),對不同濃度的氨氣即維持一致的反應能力,而具有穩定的I-V特性,此也進一步證實雙層元件在空氣下較為穩定不易變質。
參閱圖40~45,圖40~42是分別利用該第三實施例的該具體例1~3,於驅動電壓為5V的條件下,對不同濃度氨氣(100ppb、300ppb、500ppb)進行感測的感測電流量測結果。而圖43~45則是分別利用該等比較例1~3,於驅動電壓為8V的條件下,對不同濃度氨氣(100ppb、300ppb、500ppb)進行感測的感測電流量測結果。由圖40~45的結果可知,相較該等比較例1~3,本發明的氣體感測器藉由增設該介面層6能有效增加電子注入效率,因此,在不同主動層材料下都可提升操作電流而可令本發明的氣體感測器能在較小的驅動電壓下即可量測得到良好的感測電流。
再參閱圖46~圖49,圖46~圖49是以圖30所示的平面形氣體感測器,於施加電壓5V的條件下,對不同濃度的氨氣(100ppb、300ppb、500ppb)進行感測的感測電流量測結果,且每個圖式的多條實驗曲線分別代表於相同製程下製得的多個氣體感測器於相同條件下量測電流對電壓的結果。其中,該第二電極43的該第一電極層433及第二電極層434的材料分別為氧化鉬及鋁,附著層7的材料為P3HT,差別在於該感測層5的材料分別選用P64、PBDTTT-CT、TFB,及PTB7。
由於該第四實施例具有該附著層7,且該附著層7為選自可同時提升奈米小球吸附且功函數介於該第一電極層431與該感測層5之間的P3HT材料,且該第二電極43是由兩層電極層的結構所構成,因此,藉由該附著層7的設置,並搭配以鋁及三氧化鉬構成的該第二電極43,能進一步增進電流值,因此,由圖46至圖49的結果可知,以該第四實施例的該氣體感測器進行氣體感測,也可在低電壓時即量測得到較大電流值。此外,由圖46至圖49也可得知,不同的氣體感測器量測得到的電流響應值差異不大,顯示本案的氣體感測器也具有良好的製程穩定性。
綜上所述,本發明氣體感測器藉由具柵狀結構的該等第二電極部412並配合該電流輔助層42,不僅可提升感測時的電流而增加感測的靈敏度,且相較於習知氣體感測器利用奈米球製作多孔電極,本發明不僅製程較簡易且容易控制,而有利於大量生產。此外,本發明還藉由設置該介面層6,形成具有雙層結構的氣體感測器,除了可利用該介面層6增加載子注入效率,而提升該氣體感測器的操作電流,還可藉由該雙層結構達成在空氣下較為穩定不易變質的特性,而提升感測元件的穩定性。並可而再進一步利用設置該附著層7提升吸附奈米微球的能力,不僅可提升製程穩定性還可讓後續製作的該第二電極43更易具有多孔特性;再者,利用該第二電極41、43的結構及材料選擇,也能進一步增加電流值來提升氣體感測器的感測效益,故確實可達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
2‧‧‧基板
21‧‧‧本體
22‧‧‧第一電極
221‧‧‧上表面
3‧‧‧絕緣塊
31‧‧‧絕緣本體
311‧‧‧絕緣本體部
32‧‧‧凹槽
4‧‧‧第二電極單元
41‧‧‧第二電極
411‧‧‧第一電極部
412‧‧‧第二電極部
42‧‧‧電流輔助層
43‧‧‧第二電極
431‧‧‧第二電極部
432‧‧‧穿孔
433‧‧‧第一電極層
434‧‧‧第二電極層
5‧‧‧感測層
511‧‧‧第一表面
512‧‧‧第二表面
6‧‧‧介面層
7‧‧‧附著層
d‧‧‧間隙
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一側剖示意圖,說明本發明氣體感測器的一第一實施例; 圖2是一俯視示意圖,說明該第一實施例的其中一個第二電極; 圖3是一側剖示意圖,說明該感測層、該電流輔助層,及第二電極的另一種位置關係; 圖4是一立體圖,說明該氣體感測器中,該等絕緣塊的其它實施態樣; 圖5是一側剖示意圖,說明該第二電極的另一種設置態樣; 圖6是一示意圖,說明本發明氣體感測器的一第二實施例; 圖7是一電流對電壓關係圖,說明第一型氣體感測器及第二型氣體感測器,其中,該等第二電極部的間隙為10微米時,於不同施加電壓時的電流變化; 圖8是一電流對電壓關係圖,說明第一型氣體感測器及第二型氣體感測器,其中,該等第二電極部的間隙為20微米時,於不同施加電壓時的電流變化; 圖9是一電流對電壓關係圖,說明第一型氣體感測器及第二型氣體感測器,其中,該等第二電極部的間隙為80微米時,於不同施加電壓時的電流變化; 圖10是一電流對電壓關係圖,說明第三型氣體感測器及第四型氣體感測器,其中,該等第二電極部的間隙為10微米時,於不同施加電壓時的電流變化; 圖11是一電流對電壓關係圖,說明第三型氣體感測器及第四型氣體感測器,其中,該等第二電極部的間隙為20微米時,於不同施加電壓時的電流變化; 