CN108054232A - 一种叠层太阳能电池 - Google Patents

一种叠层太阳能电池 Download PDF

Info

Publication number
CN108054232A
CN108054232A CN201711463943.8A CN201711463943A CN108054232A CN 108054232 A CN108054232 A CN 108054232A CN 201711463943 A CN201711463943 A CN 201711463943A CN 108054232 A CN108054232 A CN 108054232A
Authority
CN
China
Prior art keywords
battery
solar cell
layer
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711463943.8A
Other languages
English (en)
Inventor
陈乐伍
王堉
赖其聪
王少武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yuanxin Energy Storage Technology Co ltd
Original Assignee
Shenzhen Advanced Clean Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Advanced Clean Power Technology Co Ltd filed Critical Shenzhen Advanced Clean Power Technology Co Ltd
Priority to CN201711463943.8A priority Critical patent/CN108054232A/zh
Publication of CN108054232A publication Critical patent/CN108054232A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种叠层太阳能电池,包括叠加的顶电池与底电池;所述顶电池为钙钛矿电池;所述钙钛矿电池包括溴掺杂CH3NH3PbI3薄膜;所述底电池为碲化镉电池。与现有技术相比,本发明中钙钛矿电池的禁带宽度随着掺溴比例变化可从1.57eV~2.30eV范围内变化,而碲化镉电池的禁带宽度为1.43eV,将钙钛矿电池作为顶电池,碲化镉电池作为底电池,制备的叠层电池能拓宽这两种电池对太阳光的吸收波长范围,提高电池转换效率,降低了对硫化镉厚度的要求,有利于制备成本的降低;同时,短波长的光在宽禁带的钙钛矿电池中产生的光生载流子能量增大,提高叠层电池的开路电压。

