TWI670392B - 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室 - Google Patents

調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室 Download PDF

Info

Publication number
TWI670392B
TWI670392B TW104127352A TW104127352A TWI670392B TW I670392 B TWI670392 B TW I670392B TW 104127352 A TW104127352 A TW 104127352A TW 104127352 A TW104127352 A TW 104127352A TW I670392 B TWI670392 B TW I670392B
Authority
TW
Taiwan
Prior art keywords
region
substrate
baffle
gas
heating zone
Prior art date
Application number
TW104127352A
Other languages
English (en)
Other versions
TW201614098A (en
Inventor
庫許魯須薩派瑞尙特庫馬
拉提蘇哈
加普拉凱特P
巴蘇薩普塔爾西
李光德道格拉斯
西蒙斯馬丁J
金秉憲
巴拉蘇拔馬尼安葛尼斯
段子青
荊雷
帕迪特瑪達爾B
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201614098A publication Critical patent/TW201614098A/zh
Application granted granted Critical
Publication of TWI670392B publication Critical patent/TWI670392B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

調控一或更多圖案化膜的局部應力與覆蓋誤差的方法可包括調控引入腔室主體的氣體的氣體流動輪廓、使腔室主體內的氣體流向基材、旋轉基材,及利用雙區加熱器控制基材溫度,藉以統一基材的中心至邊緣溫度輪廓。用於沉積膜的腔室可包括包含一或更多處理區的腔室主體。腔室主體可包括氣體分配組件,氣體分配組件具有擋板,用於輸送氣體至一或更多處理區。擋板具有第一區域與第二區域,第一區域與第二區域各具複數個孔洞。腔室主體可具有雙區加熱器。

