CN114256377A - 基于晶体管结构的量子点近红外光电探测器及其制备方法 - Google Patents

基于晶体管结构的量子点近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN114256377A
CN114256377A CN202111383318.9A CN202111383318A CN114256377A CN 114256377 A CN114256377 A CN 114256377A CN 202111383318 A CN202111383318 A CN 202111383318A CN 114256377 A CN114256377 A CN 114256377A
Authority
CN
China
Prior art keywords
quantum dot
infrared
zno film
transistor structure
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111383318.9A
Other languages
English (en)
Inventor
宁志军
柯亮
徐凯敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN202111383318.9A priority Critical patent/CN114256377A/zh
Publication of CN114256377A publication Critical patent/CN114256377A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种基于晶体管结构的量子点近红外光电探测器及其制备方法,本发明的量子点近红外光电探测器从下到上依次包括导电基底层、ZnO薄膜、红外量子点层、掺杂ZnO薄膜和金属电极。所述的量子点近红外光电探测器的制备方法,包括对导电基底层进行氧等离子体预处理,制备ZnO薄膜,制备量子点红外吸收层,制备掺杂ZnO薄膜和蒸镀金属电极。所述的量子点红外光电探测器同时具有量子效率高(800%)和低暗电流低的优点,在近红外光电探测领域具有广阔的应用前景。

