CN104051560A - 一种基于三维自组装纳米材料的新型红外探测器 - Google Patents

一种基于三维自组装纳米材料的新型红外探测器 Download PDF

Info

Publication number
CN104051560A
CN104051560A CN201410276747.XA CN201410276747A CN104051560A CN 104051560 A CN104051560 A CN 104051560A CN 201410276747 A CN201410276747 A CN 201410276747A CN 104051560 A CN104051560 A CN 104051560A
Authority
CN
China
Prior art keywords
nanometer
infrared
self
lead selenide
dimensional self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410276747.XA
Other languages
English (en)
Inventor
钱磊
刘德昂
谢承智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Rui Sheng Nanosecond Science And Technology Co Ltd
Original Assignee
Suzhou Rui Sheng Nanosecond Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Rui Sheng Nanosecond Science And Technology Co Ltd filed Critical Suzhou Rui Sheng Nanosecond Science And Technology Co Ltd
Priority to CN201410276747.XA priority Critical patent/CN104051560A/zh
Publication of CN104051560A publication Critical patent/CN104051560A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种新型的基于三维自组装硒化铅纳米材料的红外探测器。其包括:透明导电衬底;空穴传输层;三维自组装硒化铅纳米材料的活性层,用来吸收红外光;电子传输层;金属电极。该高效红外探测器可利用溶液法制备,具有成本低,易大规模化生产的优点。新型三维自组装硒化铅纳米材料作为红外光的吸收层,不但保持了硒化铅纳米粒子对红外光的高吸收特性,同时由于三维自组装硒化铅纳米材料的尺寸可调节到光生激子扩散长度的大小,从而有效地降低了激子的淬灭,增加了载流子地输出效率,提高了光探测器的性能。与单个硒化铅纳米粒子作为活性层的器件相比,其性能提高了30%,对830纳米红外光的探测灵敏度在-3伏时达到4*1010Jones。