Description

調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用 於沉積該一或更多圖案化膜的腔室
本發明的實施例大體係關於在基材上沉積膜層的方法和設備。
硬罩(例如無定形氫化碳)可避免精細材料損壞及變形,例如二氧化矽或碳摻雜氧化矽。此外,硬罩可當作蝕刻遮罩,並結合習知微影技術來防止蝕刻期間材料移除。
在一些應用中,例如微影處理,期硬罩讓光輻射(即光波長約400奈米(nm)至約700nm)高度穿透。讓特定光波長穿透容許更準確微影定位,進而精確對準遮罩與基材上的特定位置。讓特定光頻穿透的材料透明度通常量化成材料的消光係數,此亦稱作吸收係數(κ)。例如,就約6000埃(Å)至7000Å厚的無定形氫化碳層而言,無定形氫化碳層在微影定位用光頻(例如630nm)下的吸收係數應為0.12或以下,否則遮罩無法準確對準。亦可使用吸收係數大於0.12的層,但層厚度需減小, 才能達成準確微影定位。在覆蓋誤差方面,高κ值不會造成覆蓋誤差,但高κ範圍會造成覆蓋誤差。
無定形氫化碳(亦稱作無定形碳且表示成α-C:H)本質係無長序晶級的碳材料,此可含大量氫含量,例如約10至45原子%等級。α-C:H因化學惰性、光學透明度和良好機械性質而做為半導體應用的硬罩材料。雖然α-C:H膜可以各種技術沉積,但基於成本效益和膜性質可調性,多採用電漿化學氣相沉積(PECVD)。在典型的PECVD製程中,電漿在腔室內激發,以產生如激態CH-自由基。激態CH-自由基化學鍵結至置於腔室內的基材表面而形成α-C:H膜於上。
在某一層與覆蓋該層的下一層之間,應對準該層與下一層的個別圖案。可利用量測工具取得對準標記測量,接著用於微影工具,以於曝光期間對準後續層,及在微影製程後再檢查對準性能。然層間覆蓋誤差無可避免,積體電路設計者計算製造時必須符合的誤差範圍。覆蓋誤差範圍定義為微影掃描器不準確/失準、膜內非線性處理變化、遮罩至遮罩變異和量測誤差引起的誤差。裝置結構的覆蓋誤差可能來自不同誤差來源,例如先前曝光工具、當前曝光工具的覆蓋誤差、先前曝光工具/量測工具與當前曝光工具/量測工具的覆蓋誤差間的匹配誤差、或膜應力造成基材膜層變形。
隨著裝置尺寸持續微縮,下一代微影(NGL)製程的基材內覆蓋誤差範圍宜<6-8nm。例如在PECVD 製程期間,局部分壓、溫度、停留時間及/或氣體組分反應性可能帶來不均勻的沉積膜形貌,例如不同膜區域的膜局部應力不同。不均勻形貌將造成不同膜區域的局部覆蓋誤差。另外,下一代CVD硬罩膜會貢獻>50%的覆蓋誤差,以致大幅降低裝置產率和性能。故此領域需降低沉積多層內覆蓋誤差,並需要沉積積體電路製造可用材料層的方法,材料層可共形沉積在具地形特徵結構的基材上。
在一實施例中,調控一或更多圖案化膜的局部應力與覆蓋誤差的方法包含利用包含第一區域與第二區域的擋板,調控氣體的氣體流動輪廓,其中第一區域與第二區域各具複數個孔洞。方法包括經由擋板的第一區域與第二區域的複數個孔洞,將氣體引入腔室主體。方法包括使腔室主體內的氣體流向基材的第一區域與第二區域。方法包括在沉積至少一部分膜至基材上後,旋轉基材。
在另一實施例中,調控一或更多圖案化膜的局部應力與覆蓋誤差的方法包含利用包含第一區域與第二區域的擋板,調控氣體的氣體流動輪廓,其中第一區域與第二區域各具複數個孔洞。方法包括經由擋板的第一區域與第二區域的複數個孔洞,將氣體引入腔室主體。方法包括使腔室主體內的氣體流向基材的第一區域與第二區域。方法包括利用雙區加熱器控制基材溫度,藉以統一基材的中心至邊緣溫度輪廓,其中雙區加熱器包含第一加熱區和第二加熱區,第二加熱區外接第一加熱區。
在又一實施例中,用於沉積膜的腔室包含腔室主體,腔室主體包含一或更多處理區。腔室主體包含氣體分配組件,氣體分配組件包含擋板,用於輸送氣體至一或更多處理區,其中擋板包含第一區域與第二區域,第一區域與第二區域各自包含複數個孔洞。腔室主體包含雙區加熱器,其中雙區加熱器包含第一加熱區和第二加熱區,第二加熱區外接第一加熱區,其中加熱區之一離雙區加熱器的中心軸約5毫米(mm)至約200mm。腔室主體包含遮蔽環,配置以支撐基材。
100‧‧‧基材
102‧‧‧材料層
104‧‧‧無定形碳層
150‧‧‧基材結構
300‧‧‧腔室
302‧‧‧腔室主體
303‧‧‧驅動系統
304‧‧‧腔室蓋
308‧‧‧氣體分配組件
312‧‧‧腔室壁
318、320‧‧‧處理區/容積
319、348‧‧‧歧管
325‧‧‧RF電源/供應器
326‧‧‧杵桿
328‧‧‧基座
334‧‧‧系統控制器
338‧‧‧記憶體
340‧‧‧氣體入口通道
342‧‧‧噴淋頭
346‧‧‧擋板
402、404、406、408‧‧‧方塊
502‧‧‧直徑
504‧‧‧外徑
520‧‧‧孔洞
522‧‧‧內部區域
524‧‧‧外部區域
602‧‧‧直徑
604‧‧‧外徑
620‧‧‧孔洞
622‧‧‧內部區域
624‧‧‧外部區域
626‧‧‧凸耳
702‧‧‧遮蔽環
802‧‧‧雙區加熱器
810‧‧‧平板/面板
812‧‧‧杵桿