Description

基于晶体管结构的量子点近红外光电探测器及其制备方法
技术领域
本发明涉及一种基于晶体管结构的量子点近红外光电探测器及其制备方法,属于光电探测技术领域。
背景技术
红外线可以分为近红外光波段(760-3000nm)、中红外波段(3-50μm)和远红外波段(50-1000μm)。其中,近红外光电探测器件广泛应用于航海、夜视、武器探查等军事领域,以及生物医学成像、光通信、大气监测等民用领域,具有非常广阔的前景。
量子点材料可以采用溶液法制备,吸收波段可以调控并覆盖近红外波段,制备简单,因此被应用于近红外光电探测领域。常用的红外光电探测器可以分为光电导、光电二极管、光电晶体管等几种。其中光电二极管暗电流小、响应速度快,但外量子效率较低,无法超过100%。而光电晶体管和光电导具有光增益,因此可以有很高的外量子效率,得到高性能的光电探测器。
发明内容
本发明所要解决的技术问题是:提供一种基于晶体管结构的量子点近红外光电探测器及其制备方法,解决量子点红外光电二极管量子效率不高的问题。
为了解决上述技术问题,本发明提供了一种基于晶体管结构的量子点近红外光电探测器,从下到上依次包括导电基底层、ZnO薄膜、红外量子点层、掺杂ZnO薄膜和金属电极。
优选地,所述导电基底层为ITO导电玻璃;所述掺杂ZnO薄膜中的掺杂元素为Mg、Al和In中的至少一种。
优选地,所述红外量子点层包括1层量子点膜,所述量子点膜为含有表面配体的PbS量子点膜和/或PbSe量子点膜,所述表面配体为I-短链配体;所述量子点膜为PbS量子点膜和/或PbSe量子点膜;所述红外量子点层的厚度为100~200nm。
优选地,所述金属电极为Au电极。
本发明还提供了一种所述的基于晶体管结构的量子点近红外光电探测器的制备方法,包括以下步骤:
步骤a:对导电基底层进行氧等离子体预处理;
步骤b:配制ZnO薄膜前驱液,在导电基底层上旋涂ZnO薄膜前驱液,退火成型,制得ZnO薄膜;
步骤c:配制红外量子点层前驱液,在ZnO薄膜上旋涂液态配体交换的量子点,退火成型,制得红外量子点层;
步骤d:配制掺杂ZnO薄膜前驱液,在红外量子点层上旋涂掺杂ZnO薄膜前驱液,退火成型,制得掺杂ZnO薄膜;
步骤e:将步骤d得到的样品送入镀膜机内蒸镀金属电极,得到基于晶体管结构的量子点近红外光电探测器。
优选地,所述步骤a中氧等离子体预处理的时间为15min;所述步骤b中的旋涂参数为:转速3000rpm,时间30s;退火参数为300℃退火20min;所述步骤d中的旋涂参数为:转速3000rpm,时间30s;退火参数为100℃退火10min。
优选地,所述步骤b中的ZnO薄膜前驱液的配制方法为将氧化锌纳米颗粒溶于甲醇和氯仿的混合溶剂中,其中,所述的氧化锌纳米颗粒的浓度为40mg/mL,所述的甲醇和氯仿的体积比为1:1,所述的ZnO薄膜前驱液旋涂前通过甲醇稀释为20mg/mL,旋涂的层数为1层。
优选地,所述步骤d中掺杂ZnO薄膜前驱液的配制方法包括将掺杂氧化锌纳米颗粒溶于乙醇溶剂中得到,其中,掺杂氧化锌纳米颗粒的浓度20mg/mL,旋涂的层数为1层。
优选地,所述步骤c具体包括:将PbS量子点溶于正辛烷溶液中得到红外量子点层前驱液,PbS量子点的浓度为50mg/mL;在ZnO薄膜上旋涂1层液态配体交换的PbS量子点,80℃退火10min,即得含有PbS量子点膜的红外量子点层。
优选地,所述步骤e中蒸镀的速率为0.2埃/秒,厚度为100nm。
与现有技术相比,本发明的有益效果在于:
(1)本发明基于光电晶体管结构,不同于光电二极管,具有较高的光增益,提高了器件的量子效率;
(2)本发明采用红外量子点层,可以采用溶液法制备红外吸收层,从而降低了成本,并且使红外吸收的波长容易的调节;
(3)本发明在提高量子效率的同时,还保证了较低的暗电流和噪声和较快的响应速度,在近红外光电探测领域有良好的应用前景。
附图说明
图1为本发明实施例的量子点红外光电探测器件的结构示意图;
图2为本发明实施例的量子点红外光电探测器件的量子效率-波长响应;
图3为本发明实施例的量子点红外光电探测器件的暗电流。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
以下实施例中,氧化锌纳米颗粒和PbS量子点制备方法参考文献Wang,R.etal.Highly Efficient Inverted Structural Quantum Dot Solar Cells.Adv.Mater.30,1704882(2018)中的方法合成;
甲醇购自国药(沪试),货号80080418;氯仿购自泰坦,货01104470(G75915B);正辛烷购买自阿拉丁,货号O100578-500mL;乙醇购买自国药(沪试),货号10009218;DMF购买自阿拉丁,货号D111999-500mL;丁胺购买自Sigma,货号471305-250mL;碘化铅购买自Aldrich,货号211168-50G;乙酸钠购买自TCI,货号S0559-300g。
实施例
本实施例提供了一种基于晶体管结构的量子点近红外光电探测器,如图1所示,从下到上依次包括:导电基底层、ZnO薄膜、红外量子点层、掺杂ZnO薄膜和金属电极;
所述导电基底层为ITO导电玻璃,所述红外量子点层包括一层PbS量子点液态配体交换薄膜,所述掺杂ZnO薄膜为掺杂5%In3+的ZnO薄膜,所述金属电极为金电极,厚度为100nm。
上述基于晶体管结构的量子点近红外光电探测器的制备:
步骤a:将洁净的ITO透明导电玻璃放入氧等离子清洗机中处理15min,备用;
步骤b:在ITO透明导电玻璃上制备ZnO薄膜:
将ZnO纳米颗粒溶于甲醇和氯仿的混合溶剂中(体积比1:1),配成浓度为40mg/mL的溶液,使用前通过甲醇稀释为20mg/mL,配成溶液A;
在步骤a得到的ITO透明导电玻璃上面旋涂溶液A,旋涂参数为转速3000rpm、时间30s,旋涂1层,在300℃热板上退火20min,得到ZnO薄膜;步骤c:制备红外量子点层:
将PbS量子点溶于正辛烷溶液中,浓度50mg/mL,取PbI2和NaAc溶于DMF溶液中,对PbS量子点进行液态配体交换,得到表面含有I-短链配体的PbS量子点,分散于丁胺和DMF的混合溶剂中(体积比4:1),浓度250mg/mL,制成溶液B;
在步骤b所得的ZnO薄膜上旋涂溶液B,旋涂参数为转速2200rpm、时间20s,旋涂1层,在80℃热板上退火10min,得到含有PbS量子点膜的红外量子点层;
步骤d:制备掺杂ZnO薄膜:
将掺杂氧化锌纳米颗粒溶于乙醇溶剂中,配成浓度为20mg/mL的溶液C;
在步骤c得到的红外量子点层上面旋涂溶液C,旋涂参数为转速3000rpm、时间30s,旋涂1层,在100℃热板上退火10min,得到掺杂ZnO薄膜;
步骤e:制备电极:
将步骤d得到的样品放入镀膜机中蒸镀金电极,蒸镀速率为0.2埃/秒,厚度100nm,最后得到量子点近红外光电探测器。
性能测试:
测试上述实施例制得的量子点近红外光电探测器的光响应和量子效率,结果如图2所示,量子点近红外光电探测器在600-1700纳米范围内都有很强的光响应,其中在1520纳米处的外量子效率超过800%。
测试上述实施例制得的量子点近红外光电探测器的暗电流,结果如图3所示,在没有红外光照射的情况下,量子点红外光电探测器有较小的暗电流,不超过10微安,说明本发明的量子点红外光电探测器具有低的暗电流。
以上结果表明,本发明的基于晶体管结构的量子点近红外光电探测器具有高的量子效率、低的噪声和暗电流。
上述实施例仅为本发明的优选实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (10)