Description

一种叠层太阳能电池
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种叠层太阳能电池。
背景技术
CdTe电池效率在近几年内发展迅速,美国First solar公司于2016年创下的最高转换效率22.1%,但面临着对设备要求高和制造成本较高的问题。影响CdTe电池效率的因素之一是硫化镉(CdS)窗口层厚度的问题,为了减少光吸收损耗,禁带宽度为2.4eV的CdS厚度理论上应尽量薄,一般小于100nm,然而在实际工艺中该厚度CdS薄膜中的针孔以及在透明导电氧化物薄膜上的非共形覆盖都会导致漏电,从而导致电池性能下降。为了制备高效率的CdTe电池,对CdS厚度有苛刻的要求:既要求CdS薄膜厚度小于100nm,又要求薄膜在透明导电薄膜上不漏电,从而对实验设备要求高,制备成本高。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种光电转换效率较高且成本较低的叠层太阳能电池。
本发明提供了一种叠层太阳能电池,包括堆叠的顶电池与底电池;所述顶电池为钙钛矿电池;所述钙钛矿电池包括溴掺杂CH3NH3PbI3薄膜;所述底电池为碲化镉电池。
优选的,所述钙钛矿电池为半透明钙钛矿电池。
优选的,所述钙钛矿电池包括依次设置的导电玻璃层、空穴传输层、溴掺杂CH3NH3PbI3薄膜、PCBM层与透明电极。
优选的,所述溴掺杂CH3NH3PbI3薄膜为CH3NH3Pb(I1-xBrx)3薄膜;x为0.2~0.8。
优选的,所述所述溴掺杂CH3NH3PbI3薄膜为CH3NH3Pb(I0.4Br0.6)3薄膜。
优选的,所述透明电极为银纳米线或铜纳米线。
优选的,所述空穴传输层的厚度为50~100nm;所述溴掺杂CH3NH3PbI3薄膜的厚度为300~1000nm;所述PCBM层的厚度为50~100nm;所述透明电极的厚度为80~100nm。
优选的,所述碲化镉电池包括依次设置的导电玻璃层、硫化镉缓冲层、碲化镉吸收层与金属电极层。
优选的,所述硫化镉缓冲层的厚度为50~250nm。
优选的,所述碲化镉吸收层的厚度为1000~4000nm。
本发明提供了一种叠层太阳能电池,包括叠加的顶电池与底电池;所述顶电池为钙钛矿电池;所述钙钛矿电池包括溴掺杂CH3NH3PbI3薄膜;所述底电池为碲化镉电池。与现有技术相比,本发明中叠层电池是由掺溴的钙钛矿电池和碲化镉电池进行堆叠而成,钙钛矿电池的禁带宽度随着掺溴比例变化可从1.57eV~2.30eV范围内变化,而碲化镉电池的禁带宽度为1.43eV,将钙钛矿电池作为顶电池,碲化镉电池作为底电池,制备的叠层电池能拓宽这两种电池对太阳光的吸收波长范围,提高电池转换效率;同时,短波长的光在宽禁带的钙钛矿电池中产生的光生载流子能量增大,提高叠层电池的开路电压;在叠层电池中,钙钛矿顶电池吸收了400nm~550nm的短波长光,从而将碲化镉底电池中硫化镉的厚度从几十纳米增大到二百多纳米不会影响叠层电池对短波的吸收,也不会影响叠层电池的转换效率,降低了对硫化镉厚度的要求,提高电池的光电转换效率,有利于制备成本的降低。
附图说明
图1为本发明实施例1提供的碲化镉电池的结构示意图;
图2为本发明实施例1提供的叠层太阳能电池的结构示意图;
图3为本发明实施例2中不同Br/I比率x下CH3NH3Pb(I1-xBrx)3/CdTe叠层电池的转换效率曲线图;
图4(a)为本发明实施例2中CH3NH3Pb(I0.4Br0.6)3/CdTe叠层电池的电流-电压输出特征曲线图;
图4(b)为本发明实施例2中CH3NH3Pb(I0.4Br0.6)3/CdTe叠层电池的外量子效率谱图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种叠层太阳能电池,包括堆叠的顶电池与底电池;所述顶电池为钙钛矿电池;所述钙钛矿电池包括溴掺杂CH3NH3PbI3薄膜;所述底电池为碲化镉电池。
本发明对所有原料的来源并没有特殊的限制,为市售即可。
其中,所述钙钛矿电池为本领域技术人员熟知的钙钛矿电池即可,并无特殊的限制,本发明中优选半透明钙钛矿电池;所述钙钛矿电池更优选包括依次设置的导电玻璃层、空穴传输层、溴掺杂CH3NH3PbI3薄膜、PCBM层与透明电极。
所述导电玻璃层为本领域技术人员熟知的导电玻璃层即可,并无特殊的限制,本发明中优选为掺杂氟的二氧化锡(FTO)导电玻璃。