為讓本發明的上述概要特徵更明顯易懂,可配合參考實施例說明,部分實施例乃圖示在附圖。然應注意所附圖式僅說明本發明典型實施例,故不宜視為限定本發明範圍,因為本發明可接納其他等效實施例。
第1A圖至第1B圖各自圖示基材在併入無定形碳層做為硬罩的不同積體電路製造程序階段的截面。
第2A圖圖示相對κ範圍和局部應力的氣體流動形貌。
第2B圖至第2C圖圖示相對κ範圍和局部應力的徑向氣體流動。
第2D圖圖示κ-633nm的徑向與方位角分量和局部應力。
第2E圖圖示「更多在中心流動」結合基材旋轉對局部應力和覆蓋誤差的影響。
第2F圖圖示單區加熱器和雙區加熱器的溫度輪廓。
第3圖係示例性處理腔室的截面示意圖,此腔室可用於實行本發明的一些實施例。
第4圖係根據本發明一些實施例,方法的製程流程圖。
第5A圖至第5C圖圖示根據本發明一些實施例,擋板的底視圖。
第6圖係根據本發明一些實施例,噴淋頭的底視圖。
第7圖係根據本發明一些實施例,遮蔽環的平視圖。
第8圖係根據本發明一些實施例,雙區加熱器的透視圖。
為助於理解,盡可能以相同的元件符號代表各圖中共同的相似元件。應理解某一實施例的元件和特徵結構當可有益地併入其他實施例,在此不另外詳述。
第1A圖至第1B圖圖示基材100在併入無定形碳-氫(α-C:H)層做為硬罩的不同積體電路製造程序階段的截面。基材結構150代表基材100和形成於基材100上的其他材料層。第1A圖圖示基材結構150的截面,材料層102已以習知方式形成於上。材料層102可為 低k材料,例如具孔隙的氧化物,例如SiO2、Si3N4、氧化物、氮化物或碳摻雜氧化矽。
第1B圖圖示無定形碳層104沉積在第1A圖的基材結構150上。無定形碳層104可以習知手段形成於基材結構150上,例如PECVD。無定形碳層104的厚度視特定處理階段而異。通常,無定形碳層104的厚度為約500Å至約10000Å。
本發明的態樣包含在α-C:H膜沉積期間使用較大流率的氬或其他重稀有氣體(例如氪或氙)做為稀釋氣體,以提高形成膜密度(和蝕刻選擇性)、膜沉積速率和膜對基材表面特徵結構的共形性。重稀有氣體用作大流率稀釋氣體亦可改善沉積製程期間的烴前驅物利用率、減少不當沉積至沉積腔室內面。在沉積α-C:H膜的PECVD腔室中,氦因容易離子化且有利於在腔室中激發電漿及減低發弧風險而做為工作氣體的主要非反應組分。
第3圖為化學氣相沉積(CVD)腔室300的截面示意圖,用於沉積先進圖案化膜,例如無定形碳層。腔室300一例例如為美國加州Santa Clara的Applied Materials公司製造的PRODUCER®腔室或XP PRECISIONTM腔室。PRODUCER® CVD腔室(200mm或300mm)具有二隔離處理區,用以沉積碳摻雜氧化矽和其他材料。
沉積腔室300具有腔室主體302,腔室主體界定分離處理區318、320。每一處理區318、320具有基 座328,用以支撐腔室300內的基材(未圖示)。基座328通常包括加熱元件(未圖示)。基座328由杵桿326活動設在各處理區318、320,杵桿延伸穿過腔室主體302的底部,由此連接至驅動系統303。內部可動式舉升銷(未圖示)提供於基座328,用以嚙合基材的下表面。舉升銷可由升降機構(未圖示)嚙合,以於處理前接收基材或於沉積後抬起基材來傳送到下一站。
各處理區318、320亦可包括氣體分配組件308設置穿過腔室蓋304,以將氣體輸送到處理區318、320。各處理區的氣體分配組件308一般包括氣體入口通道340通過歧管348,使氣體得從氣體分配歧管319輸送通過擋板346、接著通過噴淋頭342。噴淋頭342包括複數個孔洞(未圖示),處理時由此注入氣態混合物。RF(射頻)供應器328提供偏壓電位至噴淋頭342,以助於在噴淋頭與基座328間產生電漿。在電漿加強化學氣相沉積製程期間,基座328當作陰極,以於腔室主體302內產生RF偏壓。陰極電氣耦接至電極電源,以於沉積腔室300內產生電容電場。通常,RF電壓施加至陰極,腔室主體302則電氣接地。施加至基座328的功率會在基材的上表面產生負電壓形式的基材偏壓。此負電壓用於從腔室300內形成的電漿吸引離子到基材的上表面。電容電場形成偏壓,使感應形成電漿物種加速朝向基材,以提供基材在沉積期間更垂直定向的異向性成膜,及在清洗期間蝕刻基材。
處理期間,處理氣體均勻徑向分布遍及基材表面。藉由施加RF電源325的RF能量至噴淋頭342,可由一或更多處理氣體或氣體混合物形成電漿,噴淋頭做為供電電極。當基材接觸電漿與內含反應氣體時,將發生膜沉積作用。腔室壁312通常係接地。RF電源325可供應單一或混頻RF訊號至噴淋頭342,以增強任何引入處理區318、320的氣體分解。
在一些實施例中,視如擋板346的構造而定,處理氣體以「更多在中心流動」或「更多在邊緣流動」的方式徑向分布遍及基材表面,此將進一步詳述於後。
系統控制器334控制各種部件功能,例如RF電源325、驅動系統303、升降機構、氣體分配歧管319和其他相關腔室及/或處理功能。系統控制器334執行儲存於記憶體338的系統控制軟體,記憶體可為硬碟機且可包括類比與數位輸入/輸出板、介面板和步進馬達控制板。光學及/或磁性感測器通常用於移動及測定移動式機械組件的位置。