1.一种基于晶体管结构的量子点近红外光电探测器,其特征在于,从下到上依次包括导电基底层、ZnO薄膜、红外量子点层、掺杂ZnO薄膜和金属电极。
2.如权利要求1所述的基于晶体管结构的量子点近红外光电探测器件件,其特征在于,所述导电基底层为ITO导电玻璃;所述掺杂ZnO薄膜中的掺杂元素为Mg、Al和In中的至少一种。
3.如权利要求1所述的基于晶体管结构的量子点近红外光电探测器,其特征在于,所述红外量子点层包括1层量子点膜,所述量子点膜为含有表面配体的PbS量子点膜和/或PbSe量子点膜,所述表面配体为I-短链配体;所述红外量子点层的厚度为100~200nm。
4.如权利要求1所述的基于晶体管结构的量子点近红外光电探测器,其特征在于,所述金属电极为Au电极。
5.权利要求1~4中任意一项所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,包括以下步骤:
步骤a:对导电基底层进行氧等离子体预处理;
步骤b:配制ZnO薄膜前驱液,在导电基底层上旋涂ZnO薄膜前驱液,退火成型,制得ZnO薄膜;
步骤c:配制红外量子点层前驱液,在ZnO薄膜上旋涂液态配体交换的量子点,退火成型,制得红外量子点层;
步骤d:配制掺杂ZnO薄膜前驱液,在红外量子点层上旋涂掺杂ZnO薄膜前驱液,退火成型,制得掺杂ZnO薄膜;
步骤e:将步骤d得到的样品送入镀膜机内蒸镀金属电极,得到基于晶体管结构的量子点近红外光电探测器。
6.如权利要求5所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,所述步骤a中氧等离子体预处理的时间为15min;所述步骤b中的旋涂参数为:转速3000rpm,时间30s;退火参数为300℃退火20min;所述步骤d中的旋涂参数为:转速3000rpm,时间30s;退火参数为100℃退火10min。
7.如权利要求5所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,所述步骤b中的ZnO薄膜前驱液的配制方法为将氧化锌纳米颗粒溶于甲醇和氯仿的混合溶剂中,其中,所述的氧化锌纳米颗粒的浓度为40mg/mL,所述的甲醇和氯仿的体积比为1:1,所述的ZnO薄膜前驱液旋涂前通过甲醇稀释为20mg/mL,旋涂的层数为1层。
8.如权利要求5所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,所述步骤d中掺杂ZnO薄膜前驱液的配制方法包括将掺杂氧化锌纳米颗粒溶于乙醇溶剂中得到,其中,掺杂氧化锌纳米颗粒的浓度为20mg/mL,旋涂的层数为1层。
9.如权利要求5所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,所述步骤c具体包括:将PbS量子点溶于正辛烷溶液中得到红外量子点层前驱液,PbS量子点的浓度为50mg/mL;在ZnO薄膜上旋涂1层液态配体交换的PbS量子点,80℃退火10min,即得含有PbS量子点膜的红外量子点层。
10.如权利要求5所述的基于晶体管结构的量子点近红外光电探测器的制备方法,其特征在于,所述步骤e中蒸镀的速率为0.2埃/秒,厚度为100nm。
CN202111383318.9A 2021-11-22 2021-11-22 基于晶体管结构的量子点近红外光电探测器及其制备方法 Pending CN114256377A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111383318.9A CN114256377A (zh) 2021-11-22 2021-11-22 基于晶体管结构的量子点近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111383318.9A CN114256377A (zh) 2021-11-22 2021-11-22 基于晶体管结构的量子点近红外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN114256377A true CN114256377A (zh) 2022-03-29