Description

一种基于三维自组装纳米材料的新型红外探测器
技术领域
本发明属于光电子器件领域,涉及到一种新的基于自组装纳米材料的新型红外探测器以及这种自组装纳米材料和红外探测器的制备方法。 
背景技术
红外探测技术在信息领域应用非常广泛,尤其是在军事领域具有巨大的应用前景。19世界40年代初以硫化铅为代表的光电型红外探测器的问世推动了红外技术的不断发展和进步,随后有出现了硒化铅和碲化铅探测器。另一方面随着纳米技术的发展,利用硒化铅纳米材料制备的红外探测器件也越来越受到人们的重视。虽然硒化铅纳米粒子具有很强的红外吸收,也可利用低成本的溶液法来制备,但是载流子在纳米颗粒之间的输运是靠跳跃来进行的,因此限制了光生载流子的输出以及探测灵敏度。一般来说,硒化铅的颗粒尺寸在5-20纳米之间,对红外的吸收系数非常高,但是由单个纳米粒子所制备而成的膜,为了满足对红外的强吸收,其薄膜厚度都在几百纳米以上,因此红外光吸收层的横截面包含数十个纳米粒子。光生激子的扩散长度一般在几十纳米的范围,这样一来一方面光生激子不能全部到达界面完成有效的解离,部分激子复合损失掉了,另一个方面载流子在纳米粒子之间的跳跃导致其迁移率低、内阻大,进而降低了探测灵敏度。这里,我们利用自组装硒化铅纳米八面体材料制备红外吸收层,利用溶 液法制备了高性能的红外探测器,为大规模的低成本的制备高性能光控发光二极管提供了可能。 
发明内容
针对上述现有技术的不足,本发明要解决的技术问题是新型的基于自组装纳米材料的红外探测器以及自组装纳米材料和这种探测器的制备方法。 
为解决上述技术问题,本发明采用如下技术方案: 
一种新型基于自组装纳米材料的红外探测器,其包括:透明导电衬底;空穴传输层;自组装纳米八面体材料,由可吸收红外的纳米颗粒利用自组装技术结合而成,起到吸收红外光的作用;电子传输层;金属电极。 
优选的,所述导电衬底为金属氧化物透明导电薄膜,透明导电衬底为氧化铟锡薄膜或掺铝、镓、镉的氧化锌薄膜,厚度在20-2000纳米之间。 
优选的,所述空穴传输层厚度在20-200nm之间,为氧化钼、p型氧化锌和氧化钛,以及p型聚合物,比如poly-TPD,PVK,MEHPPV,TFB,PEDOT和它们的衍生物等和p型小分子材料,比如TPD,NP B和它们的衍生物等。 
优选的,所述红外光吸收层材料选用自组装纳米材料,其中所用无机纳米材料比如硫化铅,硒化铅,碲化铅等4-6族半导体,和硫化镉,硫化锌,碲化镉,硒化镉,硒化锌等2-6组半导体,以及1-3-5族半导体,但不局限于此,纳米粒子的尺寸为2-20纳米,通过自组装技术 所结合而成的纳米八面体结构的尺寸为20-200纳米,最后通过溶液法制备的红外光吸收层的厚度在20-2000纳米之间。 
优选的,其选用电子传输材料,厚度在20-200nm之间,为氧化锌和氧化钛,硫化镉,硫化锌等n型半导体,以及n型聚合物,比如F8BT和它们的衍生物等和n型小分子材料,比如ALQ,BCP和它们的衍生物等。 
优选的,所述金属导电薄膜选用镍、铝、金、银、铜、钛、铬中的一种或多种。 
本发明还公开了一种上述自组装纳米八面体材料和基于这种自组装纳米材料的新型红外探测器的制备方法,其中自组装纳米八面体利用热溶液法通过纳米粒子表面配体之前的相互作用力结合在一起的,然后再利用溶液法制备在空穴传输层和透明导电衬底上,厚度为20-2000纳米,然后在惰性气体中进行热退火处理,衬底温度是室温-600度。退火处理后,利用溶液法制备电子传输层并且在室温-600度的惰性气体环境下进行热处理。最后利用真空镀膜技术制备金属电极,厚度在20-2000纳米之间。 
优选的,所述溶液法包括旋涂法,喷涂法,糟模法。 
优选的,自组装纳米八面体材料是通过纳米粒子表面配套之间的相互作用力结合而成的,其中所用纳米材料为硫化铅,硒化铅、碲化铅等4-6族半导体,和硫化镉,硫化锌,碲化镉,硒化镉,硒化锌等2-6组半导体,以及1-3-5族半导体,但不局限于此,纳米粒子的尺寸为2-20纳米,然后采用溶液法方法制作在空穴传输层(2)和透明电 级(1)上,形成红外光吸收层,可在特定红外光源激发下产生光电流,实现光探测功能。 
上述技术方案具有如下有益效果:该红外探测器采用自组装纳米八面体材料作为红外吸光层不仅具有溶液制备法的便宜快捷的优点,而且可通过分别优化纳米粒子和自组装八面体的尺寸,调节器件的光吸收特性和电传输效率,明显改善红外探测灵敏度。 
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。 
附图说明
图1为本发明实施例的结构示意图; 
图2为a自组装纳米八面体材料的透射电镜,扫描电镜和电子衍射图,以及硒化铅纳米粒子的透射电镜照片;b自组装纳米八面体的示意图和XRD图; 
图3为本发明实施例对红外光探测灵敏度与基于纳米粒子的红外探测器件的灵敏度比较图。 

Claims (9)