以上CVD系統敘述主要係做為說明之用,其他電漿處理腔室亦可用於實行本發明的實施例。
各式各樣的處理氣體混合物可用於沉積製程。處理氣體可按約10毫克/分鐘至約5000毫克/分鐘的流率引入處理腔室,例如約300毫克/分鐘至約3000毫克/分鐘。
氣體混合物可選擇性包括一或更多載氣。可用載氣實例包括氦、氬、二氧化碳和上述組合物。部分視腔室內部尺寸而定,一或更多載氣可按小於約20000標準立方公分每分鐘(sccm)的流率引入處理腔室。載氣流量可為約500sccm至約1500sccm、約1000sccm。在一些製程中,鈍氣送入處理腔室,例如氦或氬,以於引入反應處理氣體前,穩定腔室內壓力。
氣體混合物可包括一或更多氧化氣體。適合的氧化氣體包括氧(O2)、臭氧(O3)、一氧化二氮(N2O)、一氧化碳(CO)、二氧化碳(CO2)和上述組合物。部分視腔室內部尺寸而定,氧化氣體流量可為約100sccm至約3000sccm。通常,氧化氣體流量為約100sccm至約1000sccm。在進入沉積腔室前,氧或含氧化合物可於微波腔室及/或利用施加至腔室內處理氣體的RF功率解離。
沉積期間,如第3圖所示,利用RF電源325施加至噴淋頭的RF能量,通常可於腔室內的基材旁形成控制電漿。或者,RF功率可提供至基材支撐件。電漿可利用高頻RF(HFRF)功率與低頻RF(LFRF)功率(例如雙頻RF)、恆定RF、脈衝RF或任何其他電漿產生技術產生。RF電源325可供應約5兆赫至約300兆赫的單頻RF。此外,RF電源325亦可供應約300赫茲至約1000千赫的單頻LFRF而供應混頻,以加強引入處理腔室的處理氣體反應物種分解。RF功率可循環或脈衝輸送,以減 少基材加熱及促使沉積膜有更大孔隙度。適合的RF功率可為約10瓦(W)至約5000W、約200W至約1000W的功率。適合的LFRF功率可為約0W至約5000W、約0W至約200W的功率。
沉積製程:
本發明的態樣包含以包括引入烴源、電漿激發氣體和稀釋氣體至處理腔室的製程沉積α-C:H層。烴源係一或更多碳氫化合物的混合物。烴源可包括氣相碳氫化合物(例如C3H6)及/或包括液相碳氫化合物蒸汽與載氣的氣體混合物。電漿激發氣體可為氦,因為氦很容易離子化,然亦可使用其他氣體,例如氬。稀釋氣體係易離子化、較大塊的化學惰性氣體。示例性稀釋氣體包括氬、氪和氙。
此外,使用部分或完全摻雜的碳氫化合物衍生物形成的無定形碳層亦受惠於本發明方法。衍生物包括含氮、含氟、含氧、含羥基和含硼的碳氫化合物衍生物。碳氫化合物可以含氮取代基官能化及/或用含氮氣體沉積,例如氨。碳氫化合物可以含氟及/或含氧取代基官能化。
用氬稀釋的α-C:H沉積製程可為PECVD製程。α-C:H層可由處理氣體沉積,並使基材溫度維持在約100℃至約650℃,藉以最小化形成膜的吸收係數範圍。製程進一步包括使腔室壓力維持在約0.4托耳至約10托耳。沉積速率可為約2000Å/分鐘至約20000Å/分鐘。烴源、電漿激發氣體和稀釋氣體引入腔室並激發電漿而開始沉積。電漿激發氣體可為氦或另一易離子化氣體, 且在烴源和稀釋氣體之前引入腔室,如此可形成穩定電漿及減低發弧機會。以約0.7W/cm2至約3W/cm2的功率密度,例如約1.1至2.3W/cm2,施加RF功率至基材表面區域,以產生電漿。電極間距(例如基材與噴淋頭間的距離)可為約200密耳至約1000密耳。
雙頻RF系統可用於產生電漿。由於擊中膜表面的離子能量會影響膜密度,故咸信雙頻可個別控制通量和離子能量。不侷限於理論,高頻電漿控制電漿密度,低頻電漿控制擊中膜表面的離子動能。混合RF功率的雙頻源提供約10兆赫至約30兆赫的高頻功率(例如約13.56兆赫)和約10千赫至約1.1兆赫的低頻功率(例如約350千赫)。當雙頻RF系統用於沉積α-C:H膜時,第二RF功率與混頻總功率的比率可為小於約0.6比1.0(0.6:1)。可依基材尺寸和所用裝備改變施加RF功率及使用一或更多頻率。
沉積α-C:H膜有很高的膜應力會造成諸如α-C:H膜與基材表面附著很差及/或α-C:H膜破裂等問題。因此,相對碳氫化合物加入超過一定莫耳比的氬或其他稀釋劑將不當影響膜性質。故製程視窗可視預定沉積膜性質而定,使流入PECVD腔室的氬稀釋劑莫耳流率與碳氫化合物莫耳流率的比維持在約2:1至約40:1。就沉積一些α-C:H膜而言,流入PECVD腔室的氬稀釋劑莫耳流率與碳氫化合物莫耳流率的比為約10:1至約14:1。
沉積期間的高基材溫度一般係用於促進高密度膜形成的製程參數。如上所述,因氬稀釋製程已提高密度,故沉積期間的基材溫度降至如約300℃時仍可製造預定密度的膜,例如約1.2克/立方公分(g/cc)至約2.2g/cc。氬稀釋製程可製造較高密度的膜且吸收係數小至約0.09。另外,所有基材通常期有低處理溫度,因為此可減低製程熱預算而防止形成於上的裝置遭摻質遷移。