所述导电玻璃上设置有空穴传输层;所述空穴传输层为本领域技术人员熟知的空穴传输层即可,并无特殊的限制,本发明中优选为聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(导电聚合物PEDOT/PSS)层或三苯胺聚合物层;所述三苯胺聚合物层优选为PIF8-TAA层;所述空穴传输层的厚度优选为50~100nm,更优选为50~80nm,再优选为50~60nm。
所述空穴传输层上设置有溴掺杂CH3NH3PbI3薄膜;所述溴掺杂CH3NH3PbI3薄膜为本领域技术人员熟知的溴掺杂CH3NH3PbI3薄膜即可,并无特殊的限制,本发明中优选为CH3NH3Pb(I1-xBrx)3薄膜;x为0.2~0.8,优选为0.4~0.6,更优选为0.6;所述溴掺杂CH3NH3PbI3薄膜的厚度优选为300~1000nm,更优选为300~800nm。
所述溴掺杂CH3NH3PbI3薄膜上设置有电子传输层;所述电子传输层为本领域技术人员熟知的电子传输层即可,并无特殊的限制,本发明中优选为PCBM层;所述PCBM层的厚度优选为50~100nm,更优选为50~80nm,再优选为50~60nm。
所述PCBM层上设置有透明电极;所述透明电极为本领域技术人员熟知的透明电极,其沉积工艺不损坏钙钛矿即可,并无特殊的限制,本发明中优选为银纳米线或铜纳米线;所述透明电极的厚度优选为80~100nm;当为银纳米线时,银纳米线的特征长度在10~50微米,直径在20~50nm,银纳米线的厚度在100~150nm区间,方阻在20~50欧姆每平方,可见光区域透光率82%以上。
所述底电池为碲化镉电池;所述碲化镉电池为本领域技术人员熟知的碲化镉电池即可,并无特殊的限制,本发明中优选包括依次设置的导电玻璃层、硫化镉缓冲层、碲化镉吸收层与金属电极层。
所述导电玻璃层为本领域技术人员熟知的导电玻璃层即可,并无特殊的限制,本发明中优选为掺杂氟的二氧化锡(FTO)导电玻璃。
所述导电玻璃层上设置有硫化镉缓冲层;所述硫化镉缓冲层的厚度优选为50~250nm,更优选为100~250nm。
所述硫化镉缓冲层上设置有碲化镉吸收层;所述碲化镉吸收层的厚度优选为1000~4000nm,更优选为2000~4000nm,再优选为3000~4000nm。
所述碲化镉吸收层上设置有金属电极层;所述金属电极层为本领域技术人员熟知的金属电极层即可,并无特殊的限制,本发明中优选为铜/金复合电极层、铜/石墨复合电极层、非晶态氧化钼/金复合电极层、非晶态氧化钼/石墨复合电极层;所述金属电极层中铜或非晶态氧化钼层的厚度优选为1~5nm;所述石墨或金层的厚度优选为10~30nm。
本发明中叠层电池是由掺溴的钙钛矿电池和碲化镉电池进行堆叠而成,钙钛矿电池的禁带宽度随着掺溴比例变化可从1.57eV~2.30eV范围内变化,而碲化镉电池的禁带宽度为1.43eV,将钙钛矿电池作为顶电池,碲化镉电池作为底电池,制备的叠层电池能拓宽这两种电池对太阳光的吸收波长范围,提高电池转换效率;同时,短波长的光在宽禁带的钙钛矿电池中产生的光生载流子能量增大,提高叠层电池的开路电压;在叠层电池中,钙钛矿顶电池吸收了400nm~550nm的短波长光,从而将碲化镉底电池中硫化镉的厚度从几十纳米增大到二百多纳米不会影响叠层电池对短波的吸收,也不会影响叠层电池的转换效率,降低了对硫化镉厚度的要求,提高电池的光电转换效率,有利于制备成本的降低。
本发明还提供了一种上述叠层太阳能电池的制备方法,包括:
S1)制备钙钛矿电池与碲化镉电池。
所述钙钛矿电池按照以下步骤制备:在导电玻璃上采用旋涂法制备空穴传输层;在所述空穴传输层上采用喷涂法或旋涂法制备溴掺杂CH3NH3PbI3薄膜;在所述溴掺杂CH3NH3PbI3薄膜上采用旋涂法制备PCBM层;在所述PCBM层上采用喷涂法制备透明电极,得到钙钛矿电池。
所述碲化镉电池按照以下步骤制备:在导电玻璃上采用化学水浴法或磁控溅射法制备硫化镉缓冲层;在所述硫化镉缓冲层上采用磁控溅射法或近空间升华法制备碲化镉吸收层;在所述碲化镉吸收层上采用蒸发法沉积金属电极层。
S2)以所述钙钛矿电池为顶电池,以所述碲化镉电池为底电池,堆叠得到叠层太阳能电池;所述叠层太阳能电池为四端口叠层电池。
碲化镉电池在短波段300~600nm的光电转化量子效率低,技术上很难通过优化碲化镉电池本身实现提升,而溴掺杂的钙钛矿电池(MAPbBrxI3-x)在300~600nm波段有很高的转化效率,用它作为顶电池实现对太阳能光的分光谱吸收,叠层后使得总体太阳能发电效率提升;本发明制备的叠层太阳能电池为四端口叠层电池,即钙钛矿电池是一个独立的半透膜电池,有正负两端电极,而碲化镉是不透明的底电池,也有两端电极。
为了进一步说明本发明,以下结合实施例对本发明提供的一种叠层太阳能电池进行详细描述。
以下实施例中所用的试剂均为市售。
实施例1
参见图1与图2;图1为碲化镉电池的结构示意图;图2为叠层太阳能电池的结构示意图,其中1为钙钛矿电池,101为掺杂氟的二氧化锡FTO导电玻璃,102为PIF8-TAA空穴传输层,103为掺溴钙钛矿CH3NH3Pb(I1-xBrx)3层,104为PCBM电子传输层,105为银纳米线层;2为碲化镉电池,201为掺杂氟的二氧化锡FTO导电玻璃,202为CdS缓冲层,203为CdTe吸收层,204为铜层,205为金层。
制备钙钛矿电池1:
(1)在掺杂氟的二氧化锡FTO导电玻璃101上采用旋涂法制备一层PIF8-TAA空穴传输层102,厚度为50~100nm。
(2)采用喷涂法或旋涂法制备CH3NH3Pb(I1-xBrx)3层103,厚度为500~1000nm。
(3)采用旋涂方法制备PCBM电子传输层104,厚度为50~100nm。
(4)采用喷涂法制备银纳米线层105,厚度为80~100nm。
制备碲化镉电池2:
(1)在掺杂氟的二氧化锡FTO导电玻璃201上采用化学水浴法或磁控溅射法制备CdS缓冲层202,厚度为50~250nm。
(2)采用磁控溅射法或近空间升华法制备CdTe吸收层203,厚度为1000~4000nm。
(3)采用蒸发法依次沉积铜204和金205作为电极,铜的厚度为1~5nm,金的厚度为10~30nm。
将钙钛矿电池1和碲化镉电池2叠加在一起作成四端口叠层电池,钙钛矿电池1为顶电池,碲化镉电池2为底电池。
实施例2
叠层电池采用图2所示CH3NH3Pb(I1-xBrx)3/CdTe叠层太阳能电池结构。该结构中,光从CH3NH3Pb(I1-xBrx)3顶电池入射,波长较短的会被顶电池吸收产生能量较大的光生载流子,透射的光会在CdTe底电池中产生光生载流子,从而扩宽了这两种电池对太阳光的吸收波长范围,提高光的利用率。
在CH3NH3Pb(I1-xBrx)3顶电池中,为了提高电池的透射率,选取了导电良好和透明的银纳米线(AgNW)作为电极,银纳米线的特征长度在10-50微米,直径在20-50nm,银纳米线的厚度在100~150nm区间,方阻在20~50欧姆每平方,可见光区域透光率82%以上。由于Br/I比率的变化会导致CH3NH3Pb(I1-xBrx)3薄膜的禁带宽度Eg、未占有电子的能级最低的轨道(LUMO)和已占有电子的能级最高的轨道(HOMO)会相应地改变。经过实验测量,CH3NH3Pb(I1-xBrx)3的LUMO和HOMO分别随着x的增大而升高和降低,同时禁带宽度Eg也随着x的增大而增大,并满足一定的关系,Eg(eV)与x的关系为:
Eg(x)=1.57+0.39x+0.33x2
CH3NH3Pb(I1-xBrx)3薄膜的光吸收系数会随x的变化而变化,吸收光谱随着x的增大向左移动。
在钙钛矿顶电池中,选择三苯胺聚合物PIF8-TAA作为钙钛矿顶电池的空穴传输层,采用旋涂法制备得到50nm;通过旋涂法调节不同的Br/I的比率来得到300nm不同的禁带宽度的CH3NH3Pb(I1-xBrx)3薄膜;再采用旋涂法制备50nm的PCBM层。在碲化镉底电池中,采用磁控溅射的方法依次制备100nm的CdS层,再制备4μm的CdTe层;碲化镉电池的Cu厚度1~5nm,金厚度10~30nm。在CH3NH3Pb(I1-xBrx)3薄膜中Br/I比率x等于0、0.2、0.4、0.6、0.8和1的情况下,分别先单独测量顶电池和底电池,再测量叠层电池,比较单结电池和叠层电池的输出特性,得到不同Br/I比率x下CH3NH3Pb(I1-xBrx)3/CdTe叠层电池的转换效率曲线图,如图3所示;得到CH3NH3Pb(I0.4Br0.6)3/CdTe叠层电池的电流-电压输出特性曲线如图4(a)所示和外量子效率谱如图4(b)所示。由图3可知,碲化镉底电池的转换效率随着x的增大逐步增大;叠层电池的转换效率随着x的增大先增大后减小,在x=0.6时叠层电池的转换效率达到最大值22.4%,大于单结碲化镉电池的16.5%转换效率;由图4可以看出作为底电池,CdTe电池的外量子效率会在短波光处下降明显,由于短波长的光被宽禁带的顶电池所吸收从而无法到达底电池,从而电池的效率和短路电流会下降明显。虽然底电池的效率降到6.6%,但叠层电池的效率还是高于单结的CdTe电池。在CH3NH3Pb(I0.4Br0.6)3/CdTe叠层电池中,400~600nm短波长的光已被顶电池吸收,所以增大CdS厚度不影响底电池对短波的吸收。
说明本发明采用CH3NH3Pb(I1-xBrx)3/CdTe叠层电池结构,不仅能降低对CdS厚度的要求,而且能提高电池的转换效率。

