CN102969451A - 一种有机聚合物薄膜紫外光探测器及其制备方法 - Google Patents

一种有机聚合物薄膜紫外光探测器及其制备方法 Download PDF

Info

Publication number
CN102969451A
CN102969451A CN2012105294483A CN201210529448A CN102969451A CN 102969451 A CN102969451 A CN 102969451A CN 2012105294483 A CN2012105294483 A CN 2012105294483A CN 201210529448 A CN201210529448 A CN 201210529448A CN 102969451 A CN102969451 A CN 102969451A
Authority
CN
China
Prior art keywords
layer
thin film
organic polymer
zno
polymer thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105294483A
Other languages
English (en)
Other versions
CN102969451B (zh
Inventor
于军胜
郑毅帆
刘胜强
钟建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201210529448.3A priority Critical patent/CN102969451B/zh
Publication of CN102969451A publication Critical patent/CN102969451A/zh
Application granted granted Critical
Publication of CN102969451B publication Critical patent/CN102969451B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种有机聚合物薄膜紫外光探测器及其制备方法,其为多层层状结构,从下至上依次为:衬底、透明导电阴极ITO、ZnO薄膜层、光活性层、空穴传输层、金属阳极。此器件采用非真空全湿法制备工艺,结构采用反型结构,同时在透明导电阴极ITO与光活性层中插入的ZnO薄膜作为电子传输层,提高了器件的电流响应度。该器件解决了有机聚合物薄膜紫外光探测器的探测稳定性差问题,同时具有制备方法简单、设备要求低、成本低廉、可柔性、适合大规模生产的特点。

Description

一种有机聚合物薄膜紫外光探测器及其制备方法
技术领域
本发明涉及可探测紫外光的有机聚合物光伏器件或光探测器领域,具体涉及一种有机聚合物薄膜紫外光探测器及其制备方法。
背景技术
由于紫外光探测器在诸如科学观测与研究、生物工程、医疗卫生、环境监测、军事、航空及航天跟踪与控制等领域起着至关重要的作用,近年来引起人们越来越多的关注。基于单晶硅、氮化硅、氮化镓等p-n结光电二极管所制备的传统的紫外光探测器价格昂贵、电流响应度低,并不适合于大规模的应用。而基于有机物聚合物材料与宽带隙材料所制备的有机聚合物薄膜紫外光探测器具有体积小、质量轻、制备方法简单、成本低廉、设备要求低、适合大面积生产、柔性等突出优点,引起了各国学者的极大兴趣。但是目前有机紫外光探测器具有以下几个主要问题:1.传统工艺制备的紫外光探测器电流响应度低,在电压为-9 V的条件下,电流响应度小于100 A/W;2.采用紫外透过滤镜虑去可见光部分,在实现紫外光探测的同时,复杂了器件结构,降低了效率;3.在无机宽带隙材料上制备有机聚合物光活性层,不能很好地解决有机无机界面接触问题,器件效能不高;4.将宽带隙的有机聚合物半导体制作成薄膜晶体管结构,驱动电压高,器件结构复杂,并且探测稳定性差,限制了其发展。而开发一种结构简单,器件探测性能稳定,电流响应度高的有机聚合物薄膜紫外光探测器,成为了现阶段研究的重点与难点。
发明内容
本发明所要解决的问题:如何提供一种有机聚合物薄膜紫外光探测器的制备方法,目的是克服传统制备器件工艺复杂、设备要求高、所制备器件探测稳定性差的问题,制备高探测稳定性、高电流响应度的紫外光探测器。
本发明所提出的技术问题是这样解决的:一种有机聚合物薄膜紫外光探测器,其为多层层状结构,从下至上依次为:衬底、透明导电阴极ITO、ZnO薄膜层、光活性层、空穴传输层、金属阳极。
进一步地,所述衬底为玻璃或透明聚合物。
进一步地,所述透明聚合物材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸的一种或多种。
进一步地,所述ZnO薄膜层的厚度为30~50 nm。
进一步地,所述光活性层材料为无机电子受体材料ZnO与有机电子给体材料聚咔唑(PVK)的混合物。
进一步地,所述无机电子受体材料ZnO与有机电子给体材料聚咔唑(PVK)的质量比为1:1~1:10。
进一步地,所述光活性层的厚度为30~50 nm。
进一步地,所述空穴传输层材料为可溶性金属氧化物;
进一步地,所述空穴传输层材料为三氧化钼、五氧化二钒或三氧化钨的一种或多种;
进一步地,所述空穴传输层的厚度不超过10 nm。
进一步地,所述金属阳极为金属纳米线。
进一步地,所述金属纳米线直径约为10~100 nm。
本发明还公开了一种有机聚合物薄膜紫外光探测器的制备方法,其特征在于,包括以下步骤:
①对表面粗糙度小于1 nm的由衬底及透明导电阴极ITO所组成的基板进行清洗,清洗后用氮气吹干;
②在透明导电阴极ITO表面旋转涂覆、印刷或喷涂ZnO溶液,并将所形成的薄膜进行烘烤;
③在电子传输层上旋转涂覆、印刷或喷涂光活性层ZnO与PVK的混合溶液,并将所成的薄膜进行烘烤;
④在光活性层上旋转涂覆、印刷或喷涂金属氧化物溶液形成空穴传输层; 
⑤在空穴传输层上旋转涂覆、印刷或喷涂金属纳米线,并通过烘箱对所制备的器件进行烘烤。
将制备的器件与外接电流测试电路相连,在不同强度的紫外光照射下进行器件测试。 
本发明的优点在于:
(1)借鉴于反型有机薄膜太阳能电池结构,提供了一种反型结构的有机聚合物薄膜紫外光探测器,将ITO作为阴极,金属纳米线作为阳极,实现了全湿法制备的紫外光探测器,该器件解决了有机聚合物薄膜紫外光探测器的稳定性差问题,同时具有制备方法简单、设备要求低、成本低廉、可柔性、适合大规模生产的特点。
(2)用稳定性较强的ZnO半导体材料作为电子传输层,并采用紫外光吸收性能好的光活性层材料,的与传统结构的有机聚合物薄膜紫外光探测器相比,显著地提高了器件的响应度。
(3)本发明所制备的器件超薄,除去衬底厚度外,器件总厚度不超过500 nm。(4)该器件所采用的光活性层只对紫外光波段有吸收,省去了传统器件中所使用的紫外光透过滤光片,简单了器件结构,提高了器件效率。
附图说明
图1是本发明的一种有机聚合物薄膜紫外光探测器的结构图;
图2是光活性层所采用的电子给体材料聚咔唑(PVK)的分子结构示意图;
图3是光活性层的吸收光谱; 
附图标记为:1衬底、2透明导电阴极ITO、3 ZnO薄膜层、4光活性层、5空穴传输层、6金属阳极。
具体实施方式
本发明器件的具体结构如图1所示,图中包括衬底1、透明导电阴极ITO 2、ZnO薄膜层3、光活性层4、空穴传输层5、金属阳极6;其中,衬底1由玻璃或透明聚合物构成,所述透明聚合物材料包括聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸的一种或多种;光活性层4由无机电子受体材料ZnO与有机电子给体材料聚咔唑(PVK)的混合物,其混合比例为1:1~1:10;空穴传输层5材料为可溶性金属氧化物,包括三氧化钼(MoO3)、五氧化二钒(V2O5)、三氧化钨(WO3)的一种或多种;金属阳极6为金属纳米线,包括Ag纳米线、Cu纳米线、Au纳米线的一种或多种。
待测紫外光从衬底1入射时,透明导电阴极ITO 2与金属阳极6之间产生电压,电压大小随着照射光强度变化,将电压信号转变成电流信号,通过外接电流测试电路读出光电流数值。
从图3中可以看出,该器件所采用的光活性层只对紫外光波段有吸收,省去了传统器件中所使用的紫外光透过滤光片,简单了器件结构,提高了器件效率;
实例1:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为2 mg/ml的MoO3溶液喷涂于所制备的光活性层上,其厚度约为7 nm;最后,将导电Ag纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为630 A/W。
实例2:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面旋转涂覆浓度为20 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜层(厚度约为40 nm);将ZnO与PVK(比例为1:2)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为2 mg/ml的MoO3溶液喷涂于所制备的光活性层上,其厚度约为7 nm;最后,将导电Ag纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为690 A/W。
实例3:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为25 mg/ml的MoO3溶液旋转涂覆于所制备的光活性层上,其厚度约为5 nm;最后,将导电Ag纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为720 A/W。
实例4:
在实例3的基础上,其他条件不变,用V2O5溶液替代MoO3作为空穴传输层。具体制备工艺:将浓度为20 mg/ml的V2O5溶液旋转涂覆于光活性层上,并烘干,其厚度约为30 nm。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9V条件下获得电流响应度为550 A/W。
实例5:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为25 mg/ml的MoO3溶液旋转涂覆于所制备的光活性层上,其厚度约为5 nm;最后,将导电Cu纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为440 A/W。
实例6:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为25 mg/ml的Cs2CO3溶液旋转涂覆于所制备的光活性层上,其厚度约为5 nm;最后,将导电Cu纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为200 A/W。
实例7:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为25 mg/ml的Cs2CO3溶液旋转涂覆于所制备的光活性层上,其厚度约为5 nm;最后,将导电Ag纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为375 A/W。
实例8:
选择玻璃衬底与透明导电电极ITO,将其清洗干净后,在表面喷涂浓度为2 mg/ml的ZnO溶液,并烘干形成电子传输层ZnO薄膜(厚度约为40 nm);将ZnO与PVK(比例为1:1)所组成的混合溶液采用旋转涂覆的方法制备于电子传输层之上,作为光活性层,其厚度约为100 nm;再将浓度为2 mg/ml的Cs2CO3溶液喷涂于所制备的光活性层上,其厚度约为7 nm;最后,将导电Ag纳米线滴涂于表面,烘干后形成导电阳极。当在有功率密度为1.25 mW/cm2的中心波长为360 nm的紫外光照射时,在电压为-9 V条件下获得电流响应度为345 A/W。 

Claims (9)

1.一种有机聚合物薄膜紫外光探测器,其特征在于:其为多层层状结构,从下至上依次为:衬底、透明导电阴极ITO、ZnO薄膜层、光活性层、空穴传输层、金属阳极。
2.根据权利要求1所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述衬底为玻璃或透明聚合物,所述透明聚合物材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸的一种或多种。
3.根据权利要求1所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述ZnO薄膜层的厚度为30~50 nm。
4.根据权利要求1所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述光活性层材料为无机电子受体材料ZnO与有机电子给体材料聚咔唑的混合物。
5.根据权利要求4所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述无机电子受体材料ZnO与有机电子给体材料聚咔唑的质量比为1:1~1:10。
6.根据权利要求4或5所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述光活性层的厚度为30~50 nm。
7.根据权利要求1所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述空穴传输层材料为可溶性金属氧化物;
根据权利要求7所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述空穴传输层材料为三氧化钼、五氧化二钒或三氧化钨的一种或多种,所述空穴传输层的厚度不超过10 nm。
8.根据权利要求1所述的一种有机聚合物薄膜紫外光探测器,其特征在于:所述金属阳极为金属纳米线,金属纳米线直径约为10~100 nm。
9.一种有机聚合物薄膜紫外光探测器的制备方法,其特征在于,包括以下步骤:
①对表面粗糙度小于1 nm的由衬底及透明导电阴极ITO所组成的基板进行清洗,清洗后用氮气吹干;
②在透明导电阴极ITO表面旋转涂覆、印刷或喷涂ZnO溶液,并将所形成的薄膜进行烘烤;
③在电子传输层上旋转涂覆、印刷或喷涂光活性层ZnO与PVK的混合溶液,并将所成的薄膜进行烘烤;
④在光活性层上旋转涂覆、印刷或喷涂金属氧化物溶液形成空穴传输层; 
⑤在空穴传输层上旋转涂覆、印刷或喷涂金属纳米线,并通过烘箱对所制备的器件进行烘烤。
CN201210529448.3A 2012-12-11 2012-12-11 一种有机聚合物薄膜紫外光探测器及其制备方法 Expired - Fee Related CN102969451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210529448.3A CN102969451B (zh) 2012-12-11 2012-12-11 一种有机聚合物薄膜紫外光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210529448.3A CN102969451B (zh) 2012-12-11 2012-12-11 一种有机聚合物薄膜紫外光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN102969451A true CN102969451A (zh) 2013-03-13
CN102969451B CN102969451B (zh) 2015-10-28

Family

ID=47799458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210529448.3A Expired - Fee Related CN102969451B (zh) 2012-12-11 2012-12-11 一种有机聚合物薄膜紫外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN102969451B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311439A (zh) * 2013-05-17 2013-09-18 中国科学院化学研究所 薄膜光电导探测器及其制备方法与应用
CN103887432A (zh) * 2014-03-28 2014-06-25 电子科技大学 极性溶剂修饰的反型有机薄膜太阳能电池及其制备方法
CN104112820A (zh) * 2013-04-18 2014-10-22 东北师范大学 一种基于多金属氧酸盐的复合薄膜
CN105355788A (zh) * 2015-11-06 2016-02-24 昆明物理研究所 ZnO纳米晶与有机聚合物异质结垂直结构紫外光伏探测器
CN105489763A (zh) * 2015-11-26 2016-04-13 电子科技大学 一种基于铱类配合物磷光材料掺杂的有机紫外探测器件
CN108198939A (zh) * 2017-12-15 2018-06-22 浙江海洋大学 一种基于多层掺杂镁铝的氧化锌复合薄膜作为电子传输层的有机太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055205A (zh) * 2006-04-14 2007-10-17 中国科学院长春光学精密机械与物理研究所 有机紫外光探测器
CN101345291A (zh) * 2008-08-29 2009-01-14 华南理工大学 有机聚合物薄膜紫外光探测器及其制备方法
CN101800289A (zh) * 2010-03-16 2010-08-11 北京交通大学 一种有机紫外探测器及其制作方法
CN101937972A (zh) * 2010-08-06 2011-01-05 浙江大学 有机近紫外/深紫外双波段紫外光探测器件及其制备方法
US20110284825A1 (en) * 2010-05-24 2011-11-24 Korea Advanced Institute Of Science And Technology Organic light-emitting diodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055205A (zh) * 2006-04-14 2007-10-17 中国科学院长春光学精密机械与物理研究所 有机紫外光探测器
CN101345291A (zh) * 2008-08-29 2009-01-14 华南理工大学 有机聚合物薄膜紫外光探测器及其制备方法
CN101800289A (zh) * 2010-03-16 2010-08-11 北京交通大学 一种有机紫外探测器及其制作方法
US20110284825A1 (en) * 2010-05-24 2011-11-24 Korea Advanced Institute Of Science And Technology Organic light-emitting diodes
CN101937972A (zh) * 2010-08-06 2011-01-05 浙江大学 有机近紫外/深紫外双波段紫外光探测器件及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOWEI LI, XIUYUAN NI: "《A novel photoconductive ZnO/PVK nanocomposite prepared through photopolymerization induced by semiconductor nanoparticles》", 《MATERIALS LETTERS》, vol. 62, 7 February 2008 (2008-02-07), pages 3066 - 3069 *
HAI-GUO LI等: "《Polymer/ZnO hybrid materials for near-UV sensors with wavelength selective response》", 《SENSORS AND ACTUATORS B: CHEMICAL》, vol. 160, 18 September 2011 (2011-09-18), pages 1136 - 1140 *
LIDAN WANG: "《High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods》", 《ORGANIC ELECTRONICS》, vol. 11, 18 April 2010 (2010-04-18), pages 1318 - 1322 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112820A (zh) * 2013-04-18 2014-10-22 东北师范大学 一种基于多金属氧酸盐的复合薄膜
CN103311439A (zh) * 2013-05-17 2013-09-18 中国科学院化学研究所 薄膜光电导探测器及其制备方法与应用
CN103311439B (zh) * 2013-05-17 2015-07-15 中国科学院化学研究所 薄膜光电导探测器及其制备方法与应用
CN103887432A (zh) * 2014-03-28 2014-06-25 电子科技大学 极性溶剂修饰的反型有机薄膜太阳能电池及其制备方法
CN105355788A (zh) * 2015-11-06 2016-02-24 昆明物理研究所 ZnO纳米晶与有机聚合物异质结垂直结构紫外光伏探测器
CN105489763A (zh) * 2015-11-26 2016-04-13 电子科技大学 一种基于铱类配合物磷光材料掺杂的有机紫外探测器件
CN105489763B (zh) * 2015-11-26 2018-05-15 电子科技大学 一种基于铱类配合物磷光材料掺杂的有机紫外探测器件
CN108198939A (zh) * 2017-12-15 2018-06-22 浙江海洋大学 一种基于多层掺杂镁铝的氧化锌复合薄膜作为电子传输层的有机太阳能电池

Also Published As

Publication number Publication date
CN102969451B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
Deng et al. Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing
CN102969451B (zh) 一种有机聚合物薄膜紫外光探测器及其制备方法
CN104659123B (zh) 化合物薄膜太阳能电池及其制备方法
Lin et al. Self-powered Sb2S3 thin-film photodetectors with high detectivity for weak light signal detection
Ren et al. Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells
Khang Recent progress in Si-PEDOT: PSS inorganic–organic hybrid solar cells
CN107195787A (zh) 基于石墨烯电极和钙钛矿吸光层的自驱动光电探测器及其制备方法
CN106025084B (zh) 基于ZnO纳米颗粒阴极缓冲层的有机太阳能电池及制备方法
CN106887482A (zh) 一种机械式叠层太阳能电池及其制备方法
KR20200006791A (ko) 이종 접합 탠덤 태양 전지 및 이의 제조방법
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
CN105047826A (zh) 一种在钙钛矿层中掺入硫化镉的钙钛矿太阳能电池及其制备方法
Kanda et al. Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells
CN109705534A (zh) 一种三元有机材料薄膜及其构筑的有机太阳电池和光探测器件
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
CN107706308A (zh) 一种钙钛矿太阳能电池及制备方法
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
CN110911568A (zh) 一种银铋硫薄膜光电探测器及其制备方法
CN109920863A (zh) 窄禁带半导体薄膜、光敏二极管及制备方法
Du et al. Surface passivation of ITO on heterojunction solar cells with enhanced cell performance and module reliability
CN104241411A (zh) 一种阳极界面修饰的高效碲化镉纳米晶肖特基结太阳电池及其制备方法
Yin et al. Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure
CN108054232A (zh) 一种叠层太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151028

Termination date: 20201211

CF01 Termination of patent right due to non-payment of annual fee