1.一种新型的基于三维自组装硒化铅纳米材料的红外探测器,其特征在于,其包括:透明导电衬底;空穴传输层,该空穴传输层可有效起到分离和传输空穴的作用;红外吸收层,该吸收层采用三维自组装纳米材料,具有红外光吸收强,载流子迁移率高等优点;电子传输层;金属背电极。
2.根据权利要求1所述的红外探测器,其特征在于:所述透明导电衬底为氧化铟锡薄膜或掺铝、镓、镉的氧化锌薄膜,厚度在20-2000纳米之间。
3.根据权利要求1所述的红外探测器,其特征在于:所述空穴传输层厚度在20-200nm之间,为氧化钼、p型氧化锌和氧化钛,以及p型聚合物,比如poly-TPD,PVK,MEHPPV,TFB,PEDOT和它们的衍生物等和p型小分子材料,比如TPD,NP B和它们的衍生物等。
4.根据权利要求1所述的红外探测器,其特征在于:所述红外吸收层材料为三维自组装纳米材料,选用颗粒尺寸在2-20纳米的无机纳米材料比如硒化铅,硫化铅等4-6族半导体,硫化镉,硫化锌,碲化镉,硒化镉,硒化锌等2-6组半导体以及1-3-5族半导体和一型或者二型的核壳纳米颗粒,但不局限于此,利用自组装技术制备成尺寸在20-200纳米之间的三维八面体纳米材料,沉积成膜后,其厚度为20-2000纳米。
5.根据权利要求1所述的红外探测器,其特征在于:其选用电子传输材料,厚度在20-200nm之间,为氧化锌和氧化钛,硫化镉,硫化锌等n型半导体,以及n型聚合物,比如F8BT和它们的衍生物等和n型小分子材料,比如ALQ,BCP和它们的衍生物等。
6.根据权利要求1所述的红外探测器,其特征在于:所述金属导电薄膜选用镍、铝、金、银、铜、钛、铬中的一种或多种。
7.一种新型红外探测器的制备方法,其特征在于,首先利用自组装的方面把红外吸光的纳米粒子制备成尺寸可控的三维八面体结构,然后通过溶液法制作在空穴传输层上,厚度大约在20-2000纳米左右,衬底温度是室温-600度。最后在室温-600度的环境下退火形成致密的纳米材料连续膜,使其不但能够有效的吸收红外光,而且可以快速的把光生载流子导出。
8.根据权利要求8所述的红外探测器的制备方法,其特征在于:所述溶液法包括旋涂法,喷涂法,糟模法;自组装八面体纳米材料的尺寸在20-200纳米的范围,其中单个粒子的尺寸在2-20纳米的范围。
9.根据权利要求8所述的红外探测器的制备方法,其特征在于:自组装八面体纳米材料沉积在空穴传输层(2)和透明电极沉底(1)上,由于自组装材料是由颗粒尺寸在2-20纳米之间的红外吸收纳米材料制备的,因此具有纳米材料自身非常高的红外光吸收特性。而另一方面,通过自组装技术把这些粒子结合成尺寸和光生激子扩散长度相当的八面体结构,可使激子在复合之前到达界面,从而显著提高其解离效率,在不影响红外光吸收效率的前提下增大光电流和红外探测器的检测灵敏度。
CN201410276747.XA 2014-06-19 2014-06-19 一种基于三维自组装纳米材料的新型红外探测器 Pending CN104051560A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410276747.XA CN104051560A (zh) 2014-06-19 2014-06-19 一种基于三维自组装纳米材料的新型红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410276747.XA CN104051560A (zh) 2014-06-19 2014-06-19 一种基于三维自组装纳米材料的新型红外探测器

Publications (1)

Publication Number Publication Date
CN104051560A true CN104051560A (zh) 2014-09-17

Family

ID=51504173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410276747.XA Pending CN104051560A (zh) 2014-06-19 2014-06-19 一种基于三维自组装纳米材料的新型红外探测器

Country Status (1)