Claims (10)

1.一种叠层太阳能电池,其特征在于,包括堆叠的顶电池与底电池;所述顶电池为钙钛矿电池;所述钙钛矿电池包括溴掺杂CH3NH3PbI3薄膜;所述底电池为碲化镉电池。
2.根据权利要求1所述的叠层太阳能电池,其特征在于,所述钙钛矿电池为半透明钙钛矿电池。
3.根据权利要求1所述的叠层太阳能电池,其特征在于,所述钙钛矿电池包括依次设置的导电玻璃层、空穴传输层、溴掺杂CH3NH3PbI3薄膜、PCBM层与透明电极。
4.根据权利要求3所述的叠层太阳能电池,其特征在于,所述溴掺杂CH3NH3PbI3薄膜为CH3NH3Pb(I1-xBrx)3薄膜;x为0.2~0.8。
5.根据权利要求3所述的叠层太阳能电池,其特征在于,所述所述溴掺杂CH3NH3PbI3薄膜为CH3NH3Pb(I0.4Br0.6)3薄膜。
6.根据权利要求3所述的叠层太阳能电池,其特征在于,所述透明电极为银纳米线或铜纳米线。
7.根据权利要求3所述的叠层太阳能电池,其特征在于,所述空穴传输层的厚度为50~100nm;所述溴掺杂CH3NH3PbI3薄膜的厚度为300~1000nm;所述PCBM层的厚度为50~100nm;所述透明电极的厚度为80~100nm。
8.根据权利要求1所述的叠层太阳能电池,其特征在于,所述碲化镉电池包括依次设置的导电玻璃层、硫化镉缓冲层、碲化镉吸收层与金属电极层。
9.根据权利要求8所述的叠层太阳能电池,其特征在于,所述硫化镉缓冲层的厚度为50~250nm。
10.根据权利要求8所述的叠层太阳能电池,其特征在于,所述碲化镉吸收层的厚度为1000~4000nm。
CN201711463943.8A 2017-12-28 2017-12-28 一种叠层太阳能电池 Pending CN108054232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711463943.8A CN108054232A (zh) 2017-12-28 2017-12-28 一种叠层太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711463943.8A CN108054232A (zh) 2017-12-28 2017-12-28 一种叠层太阳能电池

Publications (1)

Publication Number Publication Date
CN108054232A true CN108054232A (zh) 2018-05-18

Family

ID=62128629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711463943.8A Pending CN108054232A (zh) 2017-12-28 2017-12-28 一种叠层太阳能电池

Country Status (1)

Country Link
CN (1) CN108054232A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635041A (zh) * 2019-09-03 2019-12-31 理天光电科技(苏州)有限公司 薄膜太阳能电池及其制备方法
CN114284378A (zh) * 2021-12-21 2022-04-05 成都中建材光电材料有限公司 一种薄膜叠层太阳能电池及制造方法
CN114678391A (zh) * 2022-01-26 2022-06-28 华北电力大学 一种叠层太阳电池
CN114765200A (zh) * 2021-01-12 2022-07-19 四川大学 一种单基底四端级联钙钛矿-碲化镉叠层太阳电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201532956U (zh) * 2009-10-29 2010-07-21 润峰电力有限公司 碲化镉薄膜太阳电池
CN105047823A (zh) * 2015-06-24 2015-11-11 华南师范大学 一种半透明钙钛矿晶体硅串列叠层太阳能电池及其制备方法
US20160035927A1 (en) * 2014-08-01 2016-02-04 International Business Machines Corporation Tandem Kesterite-Perovskite Photovoltaic Device
CN106887482A (zh) * 2017-03-31 2017-06-23 中南大学 一种机械式叠层太阳能电池及其制备方法
JP2017168499A (ja) * 2016-03-14 2017-09-21 株式会社カネカ 光電変換装置およびその製造方法
CN208284489U (zh) * 2017-12-28 2018-12-25 深圳市先进清洁电力技术研究有限公司 一种叠层太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201532956U (zh) * 2009-10-29 2010-07-21 润峰电力有限公司 碲化镉薄膜太阳电池
US20160035927A1 (en) * 2014-08-01 2016-02-04 International Business Machines Corporation Tandem Kesterite-Perovskite Photovoltaic Device
CN105047823A (zh) * 2015-06-24 2015-11-11 华南师范大学 一种半透明钙钛矿晶体硅串列叠层太阳能电池及其制备方法
JP2017168499A (ja) * 2016-03-14 2017-09-21 株式会社カネカ 光電変換装置およびその製造方法
CN106887482A (zh) * 2017-03-31 2017-06-23 中南大学 一种机械式叠层太阳能电池及其制备方法
CN208284489U (zh) * 2017-12-28 2018-12-25 深圳市先进清洁电力技术研究有限公司 一种叠层太阳能电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635041A (zh) * 2019-09-03 2019-12-31 理天光电科技(苏州)有限公司 薄膜太阳能电池及其制备方法
CN114765200A (zh) * 2021-01-12 2022-07-19 四川大学 一种单基底四端级联钙钛矿-碲化镉叠层太阳电池
CN114765200B (zh) * 2021-01-12 2023-07-18 四川大学 一种单基底四端级联钙钛矿-碲化镉叠层太阳电池
CN114284378A (zh) * 2021-12-21 2022-04-05 成都中建材光电材料有限公司 一种薄膜叠层太阳能电池及制造方法
CN114678391A (zh) * 2022-01-26 2022-06-28 华北电力大学 一种叠层太阳电池

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
Kim et al. Photovoltaic technologies for flexible solar cells: beyond silicon
Sun et al. Semi-transparent solar cells
CN107924933B (zh) 多结光伏装置
US8426722B2 (en) Semiconductor grain and oxide layer for photovoltaic cells
CN101414663B (zh) 一种并联结构的叠层聚合物薄膜太阳能电池
CN104022225B (zh) 一种全溶液法制备的高效低成本铜铟镓硒/钙钛矿双结太阳能光电池
Jang et al. Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
CN105024013A (zh) 一种新型的低温溶液法制备的高效率长寿命的平面异质结钙钛矿太阳能电池
US20190221692A1 (en) Flexible Transparent-Semitransparent Hybrid Solar Window Membrane Module
CN108054232A (zh) 一种叠层太阳能电池
Spoerke et al. Improved performance of poly (3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide
CN108140735A (zh) 多接合型光电转换装置和光电转换模块
CN112018100A (zh) 一种硅/钙钛矿叠层太阳能电池
Hu et al. Flexible solar-rechargeable energy system
CN107359243A (zh) 一种三元共混有机聚合物太阳能电池器件
CN104362186B (zh) 一种应用于高效薄膜光电池的双层结构窗口层
CN104253222B (zh) 有机串联叠层太阳电池的中间连接层及构成的高效太阳电池
CN106058057A (zh) 一种柔性钙钛矿太阳能电池
Kartikay et al. Recent advances and challenges in solar photovoltaic and energy storage materials: future directions in Indian perspective
KR102372238B1 (ko) 일체형 탠덤 태양전지 및 그 제조방법
Feleki et al. p–i–n perovskite solar cells on steel substrates
CN208284489U (zh) 一种叠层太阳能电池
Aftab et al. Quantum junction solar cells: Development and prospects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230303

Address after: 518000 a3602, building 11, Shenzhen Bay science and technology ecological park, No.16, Keji South Road, high tech community, Yuehai street, Nanshan District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Yuanxin Energy Storage Technology Co.,Ltd.

Address before: 28/F, Xinghe WORLDA Building, No.1 Yabao Road, Bantian Street, Longgang District, Shenzhen, Guangdong 518000

Applicant before: SHENZHEN XIANJIN CLEAN POWER TECHNOLOGY RESEARCH CO.,LTD.

TA01 Transfer of patent application right