TWI615611B - 氣體偵測器 - Google Patents

氣體偵測器 Download PDF

Info

Publication number
TWI615611B
TWI615611B TW105142197A TW105142197A TWI615611B TW I615611 B TWI615611 B TW I615611B TW 105142197 A TW105142197 A TW 105142197A TW 105142197 A TW105142197 A TW 105142197A TW I615611 B TWI615611 B TW I615611B
Authority
TW
Taiwan
Prior art keywords
electrode layer
layer
sensing
electrode
gas
Prior art date
Application number
TW105142197A
Other languages
English (en)
Other versions
TW201809654A (zh
Inventor
xiao-wen Ran
xin-fei Meng
Chien Lung Wang
ming-yan Zhuang
liang-you Zhang
Ting-Wei Dong
Yi-Zhu Wu
Yu Nung Mao
Yu-Ting Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105142197A priority Critical patent/TWI615611B/zh
Priority to CN201711288606.XA priority patent/CN108205001B/zh
Application granted granted Critical
Publication of TWI615611B publication Critical patent/TWI615611B/zh
Publication of TW201809654A publication Critical patent/TW201809654A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

一種氣體偵測器用來與一電性檢測器搭配使用。該氣體偵測器包含一個用於電連接該電性檢測器的電極單元及一個感測單元。該電極單元包括一層第一電極層及一層與該第一電極層相間隔設置的第二電極層。該第二電極層包括兩個相對的電極表面以及形成有複數個貫穿該等電極表面的貫孔。該感測單元包括一層連接該第一電極層及該第二電極層且用來與待測氣體作用的感測層。該感測層包括至少一種具有官能基團的感測材料,且該官能基團選自於芴基系基團、含有三苯胺基系及芴基系的基團、伸苯基伸乙烯基系基團或含有二噻吩苯并二噻吩基系及噻吩并噻吩基系的基團。

Description

氣體偵測器
本發明是有關於一種偵測器,特別是指一種氣體偵測器。
參閱圖1,台灣專利公開第201616127號專利案揭示一種多層垂直式感測器1,包含一基板10、一形成在該基板10上的第一電極層11、一形成在該第一電極層11上的絕緣層12、一形成在該絕緣層12上的第二電極層13、一形成在該第二電極層13上的抗反射光阻塗佈層14,及一形成在該抗反射光阻塗佈層14上且用來與一待測氣體反應的感測層15。該感測層15由感測材料所構成。該感測材料為接觸該待測氣體後會產生電性變化的材料,且該感測材料例如聚噻吩類材料、富勒烯類材料、酞菁類環化合物材料、多環芳香烴類材料、四氰基醌二甲烷類材料(tetracyanoquinodimethane-based material)、二胺類材料,或苯胺類材料。該聚噻吩類材料例如聚(3-己烷基噻吩)、聚(3-辛烷基噻吩)或聚[5,5'-雙(3-十二烷基-2-噻吩基)-2,2'-二噻吩]等。該富勒烯類材料例如(6,6)-苯基-C61-丁酸甲酯 [(6,6)-phenyl-c61-butyric acid methyl ester,簡稱PCBM]。該酞菁類環化合物材料例如銅酞菁。該多環芳香烴類材料例如稠五苯(pentacene)。該四氰基醌二甲烷類材料例如四氰基四氟苯醌二甲烷。該二胺類材料例如4,4'-雙(N-(1-萘基)-N-苯基胺基)聯苯。該苯胺類材料例如1,1-雙[4-[N,N-二(對甲苯基)胺基]苯基]環己烷。
雖該專利案的多層垂直式感測器1透過該感測材料可準確地感測待測氣體,然而,該多層垂直式感測器1的靈敏度及使用期限仍有待提升。
因此,本發明的目的,即在提供一種高靈敏度及長使用期限的氣體偵測器。
於是,本發明氣體偵測器用來與一電性檢測器搭配使用。該氣體偵測器包含一個用於電連接該電性檢測器的電極單元及一個感測單元。該電極單元包括一層第一電極層及一層與該第一電極層相間隔設置的第二電極層。該第二電極層包括兩個相對的電極表面以及形成有複數個貫穿該等電極表面的貫孔。該感測單元包括一層連接該第一電極層及該第二電極層且用來與待測氣體作用的感測層。該感測層包括至少一種具有官能基團的感測材料,且該官 能基團選自於芴基系(fluorenyl-based)基團、含有三苯胺基系(triphenylamine-based)及芴基系的基團、伸苯基伸乙烯基系)(phenylene vinylene-based)基團或含有二噻吩苯并二噻吩基系(dithiophenebenzodithiophenyl-based)及噻吩并噻吩基系(thioenothiophenyl-based)的基團。
本發明的功效在於:透過該具有官能基團的感測材料,使得該氣體偵測器具有高靈敏度及長使用期限。
2‧‧‧電極單元
21‧‧‧第一電極層
22‧‧‧第二電極層
221‧‧‧電極表面
220‧‧‧貫孔
3‧‧‧感測單元
31‧‧‧感測層
4‧‧‧介電層
41‧‧‧介電表面
40‧‧‧穿孔
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是台灣專利公開第201616127號專利案的多層垂直式感測器1的一個剖面側視示意圖;圖2是本發明氣體偵測器之一個第一實施例的一個剖面側視示意圖;圖3是本發明氣體偵測器之一個第二實施例的一個剖面側視示意圖;圖4是用來輔助說明圖3的一個不完整立體圖;圖5是本發明氣體偵測器之一個第七實施例的一個剖面側視示意圖;及 圖6是本發明氣體偵測器之一個第八實施例的一個剖面側視示意圖。
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。
參閱圖2,本發明氣體偵測器之一個第一實施例用來與一個電性檢測器(圖未示)電連接。該電性檢測器用來檢測當該氣體偵測器與一種待測氣體作用時該氣體偵測器產生的電性變化。該待測氣體例如但不限於胺類氣體、醛類氣體、酮類氣體、一氧化氮、乙醇、二氧化氮、二氧化碳、臭氧,或硫化物氣體等。該胺類氣體例如但不限於氨氣、二甲胺或三甲胺等。該酮類氣體例如但不限於丙酮。該硫化物氣體例如但不限於硫化氫。該電性變化例如電阻變化或電流變化等。在該第一實施例中,該電性變化為電流變化。該氣體偵測器包含一個用於電連接該電性檢測器的電極單元2及一個感測單元3。
該電極單元2包括一層第一電極層21及與一層與該第一電極層21相間隔設置的第二電極層22。該第二電極層22包括兩個 相對的電極表面221,以及形成有複數個貫穿該等電極表面221的貫孔220。該第一電極層21的材質例如但不限於氧化銦錫、金屬、金屬化合物,或導電有機材料等。該金屬例如但不限於鋁、金、銀、鈣、鎳,或鉻等。該金屬化合物例如但不限於氧化鋅、氧化鋁,或氟化鋰等。該導電有機材料例如但不限於聚二氧乙基噻吩-聚苯乙烯磺酸[PEDOT:PSS]。該第二電極層22的材質例如但不限於金屬、金屬化合物,或導電有機材料等。該金屬例如但不限於鋁、金、銀、鈣、鎳,或鉻等。該金屬化合物例如但不限於氧化鋅、氧化鉬,或氟化鋰等。該導電有機材料例如但不限於聚二氧乙基噻吩-聚苯乙烯磺酸。在該第一實施例中,該第一電極層21的材質為氧化銦錫,且該第二電極層22的材質為鋁金屬。在本發明的一變化態樣中,該第二電極層22包含複數條分散且相互交錯連接的奈米導線。