圖12是一電流對電壓關係圖,說明第三型氣體感測器及第四型氣體感測器,其中,該等第二電極部的間隙為80微米時,於不同施加電壓時的電流變化; 圖13是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為10微米、感測層為P3HT時,對氨氣感測的電流變化; 圖14是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為10微米、感測層為P3HT時,對氨氣感測的電流變化; 圖15是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為20微米、感測層為P3HT時,對氨氣感測的電流變化; 圖16是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為20微米、感測層為P3HT時,對氨氣感測的電流變化; 圖17是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為80微米、感測層為P3HT時,對氨氣感測的電流變化; 圖18是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為80微米、感測層為P3HT時,對氨氣感測的電流變化; 圖19是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為10微米、感測層為PTB7時,對氨氣感測的電流變化; 圖20是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等第二電極部間隙間距為10微米、感測層為PTB7時,對氨氣感測的電流變化; 圖21是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等電極部間隙間距為20微米、感測層為PTB7時,對氨氣感測的電流變化; 圖22是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等電極部間隙間距為20微米、感測層為PTB7時,對氨氣感測的電流變化; 圖23是一電流對時間關係圖,說明有覆蓋電流輔助層的氣體感測器,且該等電極部間隙間距為80微米、感測層為PTB7時,對氨氣感測的電流變化; 圖24是一電流對時間關係圖,說明無覆蓋電流輔助層的氣體感測器,且該等電極部間隙間距為80微米、感測層為PTB7時,對氨氣感測的電流變化; 圖25是一示意圖,說明本發明氣體感測器的一第三實施例; 圖26是一示意圖,說明本發明氣體感測器的其它實施態樣; 圖27是一光學顯微鏡照片,說明有使用附著層的奈米小球吸附結果; 圖28是一光學顯微鏡照片,說明無使用附著層的奈米小球吸附結果; 圖29是一示意圖,說明本發明氣體感測器的一第四實施例; 圖30是一示意圖,說明本發明氣體感測器的第二電極的其它實施態樣; 圖31是一電流對電壓關係圖,說明該具體例1與該比較例1的電流變化; 圖32是一電流對電壓關係圖,說明該具體例2與該比較例2的電流變化; 圖33是一電流對電壓關係圖,說明該具體例3與該比較例3的電流變化; 圖34是一電流對電壓關係圖,說明該具體例2於不同儲存天數的電流變化; 圖35是一電流對電壓關係圖,說明該比較例2於不同儲存天數的電流變化; 圖36是一儲存日數對反應率關係圖,說明該具體例2於不同儲存天數對不同濃度之氣體的反應率; 圖37是一儲存日數對反應率關係圖,說明該比較例2於不同儲存天數對不同濃度之氣體的反應率; 圖38是一氣體濃度對反應率關係圖,說明該具體例2於不同儲存天數對不同濃度之氣體的反應率; 圖39是一氣體濃度對反應率關係圖,說明該比較例2於不同儲存天數對不同濃度之氣體的反應率; 圖40是一電流對時間關係圖,說明利用該第三實施例的該具體例1感測氨氣的電流變化; 圖41是一電流對時間關係圖,說明利用該第三實施例的該具體例2感測氨氣的電流變化; 圖42是一電流對時間關係圖,說明利用該第三實施例的該具體例3感測氨氣的電流變化; 圖43是一電流對時間關係圖,說明利用該第三實施例的該比較例1感測氨氣的電流變化; 圖44是一電流對時間關係圖,說明利用該第三實施例的該比較例2感測氨氣的電流變化; 圖45是一電流對時間關係圖,說明利用該第三實施例的該比較例3感測氨氣的電流變化; 圖46是一電流對時間關係圖,說明利用該第四實施例結構,感測層材料為P64,感測氨氣的電流變化; 圖47是一電流對時間關係圖,說明利用該第四實施例結構,感測層材料為PBDTTT-CT,感測氨氣的電流變化 圖48是一電流對時間關係圖,說明利用該第四實施例結構,感測層材料為TFB,感測氨氣的電流變化;及 圖49是一電流對時間關係圖,說明利用該第四實施例結構,感測層材料為PTB7,感測氨氣的電流變化。

Claims (21)

  1. 一種氣體感測器,包含: 一第一電極; 至少一絕緣塊,設於該第一電極的其中一表面; 一感測層,設置於該第一電極上,可與預定的一待測氣體分子作用;及 一第二電極單元,配合該感測層與該第一電極電連接,包括至少一第二電極部及一電流輔助層,該至少一第二電極部設置於該感測層及該至少一絕緣塊的其中一者上,該電流輔助層由導電的有機材料構成,與該感測層的至少部分彼此接觸重疊,且可與該至少一第二電極部及該感測層配合以導通電流。
  2. 如請求項1所述的氣體感測器,其中,該至少一絕緣塊包括一絕緣本體,及至少一個自該絕緣本體遠離該第一電極的表面向該第一電極延伸,並令該第一電極露出的凹槽,該感測層延伸進入該至少一凹槽並與該第一電極連接。
  3. 如請求項2所述的氣體感測器,其中,該至少一絕緣塊具有多個凹槽,且該等凹槽經由該絕緣本體彼此間隔。
  4. 如請求項2所述的氣體感測器,其中,該至少一絕緣塊具有多個凹槽,該絕緣本體具有多個絕緣本體部,該等凹槽彼此連通,且該等絕緣本體部經由該等凹槽彼此間隔。
  5. 如請求項1或2所述的氣體感測器,其中,該第二電極單元具有複數彼此成一間隙間隔設置的第二電極部。
  6. 如請求項5所述的氣體感測器,其中,該至少一第二電極部位於該至少一絕緣塊遠離該第一電極的表面。
  7. 如請求項2所述的氣體感測器,其中,該第二電極單元具有複數彼此成一間隙間隔設置於該絕緣本體遠離該第一電極的表面的第二電極部,且該等第二電極部的至少部分間隙與該至少一凹槽相連通。
  8. 如請求項7所述的氣體感測器,其中,該感測層與該電流輔助層包覆該至少一絕緣塊並延伸至該第一電極表面,且該感測層與該電流輔助層會延伸至該等凹槽。
  9. 如請求項1或2所述的氣體感測器,其中,該等第二電極部位於該絕緣塊的表面,該感測層覆蓋該等第二電極部,且該電流輔助層覆蓋該感測層。
  10. 如請求項1或2所述的氣體感測器,其中,該感測層直接覆蓋該至少一絕緣塊及該第一電極表面,該電流輔助層覆蓋該感測層,且該等第二電極部設置於該電流輔助層遠離該至少一絕緣塊的表面。
  11. 如請求項1或2所述的氣體感測器,其中,該感測層與該電流輔助層包覆該至少一絕緣塊並延伸至該第一電極表面,該至少一第二電極部設置該感測層上,並與該至少一絕緣塊於水平方向間隔設置。
  12. 一種氣體感測器,包含: 一感測層,可與預定的一待測氣體分子作用; 一第一電極,形成於該感測層的其中一表面; 一第二電極單元,形成於該感測層反向該第一電極的表面,可與該第一電極配合電連接,包括複數設於該感測層遠離該第一電極的表面,且彼此成一間隙間隔設置的第二電極部;及 一電流輔助層,覆蓋該感測層及該等第二電極部裸露的表面,由導電的有機材料構成,且該待測氣體分子可通過該電流輔助層。
  13. 如請求項第1項或第12項所述的氣體感測器,其中,該等第二電極部的間隙介於1微米至200微米。
  14. 如請求項第1項或第12項所述的氣體感測器,其中,該電流輔助層的材料選自聚二氧乙基噻吩、聚苯聚苯乙烯磺酸、聚吡咯、聚噻吩、聚苯硫醚、聚苯胺、聚乙炔,或聚苯基乙炔。
  15. 一種氣體感測器,包含: 一第一電極; 至少一絕緣塊,設於該第一電極的其中一表面,該至少一絕緣塊包括一絕緣本體,及多個自該絕緣本體遠離該第一電極的表面向該第一電極延伸,並令該第一電極露出的凹槽; 一第二電極,由金屬或合金金屬為材料構成,設置於該至少一絕緣塊遠離該第一電極的表面,並可與該第一電極配合電連接,包括一第二電極部,及多個自該第二電極部的表面向下凹陷的穿孔,且至少部分的穿孔與該等凹槽相連通; 一介面層,與該第一電極及該第二電極的其中至少一相連接;及 一感測層,覆蓋該介面層,並與該第一電極及該第二電極電連接,由有機材料構成,能與一預定的氣體分子作用並產生電性變化, 其中,該介面層選自有機的載子傳輸材料,當該載子傳輸材料為電洞傳輸材料,其最高己填滿軌域的功函數介於該第一、二電極與該感測層之間,當該載子傳輸材料為電子傳輸材料,最低未填滿軌域的功函數介於該第一、二電極與該感測層之間。
  16. 如請求項15項所述的氣體感測器,其中,該等凹槽經由該絕緣本體彼此間隔。
  17. 如請求項15項所述的氣體感測器,其中,該等凹槽彼此連通,該絕緣本體具有多個絕緣本體部,且該等絕緣本體部經由該等凹槽彼此間隔。
  18. 如請求項15項所述的氣體感測器,其中,其中,該介面層的材料選自P3HT、PQT-12、PEDOT:PSS,或前述其中一組合。
  19. 一種氣體感測器,包含: 一第一電極; 一感測層,設置於該第一電極的其中一表面,由有機材料構成,能與一預定的氣體分子作用並產生電性變化; 一附著層,覆蓋該感測層遠離該第一電極的表面,選自極性且可產生氫鍵的高分子材料並可令氣體分子及電流通過;及 一第二電極,設置於該附著層上,包括一電極部及多個自該電極部的表面向該附著層凹陷並令該附著層露出的穿孔。
  20. 如請求項19所述的氣體感測器,其中,該附著層的厚度不大於1μm。
  21. 如請求項19項所述的氣體感測器,其中,該附著層的材料選自P3HT、PQT-12、PEDOT:PSS,或前述之其中一組合。
TW107138044A 2018-10-26 2018-10-26 氣體感測器 TWI673493B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW107138044A TWI673493B (zh) 2018-10-26 2018-10-26 氣體感測器
CN201910194927.6A CN111103329B (zh) 2018-10-26 2019-03-14 气体感测器
US16/515,206 US11499937B2 (en) 2018-10-26 2019-07-18 Gas sensor
US17/975,977 US20230049675A1 (en) 2018-10-26 2022-10-28 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138044A TWI673493B (zh) 2018-10-26 2018-10-26 氣體感測器