Country Link
CN (1) CN104051560A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025081A (zh) * 2016-07-13 2016-10-12 电子科技大学 一种高响应度的有机红外探测器件及其制备方法
CN107017312A (zh) * 2015-09-17 2017-08-04 三星电子株式会社 光电器件和包括该光电器件的电子装置
CN108205001A (zh) * 2016-12-20 2018-06-26 财团法人交大思源基金会 气体侦测器
CN108695406A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种薄膜光探测器及其制备方法
CN111048604A (zh) * 2019-12-17 2020-04-21 吉林大学 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法
CN111710749A (zh) * 2020-04-23 2020-09-25 中国科学院上海技术物理研究所 基于多基板二次拼接的长线列探测器拼接结构及实现方法
CN114256377A (zh) * 2021-11-22 2022-03-29 上海科技大学 基于晶体管结构的量子点近红外光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054881A1 (en) * 2004-09-16 2006-03-16 Zhiyong Li SERS-active structures including nanowires
CN101237003A (zh) * 2007-10-31 2008-08-06 中国科学院上海技术物理研究所 用于微弱光探测的量子点共振隧穿二极管及探测方法
CN102108552A (zh) * 2010-11-15 2011-06-29 复旦大学 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
CN102194915A (zh) * 2011-03-23 2011-09-21 吉林大学 自组装纳米TiO2薄膜紫外光探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054881A1 (en) * 2004-09-16 2006-03-16 Zhiyong Li SERS-active structures including nanowires
CN101237003A (zh) * 2007-10-31 2008-08-06 中国科学院上海技术物理研究所 用于微弱光探测的量子点共振隧穿二极管及探测方法
CN102108552A (zh) * 2010-11-15 2011-06-29 复旦大学 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
CN102194915A (zh) * 2011-03-23 2011-09-21 吉林大学 自组装纳米TiO2薄膜紫外光探测器及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017312A (zh) * 2015-09-17 2017-08-04 三星电子株式会社 光电器件和包括该光电器件的电子装置
CN107017312B (zh) * 2015-09-17 2021-11-26 三星电子株式会社 光电器件和包括该光电器件的电子装置
CN106025081A (zh) * 2016-07-13 2016-10-12 电子科技大学 一种高响应度的有机红外探测器件及其制备方法
CN106025081B (zh) * 2016-07-13 2018-03-27 电子科技大学 一种高响应度的有机红外探测器件及其制备方法
CN108205001A (zh) * 2016-12-20 2018-06-26 财团法人交大思源基金会 气体侦测器
CN108695406A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种薄膜光探测器及其制备方法
CN108695406B (zh) * 2017-04-11 2019-11-12 Tcl集团股份有限公司 一种薄膜光探测器及其制备方法
CN111048604A (zh) * 2019-12-17 2020-04-21 吉林大学 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法
CN111048604B (zh) * 2019-12-17 2021-04-06 吉林大学 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法
CN111710749A (zh) * 2020-04-23 2020-09-25 中国科学院上海技术物理研究所 基于多基板二次拼接的长线列探测器拼接结构及实现方法
CN114256377A (zh) * 2021-11-22 2022-03-29 上海科技大学 基于晶体管结构的量子点近红外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN104051560A (zh) 一种基于三维自组装纳米材料的新型红外探测器
KR102306134B1 (ko) 페로브스카이트 광전 소자, 제조 방법 및 페로브스카이트 재료
CN104022225B (zh) 一种全溶液法制备的高效低成本铜铟镓硒/钙钛矿双结太阳能光电池
US8426722B2 (en) Semiconductor grain and oxide layer for photovoltaic cells
RU2554290C2 (ru) Многопереходное фотоэлектрическое устройство
CN102646745B (zh) 一种光伏器件及太阳能电池
CN110190195B (zh) 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
KR101648846B1 (ko) 삼중 코어쉘 나노입자의 제조 및 이를 포함하는 태양전지
TW200810136A (en) Photovoltaic device with nanostructured layers
US20160087234A1 (en) Organic solar cell comprising nano-bump structure and manufacturing method therefor
Ullah et al. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer
Shen Recently-explored top electrode materials for transparent organic solar cells
CN103904224B (zh) 一种基于无机量子点的有机光伏电池及制备方法
Yuan et al. Optoelectronic properties of ZnO nanoparticle/pentacene heterojunction photodiode
KR101695260B1 (ko) 금속 나노클러스터를 포함하는 유기태양전지 및 이의 제조방법
US11557689B2 (en) Integrated tandem solar cell and manufacturing method thereof
Chang et al. Preparation and characterization of MoSe2/CH3NH3PbI3/PMMA perovskite solar cells using polyethylene glycol solution
CN104362186B (zh) 一种应用于高效薄膜光电池的双层结构窗口层
Zhu et al. Effect of CdSe quantum dots on the performance of hybrid solar cells based on ZnO nanorod arrays
Aftab et al. Quantum junction solar cells: Development and prospects
CN103296209A (zh) 异质结构等离激元与体异质结结合的太阳电池
KR101559098B1 (ko) 태양 전지 전자 수송층의 배리어층으로 사용되는 풀러렌 입자들이 포함된 코어-쉘 구조 나노복합체, 이의 제조방법, 및 이를 포함하는 태양 전지
Yu et al. Copper oxide hole transport materials for heterojunction solar cell applications
KR20200048037A (ko) 페로브스카이트 태양전지 및 그 제조방법
CN105206746A (zh) 基于三元溶剂系统的有机薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140917