該感測單元3包括一層用來與該待測氣體作用的感測層31。該感測層31位於該第一電極層21及該第二電極層22間且連接該第一電極層21及該第二電極層22。該感測層31包括至少一種具有官能基團的感測材料,且該官能基團選自於芴基系基團、含有三苯胺基系及芴基系的基團、伸苯基伸乙烯基系基團,或含有二噻吩苯并二噻吩基系及噻吩并噻吩基系的基團。該具有官能基團的感測材料例如但不限於聚(9,9-二辛基芴)[poly(9,9-dioctylfluorene),簡稱PFO]、9,9-二辛基芴 -N-(4-丁基苯基)二苯胺共聚物{poly[9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine]}、9,9-二辛基芴-苯并噻二唑共聚物[poly(9,9-dioctylfluorene-co-benzothiadiazole)]、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}{poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-4-(2-ethylhexanoyl)-thieno[3,4-b]-thiophene)-2,6-diyl]},或聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基)}{poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-4-(2-ethylhexyloxycarbonyl)-3-fluoro-thieno[3,4-b]-thiophene))-2,6-diyl]}等。該9,9-二辛基芴-苯并噻二唑共聚物例如但不限於9,9-二辛基芴-2,1,3-苯并噻二唑共聚物,或9,9-二辛基芴-1,2,3-苯并噻二唑共聚物等。較佳地,該具有官能基團的感測材料選自於聚(9,9-二辛基芴)、9,9-二辛基芴-N-(4-丁基苯基)二苯胺共聚物、9,9-二辛基芴-苯并噻二唑共聚物、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基 己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基)},或上述任意的組合。該具有官能基團的感測材料的重量平均分子量範圍為5,000至300,000。
參閱圖3及圖4,本發明氣體偵測器之第二實施例至第六實施例是類似於該第一實施例,與該第一實施例主要不同在於該氣體偵測器還包含一層位於該電極單元2的第一電極層21及第二電極層22間的介電層4。該介電層4包括兩個相對的介電表面41,以及形成有複數個貫穿該等介電表面41並分別與該等貫孔220連通的穿孔40。該介電層4的材質例如但不限於聚乙烯酚[poly(vinylphenol),簡稱PVP]、聚甲基丙烯酸甲酯(polymethylmethacrylate,簡稱PMMA)、光阻劑,或聚乙烯醇(poly(vinyl alcohol),簡稱PVA)等。該光阻劑例如但不限於科毅科技股份有限公司的SU-8系列光阻劑。該感測單元3的感測層31設置在該第二電極層22並延伸進入該等貫孔220及該等穿孔40而連接該第一電極層21。
在該第二實施例中,該感測材料為聚(9,9-二辛基芴)[廠牌:西安寶萊特;型號:PLT101011B,簡稱PFO],且重量平均分子量為10,000至100,000。在該第三實施例中,該感測材料為9,9-二辛基芴-N-(4-丁基苯基)二苯胺共聚物[廠牌:西安寶萊特;型號:PLT105051G,簡稱TFB],且重量平均分子量為10,000至 200,000。在該第四實施例中,該感測材料為9,9-二辛基芴-2,1,3-苯并噻二唑共聚物[廠牌:American dye source;型號:ADS133YE,簡稱F8BT],且重量平均分子量為15,000至200,000。在該第五實施例中,該感測材料為聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-交替-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}{poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-4-(2-ethylhexanoyl)-thieno[3,4-b]-thiophene)-2,6-diyl],簡稱PBDTTT-CT}[廠牌:solarmer;型號:PBDTTT-C-T],且重量平均分子量為20,000至50,000。在該第六實施例中,該感測材料為聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-交替-4-(2-乙基己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基)}{poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-4-(2-ethylhexyloxycarbonyl)-3-fluoro-thieno[3,4-b]-thiophene))-2,6-diyl],簡稱PBDTTT-EFT}[廠牌:Organtec Materials.Inc;型號:PBDTTT-EFT],且重量平均分子量為80,000。該等實施例偵測的待測氣體為氨氣或丙酮。在該等實施例中,該第一電極層21的長度為1mm至10mm、寬度為1mm至10mm、厚度為250mm至400nm,且材質為氧化銦錫;該第二電極 層22的長度為1mm至10mm、寬度為1mm至10mm、厚度為350mm至1000nm、該等貫孔220的平均尺寸為50mm至200nm,且材質為鋁金屬;該介電層4的長度為1mm至10mm、寬度為1mm至10mm,且厚度為200mm至400nm、該等穿孔40的平均尺寸為50mm至200nm,且材質為聚乙烯酚(廠牌:Sigma Aldrich;型號:AL-436224;重量平均分子量為25000);該感測層31的長度為1mm至10mm、寬度為1mm至10mm,且厚度為200mm至400nm。
將該等實施例的氣體偵測器置於一個充滿氮氣或空氣的環境中,並連接一個電壓供應器及一個電流檢測器。該電壓供應器的電壓依據氣體偵測器的感測單元3中所選用的感測材料調整。在本發明中,該第一實施例至第六實施例的電壓依序設定在3±2volt、8±4volt、8±4volt、8±4volt、10±4volt及10±4volt。將氨氣或丙酮導入該環境中並與該氣體偵測器在一接觸時間下接觸,並透過該電流檢測器量測在該接觸時間內的電流變化。該電流變化率(單位:%)為(該接觸時間結束時的電流值-未接觸待測氣體時的電流值)×100%/未接觸待測氣體時的電流值。在該待測氣體的濃度相同下,該電流變化率越大,表示該氣體偵測器的靈敏度越高,或,在該待測氣體的濃度相同下,隨著使用天數的增加,不同天數間的電流變化率差異越小,表示該氣體偵測器的使用期限越長。電流變化率變異率(單位:%)為(1-[(第1天的電流變化率-使用 天數的電流變化率)/第1天的電流變化率])×100%。在該待測氣體的濃度相同下,該電流變化率變異率越小,表示該氣體偵測器的使用期限越長。該等實施例的氣體偵測器的評價結果參閱表1至表3。
為突顯本發明的氣體偵測器與台灣專利公開第201616127號專利案的多層垂直式感測器間的效果差異,本發明提供三個比較例,且該等比較例與本發明第二實施例主要的不同點在於該感測層31的感測材料。第一比較例的感測層31的感測材料為重量平均分子量為50,000至70,000的聚(3-己烷基噻吩)[廠牌:UniRegion Bio-Tech;型號:UR-P3H001]。該第二比較例的感測層31的感測材料為4,4'-雙(N-(1-萘基)-N-苯基胺基)聯苯。該第三比較例的感測層31的感測材料為1,1-雙[4-[N,N-二(對甲苯基)胺基]苯基]環己烷。該等比較例的氣體偵測器的評價結果參閱表1至表3。
Figure TWI615611BD00001
Figure TWI615611BD00002
表1的實驗數據為該等氣體偵測器與不同濃度的待測氣體接觸時的電流變化率。由該等數據可知,在該待測氣體的濃度相同下,本發明氣體偵測器的電流變化率高於以往氣體偵測器的電流變化率,表示本發明的氣體偵測器與該待測氣體間容易作用,從而即使該待測氣體的濃度在100ppb時,本發明的氣體偵測器都能夠偵測到該待測氣體,因此相較於以往氣體偵測器的靈敏度,本發明的氣體偵測器確實靈敏度更高。
Figure TWI615611BD00003
Figure TWI615611BD00004
表2的實驗數據為在不同使用天數下,該等氣體偵測器與不同濃度的待測氣體接觸時的電流變化率。由該等數據可知,在相同該待測氣體的濃度下,在第1天至第8天的期間,本發明氣體偵測器的電流變化率變化不大,反觀以往氣體偵測器的電流變化率變化大,表示以往氣體偵測器易失效而無法長久使用,而本發明的氣體偵測器即使在較長的時間下使用也不易失效,故相較於以往氣體偵測器的使用期限,本發明的氣體偵測器確實使用期限長。
Figure TWI615611BD00005
Figure TWI615611BD00006
表3的實驗數據為不同使用天數間電流變化率的變異率。由該等數據可知,在相同該待測氣體的濃度下,本發明氣體偵測器在不同使用天數間的電流變化率變異小,反觀以往氣體偵測器在不同天數間的電流變化率變異大,表示以往氣體偵測器易失效而無法長久使用,而本發明的氣體偵測器即使在較長的時間下使用也不易失效,故相較於以往氣體偵測器的使用期限,本發明的氣體偵測器確實使用期限長。
參閱圖5,本發明氣體偵測器之一第七實施例是類似於該第二實施例,與該第二實施例主要不同在於該感測單元3的感測層31設置在該電極單元2的第二電極層22並延伸進入且填充並充滿該等貫孔220及該等穿孔40而連接該電極單元2的第一電極層21。
參閱圖6,本發明氣體偵測器之一第八實施例是類似於該第一實施例,與該第一實施例主要不同在於該氣體偵測器還包含一層位於該第一電極層21及該第二電極層22間的介電層4,且該介電層4包括兩相對的介電表面41,以及形成有複數個貫穿該等介電 表面41並分別與該等貫孔220連通的穿孔40。該感測單元3的感測層31填充並充滿該等貫孔220及該等穿孔40而連接該電極單元2的第一電極層21及第二電極層22。
綜上所述,本發明透過該具有官能基團的感測材料,使得該氣體偵測器具有高靈敏度及長使用期限,故確實能達成本發明的目的。
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。
21‧‧‧第一電極層
22‧‧‧第二電極層
220‧‧‧貫孔
31‧‧‧感測層
4‧‧‧介電層
40‧‧‧穿孔
41‧‧‧介電表面

Claims (6)

  1. 一種氣體偵測器,用來與一電性檢測器搭配使用,該氣體偵測器包含:一個電極單元,用於電連接該電性檢測器,且包括一層第一電極層,及一層第二電極層,與該第一電極層相間隔設置,且包括兩個相對的電極表面以及形成有複數個貫穿該等電極表面的貫孔;及一個感測單元,包括一層連接該第一電極層及該第二電極層且用來與待測氣體作用的感測層,該感測層包括聚(9,9-二辛基芴)、9,9-二辛基芴-N-(4-丁基苯基)二苯胺共聚物及具有官能基團的感測材料中至少一者,且該官能基團選自於含有苯并噻二唑基系及芴基系的基團或含有二噻吩苯并二噻吩基系及噻吩并噻吩基系的基團。
  2. 如請求項1所述的氣體偵測器,其中,該感測單元的感測層位於該第一電極層及該第二電極層間。
  3. 如請求項1所述的氣體偵測器,還包含一層位於該第一電極層及該第二電極層間的介電層,且該介電層包括兩個相對的介電表面以及形成有複數個貫穿該等介電表面並分別與該等貫孔連通的穿孔,該感測單元的感測層設置在該第二電極層並延伸進入該等貫孔及該等穿孔而連接該第一電極層。
  4. 如請求項3所述的氣體偵測器,其中,該感測單元的感測層設置在該第二電極層並延伸進入且填充並充滿該等貫 孔及該等穿孔而連接該第一電極層。
  5. 如請求項1所述的氣體偵測器,還包含一層位於該第一電極層及該第二電極層間的介電層,且該介電層包括兩個相對的介電表面以及形成有複數個貫穿該等介電表面並分別與該等貫孔連通的穿孔,該感測單元的感測層填充並充滿該等貫孔及該等穿孔而連接該第一電極層。
  6. 如請求項1所述的氣體偵測器,其中,該具有官能基團的感測材料選自於9,9-二辛基芴-苯并噻二唑共聚物、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基}},或上述任意的組合。
TW105142197A 2016-12-20 2016-12-20 氣體偵測器 TWI615611B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105142197A TWI615611B (zh) 2016-12-20 2016-12-20 氣體偵測器
CN201711288606.XA CN108205001B (zh) 2016-12-20 2017-12-07 气体侦测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105142197A TWI615611B (zh) 2016-12-20 2016-12-20 氣體偵測器

Publications (2)

Publication Number Publication Date
TWI615611B true TWI615611B (zh) 2018-02-21
TW201809654A TW201809654A (zh) 2018-03-16

Family

ID=62014704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142197A TWI615611B (zh) 2016-12-20 2016-12-20 氣體偵測器

Country Status (2)

Country Link
CN (1) CN108205001B (zh)
TW (1) TWI615611B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736133B (zh) * 2020-02-14 2021-08-11 國立陽明交通大學 氣體感測器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679413B (zh) * 2018-06-01 2019-12-11 國立交通大學 光學感測器
TWI675197B (zh) * 2018-12-27 2019-10-21 國立交通大學 氣體感測設備
TWI762855B (zh) * 2020-01-10 2022-05-01 國立陽明交通大學 氣體感測器
TWI830496B (zh) * 2022-11-15 2024-01-21 國立陽明交通大學 有機氣體感測器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140061546A1 (en) * 2012-08-30 2014-03-06 Korea Institute Of Science And Technology Nanoparticles, method of manufacturing nanoparticles, and electronic device including the same
TW201616127A (zh) * 2014-10-31 2016-05-01 國立交通大學 多層垂直式感測器及其製造方法、以及應用多層垂直式感測器的感測系統、感測方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088289A1 (en) * 2004-03-03 2005-09-22 Koninklijke Philips Electronics N.V. Detection of no with a semi-conducting compound and a sensor and device to detect no
KR101074786B1 (ko) * 2004-12-31 2011-10-19 삼성모바일디스플레이주식회사 트리페닐아민 유도체 구조를 함유한 폴리이미드를 포함한 전자차단층을 채용한 유기 전계 발광 소자
JP2009539241A (ja) * 2006-05-29 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センシング用の有機電界効果トランジスタ
WO2010137477A1 (en) * 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2011033876A (ja) * 2009-08-03 2011-02-17 Nitto Denko Corp 光センサモジュールの製造方法およびそれによって得られた光センサモジュール
KR101137386B1 (ko) * 2009-10-09 2012-04-20 삼성모바일디스플레이주식회사 고분자 및 이를 포함한 유기 발광 소자
TWI525377B (zh) * 2010-01-24 2016-03-11 半導體能源研究所股份有限公司 顯示裝置
JP5953670B2 (ja) * 2010-08-27 2016-07-20 住友化学株式会社 塩、レジスト組成物及びレジストパターンの製造方法
CN103733355B (zh) * 2011-06-30 2017-02-08 佛罗里达大学研究基金会有限公司 用于检测红外辐射的带有增益的方法和设备
MX2014011421A (es) * 2012-03-23 2014-12-10 Massachusetts Inst Technology Sensor de etileno.
WO2014085858A1 (en) * 2012-12-04 2014-06-12 The University Of Queensland Method for the detection of analytes via luminescence quenching
WO2014133141A1 (ja) * 2013-02-28 2014-09-04 日本放送協会 有機電界発光素子
TWI621529B (zh) * 2013-03-06 2018-04-21 三菱瓦斯化學股份有限公司 氧吸收性多層體、氧吸收性容器、氧吸收性密閉容器、氧吸收性ptp包裝體及使用此等之保存方法
CN103604835A (zh) * 2013-12-09 2014-02-26 电子科技大学 一种基于有机薄膜晶体管一氧化碳气体传感器的制备方法
TWI544217B (zh) * 2013-12-09 2016-08-01 國立交通大學 感測器及其製造方法
US9207199B2 (en) * 2013-12-31 2015-12-08 Saudi Arabian Oil Company Analyzer for monitoring salt content in high resistivity fluids
CN104849317B (zh) * 2014-02-18 2018-09-18 元太科技工业股份有限公司 半导体感测装置及制作方法
US9614346B2 (en) * 2014-04-13 2017-04-04 Hong Kong Baptist University Organic laser for measurement
CN104051560A (zh) * 2014-06-19 2014-09-17 苏州瑞晟纳米科技有限公司 一种基于三维自组装纳米材料的新型红外探测器
US10386507B2 (en) * 2014-08-28 2019-08-20 Purdue Research Foundation Compositions and methods for detecting radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140061546A1 (en) * 2012-08-30 2014-03-06 Korea Institute Of Science And Technology Nanoparticles, method of manufacturing nanoparticles, and electronic device including the same
TW201616127A (zh) * 2014-10-31 2016-05-01 國立交通大學 多層垂直式感測器及其製造方法、以及應用多層垂直式感測器的感測系統、感測方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736133B (zh) * 2020-02-14 2021-08-11 國立陽明交通大學 氣體感測器
US11635400B2 (en) * 2020-02-14 2023-04-25 National Chiao Tung University Gas sensor

Also Published As

Publication number Publication date
CN108205001A (zh) 2018-06-26
TW201809654A (zh) 2018-03-16
CN108205001B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
TWI615611B (zh) 氣體偵測器
Lee et al. Toward environmentally robust organic electronics: approaches and applications
Sim et al. Rubbery electronics fully made of stretchable elastomeric electronic materials
Zhang et al. Tuning the electromechanical properties of PEDOT: PSS films for stretchable transistors and pressure sensors
Tanase et al. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes
Zhang et al. Controllable Molecular Doping and Charge Transport in Solution‐Processed Polymer Semiconducting Layers
Sirringhaus et al. Charge transport physics of conjugated polymer field‐effect transistors
van Mensfoort et al. Hole transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the role of energetic disorder
Smith et al. The Influence of Film Morphology in High‐Mobility Small‐Molecule: Polymer Blend Organic Transistors
JP2014526694A (ja) 圧電圧力センサ
KR20110124022A (ko) 저항형 메모리 장치 및 그 제조 방법
US20230049675A1 (en) Gas sensor
TWI762855B (zh) 氣體感測器
Wang et al. Generalized enhancement of charge injection in bottom contact/top gate polymer field-effect transistors with single-walled carbon nanotubes
Sarkar et al. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT: PCBM bulk heterojunction: insight from J–V and impedance spectroscopy
US20200225186A1 (en) Ofet-based ethylene gas sensor
Doumbia et al. Investigation of the Performance of Donor–Acceptor Conjugated Polymers in Electrolyte‐Gated Organic Field‐Effect Transistors
TW202024604A (zh) 氣體感測設備
Shi et al. Adhesive-free transfer of gold patterns to PDMS-based nanocomposite dielectric for printed high-performance organic thin-film transistors
Tabi et al. High performance p-type chlorinated-benzothiadiazole-based polymer electrolyte gated organic field-effect transistors
Orgiu et al. Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs
Cui et al. Printed polymeric passive RC filters and degradation characteristics
Zhang et al. Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes
Kubik et al. Mechanical Fatigue Resistance of Polydiketopyrrolo‐Pyrrole‐Dithienylthieno [3, 2‐b] thiophene‐Based Flexible Field‐Effect Transistors
TWI736133B (zh) 氣體感測器