製程引發覆蓋誤差與預定膜的局部曲率和翹曲有關,此可依膜內局部應力變化測量。膜應力將增加覆蓋誤差,因為sp2/sp3鍵結變異會影響結構遍及膜的均勻度,例如硬罩。例如,當以熱耦描繪遍及表面的溫度分布輪廓時,基材中心的溫度比基材邊緣高,導致基材高溫區比起基材低溫區包含更多sp2特性。另外,吸收係數(κ)與膜形貌和分子結構息息相關(即具較多sp2特性的膜區域比具較少sp2特性的膜區域更能有效吸收光)。故如第2A圖所示,吸收係數可利用各種量測工具在如633nm下監測,以測定遍及基材的膜形貌。量測工具係指干涉應用工具,用於測定局部應力圖,例如取自KLA Tencor’s Aleris系列。然應理解取自其他製造商且適於進行應力測量製程的其他工具亦可採用。
藉由監測遍及基材的膜形貌,可改變沉積製程的沉積參數及/或沉積腔室的硬體,以沉積一或更多膜,其中一或更多膜各自包含均勻形貌和較小覆蓋誤差。
第4圖係製程流程圖,用以圖示根據本發明一些實施例的第一方法。如第4圖所示,調控引入腔室主體的氣體的氣體流動輪廓,藉以調控一或更多圖案化膜的局部應力和覆蓋誤差(方塊402)。接著使腔室主體內的氣體流向基材(方塊404)。氣體流動輪廓例如可藉由改變擋板346的孔洞密度而調控。孔洞密度係指擋板346的特定區域的各孔洞間距。第5A圖係擋板346的底視圖。如第5A圖所示,內部區域522呈圓形且孔洞520的密度高於外部區域524的孔洞520的密度。內部區域522的直徑502相當於對應噴淋頭342的內徑。外部區域524呈環形或圈狀並圍繞內部區域522。外部區域524的外徑504部分或實質對應噴淋頭342的外徑。
相較於外部區域524的孔洞520的間距,內部區域522的孔洞520彼此間隔更近。是以外部區域524的孔洞520的密度小於內部區域522的孔洞520的密度。因內部區域522的孔洞520的密度大於外部區域524的孔洞520的密度,故在內部區域522通過擋板346的氣體流量將大於通過外部區域524的氣體流量。換言之,比起噴淋頭342的邊緣,有更多氣體流向噴淋頭342的中心。
第5B圖係擋板346的替代實施例底視圖。如第5B圖所示,相較於內部區域522的孔洞520的間距,外部區域524的孔洞520彼此間隔更近。是以外部區域524的孔洞520的密度大於內部區域522的孔洞520的密度。因外部區域524的孔洞520的密度大於內部區域522 的孔洞520的密度,故在外部區域524通過擋板346的氣體流量將大於在內部區域522的氣體流量。換言之,比起噴淋頭342的中心,有更多氣體流至噴淋頭342的邊緣。
第5C圖係擋板346的替代實施例底視圖。如第5C圖所示,外部區域524的孔洞520彼此間隔情形實質類似內部區域522的孔洞520的間距。是以外部區域524的孔洞520的密度實質類似內部區域522的孔洞520的密度。因外部區域524和內部區域522的孔洞520的密度實質均一,故在外部區域524和內部區域522通過擋板346的氣體流量將實質均一。換言之,有實質均勻的氣體流過整個基材。
在一些實施例中,視流向基材中心及/或邊緣的預定氣體量而定,內部區域522的表面積可實質類似外部區域524的表面積、或不同於外部區域524的表面積。另外,擋板346可包含具不同孔洞520密度的附加區域(未圖示)。
或者或除擋板346外,噴淋頭342可配置以調整氣體流動輪廓。第6圖係噴淋頭342的底視圖。如第6圖所示,內部區域622呈圓形且孔洞620的密度高於外部區域624的孔洞620的密度。內部區域622的直徑602相當於對應基材的內徑。外部區域624呈環形或圈狀並圍繞內部區域622。外部區域624的外徑604實質對應基材的外徑。
噴淋頭342設在處理容積318、320內且耦接至腔室主體302。噴淋頭342的凸耳626或其他類似結構配置以嚙合腔室主體302內的支撐件,例如擋板346。擋板346隔開噴淋頭342和腔室主體302,使噴淋頭342設置在處理容積318內。噴淋頭342和擋板346可由螺栓或螺釘或其他類似固定設備固定在一起。
相較於外部區域624的孔洞620的間距,內部區域622的孔洞620彼此間隔更近。是以外部區域624的孔洞620的密度小於內部區域622的孔洞620的密度。在此實施例中,因內部區域622的孔洞620的密度大於外部區域624的孔洞620的密度,故在內部區域622通過噴淋頭342的氣體流量將大於通過外部區域624的氣體流量。換言之,比起基材邊緣,有更多氣體流向基材中心。
或者,相較於內部區域622的孔洞620的間距,外部區域624的孔洞620彼此間隔更近。是以外部區域624的孔洞620的密度大於內部區域622的孔洞620的密度。因外部區域624的孔洞620的密度大於內部區域622的孔洞620的密度,故在外部區域624通過噴淋頭342的氣體流量將大於在內部區域622的氣體流量。換言之,比起基材中心,有更多氣體流至基材邊緣。
或者,外部區域624的孔洞620彼此間隔情形實質類似內部區域622的孔洞620的間距。是以外部區域624的孔洞620的密度實質類似內部區域622的孔洞620的密度。因外部區域624和內部區域622的孔洞620的密 度實質均一,故在外部區域624和內部區域622通過噴淋頭342的氣體流量將實質均一。換言之,有實質均勻的氣體流過整個基材。
在一些實施例中,視流向基材中心及/或邊緣的預定氣體量而定,內部區域622的表面積可實質類似外部區域624的表面積、或不同於外部區域624的表面積。另外,噴淋頭342可包含具不同孔洞620密度的附加區域(未圖示)。
第2B圖至第2C圖圖示相對κ範圍和局部應力的徑向氣體流動。如第2B圖至第2C圖所示,為均勻流過基材,低κ範圍可減少製程引發局部應力變化和覆蓋誤差。然以「更多在中心流動」的方式沉積時,此趨勢將相反,其中低κ範圍不會因增加基材尺度應力而增進覆蓋量。但相較於「均勻流動」和「更多在邊緣流動」條件,「更多在中心流動」能顯著降低(>50%)整體κ範圍和應力。故氣體輪廓調控提供κ範圍的最佳點,用以達成覆蓋誤差和局部應力變化控制。
在一些實施例中,藉由使基材旋轉可改善κ範圍和局部應力,此對應第4圖的方塊406。第7圖係根據本發明一些實施例,遮蔽環702的平視圖,用於支撐基材。如第7圖所示,遮蔽環702包含一或更多切口710,用以協助基材旋轉角度。可選擇性進行移地旋轉。可進行移地旋轉,其中基材移出腔室主體302、旋轉及再進入腔室主體302供進一步處理。例如,機器人葉片(未圖示) 可經由設置穿過腔室壁的縫閥進入腔室,其中機器人手臂接著嚙合由舉升銷支撐的基材底表面。機器人葉片可將基材移出腔室。基材可順時針或逆時針旋轉約15度至約345度、約150度至約250度、約180度。在一些實施例中,基材包含一或更多切口(未圖示),以助於基材旋轉。旋轉後,基材再進入腔室供進一步處理。
可在沉積膜層之間進行移地旋轉。或者,可中斷沉積膜層、然後將基材移出腔室主體302,以進行移地旋轉,此甚至無原生層形成風險。接著使基材旋轉及再進入腔室主體302。接著在腔室主體302內繼續沉積膜層。
第2D圖圖示κ-633nm的徑向(即受控於流動輪廓和溫度偏移)與方位角(即受控於基材旋轉)分量和局部應力(標示為σxx)。如第2D圖所示,基材旋轉可降低沉積膜內的局部應力和κ範圍。基材旋轉亦可歸一化如硬體特徵結構引入的厚度變異而改善沉積膜厚度均勻度。第2E圖圖示「更多在中心流動」結合基材旋轉對局部應力和覆蓋誤差的影響。如第2E圖所示,相較於均勻流動,「更多在中心流動」的方式可使應力(σxx)降低50%。於一半膜厚時移地旋轉180°可進一步使應力(σxx)降低大於75%,及獲得約6nm至約8nm的覆蓋誤差。
在一些實施例中,利用雙區加熱器控制基材溫度,藉以統一基材的中心至邊緣溫度輪廓,可改善κ範圍和局部應力,此對應第4圖的方塊408。如上所述,在如 α-C:H膜的典型PECVD製程期間,基材中心的溫度比基材邊緣高。換言之,沉積製程期間,溫度自基材中心徑向下降。基材的熱均勻度(和κ範圍最小化)可利用雙區加熱器獲得。第8圖係根據本發明一些實施例,雙區加熱器802的透視圖。如第8圖所示,雙區加熱器802具有平板810和杵桿812。平板810可包含陶瓷材料。在一些實施例中,平板810對應腔室主體302內的基座328,杵桿812對應腔室主體302內的杵桿326。平板810可包含舉升銷(未圖示),用以嚙合基材的下表面。舉升銷在平板810與基材間形成的空間例如能在移地基材旋轉製程期間讓機器人葉片嚙合基材底表面。平板810耦接杵桿812,其中平板810可動設在腔室主體302的處理容積318。平板810可包含二或更多加熱區,加熱區配置以提供一或更多溫度遍及平板810的表面和基材表面。例如,面板810可包含第一加熱區和第二加熱區,第二加熱區外接第一加熱區。換言之,第二加熱區沿徑向設置越過第一加熱區。沉積製程期間,第一加熱區的溫度可不同於第二加熱區的溫度。第一加熱區的溫度可低於、等於或高於第二加熱區的溫度。面板810可包含附加加熱區。面板810可包含約2至20個加熱區、約2至10個加熱區、約2至4個加熱區。在一些實施例中,加熱區之一離雙區加熱器的中心軸約5mm至約200mm、離雙區加熱器的中心軸約90mm至約140mm、離雙區加熱器的中心軸約110mm至約120mm。二或更多加熱區的溫度可由沿平板810內配置的一 或更多加熱線圈(未圖示)控制。加熱線圈可配置以加熱第一加熱區達第一溫度、第二加熱區達第二溫度。或者,二或更多加熱區的溫度可由一或更多流體流道(未圖示)控制,流體流道配置以容納加熱或冷卻流體。第2F圖圖示單區加熱器和雙區加熱器各自的溫度輪廓。如第2F圖所示,雙區加熱器藉由統一中心至邊緣溫度輪廓而改善溫度均勻度,進而使局部應力和覆蓋不均勻度降低>50%。
調控一或更多圖案化膜的局部應力與覆蓋誤差的方法可包括調控引入腔室主體的氣體的氣體流動輪廓、使腔室主體內的氣體流向基材、旋轉基材,及利用雙區加熱器控制基材溫度,藉以統一基材的中心至邊緣溫度輪廓。用於沉積膜的腔室可包括包含一或更多處理區的腔室主體。腔室主體可包括氣體分配組件,氣體分配組件具有擋板,用於輸送氣體至一或更多處理區。擋板具有第一區域與第二區域,第一區域與第二區域各具複數個孔洞。腔室主體可具有雙區加熱器。本發明的方法和設備可降低沉積多層內覆蓋誤差,及沉積積體電路製造可用材料層,材料層可共形沉積在具地形特徵結構的基材上。本發明的方法和設備排除微影和掃描器應用量測步驟,故可縮短整體處理時間,例如縮短測定最佳膜組成所需時間。
雖然以上係針對本發明實施例說明,但在不脫離本發明基本範圍的情況下,當可策劃本發明的其他和進一步實施例,因此本發明範圍視後附申請專利範圍所界定者為準。

Claims (17)

  1. 一種調控一或更多圖案化膜的局部應力與覆蓋誤差的方法,該方法包含以下步驟:利用包含一第一區域與一第二區域的一擋板,調控氣體的一氣體流動輪廓,其中該第一區域與該第二區域各具複數個孔洞;經由該擋板的該第一區域與該第二區域的該複數個孔洞,將該氣體引入一腔室主體;使該腔室主體內的氣體流向一基材的一第一區域與一第二區域;於該基材的該第一區域與該第二區域上沉積至少一部分膜;將該基材移出該腔室主體;在該至少該部分膜沉積至該基材上後,旋轉在該腔室主體外的該基材;在該旋轉後,將該基材插入該腔室主體;及繼續於該基材上的該至少該部分膜之沉積。
  2. 如請求項1所述之方法,進一步包含以下步驟:利用一雙區加熱器,控制該基材的一溫度,藉以統一該基材的一中心至邊緣溫度輪廓,其中該雙區加熱器包含一第一加熱區和一第二加熱區,且其中該第二加熱區外接該第一加熱區。
  3. 如請求項1所述之方法,進一步包含以下步驟:利用一量測工具,監測遍及該一或更多圖案化膜的一膜形貌。
  4. 如請求項1所述之方法,其中旋轉該基材的步驟包含以下步驟:該基材以順時針或逆時針旋轉約15度至約345度。
  5. 如請求項1所述之方法,其中該擋板包含:在該擋板的該第一區域的一孔洞密度比在該擋板的該第二區域的一孔洞密度高。
  6. 如請求項5所述之方法,其中該擋板的該第一區域係一中心區域,該擋板的該第二區域係一邊緣區域。
  7. 如請求項1所述之方法,其中旋轉該基材同時由一遮蔽環支撐該基材。
  8. 如請求項1所述之方法,其中該基材旋轉180°。
  9. 如請求項1所述之方法,其中該腔室主體內的一壓力為0.4托耳至10托耳。
  10. 一種調控一或更多圖案化膜的局部應力與覆蓋誤差的方法,該方法包含以下步驟:利用包含一第一區域與一第二區域的一擋板,調控氣體的一氣體流動輪廓,其中該第一區域與該第二區域各具複數個孔洞;經由該擋板的該第一區域與該第二區域的該複數個孔洞,將該氣體引入一腔室主體;使該腔室主體內的氣體流向一基材的一第一區域與一第二區域;利用一雙區加熱器,控制該基材的溫度,藉以統一該基材的一中心至邊緣溫度輪廓,其中該雙區加熱器包含一第一加熱區和一第二加熱區,其中該第二加熱區外接該第一加熱區;於該基材的該第一區域與該第二區域上沉積至少一部分膜;將該基材移出該腔室主體;在該至少該部分膜沉積至該基材上後,旋轉在該腔室主體外的該基材;在該旋轉後,將該基材插入該腔室主體;及繼續於該基材上的該至少該部分膜之沉積。
  11. 如請求項10所述之方法,其中該擋板在該擋板的該第一區域的一孔洞密度比在該擋板的該第二區域的一孔洞密度高。
  12. 如請求項11所述之方法,其中該擋板的該第一區域係一中心區域,該擋板的該第二區域係一邊緣區域。
  13. 如請求項10所述之方法,其中該溫度輪廓包括300℃至650℃的一溫度。
  14. 如請求項10所述之方法,其中該腔室主體內的一壓力為0.4托耳至10托耳。
  15. 一種用於沉積一膜的腔室,該腔室包含:一腔室主體,包含一或更多處理區;一氣體分配組件,包含一擋板,用於輸送氣體至該一或更多處理區,其中該擋板包含一第一區域與一第二區域,其中該第一區域與該第二區域各具複數個孔洞;一雙區加熱器,其中該雙區加熱器包含一第一加熱區和一第二加熱區,其中該第二加熱區外接該第一加熱區,其中該第一加熱區與該第二加熱區中之一者離該雙區加熱器的一中心軸5mm至200mm;及一遮蔽環,配置以支撐一基材,其中該遮蔽環包含一或更多切口,用以協助測定該基材的旋轉角度。
  16. 如請求項15所述之腔室,其中該第一加熱區與該第二加熱區中之一者離該雙區加熱器的該中心軸110mm至120mm。
  17. 如請求項15所述之腔室,其中該擋板在該擋板的該第一區域的一孔洞密度比在該擋板的該第二區域的一孔洞密度高,且該擋板的該第一區域係一中心區域,該擋板的該第二區域係一邊緣區域。
TW104127352A 2014-10-03 2015-08-21 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室 TWI670392B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462059751P 2014-10-03 2014-10-03
US62/059,751 2014-10-03
US14/549,380 2014-11-20
US14/549,380 US9390910B2 (en) 2014-10-03 2014-11-20 Gas flow profile modulated control of overlay in plasma CVD films

Publications (2)

Publication Number Publication Date
TW201614098A TW201614098A (en) 2016-04-16
TWI670392B true TWI670392B (zh) 2019-09-01

Family

ID=55631239

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104127352A TWI670392B (zh) 2014-10-03 2015-08-21 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室
TW108121086A TWI705154B (zh) 2014-10-03 2015-08-21 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108121086A TWI705154B (zh) 2014-10-03 2015-08-21 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室

Country Status (5)

Country Link
US (3) US9390910B2 (zh)
KR (3) KR102503734B1 (zh)
CN (1) CN107075671B (zh)
TW (2) TWI670392B (zh)
WO (1) WO2016053567A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490116B2 (en) * 2015-01-09 2016-11-08 Applied Materials, Inc. Gate stack materials for semiconductor applications for lithographic overlay improvement
US9828672B2 (en) 2015-03-26 2017-11-28 Lam Research Corporation Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma
WO2017184301A1 (en) * 2016-04-22 2017-10-26 Applied Materials, Inc. Method for pecvd overlay improvement
CN111066133B (zh) * 2017-08-11 2023-08-22 应用材料公司 用于改善热化学气相沉积(cvd)均匀性的设备和方法
CN111587474A (zh) 2017-12-01 2020-08-25 应用材料公司 高蚀刻选择性的非晶碳膜
US10760158B2 (en) * 2017-12-15 2020-09-01 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing
KR20200117052A (ko) * 2018-03-01 2020-10-13 어플라이드 머티어리얼스, 인코포레이티드 디바이스 제작에서의 금속 하드마스크 형성 시스템들 및 방법들
US10526703B2 (en) * 2018-03-15 2020-01-07 Taiwan Semiconductor Manufacturing Company Ltd. Film formation apparatus for forming semiconductor structure having shower head with plural hole patterns and with corresponding different plural hole densities
JP7407121B2 (ja) 2018-04-09 2023-12-28 アプライド マテリアルズ インコーポレイテッド パターニング用途のためのカーボンハードマスク及び関連方法
KR102670420B1 (ko) * 2018-04-24 2024-05-28 어플라이드 머티어리얼스, 인코포레이티드 카본 하드-마스크의 플라즈마-강화 화학 기상 증착
JP2021523558A (ja) * 2018-05-03 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated パターニングのための高品質c膜のパルスプラズマ(dc/rf)蒸着
WO2020033046A1 (en) 2018-08-08 2020-02-13 Applied Materials, Inc. Method of gas composition determination, adjustment, and usage
US10734219B2 (en) * 2018-09-26 2020-08-04 Asm Ip Holdings B.V. Plasma film forming method
KR20210087084A (ko) 2018-11-30 2021-07-09 어플라이드 머티어리얼스, 인코포레이티드 3d nand 애플리케이션을 위한 막 스택 오버레이 개선
KR102623545B1 (ko) * 2018-12-17 2024-01-10 삼성전자주식회사 반도체 소자 제조 장치
US11270905B2 (en) 2019-07-01 2022-03-08 Applied Materials, Inc. Modulating film properties by optimizing plasma coupling materials
US11859284B2 (en) * 2019-08-23 2024-01-02 Taiwan Semiconductor Manufacturing Company Ltd. Shower head structure and plasma processing apparatus using the same
US11236424B2 (en) 2019-11-01 2022-02-01 Applied Materials, Inc. Process kit for improving edge film thickness uniformity on a substrate
CN115004332A (zh) * 2020-01-28 2022-09-02 朗姆研究公司 用于高功率高压力处理的分段式气体分配板
US12020907B2 (en) * 2020-04-09 2024-06-25 Applied Materials, Inc. Faceplate with localized flow control
US20220293416A1 (en) * 2021-03-12 2022-09-15 Applied Materials, Inc. Systems and methods for improved carbon adhesion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089863A (zh) * 2008-07-11 2011-06-08 应用材料股份有限公司 用于cvd应用的腔室部件
CN102598217A (zh) * 2009-10-28 2012-07-18 丽佳达普株式会社 金属有机化学汽相淀积设备及其温度控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645884B1 (en) * 1999-07-09 2003-11-11 Applied Materials, Inc. Method of forming a silicon nitride layer on a substrate
US6596344B2 (en) * 2001-03-27 2003-07-22 Sharp Laboratories Of America, Inc. Method of depositing a high-adhesive copper thin film on a metal nitride substrate
US20030017268A1 (en) * 2001-07-18 2003-01-23 Applied Materials, Inc. .method of cvd titanium nitride film deposition for increased titanium nitride film uniformity
JP4804038B2 (ja) * 2004-06-21 2011-10-26 キヤノン株式会社 像加熱装置及びこの装置に用いられるヒータ
US8535443B2 (en) * 2005-07-27 2013-09-17 Applied Materials, Inc. Gas line weldment design and process for CVD aluminum
JP2007042951A (ja) * 2005-08-04 2007-02-15 Tokyo Electron Ltd プラズマ処理装置
KR20070102764A (ko) * 2006-04-17 2007-10-22 주식회사 엘지화학 Pecvd 법에 기반한 다층 박막 구조의 제조방법
US7867578B2 (en) 2006-06-28 2011-01-11 Applied Materials, Inc. Method for depositing an amorphous carbon film with improved density and step coverage
US7297376B1 (en) 2006-07-07 2007-11-20 Applied Materials, Inc. Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers
KR20100106608A (ko) * 2008-01-31 2010-10-01 어플라이드 머티어리얼스, 인코포레이티드 폐쇄 회로 mocvd 증착 제어
US20110290175A1 (en) * 2009-06-07 2011-12-01 Veeco Instruments, Inc. Multi-Chamber CVD Processing System
GB0922647D0 (en) * 2009-12-24 2010-02-10 Aviza Technologies Ltd Methods of depositing SiO² films
US8222100B2 (en) 2010-01-15 2012-07-17 International Business Machines Corporation CMOS circuit with low-k spacer and stress liner
JP5909484B2 (ja) * 2010-04-28 2016-04-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 短寿命種のためのプラズマ源を組み込んだプロセスチャンバ蓋の設計
US9543406B2 (en) 2010-11-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for overlay marks
WO2013070438A1 (en) * 2011-11-08 2013-05-16 Applied Materials, Inc. Precursor distribution features for improved deposition uniformity
US8679987B2 (en) * 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089863A (zh) * 2008-07-11 2011-06-08 应用材料股份有限公司 用于cvd应用的腔室部件
CN102598217A (zh) * 2009-10-28 2012-07-18 丽佳达普株式会社 金属有机化学汽相淀积设备及其温度控制方法

Also Published As

Publication number Publication date
TW201945585A (zh) 2019-12-01
KR102503734B1 (ko) 2023-02-23
CN107075671A (zh) 2017-08-18
TW201614098A (en) 2016-04-16
KR20210145860A (ko) 2021-12-02
US9837265B2 (en) 2017-12-05
KR20220070069A (ko) 2022-05-27
KR20170063943A (ko) 2017-06-08
US20160099147A1 (en) 2016-04-07
WO2016053567A1 (en) 2016-04-07
KR102401034B1 (ko) 2022-05-20
KR102333160B1 (ko) 2021-11-29
US20160307752A1 (en) 2016-10-20
US9390910B2 (en) 2016-07-12
TWI705154B (zh) 2020-09-21
US10373822B2 (en) 2019-08-06
CN107075671B (zh) 2019-09-13
US20180096843A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
TWI670392B (zh) 調控一或更多圖案化膜的局部應力與覆蓋誤差的方法及用於沉積該一或更多圖案化膜的腔室
KR101234256B1 (ko) 플라즈마 에칭 방법 및 플라즈마 에칭 장치
US9847221B1 (en) Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US20180269119A1 (en) Surface modification control for etch metric enhancement
KR20240144026A (ko) 실리콘 나이트라이드를 에칭하는 동안 초고선택도를 달성하기 위한 방법
US8962101B2 (en) Methods and apparatus for plasma-based deposition
US7432210B2 (en) Process to open carbon based hardmask
US8399366B1 (en) Method of depositing highly conformal amorphous carbon films over raised features
US20110151142A1 (en) Pecvd multi-step processing with continuous plasma
WO2013047531A1 (ja) プラズマエッチング方法及び半導体装置の製造方法
KR102016773B1 (ko) 반도체 장치의 제조 방법
KR20210042205A (ko) 반도체 소자의 제조방법
US20080203056A1 (en) Methods for etching high aspect ratio features
US11322352B2 (en) Nitrogen-doped carbon hardmask films
US20050098536A1 (en) Method of etching oxide with high selectivity