Publications (2)

Publication Number Publication Date
TWI673493B true TWI673493B (zh) 2019-10-01
TW202016535A TW202016535A (zh) 2020-05-01

Family

ID=69023607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138044A TWI673493B (zh) 2018-10-26 2018-10-26 氣體感測器

Country Status (3)

Country Link
US (2) US11499937B2 (zh)
CN (1) CN111103329B (zh)
TW (1) TWI673493B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736133B (zh) * 2020-02-14 2021-08-11 國立陽明交通大學 氣體感測器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984849A (zh) * 2021-10-29 2022-01-28 东莞理工学院 一种水溶性聚苯胺/MXene复合柔性氨气传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235735A1 (en) * 2002-03-12 2005-10-27 Theodor Doll Micro-structured gas sensor with control of gas sensitive properties by application of an electric field
TW200636234A (en) * 2005-04-13 2006-10-16 Ghitron Technology Inc Fabrication method for WO3 fine powder, and volatile organic compounds gas sensor made of the same, and the gas sensing material recipe
TWI410625B (zh) * 2008-12-31 2013-10-01 Ind Tech Res Inst 氣體感測材料及包含其之氣體感測器
US20170168000A1 (en) * 2014-09-24 2017-06-15 Fujifilm Corporation Gas sensor and organic transistor
TWI588481B (zh) * 2014-12-24 2017-06-21 英特爾股份有限公司 金屬氧化物氣體感測器陣列裝置、系統及相關方法
JP2017129537A (ja) * 2016-01-22 2017-07-27 国立大学法人 東京医科歯科大学 電界効果型トランジスタガスセンサー
KR20170131155A (ko) * 2016-05-19 2017-11-29 동국대학교 산학협력단 암모니아 가스 감지용 트랜지스터 및 이를 이용한 감지센서

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1106319C (zh) * 1998-10-27 2003-04-23 达特茅斯学院理事会 改变冰附着强度的系统
EP2003706B1 (en) * 2006-03-07 2018-05-02 Kyocera Corporation Method for manufacturing ceramic member, and ceramic member for gas sensor, fuel cell, and multi-layer piezoelectric device
US8884382B2 (en) * 2007-07-17 2014-11-11 Kwj Engineering, Inc. Multi-Dimensional sensors and sensing systems
EP2240976B1 (en) * 2007-12-12 2017-04-05 University of Florida Research Foundation, Inc. Electric-field enhanced performance in solid electrolyte devices involving gases
EP2565635B1 (en) * 2011-09-02 2017-11-15 Sensirion AG Sensor chip and method for manufacturing a sensor chip
WO2014034935A1 (ja) * 2012-09-03 2014-03-06 学校法人加計学園 ガスセンサアレイ、ガス分析方法及びガス分析システム
TWI506274B (zh) * 2012-09-21 2015-11-01 Univ Nat Taiwan Science Tech 氣體感測器
CN104076084B (zh) * 2013-03-28 2017-08-25 北京纳米能源与系统研究所 一种摩擦电纳米传感器
TWI565650B (zh) 2014-09-16 2017-01-11 國立交通大學 微奈米球結構之製作方法及其應用之孔洞製作方法
JP6547274B2 (ja) * 2014-10-20 2019-07-24 株式会社デンソー 粒子状物質検出センサ
JP6849791B2 (ja) * 2017-04-05 2021-03-31 パナソニック株式会社 ガスセンサ
CN108847424B (zh) * 2018-04-24 2021-09-03 京东方科技集团股份有限公司 薄膜晶体管、传感器、生物检测装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235735A1 (en) * 2002-03-12 2005-10-27 Theodor Doll Micro-structured gas sensor with control of gas sensitive properties by application of an electric field
TW200636234A (en) * 2005-04-13 2006-10-16 Ghitron Technology Inc Fabrication method for WO3 fine powder, and volatile organic compounds gas sensor made of the same, and the gas sensing material recipe
TWI410625B (zh) * 2008-12-31 2013-10-01 Ind Tech Res Inst 氣體感測材料及包含其之氣體感測器
US20170168000A1 (en) * 2014-09-24 2017-06-15 Fujifilm Corporation Gas sensor and organic transistor
TWI588481B (zh) * 2014-12-24 2017-06-21 英特爾股份有限公司 金屬氧化物氣體感測器陣列裝置、系統及相關方法
JP2017129537A (ja) * 2016-01-22 2017-07-27 国立大学法人 東京医科歯科大学 電界効果型トランジスタガスセンサー
KR20170131155A (ko) * 2016-05-19 2017-11-29 동국대학교 산학협력단 암모니아 가스 감지용 트랜지스터 및 이를 이용한 감지센서

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736133B (zh) * 2020-02-14 2021-08-11 國立陽明交通大學 氣體感測器

Also Published As

Publication number Publication date
US20200132618A1 (en) 2020-04-30
US20230049675A1 (en) 2023-02-16
TW202016535A (zh) 2020-05-01
CN111103329A (zh) 2020-05-05
US11499937B2 (en) 2022-11-15
CN111103329B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Fahlman et al. Interfaces in organic electronics
Ates et al. Conducting polymers and their applications
Kim et al. Performance and stability of electroluminescent device with self-assembled layers of poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) and polyelectrolytes
Kim et al. Electrolyte‐gated transistors for organic and printed electronics
Lei et al. Roles of flexible chains in organic semiconducting materials
Facchetti π-Conjugated polymers for organic electronics and photovoltaic cell applications
Bardecker et al. Self‐assembled Electroactive Phosphonic Acids on ITO: Maximizing Hole‐Injection in Polymer Light‐Emitting Diodes
Saadeh et al. Synthesis of a Polyphenylene-co-furan and Polyphenylene-co-thiophene and Comparison of Their Electroluminescent Properties
US7429823B2 (en) Organic semiconductor device
US20230049675A1 (en) Gas sensor
CN102576815B (zh) 有机电子器件及其制造方法
JP2002543590A (ja) 有機薄膜半導体デバイスの製造方法
TWI615611B (zh) 氣體偵測器
TW200835010A (en) Organic thin film transistor with dual layer electrodes
Kausar Review on structure, properties and appliance of essential conjugated polymers
Kim et al. Solution processable small molecules as efficient electron transport layers in organic optoelectronic devices
JP2010087405A (ja) 有機トランジスタ
US7057205B2 (en) P-type OFET with fluorinated channels
US8450724B2 (en) Electrical device containing helical substituted polyacetylene
Smida et al. Anthracene/fluorescein based semi-conducting polymer for organic photovoltaics: Synthesis, DFT, optical and electrical properties
Zhang et al. Electrochemical variation of the energy level of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)
JP5563258B2 (ja) 半導体装置の製造方法
KR20130022819A (ko) 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법
Roncaselli et al. Regioregularity and deposition effect on the physical/chemical properties of polythiophene derivatives films
Gharahcheshmeh et al. Conjugated polymers for flexible energy harvesting and storage devices