TWI671795B - 利用共形碳薄膜減低臨界尺寸之方法 - Google Patents

利用共形碳薄膜減低臨界尺寸之方法 Download PDF

Info

Publication number
TWI671795B
TWI671795B TW104126423A TW104126423A TWI671795B TW I671795 B TWI671795 B TW I671795B TW 104126423 A TW104126423 A TW 104126423A TW 104126423 A TW104126423 A TW 104126423A TW I671795 B TWI671795 B TW I671795B
Authority
TW
Taiwan
Prior art keywords
layer
hard mask
patterned photoresist
carbon
photoresist
Prior art date
Application number
TW104126423A
Other languages
English (en)
Other versions
TW201611096A (zh
Inventor
梅寶其班徹奇
金秉憲
帕奇迪尼斯
繆麗妍
曼納帕拉米特
班卻爾克里斯多夫
尼亞克梅乎B
戴輝雄
倪克里斯多夫S
迪爾丹尼爾李
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201611096A publication Critical patent/TW201611096A/zh
Application granted granted Critical
Publication of TWI671795B publication Critical patent/TWI671795B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3088Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本揭示之實施例大體而言提供一種在與上覆光阻劑層光學匹配的硬光罩中形成尺寸減小的圖案的方法。該方法通常包含在低於光阻劑之分解溫度的溫度下在圖案化光阻劑的場區、側壁、及底部部分和下方的硬光罩上方施加尺寸縮小的共形碳層。本文的方法和實施例進一步涉及藉由蝕刻製程從該圖案化光阻劑的底部部分和該硬光罩去除該共形碳層,以暴露該硬光罩、蝕刻在底部部分的暴露硬光罩基板、接著同時去除該共形碳層、該光阻劑、及其他碳質成分。從而產生具有尺寸減小的特徵、用於進一步的圖案轉移的硬光罩。

Description

利用共形碳薄膜減低臨界尺寸之方法
本揭示之實施例大體而言係關於積體電路的製造,尤其是關於在用於圖案轉移的硬光罩中形成的特徵中形成減小的臨界尺寸的方法。
減小積體電路(IC)的尺寸導致性能改良、容量提高、及/或成本降低。每個尺寸的減小都需要更複雜的技術來形成IC。光微影術常被用於在基板上圖案化IC。IC的例示性特徵是材料的線,該材料可以是金屬、半導體、或絕緣體。線寬是線的寬度,而間距是相鄰的線之間的距離。節距被定義為在兩條相鄰的線上同一點之間的距離。節距等於線寬和間距的和。然而,由於諸如光學和光或輻射波長等各種因素,光微影術具有最小的節距,小於該最小的節距時,特定的光微影術可能無法可靠地形成特徵。因此,光微影術的最小節距會限制特徵尺寸的減小。同樣地,被設計來形成100nm或更寬的通孔或線互連件的圖案化工具通常無法形成更小的通孔。因此,隨著元件縮小到這些小的尺寸,目前的微影術製程面臨的挑戰是形成具有要求的臨界尺寸(CD)的圖案。為了避免必 須重新設計目前的微影術工具,需要新的方法來縮小被蝕刻於基板中的IC線路和通孔互連件之臨界尺寸。
目前,用以縮小臨界尺寸(例如硬光罩中尺寸減小的圖案)的共形層是使用可蝕刻材料(例如氧化矽)藉由原子層沉積(ALD)形成的。然而,沉積的材料品質會難以控制,導致密度低、機械強度差、及對隨後的蝕刻化學品具有退化的耐化學性。ALD氧化物中的高應力也會導致下層彎曲和變形、以及由於黏著性差和化學相容性不匹配而剝離。此外,氧化物材料在蝕刻後需要濕清洗製程來清除。濕清洗是一種等向性製程,等向性製程通常導致CD損失和下切問題。
由於形成的碳層之蝕刻選擇性且容易使用傳統的乾灰化電漿製程清除,電漿增強化學氣相沉積(PECVD)碳薄膜是用於在硬光罩材料中形成尺寸減小的圖案的替代方法。一般來說,用於在硬光罩中產生尺寸減小的圖案的碳薄膜之沉積是在超過120℃的溫度下實施,以實現可接受的階梯覆蓋率、具有最小圖案負載效應的共形度、縫隙填充、及在高深寬比結構上的平坦化。由於形成這些類型的層所需的高溫,這些傳統的碳沉積製程具有有限的用途。因此,共形碳的高溫PECVD沉積妨礙了該共形碳在軟碳質材料上的配置,該軟碳質材料例如分解溫度通常低於120℃的光阻劑。
鑑於目前的技術狀態,需要有一種用於直接在圖案化的光阻劑層上形成含碳薄膜、然後藉由乾灰化製程清除的低溫方法。
本揭示之實施例大體而言提供一種在與光阻劑層光學匹配的硬光罩中形成尺寸減小的圖案的方法。該方法通常包含在低於光阻劑之分解溫度的溫度下在圖案化光阻劑的場區、側壁、及底部部分和下方的硬光罩上方施加尺寸縮小的共形碳層。本文揭示的方法和實施例進一步涉及藉由蝕刻製程從形成在該光阻劑中的圖案化特徵之底部部分去除該共形碳層,以暴露該硬光罩的表面、蝕刻在該底部部分的暴露硬光罩基板、接著同時去除該共形碳層、該光阻劑、及其他碳質成分。從而產生具有減小的CD尺寸特徵、用於進一步的圖案轉移的硬光罩。
本揭示之實施例可以進一步提供一種在硬光罩中形成尺寸減小的圖案的方法。該方法可以包括在硬光罩層上形成圖案化光阻劑層,並在該圖案化光阻劑上藉由電漿製程沉積共形碳層。該共形碳層可以被配置在特徵之場區和側壁及底部部分上方,該特徵被形成在該圖案化光阻劑中。該方法可以進一步包括藉由蝕刻製程從該底部部分去除該共形碳層,以暴露該硬光罩層之一部分、蝕刻該硬光罩層之該暴露部分以在該硬光罩層中形成凹部、及藉由電漿灰化法同時去除該共形碳層和圖案化光阻劑層之剩餘部分。
本揭示之實施例可以進一步提供一種在硬光罩上形成尺寸減小的圖案的方法。該方法可以包括提供基板到電漿腔室中,該基板包含在硬光罩上的圖案化光阻劑,並將丙烯氣體、氨氣、電漿起始氣體、及稀釋氣體引入處理腔室;其中烴源和氮源之體積流量比係在從約50:1至約5:1的比例中。該方法可以進一步包括在該處理腔室中產生電漿,其中該電漿係藉由施加功率密度為約0.01W/cm2至約10W/cm2的RF功率所產生的,以及在該圖案化光阻劑和該硬光罩上方沉積包含摻雜氮的非晶碳的共形碳層。該光阻劑和該硬光罩之表面可以各具有介於1.6和1.7之間的折射率,並且在193nm的波長下消光係數可以介於0.00和0.12之間。該硬光罩可以包括SiOwNx:Hy。此外,在沉積該共形碳層的同時,可以將該基板的溫度保持在低於100℃。
本揭示之實施例可以進一步提供一種在硬光罩上形成尺寸減小的圖案的方法。該方法可以包括提供基板到電漿腔室中,該基板包含在硬光罩上的圖案化光阻劑。該基板的溫度可以被保持在低於100℃。該方法可以進一步包括將丙烯氣體、氨氣、電漿起始氣體、及稀釋氣體引入處理腔室。烴源和氮源之體積流量比可以在從約50:1至約5:1的比例中。該方法還可以包括在該處理腔室中產生電漿。該電漿可以藉由施加功率密度為約0.01W/cm2至約10W/cm2的RF功率來產生。該方法還可以包括藉由該圖案化光阻劑和該硬光罩在形成的圖 案之場區、側壁、及底部部分上方沉積包含摻雜氮的非晶碳層的共形碳層。該光阻劑可以具有介於1.6和1.7之間的折射率,並且在193nm的波長下消光係數可以介於0.00和0.12之間。該硬光罩可以具有化學通式SiOwNx:Hy。在該光阻劑的微影術曝光波長下,該硬光罩的光學性質可以充分匹配該光阻劑的光學性質。
101-107‧‧‧方塊
108‧‧‧光阻劑
108A‧‧‧場區
108B‧‧‧側壁
108C‧‧‧底部部分
109‧‧‧共形碳薄膜層
110‧‧‧硬光罩層
110A‧‧‧特徵
111‧‧‧ARC層
112‧‧‧光學平坦化旋塗碳層
113‧‧‧氮化鈦層
114‧‧‧氧化物層
115‧‧‧主動層
115A‧‧‧項目
116‧‧‧基板
117‧‧‧多層基板
201-204‧‧‧方塊
205‧‧‧共形碳薄膜層
206‧‧‧圖案化光阻劑
206A‧‧‧場區
206B‧‧‧側壁
206C‧‧‧底部凹部
207‧‧‧抗反射碳質ARC層
207A‧‧‧碳質ARC層
208‧‧‧硬光罩
208A‧‧‧去除部分
209‧‧‧蝕刻終止層
210‧‧‧基板
211‧‧‧多層基板
301‧‧‧光阻劑收縮層
302‧‧‧光阻劑層
303‧‧‧開口
304‧‧‧硬光罩層
305‧‧‧多用途PVD介電質層
306‧‧‧旋塗碳層
307‧‧‧氮化鈦硬光罩層
308‧‧‧氧化物層
309‧‧‧主動層
310‧‧‧基板
311‧‧‧多層基板
為詳細瞭解上述本揭示之特徵,可參照實施例(其中一些圖示於附圖中)而對以上簡要概述的本揭示作更特定的描述。然而,應注意的是,附圖僅圖示本揭示之典型實施例,因此不應將該等附圖視為限制本揭示之範圍,因本揭示可認可其他等同有效的實施例。
第1A圖為繪示依據本揭示之一個實施例與例示性圖案化方法相關的操作之流程圖。
第1B-11圖圖示依據本揭示之一實施例表示第1A圖闡述的圖案化方法之剖視圖。
第2A圖為繪示依據本揭示之一個實施例與圖案化製程相關的操作之流程圖。
第2B-2E圖圖示依據本揭示之一實施例表示第2A圖闡述的例示性圖案化製程之剖視圖。
第3A圖和第3B圖圖示依據本文揭示之一實施例表示可形成的例示性多層結構之剖視圖。
第4圖為依據本文描述之一實施例含有各種不同烴的前驅物之階梯覆蓋率對比溫度圖。
為了便於理解,已在可能處使用相同的元件符號來指稱對於圖式為相同的元件。構思的是,可以將在一個實施例中揭示的元件有益地用於其它實施例中而無需進一步詳述。
本揭示之實施例係關於形成共形碳層的製程,以在硬光罩結構中產生尺寸減小的特徵。在一些配置中,可以使硬光罩結構與上覆的光阻劑層光學匹配。在各種實施例中,可以在低於光阻劑之分解溫度的溫度下在圖案化光阻劑層之特徵上方沉積共形碳層,從而保留該光阻劑層之化學、物理、及機械性質。沉積的碳層通常具有良好的黏著性、化學相容性、良好的階梯覆蓋率、及高的蝕刻選擇性之特徵。
本方法和實施例可以進一步涉及藉由蝕刻製程從圖案化光阻劑的底部部分和硬光罩去除共形碳層,以暴露硬光罩、蝕刻在該底部部分的暴露硬光罩基板、接著同時去除光阻劑、共形碳層、及其他碳質成分。同時去除碳質成分免除了對於去除這些碳質成分的濕清洗操作之需求,從而降低形成具有尺寸減小的特徵、用於進一步的圖案轉移的硬光罩之成本和複雜性。
第1A圖為圖示依據本揭示之一個實施例的方法100之流程圖。第1B-1I圖圖示表示第1A圖闡述的圖案化製程之剖視圖,並以圖形方式圖示出在方法100的各種階段的多層基板117。第1B圖圖示包含多層基板117 的數個可能的層。在一些實施例中,多層基板117還可以包括被沉積在基板表面上的複數種交替的氧化物和氮化物材料(即氧化物-氮化物-氧化物(ONO))、一種或更多種氧化物或氮化物材料、多晶矽或非晶矽材料、與非晶矽交替的氧化物、與多晶矽交替的氧化物、與摻雜矽交替的未摻雜矽、與摻雜多晶矽交替的未摻雜多晶矽、或與摻雜非晶矽交替的未摻雜非晶矽。多層基板117可以是包含下列中之一者或更多者的層堆疊:結晶矽、氧化矽、氧氮化矽、氮化矽、應變矽、矽鍺、鎢、氮化鈦、摻雜或未摻雜的多晶矽、摻雜或未摻雜的矽晶圓、及圖案化或未圖案化的晶圓、絕緣體上矽(SOI)、摻雜碳的矽氧化物、矽氮化物、摻雜矽、鍺、砷化鎵、玻璃、藍寶石、低介電常數介電質、及上述之組合。如第1B-1H圖所示,氧化物層114可以被形成在主動層115上。另外,氮化鈦層113可以被形成在氧化物層114上。多層基板117還可以包含含有碳質材料的層,該碳質材料例如光阻劑、抗反射塗層、及其他旋塗塗層。
在方法100開始時,提供多層基板117到電漿處理腔室,其中多層基板117停留在溫控基板固持件或夾盤(例如靜電夾盤)上。然後使多層基板117平衡到低於光阻劑108之分解溫度的溫度。光阻劑108依據方塊101被配置在硬光罩層110上,並且依據方塊102被使用微影術類型的製程圖案化。
光阻劑108可以是對某些波長的電磁輻射敏感的聚合物材料,而且可以通過旋塗製程或CVD製程來施加。在一些實施例中,光阻劑108是對紫外光敏感的碳基聚合物,例如酚醛樹脂、環氧樹脂、或偶氮環烷樹脂。光阻劑108可以是正或負光阻劑。較佳的正光阻劑可以選自由248nm光阻劑、193nm光阻劑、157nm光阻劑、及具有重氮萘醌敏化劑的酚醛樹脂基質所組成之群組。較佳的負光阻劑可以選自由聚順異戊二烯和聚肉桂酸乙烯酯所組成之群組。值得注意的是,光阻劑材料的分解溫度將遠低於多層基板117中存在的其他非碳質層。典型的光阻劑分解溫度範圍為100℃至150℃,導致圖案化性能受損且製程產率不佳。
依據第1A圖的方塊103,並如第1D圖所圖示,共形碳薄膜層109被沉積在由圖案化光阻劑108形成的場區108A、側壁108B、和底部部分108C及尺寸減小的圖案轉移硬光罩層110之尺寸減小的特徵110A上。可以藉由PECVD製程從氣態前驅物將共形碳薄膜層109配置在圖案化光阻劑108上,該氣態前驅物被提供到包含多層基板117的反應器中。
可以使用任何適當的處理腔室進行本揭示的實施例,例如電漿增強化學氣相沉積(PECVD)腔室。處理腔室可以被結合到具有溫控夾盤以固持多層基板117的基板處理系統中。適當系統的實例包括可以使用DxZTM處理腔室的CENTURA®系統、PRECISION 5000®系統、PRODUCERTM系統、PRODUCERTM GTTM、及PRODUCERTM SETM處理腔室,皆可購自美國加州聖克拉拉的應用材料公司。構思的是,其他的處理系統,包括可從其他製造商購得的那些,也可適於實施本文所述的實施例。
用以藉由PECVD形成共形碳薄膜層109的含碳前驅物是由通常選自烷類、烯類、及炔類的烴類所組成。無機的含氮前驅物可以被用來將較佳的共形碳薄膜層109摻雜氮,並包括氨(NH3)、一氧化二氮(N2O)、或肼(N2H2)。或者,諸如胺等含氮的碳前驅物可以被使用且可以式CxHyNz表示,其中x的範圍介於1和12之間,y的範圍介於2和20之間,而且z的範圍介於1和10之間。適當的含氮烴化合物可以包括下列化合物中之一者或更多者:甲胺、二甲胺、三甲胺(TMA)、三乙胺、苯胺、喹啉、吡啶、丙烯腈、及芐腈。
可以在烴化合物之前及/或與烴化合物同時將電漿起始氣體引入PECVD腔室中,並起始電漿以開始沉積。電漿起始氣體可以是高離子化電位的氣體,包括、但不限於氦氣、氫氣、氮氣、氬氣、及上述氣體之組合和混合物。電漿起始氣體也可以是化學惰性的氣體,例如氦氣、氮氣、或氬氣。氣體的適當離子化電位為約5eV(電子電位)至25eV。可以在含氮烴源及/或烴源之前將電漿起始氣體引入PECVD腔室中,此舉允許形成穩定的電漿,並降低起弧的可能性。
可以使用惰性氣體作為稀釋氣體或載氣,以與烴源、電漿起始氣體、含氮烴源、或上述之組合一起流動。適當的稀釋氣體可以包括氬(Ar)、氦(He)、氫(H2)、氮(N2)、氨(NH3)、諸如氪(Kr)、氙(Xe)等稀有氣體、或上述氣體之任意組合。在一些實施例中,由於經濟的因素,使用氬作為稀釋氣體。氬(Ar)、氦(He)、及/或氮(N2)可被用來控制共形碳層的密度和沉積速率。在其他的實施例中,添加的H2及/或NH3可被用來控制共形碳層的氫比率。在諸如乙炔(C2H2)的炔類或諸如丙烯的烯類可被用作烴源的情況下,在沉積過程中可以不使用載氣。
在處理過程中,可以將烴源、含氮氣體及稀釋氣體引入PECVD腔室中,以沉積摻雜氮的共形碳層。烴源可以是以上討論的、任何適當的烴化合物。假使使用液體烴源,則前驅物流量可以介於約50mg/min至約1000mg/min之間。假使使用氣態烴源,則前驅物流量可以介於約100sccm至約5000sccm之間,例如約200sccm至約600sccm。假使使用載氣,則載氣流量可以介於約500sccm和約10000sccm之間。電漿起始氣體可以是以上討論的、任何適當的電漿起始氣體,並以約0sccm至約50,000sccm的流動速率流動,例如介於約400sccm至約8,000sccm之間。稀釋氣體可以是上述的任何稀釋氣體,並以約0sccm至約5,000sccm的流動速率供應,例如約500sccm至約1,000sccm。
在各種實施例中,可以以約1:100至約20:1、例如約1:40至約10:1的含氮氣體對烴源比引入含氮氣體。可以以約2:1至約40:1、例如約20:1至約30:1的稀釋氣體對烴源比引入稀釋氣體。在一個實施例中,烴源:含氮氣體:電漿起始氣體:稀釋氣體的體積流量比是在例如約1:1:0.5:20的比例,例如約1:0.5:0.5:20,例如約1:0.2:0.5:20,例如約1:0.2:0.5:30,例如約1:0.2:0.5:40。在一個實施例中,烴源:電漿起始氣體:稀釋氣體的體積流量比是在約1:0.5:20至約1:10:20的比例中,例如約1:0.8:20、約1:1:20、約1:1.5:20、約1:1.8:20、約1:2:20、約1:2.5:20、約1:3:20、約1:3.5:20、約1:4:20、約1:4.5:20、約1:5:20、約1:5.5:20、約1:6:20、約1:8:20、約1:10:20或以上,例如約1:15:20。
假使使用含氮烴源(如上所述),則可以使含氮烴氣體以約10sccm至約2,000sccm、例如約500sccm至約1,500sccm的流動速率流入。在含氮烴源為液體前驅物的情況下,含氮烴源的流量可以介於15mg/min和2,000mg/min之間,例如介於100mg/min和1,000mg/min之間。在一個實施例中,含氮烴源:電漿起始氣體:稀釋氣體的體積流量比是在例如約1:0.5:20的比例,例如約1:0.2:20,例如約1:0.8: 20,例如約1:1:20,例如約1:0.5:30,例如約1:0.5:40。
在沉積過程中,可以將多層基板117的溫度保持在約25℃至約100℃之間,以防止光阻劑分解。可以將處理腔室保持在約100毫托至約100托的腔室壓力,例如約2托至約15托,例如約8托或更高,例如約20托。可以藉由施加功率密度為0.001W/cm2至約5W/cm2、例如約0.01W/cm2至約1W/cm2、例如約0.04W/cm2至約0.07W/cm2的RF功率到基板表面區域來產生電漿。對於300mm的基板來說,功率施加可以從約1瓦至約2,000瓦,例如從約10W至約100W。RF功率可以是單頻或雙頻的。據信雙頻的RF功率施加可提供獨立控制的通量和離子能量,因為撞擊薄膜表面的離子之能量會影響薄膜密度。施加的RF功率及使用的一個或更多個頻率可以基於基板的尺寸和所用的設備而改變。假使使用單頻功率,則頻率功率可以介於約10KHz和約30MHz之間,例如約13.56MHz或更高,例如27MHz或60MHz。假使使用雙頻RF功率來產生電漿,則可以使用混合RF功率。混合RF功率可以提供範圍從約10MHz至約60MHz的高頻功率,例如約13.56MHz、27MHz或60MHz,以及範圍從約10KHz至約1MHz的低頻功率,例如約350KHz。電極間距(即基板和噴頭之間的距離)可以從約200密耳至約1000密耳,例如從約280密耳至約300密耳的間距。
本文討論的製程範圍為摻雜氮的共形碳層提供了範圍約10Å/min至約30,000Å/min的沉積速率。初沉積的、摻雜氮的共形碳層可以具有範圍從約0.1%氮至約10%氮、例如約2%至約6%的碳:氮比。在一個實例中,摻雜氮的碳層包括範圍從約50%的碳至約99.9%的碳、及從約0.01%氮至約25%氮的氮範圍、及從約0%氫至約25%氫的氫範圍之元素組成物。
如以上討論的,在適當的條件下,包含一些碳、氮及氫原子的組合的高能電漿與圖案化光阻劑108的表面發生反應並結合,以形成共形碳薄膜層109。共形碳薄膜層109均勻地生長在光阻劑108的表面上,並以物理方式和化學方式黏附於光阻劑108的軟質碳表面。有利的是,據信低溫的沉積及光阻劑表面的低熱能減少了高能撞擊碳、氮及氫原子的脫附,從而導致該等原子對軟質碳光阻劑的表面有更強的黏附和鍵結。不受理論的束縛,據信共形碳薄膜對碳質光阻劑表面的化學鍵結可以藉由碳-碳鍵結和碳-氮鍵結來實現。本文進行的電漿製程可以在基板表面(例如含碳光阻劑)的原子中形成不滿足的化合價和懸空鍵。在該表面,碳懸空鍵與高能的碳基團結合,以形成新的化學鍵。
低溫方法通常產生生長速率較高的共形碳薄膜層109及較低的本質碳層應力。藉由比較可知,由於交聯增加、收縮、及密度的差異,較高溫沉積的碳之特徵為較高的應力,這可能導致共形碳薄膜層109剝離及光阻劑 108變形。在一些實施例中,進一步意想不到的優點係藉由明智選擇的烴和氮前驅物來實現。例如,丙烯和氨可以產生具有增強的對圖案化光阻劑的黏著性、階梯覆蓋率、及其他理想碳層特性的碳層。在一個實例中,將丙烯氣體和氨氣以介於約50:1和約5:1的烴源和氮氣源體積比引入處理腔室中,而且其中電漿在處理腔室中產生、被以介於約0.01W/cm2和約10W/cm2之間的RF功率密度遞送。
接著,在方塊104,使用非等向性蝕刻製程去除共形碳薄膜層109,如第1E圖所圖示。此處,使用電漿蝕刻製程從特徵的頂部場區和底部去除共形碳薄膜層109。在一些實施例中,選擇性蝕刻製程可以是被設計為只從基板的水平表面蝕刻材料的非等向性蝕刻製程。這種製程可以使用被施加到基板的電偏壓來使電漿蝕刻劑起作用,以促進電漿中的離子加速前往基板表面,從而從底部去除共形碳薄膜層109,如第1E圖所示。同時,這樣的製程也可以導致大量的共形碳薄膜層109被從光阻劑108的場區去除,亦圖示於第1E圖。使用氟和氧離子的反應離子蝕刻是可用於實施本揭示之實施例的選擇性蝕刻製程之一個實例。也可以使用其他適當的蝕刻方法,例如藉由不反應的離子進行蝕刻。
圖案轉移硬光罩層110可以是由物理氣相沉積製程(PVD)衍生的硬光罩層,而且可以由氧化矽或富矽氧化物、或PVD SiN或富矽SiN、或SiC或富矽 SiC、或前述之組合(包括變型,該變型包括控制地將氫摻入化合物中,迄今被稱為SiOwNx:Hy,其中w、x、y可以在從0%至100%的濃度中變化)所組成。圖案轉移硬光罩層110將作為蝕刻光罩,用於後續的蝕刻程序,並且可以是介電質層、抗反射層、或阻障層,而且可以具有超過一種這樣的性質。
生產SiOwNx:Hy硬光罩層110作為光學性質充分匹配光阻劑108的硬光罩。使硬光罩層110的光學性質(例如折射率(n)和消光係數(k))匹配光阻劑108,所以光阻劑108和硬光罩層110的界面不會產生破壞微影圖案化製程、從而可能影響形成的微影圖案之CD的反射。在一些實施例中,匹配硬光罩和光阻劑的光學性質允許直接在硬光罩層110上進行多個程序的微影術、蝕刻、光阻劑剝除及光阻劑的再施加。此外,因為形成硬光罩層110的材料不受後續用以去除光阻劑108和共形碳薄膜層109的電漿輔助灰化製程影響,因此允許後續的微影術、蝕刻、光阻劑剝除、及光阻劑再施加製程循環視需要進行多次,以在硬光罩層110中形成理想的圖案。在一個實施例中,光阻劑108和硬光罩層110具有等於1.6和1.7之間的折射率(n),並且在193nm的波長下具有等於0.00和0.12之間的消光係數(k),例如0.05。結果,曝露的電磁能量將不會在硬光罩層110和上覆光阻劑108的物理界面反射或折射。
可適合並適用於濺射沉積SiOwNx:Hy硬光罩層110的PVD處理腔室(例如濺射處理腔室)的一個實例是購自位於美國加州聖克拉拉的應用材料公司的ImpulseTM Pulsed DC PVD介電腔室。構思的是,其他的濺射處理腔室,包括來自其他製造商的那些濺射處理腔室,也可適合實施本揭示。
接著,在方塊105,如第1F圖所示,被沉積在側壁108B上的共形碳薄膜層109充當蝕刻光罩,用於在硬光罩層110中形成尺寸減小的特徵110A。側壁108B上的共形碳薄膜層109之厚度界定被蝕刻到硬光罩層110中的圖案之臨界尺寸(CD)。例如,假使原始被形成在光阻劑中的凹部或圖案為40nm寬,則在定向或非等向性蝕刻之後,相對側壁上5nm寬的共形碳層將會把被蝕刻在硬光罩層110中的圖案之寬度減小到30nm。假使共形碳薄膜層109是由相對於用以蝕刻硬光罩層110的蝕刻劑具有高蝕刻選擇性的材料形成,則共形碳薄膜層109將只被緩慢地蝕刻或完全不被蝕刻,從而留下尺寸減小的特徵110A被蝕刻在硬光罩層110中,如第1F圖所示。硬光罩層110的蝕刻可以藉由任一習知用以蝕刻形成硬光罩層110的材料的方法進行,但較佳將是藉由不會明顯蝕刻共形碳薄膜層109的製程進行。諸如在偏壓下使用反應或不反應離子蝕刻的定向蝕刻對於保留共形碳薄膜層109的側壁殘餘物同時在硬光罩層110中蝕刻尺寸減小的圖案可以是有利的。定向選擇性蝕刻製程可以是 被設計為只從基板的水平表面蝕刻材料的定向或非等向性蝕刻製程。這種製程可以使用被施加到基板的電偏壓來使電漿蝕刻劑起作用,以促進電漿中的離子加速前往基板表面。在這樣的製程中,加速的離子通常將前進深入圖案的凹部,使得絕大多數的反應物種撞擊凹部的底部部分,如第1E-1F圖所示。使用氟和氧離子的反應離子蝕刻是可用於實施本揭示之實施例的選擇性蝕刻製程之一個實例。也可以使用其他的蝕刻方法,例如藉由不反應離子的蝕刻。
接著,在方塊106,如第1G圖所圖示,有利地使用乾電漿灰化製程來同時去除碳質共形碳薄膜層109和光阻劑108。在一些實施例中,形成碳質共形碳薄膜層109,使得在灰化製程期間的材料去除速率大致上類似於在灰化製程期間的光阻劑108去除速率。如第1A圖所示,可以重複多次方塊101-106的這個製程,以在硬光罩層110中形成多個尺寸減小的特徵110A,如第1H圖所圖示。
在方塊107,進行多個操作以在第1I圖中在被配置於基板116上方的主動層115中實現減小的尺寸。可以將主動層115描述為由尺寸減小的、被圖案化在介電質材料中的線和通孔(例如項目115A)組成的主動層。如本文所述,方法100可用於產生臨界尺寸比特定微影術設備或製程的能力更小的圖案。
方法200表示與方法100相關的製程方案,並產生用以在元件主動層115中形成減小的尺寸的硬光罩208,元件主動層115可以包含線和通孔,如前所述。為了簡便起見,在方法200中不圖示光阻劑的沉積和圖案化,但將包括上面討論的方塊101和102中進行的製程。此處,第2A圖為圖示依據本揭示之一個實施例的方法200之流程圖。第2B-2E圖表示第2A圖描述的圖案化製程之剖視圖,並圖示在方法200的各個階段的多層基板211。第2B圖圖示包含多層基板211的數個可能的層。明顯增加的是抗反射碳質ARC層207。
在方法200中,提供多層基板211到電漿處理腔室,其中多層基板211停留在溫控基板固持件或夾盤上。使多層基板211平衡到低於光阻劑206之分解溫度的溫度。共形碳薄膜層205被沉積在圖案化光阻劑206的場區206A和側壁206B、及底部凹部206C上,如第2B圖所示並依據方塊201。光阻劑206因此被配置在抗反射碳質(ARC)層207上,抗反射碳質(ARC)層207被沉積在硬光罩208上。硬光罩208可以包含SiOwNx:Hy,並具有充分匹配光阻劑206的光學性質。然後可以藉由先前在方塊101-107中描述的方法圖案化硬光罩208。在一些設置中,蝕刻終止層209可以是硬光罩層。
ARC層207可以是由聚醯胺和聚碸代表的有機材料,聚醯胺和聚碸通常藉由旋塗技術沉積。ARC材料通常包括發色結構,該發色結構能夠吸收在光阻劑的圖 案成像過程中很可能被從元件基板反射回去的輻射波長,並藉由此機制減少或消除來自下表面的有害反射影響。
在方塊202,進行非等向性電漿蝕刻製程,以從頂部場區206A及/或底部凹部206C去除共形碳層205,以及去除一部分被配置在圖案化硬光罩208上的碳質ARC層207A,如第2C圖所圖示。如先前描述的,選擇性蝕刻製程可以是被設計來從基板表面選擇性蝕刻材料的非等向性蝕刻製程。
接著,在方塊203,如第2D圖所圖示,非等向性蝕刻製程將尺寸減小的圖案轉移到硬光罩208。在方塊203,從硬光罩208層去除去除部分208A。蝕刻終止層209在方塊203進行的製程期間保護下方的基板210不被蝕刻。
接著,在方塊204,如第2E圖所圖示,同時並迅速地藉由電漿灰化製程去除三種碳質層(205-207),以顯露出其中形成有去除部分208A的下圖案化硬光罩208。可以重複由方塊201至203表示的操作,直到在硬光罩208中實現所需的特徵節距。方法200中描述的一般製程可用於產生臨界尺寸比特定微影術設備的能力更小的圖案,並整合尺寸縮小的共形碳層205的用途。
在本揭示的其他實施例中,多層基板117、211可以PVD沉積的其他層為特徵,以補充PVD沉積的 SiOwNx:Hy硬光罩層110。例如,第1B圖中的ARC層111是藉由PECVD或藉由旋塗製程沉積。ARC層111可以被新的PVD介電質層取代,同時仍保持光學平坦化旋塗碳層112。
第3A圖和第3B圖圖示被形成在硬光罩中尺寸減小的圖案,該硬光罩與上覆的光阻劑層光學匹配。在圖案化光阻劑的場區、側壁、及底部部分和下方的硬光罩上方施加尺寸縮小的共形碳層可以在低於光阻劑之分解溫度的溫度下進行。此外,從圖案化光阻劑的底部部分和硬光罩去除共形碳層可以藉由蝕刻製程來進行,以暴露出硬光罩、在底部部分蝕刻暴露的硬光罩基板、接著同時去除共形碳層、光阻劑、及其他碳質成分。如第3A圖和第3B圖所示,可以得到具有尺寸減小的特徵用於進一步圖案轉移的硬光罩。
此外,第3A圖和第3B圖圖示具有直接沉積在光阻劑層上的低溫共形可剝除有機層的多層基板311。使用有機層允許有機材料在與光阻劑剝除製程同一時間在基於乾氧氣的電漿中被剝除。如第3A圖和第3B圖所示,在某些實施例中,多層基板311可以包括基板310、被配置在基板310上方的主動層309、被形成在主動層309上的氧化物層308。多層基板311還可以包括形成在氧化物層308上的氮化鈦硬光罩層307、形成在氮化鈦硬光罩層307上的旋塗碳層306、多用途PVD介電質層305、硬光罩層304、被配置在硬光罩層304上方的光阻劑層302、 及覆蓋光阻劑層302的光阻劑收縮層301。此外,開口303可以被形成在光阻劑收縮層301中。光阻劑收縮層301係使用與上面配合共形碳薄膜層109及/或共形碳層205描述的製程類似的製程形成。
現在將這個和其他相關的實施例圖示於第3A圖中,第3A圖圖示多層基板311,其中,在一個實例中,新的多用途PVD介電質層305取代上述的PECVD或旋塗ARC層111。新的多用途PVD介電質層305還可以涉及使用多用途PVD介電質層305取代兩個或更多個層,多用途PVD介電質層305可以具有可調整的性質,可以充當組合的ARC、蝕刻終止、及灰化阻障層。在一些實施例中,第1B圖的ARC層111和旋塗碳層112皆被第3B圖的多用途PVD介電質層305取代,第3B圖的多用途PVD介電質層305可以充當組合的ARC、蝕刻終止、及灰化阻障層。然而,在另一個實施例中,可以存在旋塗碳層306,如第3A圖所示。
利用方法200以及第2A圖描述的操作,可以將多層堆疊形成在基板310上,如第3A圖和第3B圖所示。第3A-3B圖圖示表示被形成在基板310上的例示性多層結構的剖視圖。如第3A圖所示,主動層309可以被配置在基板310上方。主動層309可以大致上類似於第1G圖的主動層115。主動層309可以被處理以連接到被形成在介電質材料中、尺寸減小的金屬線及/或通孔。如第3A-3B圖所示,氧化物層308可以被形成在主動層309 上。另外,氮化鈦硬光罩層307可以被形成在氧化物層308上。
光阻劑層302可以被配置在硬光罩層304上方,並使用微影術類型的製程圖案化。光阻劑層302可以是對某些波長的電磁輻射敏感的聚合物材料,而且可以通過旋塗製程或CVD製程施加。在一些實施例中,光阻劑層302為對紫外光敏感的碳基聚合物,例如酚醛樹脂、環氧樹脂、或偶氮環烷樹脂。光阻劑層302可以是正或負光阻劑。硬光罩層304可以類似於上述的硬光罩層110。使用與上面配合光阻劑108和光阻劑206描述的製程類似的製程來形成光阻劑層302。
可以將尺寸減小的圖案形成在硬光罩層304中,硬光罩層304與上覆的光阻劑層302光學匹配。光阻劑收縮層301可以覆蓋光阻劑層302。在元件堆疊的各個層中可以使用光阻劑層302和光阻劑收縮層301來圖案化並形成特徵,如第3A-3B圖所示。此外,藉由蝕刻製程從圖案化光阻劑層302的底部部分和硬光罩層304去除共形碳層306可以經由其中形成的開口303暴露出氮化鈦硬光罩層307,從而產生具有尺寸減小的特徵、用於進一步的圖案轉移的硬光罩。
從前述涉及藉由多用途PVD介電質層305取代ARC層111和旋塗碳層112的實施例實現了優點。在一些實施例中,PVD沉積的SiOwNx:Hy硬光罩層304和多用途PVD介電質層305可以使用相同的PVD製程腔室或 工具沉積,而且可以利用類似的沉積參數和前驅物。依序原位沉積超過一種如此描述的PVD層排除了可被用於形成ARC層111和旋塗碳層112的分離PECVD和旋塗製程。
多用途PVD介電質層305是在低溫下沉積的,並且特徵為高純度和密度、可調折射率、消除毒化光阻劑層302的胺、及在接近4nm的厚度下可接受的性能。多用途PVD介電質層305可以充當組合的ARC、蝕刻終止、及灰化阻障層。諸如多用途PVD介電質層305的PVD介電質之蝕刻終止和蝕刻選擇性也是可調整的,因此構思與涉及多層基板311及其他的製程方案整合。可以藉由多用途PVD介電質層305來規避過度蝕刻進入子層。被構思用於多用途PVD介電質層305的適當材料包括、但不限於:SiOwNx:Hy、氮化矽、氮化鈦、氮化鋁、氮氧化鋁、非晶矽、鉭氧化物、及鈦氧化物。可適於並適合用於濺射沉積多用途PVD介電質層305的PVD處理腔室(例如濺射處理腔室)包括購自位於美國加州聖克拉拉的應用材料公司的ImpulseTM脈衝直流PVD介電腔室。構思的是,其他的濺射處理腔室,包括來自其他製造商的那些濺射處理腔室,也可以適於實施本揭示。
對於結合本文所述任一方法所描述的方法和實施例來說,使用氫對碳(H:C)比為至少2:1的烴來形成共形碳層由於這些類型的烴材料之鍵結結構而實現了獨特的且意想不到的結果。如第4圖所示,發現階梯覆 蓋率對比溫度成逆相關,其中階梯覆蓋率與伴隨的共形度隨著溫度降低而提高。在一個實例中,H:C比為2:1的丙烯(C3H6)在低於100℃的溫度下意外地產生了提高的共形度和階梯覆蓋率,與H:C比1:1的那些前驅物相反。在另一個實例中,當與氮前驅物氨結合時,丙烯(C3H6)產生具有優異的黏著度、共形度、及階梯覆蓋率對比溫度的關係的碳層,如第4圖所圖示。
對於在光阻劑上方從H:C比為2:1或更大的烴(例如丙烯)沉積共形碳層來說,階梯覆蓋率對比溫度的逆相關為保持和保留光阻劑圖案化尺寸及化學和物理性質的有利因素,因為共形碳層的沉積在低於光阻劑的分解溫度下實施良好。
以上討論的出乎意料的結果與本揭示描述的方法和實施例結合通常會產生被沉積在光阻劑上且具有良好共形度、階梯覆蓋率、低應力、良好的對光阻劑的黏著性、及高蝕刻選擇性的碳層。此外,可以藉由乾灰化製程同時去除碳層和光阻劑,從而致能先前未預見的更有效製程方案。
雖然前述係針對本揭示的實施例,但在不偏離本揭示的基本範圍下仍可設計出本揭示的其他和進一步實施例,而且本揭示之範圍係由隨後的申請專利範圍決定。

Claims (19)

  1. 一種在一硬光罩中形成一尺寸減小的圖案的方法,包含以下步驟:在一硬光罩層上形成一圖案化光阻劑層;在該圖案化光阻劑層上藉由一電漿製程沉積一共形碳層,其中該共形碳層被配置在一特徵之一場區和側壁及一底部部分上方,該特徵被形成在該圖案化光阻劑層中,以及其中該硬光罩層包含一SiOwNx:Hy材料,並且其中調整該硬光罩層之光學性質,使得該硬光罩層在該圖案化光阻劑層之曝光波長下顯現為光學平面的;藉由一蝕刻製程從該底部部分去除該共形碳層,以暴露該硬光罩層之一部分;蝕刻該硬光罩層之暴露的該部分,以在該硬光罩層中形成一凹部;以及藉由一電漿灰化法同時去除該共形碳層和該圖案化光阻劑層之剩餘部分。
  2. 如請求項1所述之方法,其中該圖案化光阻劑層具有一介於1.6和1.7之間的折射率及一在193nm的波長下介於0.00和0.12之間的消光係數。
  3. 如請求項1所述之方法,其中該共形碳層的沉積係在一低於該圖案化光阻劑層之降解溫度的溫度下進行。
  4. 如請求項3所述之方法,其中該溫度低於100℃。
  5. 如請求項3所述之方法,其中該溫度低於50℃。
  6. 如請求項1所述之方法,其中該共形碳層包含摻雜氮的非晶碳材料。
  7. 如請求項6所述之方法,其中該摻雜氮的非晶碳材料黏合於該圖案化光阻劑層,並且其中該圖案化光阻劑層的尺寸及物理和化學性質在沉積該共形碳層之後大致仍保持不變。
  8. 如請求項1所述之方法,其中去除該共形碳層和該圖案化光阻劑層包含使用一乾電漿灰化製程同時去除該共形碳層和該圖案化光阻劑層。
  9. 如請求項1所述之方法,其中去除該共形碳層和該圖案化光阻劑層包含使用一乾電漿灰化製程去除一含碳抗反射層。
  10. 一種在一硬光罩上形成一尺寸減小的圖案的方法,包含以下步驟:提供一基板到一電漿腔室中,該基板包含在一硬光罩上的一圖案化光阻劑;將丙烯氣體、氨氣、一電漿起始氣體、及一稀釋氣體引入處理腔室,其中烴源和氮源之一體積流量比係在從約50:1至約5:1的比例中;在該處理腔室中產生一電漿,其中該電漿係藉由施加一功率密度為約0.01W/cm2至約10W/cm2的RF功率所產生的;以及在該圖案化光阻劑和該硬光罩上方沉積一包含摻雜氮的非晶碳的共形碳層,其中該圖案化光阻劑和該硬光罩之表面各具有一介於1.6和1.7之間的折射率,並且在193nm的波長下消光係數係介於0.00和0.12之間,而且該硬光罩包含SiOwNx:Hy,並且其中在沉積該共形碳層的同時,將該基板的溫度保持在低於100℃。
  11. 如請求項10所述之方法,其中碳和氫源包含選自烷類、烯類、及炔類的脂族烴。
  12. 如請求項11所述之方法,其中該碳和氫源包含選自烷類、烯類、及炔類的脂族烴,並包含至少為2:1的氫對碳的原子比。
  13. 如請求項10所述之方法,其中碳、氫及氮源係由含有至少一對氮的化學鍵的烴所組成。
  14. 如請求項10所述之方法,其中該氮源係由無機氮源所組成。
  15. 如請求項14所述之方法,其中該氮源係由氨所組成。
  16. 如請求項10所述之方法,其中該烴和氮源包含丙烯和氨。
  17. 如請求項10所述之方法,其中該共形碳層之元素成分百分比範圍為約50%的碳至約99.9%的碳,並且氮的範圍從約0.01%的氮至約25%的氮,而且氫的範圍從約0%的氫至約25%的氫。
  18. 一種在一硬光罩上形成一尺寸減小的圖案的方法,包含以下步驟:提供一基板到一電漿腔室中,該基板包含在一硬光罩上的一圖案化光阻劑;其中該基板的溫度被保持在低於100℃;將丙烯氣體、氨氣、一電漿起始氣體、及一稀釋氣體引入處理腔室,其中烴源和氮源之一體積流量比係在從約50:1至約5:1的比例中;在該處理腔室中產生一電漿,其中該電漿係藉由施加一功率密度為約0.01W/cm2至約10W/cm2的RF功率所產生的;以及藉由該圖案化光阻劑和該硬光罩在形成的圖案之場區、側壁、及一底部部分上方沉積一包含摻雜氮的非晶碳層的共形碳層,其中該圖案化光阻劑具有一介於1.6和1.7之間的折射率,並且在193nm的波長下消光係數係介於0.00和0.12之間,而且該硬光罩具有通式SiOwNx:Hy,並且其中在該圖案化光阻劑的微影術曝光波長下,該硬光罩的光學性質充分匹配該圖案化光阻劑的光學性質。
  19. 如請求項18所述之方法,其中被提供到該電漿腔室的該基板進一步包含一衍生自物理氣相沉積法的介電層,該介電層充當組合的抗反射、蝕刻終止、及灰化阻障層。
TW104126423A 2014-08-14 2015-08-13 利用共形碳薄膜減低臨界尺寸之方法 TWI671795B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462037495P 2014-08-14 2014-08-14
US62/037,495 2014-08-14

Publications (2)

Publication Number Publication Date
TW201611096A TW201611096A (zh) 2016-03-16
TWI671795B true TWI671795B (zh) 2019-09-11

Family

ID=55302676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104126423A TWI671795B (zh) 2014-08-14 2015-08-13 利用共形碳薄膜減低臨界尺寸之方法

Country Status (4)

Country Link
US (1) US9337051B2 (zh)
KR (1) KR102462349B1 (zh)
TW (1) TWI671795B (zh)
WO (1) WO2016025114A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160039739A (ko) * 2014-10-01 2016-04-12 삼성전자주식회사 하드 마스크막의 형성 방법 및 이를 이용한 반도체 소자의 제조 방법
WO2017111822A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Pitch division using directed self-assembly
KR20190071833A (ko) * 2016-11-13 2019-06-24 어플라이드 머티어리얼스, 인코포레이티드 Euv 리소그래피를 위한 표면 처리
CN109964303B (zh) * 2016-11-18 2023-08-29 应用材料公司 经由物理气相沉积沉积非晶硅层或碳氧化硅层的方法
CN106856163A (zh) * 2016-11-22 2017-06-16 上海华力微电子有限公司 一种高深宽比图形结构的形成方法
US10395937B2 (en) 2017-08-29 2019-08-27 Taiwan Semiconductor Manufacturing Co., Ltd Fin patterning for semiconductor devices
US10566194B2 (en) * 2018-05-07 2020-02-18 Lam Research Corporation Selective deposition of etch-stop layer for enhanced patterning
US20200135464A1 (en) * 2018-10-30 2020-04-30 Applied Materials, Inc. Methods and apparatus for patterning substrates using asymmetric physical vapor deposition
US11355342B2 (en) * 2019-06-13 2022-06-07 Nanya Technology Corporation Semiconductor device with reduced critical dimensions and method of manufacturing the same
US11410852B2 (en) * 2019-11-22 2022-08-09 Tokyo Electron Limited Protective layers and methods of formation during plasma etching processes
CN111463106B (zh) * 2020-04-02 2023-06-02 超晶科技(北京)有限公司 一种基于光刻工艺实现阵列图案的方法
US11322352B2 (en) 2020-04-20 2022-05-03 Applied Materials, Inc. Nitrogen-doped carbon hardmask films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093187A1 (en) * 2008-10-14 2010-04-15 Applied Materials, Inc. Method for Depositing Conformal Amorphous Carbon Film by Plasma-Enhanced Chemical Vapor Deposition (PECVD)
US20120170102A1 (en) * 2010-12-31 2012-07-05 Payne Justin Spatial Light Modulators and Fabrication Techniques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790334B2 (en) 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
KR100727439B1 (ko) * 2005-03-22 2007-06-13 주식회사 하이닉스반도체 금속 배선 형성 방법
US20090286402A1 (en) 2008-05-13 2009-11-19 Applied Materials, Inc Method for critical dimension shrink using conformal pecvd films
US7842622B1 (en) 2009-05-15 2010-11-30 Asm Japan K.K. Method of forming highly conformal amorphous carbon layer
KR20130115085A (ko) * 2010-04-30 2013-10-21 어플라이드 머티어리얼스, 인코포레이티드 개선된 스택 결함을 위한 비결정질 탄소 증착 방법
US8859430B2 (en) * 2012-06-22 2014-10-14 Tokyo Electron Limited Sidewall protection of low-K material during etching and ashing
KR20140093542A (ko) * 2013-01-18 2014-07-28 제일모직주식회사 레지스트 하층막용 조성물, 이를 이용한 반도체 집적회로 디바이스의 제조방법 및 이에 따라 제조된 반도체 집적회로 디바이스

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093187A1 (en) * 2008-10-14 2010-04-15 Applied Materials, Inc. Method for Depositing Conformal Amorphous Carbon Film by Plasma-Enhanced Chemical Vapor Deposition (PECVD)
US20120170102A1 (en) * 2010-12-31 2012-07-05 Payne Justin Spatial Light Modulators and Fabrication Techniques

Also Published As

Publication number Publication date
TW201611096A (zh) 2016-03-16
KR20170041847A (ko) 2017-04-17
WO2016025114A1 (en) 2016-02-18
US9337051B2 (en) 2016-05-10
US20160049305A1 (en) 2016-02-18
KR102462349B1 (ko) 2022-11-01

Similar Documents

Publication Publication Date Title
TWI671795B (zh) 利用共形碳薄膜減低臨界尺寸之方法
JP7266068B2 (ja) 横方向ハードマスク凹部縮小のためのハイブリッドカーボンハードマスク
CN107667415B (zh) 用于先进图案化的线边缘粗糙度降低的保形可剥离碳膜
TWI524423B (zh) 蝕刻及灰化期間低k材料之側壁保護
US9570303B2 (en) Conformal amorphous carbon for spacer and spacer protection applications
CN100524640C (zh) 用于各种刻蚀和光刻集成方案的无定型碳的方法
KR101003475B1 (ko) 포토레지스트 접착 및 재생 일관성을 개선하기 위한 수소처리
US8435419B2 (en) Methods of processing substrates having metal materials
IL179695A (en) Plasma peeling procedure using periodic modulation of gas chemistry and hydrocarbon addition
JP2006310634A (ja) 半導体装置の製造方法
US20110303639A1 (en) Methods for processing substrates having metal hard masks
US20230369064A1 (en) Pre-etch treatment for metal etch