Family

ID=80792891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111383318.9A Pending CN114256377A (zh) 2021-11-22 2021-11-22 基于晶体管结构的量子点近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114256377A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623543A (zh) * 2012-04-13 2012-08-01 北京交通大学 MgZnO/NPB紫外光探测器及其制作方法
CN104051560A (zh) * 2014-06-19 2014-09-17 苏州瑞晟纳米科技有限公司 一种基于三维自组装纳米材料的新型红外探测器
KR20150072888A (ko) * 2013-12-20 2015-06-30 한국과학기술연구원 양자점 감응형 산화물 광감지 트랜지스터와 그 제조방법
CN105552131A (zh) * 2016-01-27 2016-05-04 东南大学 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
CN110311007A (zh) * 2019-07-09 2019-10-08 上海科技大学 一种量子点近红外光电探测器及其制备方法
US20210359147A1 (en) * 2018-08-27 2021-11-18 Rijksuniversiteit Groningen Imaging device based on colloidal quantum dots

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623543A (zh) * 2012-04-13 2012-08-01 北京交通大学 MgZnO/NPB紫外光探测器及其制作方法
KR20150072888A (ko) * 2013-12-20 2015-06-30 한국과학기술연구원 양자점 감응형 산화물 광감지 트랜지스터와 그 제조방법
CN104051560A (zh) * 2014-06-19 2014-09-17 苏州瑞晟纳米科技有限公司 一种基于三维自组装纳米材料的新型红外探测器
CN105552131A (zh) * 2016-01-27 2016-05-04 东南大学 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
US20210359147A1 (en) * 2018-08-27 2021-11-18 Rijksuniversiteit Groningen Imaging device based on colloidal quantum dots
CN110311007A (zh) * 2019-07-09 2019-10-08 上海科技大学 一种量子点近红外光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖定全,朱建国,朱基亮等: "《薄膜物理与器件》", 31 May 2011, 北京:国防工业出版社, pages: 249 - 252 *

Similar Documents

Publication Publication Date Title
CN110311007B (zh) 一种量子点近红外光电探测器及其制备方法
Pal et al. High‐Sensitivity p–n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots
US8507865B2 (en) Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof
US6677516B2 (en) Photovoltaic cell and process for producing the same
CN103545397A (zh) 薄膜紫外光探测器及其制备方法与应用
CN105493295A (zh) 来自溶液处理的无机半导体的空气稳定红外光探测器
CN103311439B (zh) 薄膜光电导探测器及其制备方法与应用
JP2008103670A (ja) 有機薄膜受光素子、有機薄膜受光素子の製造方法、有機薄膜受発光素子、有機薄膜受発光素子の製造方法、及び脈拍センサ
CN110556478B (zh) 一种基于等离激元效应的钙钛矿弱光探测器
CN111430480A (zh) 一种同质结钙钛矿光电探测器及其制备方法和用途
CN111834487B (zh) 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN110911566A (zh) 一种基于钙钛矿单晶颗粒复合膜x-射线探测器及其制备方法
CN111162173B (zh) 一种掺杂型电子传输层的有机光电探测器及其制备方法
CN107768521B (zh) 一种基于电子俘获诱导空穴注入形成光增益的钙钛矿光电器件及其制备方法
CN110444620B (zh) 一种量子点红外上转换器件及其制备方法
Kacus et al. The photosensitive activity of organic/inorganic hybrid devices based on Aniline Blue dye: Au nanoparticles (AB@ Au NPs)
CN109301068B (zh) 基于光伏和水伏效应的自驱动光电探测器及制备方法
CN113054110B (zh) 近红外窄波段选择性光电探测器
CN102969451A (zh) 一种有机聚合物薄膜紫外光探测器及其制备方法
CN114256377A (zh) 基于晶体管结构的量子点近红外光电探测器及其制备方法
CN111009613A (zh) 一种钙钛矿量子点掺杂的有机紫外探测器及其制备方法
CN111987185A (zh) 一种具有光电二极管效应的双钙钛矿薄膜器件及其制备方法和应用
CN116430631A (zh) 一种新型电致变红外发射率器件及其制备方法
Wang et al. PbS quantum dot/ZnO nanowires hybrid test structures for infrared photodetector
CN109326587B (zh) 一种三合一复合自驱动的光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination