KR20210145860A - 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어 - Google Patents

플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어 Download PDF

Info

Publication number
KR20210145860A
KR20210145860A KR1020217038629A KR20217038629A KR20210145860A KR 20210145860 A KR20210145860 A KR 20210145860A KR 1020217038629 A KR1020217038629 A KR 1020217038629A KR 20217038629 A KR20217038629 A KR 20217038629A KR 20210145860 A KR20210145860 A KR 20210145860A
Authority
KR
South Korea
Prior art keywords
region
substrate
blocker plate
holes
chamber body
Prior art date
Application number
KR1020217038629A
Other languages
English (en)
Other versions
KR102401034B1 (ko
Inventor
프라산트 쿠마르 쿨쉬레쉬타
수드라 라티
프라켓 피. 자
셉타르시 바수
광덕 더글라스 리
마틴 제이. 시아몬
복 헌 김
가네쉬 발라수브라마니안
지큉 두안
레이 징
만다르 비. 판디트
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Priority to KR1020227016710A priority Critical patent/KR102503734B1/ko
Publication of KR20210145860A publication Critical patent/KR20210145860A/ko
Application granted granted Critical
Publication of KR102401034B1 publication Critical patent/KR102401034B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러를 조절하기 위한 방법들은, 챔버 바디 내로 도입되는 가스들의 가스 유동 프로파일을 조절하는 단계, 기판을 향하여 챔버 바디 내에서 가스들을 유동시키는 단계, 기판을 회전시키는 단계, 및 이중 구역 가열기로 기판 온도를 제어함으로써, 기판의 중앙-대-에지 온도 프로파일을 통일시키는 단계를 포함할 수 있다. 막을 증착하기 위한 챔버는 하나 또는 그 초과의 프로세싱 영역들을 포함하는 챔버 바디를 포함할 수 있다. 챔버 바디는 하나 또는 그 초과의 프로세싱 영역들 내로 가스들을 전달하기 위한 블로커 플레이트를 갖는 가스 분배 어셈블리를 포함할 수 있다. 블로커 플레이트는 제 1 영역 및 제 2 영역을 가질 수 있고, 제 1 영역 및 제 2 영역은 각각, 복수의 홀들을 가질 수 있다. 챔버 바디는 이중 구역 가열기를 가질 수 있다.

Description

플라즈마 CVD 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어{GAS FLOW PROFILE MODULATED CONTROL OF OVERLAY IN PLASMA CVD FILMS}
[0001] 본 개시내용의 실시예들은 일반적으로, 기판 상에 막 층들을 증착하기 위한 방법들 및 장치에 관한 것이다.
[0002] 비정질 수소화 탄소와 같은 하드마스크는 실리콘 이산화물 또는 탄소 도핑된 실리콘 산화물과 같은 민감한 재료들의 손상 및 변형을 방지한다. 부가하여, 하드마스크 층은 에칭 동안의 재료의 제거를 방지하기 위해 통상적인 리소그래픽 기법들과 함께 에칭 마스크로서 작용할 수 있다.
[0003] 광 복사, 즉, 약 400 nm 내지 약 700 nm의 광 파장들에 대해 고도로 투명한 하드마스크는 리소그래픽 프로세싱과 같은 몇몇 애플리케이션들에서 바람직하다. 광의 특정한 파장에 대한 투명성은 더 정확한 리소그래픽 정합을 허용하고, 이는 결국, 기판 상의 특정한 위치들과 마스크의 정밀한 정렬을 허용한다. 광의 주어진 주파수에 대한 재료의 투명성은 일반적으로, 흡수 계수(κ)라고 또한 지칭되는, 재료의 흡광 계수로서 정량화된다. 예컨대, 두께가 대략 6000 Å 내지 7000 Å인 비정질 수소화 탄소 층의 경우에, 비정질 수소화 탄소 층은, 예컨대 630 nm와 같은 리소그래픽 정합을 위해 사용되는 광의 주파수에서 0.12 또는 그 미만의 흡수 계수를 가져야 하고, 그렇지 않으면, 마스크는 정확하게 정렬되지 않을 수 있다. 0.12 초과의 흡수 계수를 갖는 층이 또한 사용될 수 있지만, 정확한 리소그래픽 정합을 달성하기 위해, 층 두께가 감소되어야만 할 수 있다. 오버레이(overlay) 에러에 관하여, 고 κ 값들이 오버레이 에러를 초래하지 않지만, 고 κ 범위가 오버레이 에러를 초래할 수 있다.
[0004] 비정질 탄소라고 또한 지칭되고 α-C:H로 표시되는 비정질 수소화 탄소는 본질적으로, 예컨대 대략 약 10 내지 45 원자 %의 상당한 수소 함유량을 함유할 수 있는, 긴-범위의 결정질 오더(long-range crystalline order)를 갖지 않는 탄소 재료이다. α-C:H는 그러한 α-C:H의 화학적인 비활성, 광학 투명성, 및 우수한 기계적인 특성들로 인해 반도체 애플리케이션들에서 하드마스크 재료로서 사용된다. α-C:H 막들이 다양한 기법들을 통해 증착될 수 있지만, 비용 효율성 및 막 특성 조정가능성으로 인해, 플라즈마 강화 화학 기상 증착(PECVD)이 사용될 수 있다. 전형적인 PECVD 프로세스에서, 예컨대, 여기된 CH― 라디칼들을 생성하기 위해 플라즈마가 챔버에서 개시된다. 여기된 CH― 라디칼들은 챔버에 위치된 기판의 표면에 화학적으로 구속되어, 그러한 기판 상에 α-C:H 막을 형성한다.
[0005] 하나의 층과, 이전의 층을 오버레잉하는 다음의 층 사이에, 하나의 층과 다음의 층의 개별적인 패턴들이 정렬되어야 한다. 정렬 마크들의 측정들은 계측 툴에 의해 획득될 수 있고, 이는 그 후에, 노출 동안에 후속 층들을 정렬시키고, 다시, 리소그래피 프로세스 후에, 정렬의 성능을 재검사하기 위해 리소그래피 툴에 의해 사용된다. 그러나, 층들 사이의 오버레이 에러들은 불가피하고, 제조가 만족시켜야만 하는 에러 버짓(error budget)들이 집적 회로 설계자들에 의해 계산된다. 오버레이 에러 버짓은 리소그래픽 스캐너 부정확성/오정렬, 비-선형 프로세스, 막 내 변동(variation)들, 마스크-대-마스크 변동들, 및 계측 에러들에 의해 유발되는 에러들로서 정의된다. 디바이스 구조의 오버레이 에러들은 상이한 에러 소스들, 예컨대, 이전의 노출 툴, 현재의 노출 툴로부터의 오버레이 에러들, 이전의 노출 툴/계측 툴 및 현재의 노출 툴/계측 툴의 오버레이 에러들 사이의 매칭 에러, 또는 막 응력에 의해 야기되는 기판 막 층 변형으로부터 유래할 수 있다.
[0006] 디바이스 치수들이 계속 축소됨에 따라, 차-세대 리소그래피(NGL) 프로세스들은 기판 내에서 < 6 내지 8 nm의 오버레이 에러 버짓을 가져야 한다. 예컨대, PECVD 프로세스들 동안에, 가스성 컴포넌트들의 국부적인 부분적인 압력들, 온도, 체류 시간, 및/또는 반응성은 증착된 막의 불-균일한 모폴러지(morphology)를 제공할 수 있고, 여기에서, 예컨대, 막의 국부적인 응력은 막의 다양한 영역들에서 상이하다. 그러한 불-균일한 모폴러지는 막 상의 다양한 영역들에서 국부적으로 오버레이 에러들을 초래한다. 게다가, 차세대 CVD 하드마스크 막들은 > 50 %의 오버레이 에러를 제공하여, 디바이스 수율 및 성능을 상당히 감소시킨다. 증착된 다층들 내에서 오버레이 에러를 감소시키기 위한 필요성, 및 토포그래픽(topographic feature) 피처들을 갖는 기판들 상에 등각적으로 증착될 수 있는, 집적 회로 제작에 대해 유용한 재료 층을 증착하는 방법에 대한 필요성이 본 기술분야에 존재한다.
[0007] 일 실시예에서, 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러를 조절하는 방법은, 제 1 영역 및 제 2 영역을 포함하는 블로커 플레이트를 통해 가스들의 가스 유동 프로파일을 조절하는 단계를 포함하고, 여기에서, 제 1 영역 및 제 2 영역은 각각, 복수의 홀들을 갖는다. 방법은 블로커 플레이트의 제 1 및 제 2 영역들의 복수의 홀들을 통해 챔버 바디 내로 가스들을 도입하는 단계를 포함할 수 있다. 방법은 기판의 제 1 영역 및 제 2 영역을 향하여 챔버 바디 내에서 가스들을 유동시키는 단계를 포함할 수 있다. 방법은 기판 상으로스이 적어도 부분적인 막의 증착 후에, 기판을 회전시키는 단계를 포함할 수 있다.
[0008] 다른 실시예에서, 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러를 조절하는 방법은 제 1 영역 및 제 2 영역을 포함하는 블로커 플레이트를 통해 가스들의 가스 유동 프로파일을 조절하는 단계를 포함하고, 여기에서, 제 1 영역 및 제 2 영역은 각각, 복수의 홀들을 갖는다. 방법은 블로커 플레이트의 제 1 및 제 2 영역들의 복수의 홀들을 통해 챔버 바디 내로 가스들을 도입하는 단계를 포함할 수 있다. 방법은 기판의 제 1 영역 및 제 2 영역을 향하여 챔버 바디 내에서 가스들을 유동시키는 단계를 포함할 수 있다. 방법은 이중 구역 가열기로 기판 온도를 제어함으로써, 기판의 중앙-대-에지 온도 프로파일을 통일(unifying)시키는 단계를 포함할 수 있고, 여기에서, 이중 구역 가열기는 제 1 가열 구역 및 제 2 가열 구역을 포함하고, 여기에서, 제 2 가열 구역은 제 1 가열 구역을 한정(circumscribe)한다.
[0009] 다른 실시예에서, 막을 증착하기 위한 챔버는 하나 또는 그 초과의 프로세싱 영역들을 포함하는 챔버 바디를 포함한다. 챔버 바디는 하나 또는 그 초과의 프로세싱 영역들 내로 가스들을 전달하기 위한 블로커 플레이트를 포함하는 가스 분배 어셈블리를 포함할 수 있고, 여기에서, 블로커 플레이트는 제 1 영역 및 제 2 영역을 포함하고, 여기에서, 제 1 영역 및 제 2 영역은 각각, 복수의 홀들을 포함한다. 챔버 바디는 이중 구역 가열기를 포함할 수 있고, 여기에서, 이중 구역 가열기는 제 1 가열 구역 및 제 2 가열 구역을 포함하고, 여기에서, 제 2 가열 구역은 제 1 가열 구역을 한정하고, 여기에서, 가열 구역들 중 하나는 이중 구역 가열기의 중심 축으로부터 약 5 mm 내지 약 200 mm에 있다. 챔버 바디는 기판을 지지하도록 구성된 섀도우 링을 포함할 수 있다.
[0010] 본 개시내용의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 개시내용의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 단지 예시적인 실시예들을 도시하는 것이므로, 본 개시내용의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 개시내용이 다른 균등하게 유효한 구현들을 허용할 수 있기 때문이다.
[0011] 도 1a 및 도 1b는 각각, 하드마스크로서 비정질 탄소 층을 포함하는 집적 회로 제작 시퀀스의 상이한 스테이지들에서의 기판의 개략적인 단면도를 예시한다.
[0012] 도 2a는 κ-범위 및 국부적인 응력에 대한 가스 유동 모폴러지를 예시한다.
[0013] 도 2b 및 도 2c는 κ-범위 및 국부적인 응력에 대한 방사상 가스 유동을 예시한다.
[0014] 도 2d는 κ-633 nm 및 국부적인 응력의 방사상 및 방위각 컴포넌트들을 예시한다.
[0015] 도 2e는 국부적인 응력 및 오버레이 에러에 대한 기판 회전과 조합된 "중앙에서의 더 많은 유동"의 효과를 예시한다.
[0016] 도 2f는 단일 구역 가열기 및 이중 구역 가열기의 온도 프로파일들을 예시한다.
[0017] 도 3은 본 개시내용의 몇몇 실시예들을 실시하기 위해 사용될 수 있는 예시적인 프로세싱 챔버의 개략적인 단면도이다.
[0018] 도 4는 본 개시내용의 몇몇 실시예들에 따른 방법을 예시하는 프로세스 흐름도이다.
[0019] 도 5a 내지 도 5c는 본 개시내용의 몇몇 실시예들에 따른 블로커 플레이트의 저면도들을 예시한다.
[0020] 도 6은 본 개시내용의 몇몇 실시예들에 따른 샤워헤드의 저면도이다.
[0021] 도 7은 본 개시내용의 몇몇 실시예들에 따른 섀도우 링의 평면도이다.
[0022] 도 8은 본 개시내용의 몇몇 실시예들에 따른 이중 구역 가열기의 투시도이다.
[0023] 이해를 용이하게 하기 위해, 도면들에 대해 공통인 동일한 엘리먼트들을 지정하기 위해 가능한 경우에 동일한 참조 번호들이 사용되었다. 일 실시예의 엘리먼트들 및 특징들이 추가적인 설명 없이 다른 실시예들에 유익하게 포함될 수 있다는 것이 고려된다.
[0024] 도 1a 및 도 1b는 하드마스크로서 비정질 탄소-수소(α-C:H) 층을 포함하는 집적 회로 제작 시퀀스의 상이한 스테이지들에서의 기판(100)의 개략적인 단면도들을 예시한다. 기판 구조(150)는 기판(100) 상에 형성된 다른 재료 층들과 함께 기판(100)을 나타낸다. 도 1a는 기판 구조(150) 상에 통상적으로 형성된 재료 층(102)을 갖는 기판 구조(150)의 단면도를 예시한다. 재료 층(102)은 예컨대, SiO2, Si3N4, 산화물들, 질화물들, 또는 탄소-도핑된 실리콘 산화물과 같은, 세공(pore)들을 갖는 산화물과 같은 저-k 재료일 수 있다.
[0025] 도 1b는 도 1a의 기판 구조(150) 상에 증착된 비정질 탄소 층(104)을 예시한다. 비정질 탄소 층(104)은 PECVD와 같은 통상적인 수단에 의해 기판 구조(150) 상에 형성된다. 비정질 탄소 층(104)의 두께는 프로세싱의 특정한 스테이지에 따라 가변적이다. 전형적으로, 비정질 탄소 층(104)은 약 500 Å 내지 약 10,000 Å의 범위에서의 두께를 갖는다.
[0026] 본 개시내용의 양상들은, 결과적인 막 밀도(그리고 그에 따라, 에칭 선택성), 막의 증착 레이트, 및 기판의 표면 상의 피처들에 대한 막의 등각성을 증가시키기 위해, α-C:H 막 증착 동안의 희석제 가스로서 비교적 큰 유량의 아르곤 또는 다른 무거운 노블(noble) 가스, 예컨대 크립톤 또는 크세논의 사용을 고려한다. 큰 유량의 희석제 가스로서의 무거운 노블 가스의 적용은 또한, 증착 프로세스 동안의 탄화수소 전구체 활용의 효율을 개선하여, 증착 챔버의 내부 표면들 상의 원하지 않는 증착을 최소화한다. α-C:H 막 증착을 위해 PECVD 챔버에서 작업 가스의 주된 비-반응성 컴포넌트로서 헬륨이 사용되어 왔고, 이는 헬륨이 용이하게 이온화되고, 그에 따라, 아킹의 낮은 리스크로 챔버에서 플라즈마를 개시하는데 유리하기 때문이다.
[0027] 도 3은 비정질 탄소 층과 같은 진보된(advanced) 패터닝 막을 증착하기 위한 화학 기상 증착(CVD) 챔버(300)의 개략적인 단면도를 제시한다. 챔버(300)의 하나의 예는, 예컨대, 캘리포니아, 산타클라라의 어플라이드 머티어리얼스 인코포레이티드에 의해 제조된 PRODUCER® 챔버 또는 XP PRECISIONTM 챔버일 수 있다. PRODUCER® CVD 챔버(200 mm 또는 300 mm)는 탄소-도핑된 실리콘 산화물들 및 다른 재료들을 증착하기 위해 사용될 수 있는 2개의 격리된 프로세싱 영역들을 갖는다.
[0028] 증착 챔버(300)는 별개의 프로세싱 영역들(318, 320)을 정의하는 챔버 바디(302)를 갖는다. 각각의 프로세싱 영역(318, 320)은 챔버(300) 내에서 기판(미도시)을 지지하기 위한 페데스탈(pedestal)(328)을 갖는다. 페데스탈(328)은 전형적으로, 가열 엘리먼트(미도시)를 포함한다. 페데스탈(328)은 스템(stem)(326)에 의해 각각의 프로세싱 영역(318, 320)에 이동가능하게 배치될 수 있고, 스템(326)은 그러한 스템(326)이 구동 시스템(303)에 연결되는 챔버 바디(302)의 바닥을 통해 연장된다. 내부에서 이동가능한 리프트 핀들(미도시)이 기판의 하측 표면과 맞물리도록 페데스탈(328)에 제공될 수 있다. 리프트 핀들은 프로세싱 전에 기판을 수용하도록, 또는 다음의 스테이션으로의 이송을 위해 증착 후에 기판을 리프팅하도록, 리프트 메커니즘(미도시)에 의해 맞물리게 될 수 있다.
[0029] 프로세싱 영역들(318, 320) 각각은 또한, 프로세싱 영역들(318, 320) 내로 가스들을 전달하도록 챔버 덮개(304)를 통해 배치된 가스 분배 어셈블리(308)를 포함할 수 있다. 각각의 프로세싱 영역의 가스 분배 어셈블리(308)는 일반적으로, 가스 분배 매니폴드(319)로부터 블로커 플레이트(346)를 통해 그리고 그 후 샤워헤드(342)를 통해 가스를 전달하는, 매니폴드(348)를 통하는 가스 유입구 통로(340)를 포함한다. 샤워헤드(342)는 복수의 홀들(미도시)을 포함하고, 프로세싱 동안에, 그러한 복수의 홀들을 통해 가스성 혼합물들이 주입된다. RF(무선 주파수) 공급부(325)가 페데스탈(328)과 샤워헤드 사이의 플라즈마의 생성을 용이하게 하기 위해 샤워헤드(342)에 바이어스 전위를 제공한다. 플라즈마-강화 화학 기상 증착 프로세스 동안에, 페데스탈(328)은 챔버 바디(302) 내에서 RF 바이어스를 생성하기 위해 캐소드(cathode)로서 역할을 할 수 있다. 캐소드는 증착 챔버(300)에서 용량성 전기장을 생성하기 위해 전극 전력 공급부에 전기적으로 커플링된다. 전형적으로, 챔버 바디(302)가 전기적으로 접지되는 한편, 캐소드에 RF 전압이 인가된다. 페데스탈(328)에 인가되는 전력은 기판의 상측 표면 상에 음의 전압의 형태로 기판 바이어스를 생성한다. 이러한 음의 전압은 챔버(300)에서 형성된 플라즈마로부터 기판의 상측 표면으로 이온들을 유인하기 위해 사용된다. 용량성 전기장은 증착 동안의 기판의 더 수직으로 배향된 이방성 막 형성, 및 세정 동안의 기판의 에칭을 제공하기 위해, 유도성으로 형성된 플라즈마 종을 기판을 향하여 가속시키는 바이어스를 형성한다.
[0030] 프로세싱 동안에, 프로세스 가스들은 기판 표면에 걸쳐 방사상으로 균일하게 분배될 수 있다. 플라즈마는 RF 전력 공급부(325)로부터, 전력공급된 전극으로서 작용하는 샤워헤드(342)에 RF 에너지를 인가함으로써, 하나 또는 그 초과의 프로세스 가스들 또는 가스 혼합물로부터 형성된다. 막 증착은 기판이 플라즈마 및 그곳에 제공되는 반응성 가스들에 노출될 때에 발생된다. 챔버 벽들(312)은 전형적으로 접지된다. RF 전력 공급부(325)는 프로세싱 영역들(318, 320) 내로 도입되는 임의의 가스들의 분해를 향상시키기 위해 샤워헤드(342)에 단일의 또는 혼합된-주파수 RF 신호를 공급할 수 있다.
[0031] 몇몇 실시예들에서, 프로세스 가스들은, 예컨대, 아래에서 더 상세히 설명되는 바와 같은 블로커 플레이트(346)의 구성에 따라, 기판 표면에 걸쳐 "중앙에서의 더 많은 유동(more flow-at-center)" 또는 "에지에서의 더 많은 유동(more flow-at-edge)"으로 방사상으로 분배된다.
[0032] 시스템 제어기(334)는 RF 전력 공급부(325), 구동 시스템(303), 리프트 메커니즘, 가스 분배 매니폴드(319) 및 다른 연관된 챔버와 같은 다양한 컴포넌트들의 기능들, 및/또는 프로세싱 기능들을 제어한다. 시스템 제어기(334)는 하드 디스크 드라이브일 수 있는 메모리(338)에 저장된 시스템 제어 소프트웨어를 실행하고, 아날로그 및 디지털 입력/출력 보드들, 인터페이스 보드들, 및 스테퍼 모터 제어기 보드들을 포함할 수 있다. 광학 및/또는 자기 센서들이 일반적으로, 이동가능한 기계적인 어셈블리들의 위치를 이동시키고 결정하기 위해 사용된다.
[0033] 위의 CVD 시스템 설명은 주로 예시적인 목적들을 위한 것이고, 다른 플라즈마 프로세싱 챔버들이 또한, 본 개시내용의 실시예들을 실시하기 위해 채용될 수 있다.
[0034] 매우 다양한 프로세스 가스 혼합물들이 증착 프로세스에서 사용될 수 있다. 프로세스 가스는 약 10 mg/분 내지 약 5,000 mg/분, 예컨대 약 300 mg/분 내지 약 3,000 mg/분의 범위에서의 유량으로 프로세싱 챔버 내로 도입될 수 있다.
[0035] 가스 혼합물은 선택적으로, 하나 또는 그 초과의 캐리어 가스들을 포함한다. 사용될 수 있는 캐리어 가스들의 예들은 헬륨, 아르곤, 탄소 이산화물, 및 이들의 조합들을 포함한다. 하나 또는 그 초과의 캐리어 가스들은, 부분적으로 챔버의 내부의 사이즈에 따라, 약 20,000 sccm(standard cubic centimeter per minute) 미만의 유량으로 프로세싱 챔버 내로 도입될 수 있다. 캐리어 가스의 유동은 약 500 sccm 내지 약 1,500 sccm의 범위에 있을 수 있고, 약 1,000 sccm일 수 있다. 몇몇 프로세스들에서, 헬륨 또는 아르곤과 같은 비활성 가스가, 반응성 프로세스 가스들이 도입되기 전에, 챔버에서의 압력을 안정화시키기 위해 프로세싱 챔버 내로 투입된다.
[0036] 가스 혼합물은 하나 또는 그 초과의 산화 가스들을 포함할 수 있다. 적합한 산화 가스들은 산소(O2), 오존(O3), 아산화 질소(N2O), 탄소 일산화물(CO), 탄소 이산화물(CO2), 및 이들의 조합들을 포함한다. 산화 가스의 유동은, 부분적으로 챔버의 내부의 사이즈에 따라, 약 100 sccm 내지 약 3,000 sccm의 범위에 있을 수 있다. 전형적으로, 산화 가스의 유동은 약 100 sccm 내지 약 1,000 sccm의 범위에 있다. 산소 함유 화합물들 또는 산소의 해리는, 증착 챔버에 진입하기 전에 마이크로파 챔버에서 발생될 수 있고, 그리고/또는 챔버 내에서 프로세스 가스에 인가되는 RF 전력에 의해 발생될 수 있다.
[0037] 증착 동안에, 도 3에서 도시된 바와 같은 RF 전력 공급부(325)를 사용하여 샤워헤드에 인가되는 RF 에너지에 의해, 제어되는 플라즈마가 전형적으로, 챔버에서 기판 근처에 형성된다. 대안적으로, RF 전력은 기판 지지부에 제공될 수 있다. 플라즈마는 고 주파수 RF(HFRF) 전력, 뿐만 아니라, 저 주파수 RF(LFRF) 전력(예컨대, 이중 주파수 RF), 지속적인 RF, 펄스형 RF, 또는 임의의 다른 플라즈마 생성 기법을 사용하여 생성될 수 있다. RF 전력 공급부(325)는 약 5 MHz 내지 약 300 MHz의 단일 주파수 RF를 공급할 수 있다. 부가하여, RF 전력 공급부(325)는 또한, 프로세스 챔버 내로 도입되는 프로세스 가스의 반응성 종의 분해를 향상시키도록, 혼합된 주파수를 공급하기 위해, 약 300 Hz 내지 약 1,000 kHz의 단일 주파수 LFRF를 공급할 수 있다. RF 전력은 기판의 가열을 감소시키고 증착된 막에서 더 큰 다공도를 촉진하기 위해 사이클링 또는 펄싱될 수 있다. 적합한 RF 전력은 약 10 W 내지 약 5,000 W, 약 200 W 내지 약 1000 W의 범위에서의 전력일 수 있다. 적합한 LFRF 전력은 약 0 W 내지 약 5,000 W, 약 0 W 내지 약 200 W의 범위에서의 전력일 수 있다.
증착 프로세스:
[0038] 본 개시내용의 양상들은 프로세싱 챔버 내로 탄화수소 소스, 플라즈마-개시 가스, 및 희석제 가스를 도입하는 것을 포함하는 프로세스에 의한 α-C:H 층의 증착을 고려한다. 탄화수소 소스는 하나 또는 그 초과의 탄화수소 화합물들의 혼합물이다. 탄화수소 소스는 C3H6와 같은 가스-상 탄화수소 화합물, 및/또는 캐리어 가스 및 액체-상 탄화수소 화합물의 증기들을 포함하는 가스 혼합물을 포함할 수 있다. 헬륨이 쉽게 이온화되기 때문에, 플라즈마-개시 가스는 헬륨일 수 있지만, 아르곤과 같은 다른 가스들이 또한 사용될 수 있다. 희석제 가스는 용이하게 이온화되고 비교적 크고 화학적으로 비활성인 가스이다. 예시적인 희석제 가스들은 아르곤, 크립톤, 및 크세논을 포함한다.
[0039] 부가적으로, 탄화수소 화합물들의 부분적으로 또는 완전히 도핑된 유도체들을 사용하여 형성되는 비정질 탄소 층들이 또한, 본 개시내용의 방법으로부터 이익을 얻을 수 있다. 유도체들은 탄화수소 화합물들의 질소-함유, 불소-함유, 산소-함유, 수산 기-함유, 및 붕소-함유 유도체들을 포함한다. 탄화수소 화합물들은 질소-함유 치환기들로 기능화될(functionalized) 수 있고, 그리고/또는 암모니아와 같은 질소-함유 가스로 증착될 수 있다. 탄화수소 화합물들은 불소-함유 및/또는 산소-함유 치환기들로 기능화될 수 있다.
[0040] 아르곤 희석을 이용한 α-C:H 증착 프로세스는 PECVD 프로세스일 수 있다. α-C:H 층은 결과적인 막의 흡수 계수 범위를 최소화하기 위해 약 100 ℃ 내지 약 650 ℃로 기판 온도를 유지함으로써 프로세싱 가스로부터 증착될 수 있다. 프로세스는 약 0.4 Torr 내지 약 10 Torr로 챔버 압력을 유지하는 것을 더 포함한다. 증착 레이트는 약 2,000 Å/분 내지 약 20,000 Å/분일 수 있다. 탄화수소 소스, 플라즈마-개시 가스, 및 희석제 가스가 챔버 내로 도입될 수 있고, 플라즈마가 개시되어, 증착이 시작된다. 플라즈마-개시 가스는 헬륨 또는 다른 용이하게 이온화되는 가스일 수 있고, 탄화수소 소스 및 희석제 가스 전에 챔버 내로 도입되고, 이는 안정적인 플라즈마가 형성되게 허용하고, 아킹의 기회들을 감소시킨다. 플라즈마는 약 0.7 W/cm2 내지 약 3 W/cm2, 예컨대 약 1.1 내지 2.3 W/cm2의 기판 표면 면적에 대한 전력 밀도로 RF 전력을 인가함으로써 생성된다. 전극 간격, 예컨대, 기판과 샤워헤드 사이의 거리는 약 200 밀 내지 약 1000 밀일 수 있다.
[0041] 이중-주파수 RF 시스템이 플라즈마를 생성하기 위해 사용될 수 있다. 이중 주파수는 플럭스 및 이온 에너지의 독립적인 제어를 제공하는 것으로 생각되고, 이는 막 표면을 타격하는 이온들의 에너지가 막 밀도에 영향을 미치기 때문이다. 이론에 의해 구속되지 않으면서, 고 주파수 플라즈마는 플라즈마 밀도를 제어하고, 저 주파수 플라즈마는 기판 표면을 타격하는 이온들의 운동 에너지를 제어한다. 혼합된 RF 전력의 이중-주파수 소스는 약 10 MHz 내지 약 30 MHz의 범위에서의, 예컨대 약 13.56 MHz의 고 주파수 전력을 제공할 뿐만 아니라, 약 10 KHz 내지 약 1 MHz의 범위에서의, 예컨대 약 350 KHz의 저 주파수 전력을 제공한다. 이중 주파수 RF 시스템이 α-C:H 막을 증착하기 위해 사용되는 경우에, 제 2 RF 전력 대 총 혼합된 주파수 전력의 비율은 약 0.6 대 1.0(0.6:1) 미만일 수 있다. 하나 또는 그 초과의 주파수들의 사용 및 인가되는 RF 전력은 사용되는 장비 및 기판 사이즈에 기초하여 변화될 수 있다.
[0042] 증착되는 α-C:H 막에서의 매우 높은 막 응력은 α-C:H 막의 크래킹(cracking) 및/또는 기판 표면들에 대한 α-C:H 막의 불량한 접착과 같은 문제들을 야기한다. 따라서, 탄화수소 화합물에 관한 특정한 분자비를 넘는 아르곤 또는 다른 희석제의 부가는 막의 특성들에 유해하게 영향을 미칠 것이다. 따라서, 증착되는 막의 원하는 특성들에 따라, PECVD 챔버 내로의 아르곤 희석제의 몰 유량(molar flow rate) 대 탄화수소 화합물의 몰 유량의 비율이 약 2:1 내지 약 40:1로 유지될 수 있는 프로세스 윈도우가 존재한다. 몇몇 α-C:H 막들의 증착의 경우에, PECVD 챔버 내로의 아르곤 희석제의 몰 유량 대 탄화수소 화합물의 몰 유량의 비율의 범위는 약 10:1 내지 약 14:1일 수 있다.
[0043] 통상적으로, 증착 동안의 더 높은 기판 온도는 더 높은 밀도의 막의 형성을 조장하기 위해 사용되는 프로세스 파라미터이다. 위에서 설명된 이유들로, 아르곤-희석 프로세스가 밀도를 이미 증가시키기 때문에, 기판 온도는, 예컨대 약 300 ℃만큼 낮게 증착 동안에 감소될 수 있고, 여전히, 예컨대 약 1.2 g/cc 내지 약 2.2 g/cc의 원하는 밀도의 막을 생성할 수 있다. 따라서, 아르곤-희석 프로세스는 약 0.09만큼 낮은 흡수 계수를 갖는 비교적 높은 밀도의 막을 생성할 수 있다. 추가로, 더 낮은 프로세싱 온도들이 일반적으로, 모든 기판들에 대해 바람직하고, 이는 그러한 것이 프로세스의 열적 버짓(thermal budget)을 낮춰서, 도펀트 이동으로부터 그러한 기판들 상에 형성된 디바이스들을 보호하기 때문이다.
[0044] 프로세스-유발 오버레이 에러는, 막 내의 국부적인 응력 변동들로서 측정될 수 있는, 증착된 막의 국부적인 굽음 및 휨과 관련된다. sp2/sp3 결합의 변동이 예컨대 하드마스크와 같은 막에 걸친 구조적인 균일성에 영향을 미치기 때문에, 막 응력은 오버레이 에러를 증가시킨다. 예컨대, 표면에 걸친 온도 분배가 열전대를 사용하여 프로파일링되는 경우에, 기판의 중앙은 기판의 에지보다 더 높은 온도를 가질 수 있고, 그에 따라, 기판의 더 높은 온도 영역이 기판의 더 낮은 온도 영역들보다 더 많은 sp2 캐릭터(character)를 포함하게 될 수 있다. 게다가, 흡수 계수(κ)는 막 모폴러지 및 분자 구조에 따라 강하게 좌우된다(즉, 더 많은 sp2 캐릭터를 갖는 막 영역은 더 적은 sp2 캐릭터를 갖는 막 영역보다 더 효율적으로 광을 흡수한다). 따라서, 다양한 계측 툴들을 사용하여, 도 2a에서 도시된 바와 같이, 기판에 걸친 막 모폴러지를 결정하기 위해, 예컨대 633 nm에서 흡수 계수가 모니터링될 수 있다. 계측 툴들은, 예컨대, KLA Tencor의 Aleris 시리즈로부터의, 국부적인 응력 맵을 결정하기 위해 활용될 수 있는 간섭측정 기반 툴을 지칭한다. 그러나, 응력 측정 프로세스들을 수행하도록 적합하게 적응되는 다른 제조자들로부터의 다른 툴들이 또한 활용될 수 있다는 것이 고려된다.
[0045] 기판에 걸쳐 막 모폴러지를 모니터링함으로써, 증착 챔버의 하드웨어 및/또는 증착 프로세스의 증착 파라미터들이 하나 또는 그 초과의 막들을 증착하기 위해 변화될 수 있고, 여기에서, 하나 또는 그 초과의 막들 각각은 균일한 모폴러지 및 감소된 오버레이 에러를 포함한다.
[0046] 도 4는 본 개시내용의 몇몇 실시예들에 따른 제 1 방법을 예시하는 프로세스 흐름도이다. 도 4에서 도시된 바와 같이, 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러는 챔버 바디 내로 도입되는 가스들의 가스 유동 프로파일을 조절함으로써 조절될 수 있다(블록(402)). 그 후에, 가스들은 기판을 향하여 챔버 바디 내에서 유동될 수 있다(블록(404)). 가스 유동 프로파일은, 예컨대, 블로커 플레이트(346)의 홀들의 밀도를 변경함으로써 조절될 수 있다. 홀들의 밀도는 블로커 플레이트(346)의 특정한 영역에서의 홀들 각각 사이의 간격을 지칭한다. 도 5a는 블로커 플레이트(346)의 저면도이다. 도 5a에서 도시된 바와 같이, 내측 영역(522)은 형상이 원형이고, 외측 영역(524)의 홀들(520)의 밀도에 비하여 홀들(520)의 더 큰 밀도를 갖는다. 내측 영역(522)의 직경(502)은 대응하는 샤워헤드(342)의 내측 직경에 대응한다. 외측 영역(524)은 형상이 환상 또는 링-형이고, 내측 영역(522)을 둘러싼다. 외측 영역(524)의 외측 직경(504)은 부분적으로 또는 실질적으로 샤워헤드(342)의 외측 직경에 대응한다.
[0047] 내측 영역(522)에서의 홀들(520)은 외측 영역(524)에서의 홀들(520)의 간격에 비하여 서로 더 밀접하게 이격된다. 따라서, 외측 영역(524)에서의 홀들(520)의 밀도는 내측 영역(522)에서의 홀들(520)의 밀도보다 더 작다. 따라서, 블로커 플레이트(346)을 통하는 가스 유동은, 외측 영역(524)의 홀들(520)의 밀도보다 내측 영역(522)의 홀들(520)의 밀도가 더 크기 때문에, 외측 영역(524)을 통하는 가스 유동보다 내측 영역(522)에서 더 클 것이다. 즉, 샤워헤드(342)의 에지를 향하는 유동보다 샤워헤드(342)의 중앙을 향하는 더 큰 가스 유동이 존재할 수 있다.
[0048] 도 5b는 블로커 플레이트(346)의 대안적인 실시예의 저면도이다. 도 5b에서 도시된 바와 같이, 외측 영역(524)에서의 홀들(520)은 내측 영역(522)에서의 홀들(520)의 간격이 비하여 서로 더 밀접하게 이격된다. 따라서, 외측 영역(524)의 홀들(520)의 밀도는 내측 영역(522)의 홀들(520)의 밀도보다 더 클 수 있다. 따라서, 블로커 플레이트(346)를 통하는 가스 유동은, 내측 영역(522)의 홀들(520)의 밀도보다 외측 영역(524)에서의 홀들(520)의 밀도가 더 크기 때문에, 내측 영역(522)에서의 가스 유동보다 외측 영역(524)에서 더 클 것이다. 즉, 샤워헤드(342)의 중앙에서보다 샤워헤드(342)의 에지에서 더 큰 가스 유동이 존재할 수 있다.
[0049] 도 5c는 블로커 플레이트(346)의 대안적인 실시예의 저면도이다. 도 5c에서 도시된 바와 같이, 외측 영역(524)에서의 홀들(520)은 내측 영역(522)에서의 홀들(520)의 간격과 실질적으로 유사하게 서로 이격된다. 따라서, 외측 영역(524)의 홀들(520)의 밀도는 내측 영역(522)의 홀들(520)의 밀도와 실질적으로 유사하다. 따라서, 외측 영역(524) 및 내측 영역(522)에서의 블로커 플레이트(346)를 통하는 가스 유동은, 내측 영역(522) 및 외측 영역(524)에서의 홀들(520)의 밀도가 실질적으로 균일하기 때문에, 실질적으로 균일할 것이다. 즉, 전체 기판에 걸쳐 실질적으로 균일한 가스 유동이 존재할 수 있다.
[0050] 몇몇 실시예들에서, 기판의 중앙 및/또는 에지를 향하는 원하는 가스 유동의 양에 따라, 내측 영역(522)의 표면 면적은 외측 영역(524)의 표면 면적과 실질적으로 유사할 수 있거나, 또는 대안적으로, 외측 영역(524)의 표면 면적과 상이할 수 있다. 게다가, 블로커 플레이트(346)는 홀들(520)의 다양한 밀도의 부가적인 영역들(미도시)을 포함할 수 있다.
[0051] 블로커 플레이트(346)에 대해 대안적으로 또는 부가하여, 샤워헤드(342)가 가스 유동 프로파일을 조정하도록 구성될 수 있다. 도 6은 샤워헤드(342)의 저면도이다. 도 6에서 도시된 바와 같이, 내측 영역(622)은 형상이 원형이고, 외측 영역(624)의 홀들(620)의 밀도에 비하여 홀들(620)의 더 큰 밀도를 갖는다. 내측 영역(622)의 직경(602)은 대응하는 기판의 내측 직경에 대응한다. 외측 영역(624)은 형상이 환상 또는 링-형이고, 내측 영역(622)을 둘러싼다. 외측 영역(624)의 외측 직경(604)은 실질적으로 기판의 외측 직경에 대응한다.
[0052] 샤워헤드(342)는 프로세싱 볼륨(318, 320) 내에 배치되고, 챔버 바디(302)에 커플링된다. 샤워헤드(342)의 레지(626) 또는 다른 유사한 구조가 블로커 플레이트(346)와 같은, 챔버 바디(302) 내의 지지부와 메이팅(mate)하도록 구성된다. 블로커 플레이트(346)는 챔버 바디(302)로부터 샤워헤드(342)를 이격시키고, 프로세싱 볼륨(318) 내에 샤워헤드(342)를 위치시킨다. 샤워헤드(342) 및 블로커 플레이트(346)는 볼트 또는 스크루, 또는 다른 유사한 체결 장치에 의해 함께 체결될 수 있다.
[0053] 내측 영역(622)에서의 홀들(620)은 외측 영역(624)에서의 홀들(620)의 간격에 비하여 서로 더 밀접하게 이격된다. 따라서, 외측 영역(624)에서의 홀들(620)의 밀도는 내측 영역(622)에서의 홀들(620)의 밀도보다 더 작다. 그러한 실시예들에서, 샤워헤드(342)를 통하는 가스 유동은, 외측 영역(624)의 홀들(620)의 밀도보다 내측 영역(622)의 홀들(620)의 밀도가 더 크기 때문에, 외측 영역(624)을 통하는 가스 유동보다 내측 영역(622)에서 더 클 것이다. 즉, 기판의 에지를 향하는 가스 유동보다 기판의 중앙을 향하는 더 큰 가스 유동이 존재할 수 있다.
[0054] 대안적으로, 외측 영역(624)에서의 홀들(620)이 내측 영역(622)에서의 홀들(620)의 간격이 비하여 서로 더 밀접하게 이격될 수 있다. 따라서, 외측 영역(624)의 홀들(620)의 밀도는 내측 영역(622)의 홀들(620)의 밀도보다 더 클 수 있다. 따라서, 샤워헤드(342)를 통하는 가스 유동은, 내측 영역(622)의 홀들(620)의 밀도보다 외측 영역(624)에서의 홀들(620)의 밀도가 더 크기 때문에, 내측 영역(622)에서의 가스 유동보다 외측 영역(624)에서 더 클 것이다. 즉, 기판의 중앙에서보다 기판의 에지에서 더 큰 가스 유동이 존재할 수 있다.
[0055] 대안적으로, 외측 영역(624)에서의 홀들(620)이 내측 영역(622)에서의 홀들(620)의 간격과 실질적으로 유사하게 서로 이격될 수 있다. 따라서, 외측 영역(624)의 홀들(620)의 밀도는 내측 영역(622)의 홀들(620)의 밀도와 실질적으로 유사하다. 따라서, 외측 영역(624) 및 내측 영역(622)에서의 샤워헤드(342)를 통하는 가스 유동은, 외측 영역(624) 및 내측 영역(622)에서의 홀들(620)의 밀도가 실질적으로 균일하기 때문에, 실질적으로 균일할 것이다. 즉, 전체 기판에 걸쳐 실질적으로 균일한 가스 유동이 존재할 수 있다.
[0056] 몇몇 실시예들에서, 기판의 중앙 및/또는 에지를 향하는 원하는 가스 유동의 양에 따라, 내측 영역(622)의 표면 면적은 외측 영역(624)의 표면 면적과 실질적으로 유사할 수 있거나, 또는 대안적으로, 외측 영역(624)의 표면 면적과 상이할 수 있다. 게다가, 샤워헤드(342)는 홀들(620)의 다양한 밀도의 부가적인 영역들(미도시)을 포함할 수 있다.
[0057] 도 2b 및 도 2c는 κ-범위 및 국부적인 응력에 대하여 방사상 가스 유동을 예시한다. 도 2b 및 도 2c에서 도시된 바와 같이, 기판에 걸친 균일한 유동의 경우에, 더 낮은 κ-범위가 프로세스-유발 국부적인 응력 변동 및 오버레이 에러를 감소시킨다. 그러나, 이러한 경향은 "중앙에서의 더 많은 유동" 증착의 경우 반전되고, 여기에서, 기판-스케일 응력에서의 증가로 인해, 더 낮은 κ-범위는 오버레이를 개선하지 않는다. 그럼에도, "중앙에서의 더 많은 유동"은 "균일한 유동" 및 "에지에서의 더 많은 유동" 조건들과 비교하여, 전체 κ-범위 및 응력에서 상당한 감소(> 50 %)를 허용한다. 따라서, 가스 프로파일 조절은 오버레이 에러 및 국부적인 응력 변동에서의 제어가 달성될 수 있는 κ-범위의 최적의 포인트를 제공한다.
[0058] 몇몇 실시예들에서, κ-범위 및 국부적인 응력은 도 4의 블록(406)에 대응하는 기판 회전에 의해 개선될 수 있다. 도 7은 본 개시내용의 몇몇 실시예들에 따른, 기판을 지지하기 위한 섀도우 링(702)의 평면도이다. 도 7에서 도시된 바와 같이, 섀도우 링(702)은 기판의 회전의 각도들을 용이하게 하기 위해 사용될 수 있는 하나 또는 그 초과의 노치들(710)을 포함할 수 있다. 선택적으로, 엑스-시튜 회전(ex-situ)이 수행될 수 있다. 기판이 챔버 바디(302)로부터 제거될 수 있고, 회전될 수 있고, 추가적인 프로세싱을 위해 챔버 바디(302) 내로 재진입될 수 있는 엑스-시튜 회전이 수행될 수 있다. 예컨대, 로봇 블레이드(미도시)가 챔버의 벽을 통해 배치된 슬릿 밸브를 통해 챔버에 진입할 수 있고, 여기에서, 그 후에, 로봇 암이 리프트 핀들에 의해 지지되고 있는 기판의 바닥 표면과 맞물린다. 로봇 블레이드는 챔버로부터 기판을 제거할 수 있다. 기판은 약 15 도 내지 약 345 도, 약 150 도 내지 약 250 도, 약 180 도만큼 시계 또는 반시계 방향으로 회전될 수 있다. 몇몇 실시예들에서, 기판은 기판 회전을 용이하게 하기 위해 하나 또는 그 초과의 노치들(미도시)을 포함한다. 회전 후에, 기판은 추가적인 프로세싱을 위해 챔버 내로 재진입될 수 있다.
[0059] 엑스-시튜 회전은 막 층들의 증착 사이에 수행될 수 있다. 대안적으로, 엑스-시튜 회전은, 심지어 네이티브(native) 층 형성의 리스크 없이, 막 층의 증착을 인터럽트한 후에, 챔버 바디(302)로부터 기판을 제거함으로써, 수행될 수 있다. 그 후에, 기판은 회전될 수 있고, 챔버 바디(302) 내로 재진입될 수 있다. 그 후에, 막 층의 증착은 챔버 바디(302) 내에서 재개될 수 있다.
[0060] 도 2d는 κ-633 nm 및 국부적인 응력(σxx로 표시됨)의 방사상(즉, 유동 프로파일 및 온도 오프셋들에 의해 제어됨) 및 방위각(즉, 기판 회전에 의해 제어됨) 컴포넌트들을 예시한다. 도 2d에서 도시된 바와 같이, 기판 회전은 증착된 막 내의 국부적인 응력 및 κ-범위를 감소시킨다. 기판 회전은 또한, 예컨대, 하드웨어 피처들에 의해 도입되는 두께 변동을 정규화(normalizing)함으로써, 증착된 막의 두께 균일성을 개선할 수 있다. 도 2e는 국부적인 응력 및 오버레이 에러에 대한 기판 회전과 조합된 "중앙에서의 더 많은 유동"의 효과를 예시한다. 도 2e에서 도시된 바와 같이, 균일한 유동과 비교하여, 응력(σxx)에서의 50 % 감소가 "중앙에서의 더 많은 유동"으로 획득될 수 있다. 절반 막 두께에서의 180° 엑스-시튜 회전이 추가로, 75 % 초과만큼 응력(σxx)을 감소시키고, 약 6 nm 내지 약 8 nm의 오버레이 에러가 획득될 수 있다.
[0061] 몇몇 실시예들에서, κ-범위 및 국부적인 응력은 이중 구역 가열기로 기판 온도를 제어함으로써 기판의 중앙-대-에지 온도 프로파일을 통일시킴으로써 개선될 수 있고, 이는 도 4의 블록(408)에 대응한다. 위에서 설명된 바와 같이, 예컨대, α-C:H 막의 전형적인 PECVD 프로세스 동안에, 기판의 중앙은 기판의 에지보다 더 높은 온도를 가질 수 있다. 즉, 온도는 증착 프로세스 동안에 기판의 중앙으로부터 방사상으로 감소될 수 있다. 기판의 열적 균일성(및 κ-범위 최소화)은 이중 구역 가열기를 사용하여 획득될 수 있다. 도 8은 본 개시내용의 몇몇 실시예들에 따른 이중 구역 가열기(802)의 투시도이다. 도 8에서 도시된 바와 같이, 이중 구역 가열기(802)는 플레이트(810) 및 스템(812)을 갖는다. 플레이트(810)는 세라믹 재료를 포함할 수 있다. 몇몇 실시예들에서, 플레이트(810)는 챔버 바디(302) 내의 페데스탈(328)에 대응하고, 스템(812)은 챔버 바디(302) 내의 스템(326)에 대응한다. 플레이트(810)는 기판의 하측 표면과 맞물리기 위한 리프트 핀들(미도시)을 포함할 수 있다. 리프트 핀들에 의해 생성되는, 기판과 플레이트(810) 사이의 공간은, 예컨대, 로봇 블레이드가 엑스-시튜 기판 회전 프로세스 동안에 기판의 바닥 표면과 맞물리게 허용한다. 플레이트(810)는 스템(812)과 커플링되고, 여기에서, 플레이트(810)는 챔버 바디(302)의 프로세싱 볼륨(318) 내에 이동가능하게 배치된다. 플레이트(810)는 기판의 표면 및 플레이트(810)의 표면에 걸쳐 하나 또는 그 초과의 온도들을 제공하도록 구성될 수 있는 2개 또는 그 초과의 가열 구역들을 포함할 수 있다. 예컨대, 페이스 플레이트(810)는 제 1 가열 구역 및 제 2 가열 구역을 포함할 수 있고, 제 2 가열 구역은 제 1 가열 구역을 한정한다. 즉, 제 2 가열 구역은 제 1 가열 구역을 방사상으로 넘어서 배치된다. 증착 프로세스 동안에, 제 1 가열 구역은 제 2 가열 구역의 온도와 상이한 온도를 가질 수 있다. 제 1 가열 구역의 온도는 제 2 가열 구역의 온도보다 더 작을 수 있거나, 제 2 가열 구역의 온도와 동등할 수 있거나, 또는 제 2 가열 구역의 온도보다 더 클 수 있다. 페이스 플레이트(810)는 부가적인 가열 구역들을 포함할 수 있다. 페이스 플레이트(810)는 약 2개 내지 20개의 가열 구역들, 약 2개 내지 10개의 가열 구역들, 약 2개 내지 4개의 가열 구역들을 포함할 수 있다. 몇몇 실시예들에서, 가열 구역들 중 하나는 이중 구역 가열기의 중심 축으로부터 약 5 mm 내지 약 200 mm, 이중 구역 가열기의 중심 축으로부터 약 90 내지 약 140 nm, 이중 구역 가열기의 중심 축으로부터 약 110 mm 내지 약 120 mm에 있다. 2개 또는 그 초과의 가열 구역들의 온도는 플레이트(810)를 따라 배열로 배치된 하나 또는 그 초과의 가열 코일들(미도시)에 의해 제어될 수 있다. 가열 코일들은 제 1 가열 구역을 제 1 온도로 가열하고, 제 2 가열 구역을 제 2 온도로 가열하도록 구성될 수 있다. 대안적으로, 2개 또는 그 초과의 가열 구역들의 온도는 가열 또는 냉각 유체를 하우징하도록 구성된 하나 또는 그 초과의 유체 채널들(미도시)에 의해 제어될 수 있다. 도 2f는 단일 구역 가열기 및 이중 구역 가열기의 각각의 온도 프로파일들을 예시한다. 도 2f에서 도시된 바와 같이, 이중 구역 가열기는 중앙-대-에지 온도 프로파일을 통일시킴으로써 온도 균일성을 개선하고, 이는 > 50 %만큼 국부적인 응력 및 오버레이 불-균일성을 감소시킨다.
[0062] 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러를 조절하기 위한 방법들은, 챔버 바디 내로 도입되는 가스들의 가스 유동 프로파일을 조절하는 단계, 기판을 향하여 챔버 바디 내에서 가스들을 유동시키는 단계, 기판을 회전시키는 단계, 및 이중 구역 가열기로 기판 온도를 제어함으로써, 기판의 중앙-대-에지 온도 프로파일을 통일시키는 단계를 포함할 수 있다. 막을 증착하기 위한 챔버는 하나 또는 그 초과의 프로세싱 영역들을 포함하는 챔버 바디를 포함할 수 있다. 챔버 바디는 하나 또는 그 초과의 프로세싱 영역들 내로 가스들을 전달하기 위한 블로커 플레이트를 갖는 가스 분배 어셈블리를 포함할 수 있다. 블로커 플레이트는 제 1 영역 및 제 2 영역을 가질 수 있고, 제 1 영역 및 제 2 영역은 각각, 복수의 홀들을 가질 수 있다. 챔버 바디는 이중 구역 가열기를 가질 수 있다. 본 개시내용의 방법들 및 장치는 증착된 다층들 내의 오버레이 에러를 감소시킬 수 있고, 토포그래픽 피처들을 갖는 기판들 상에 등각적으로 증착될 수 있는, 집적 회로 제작에 대해 유용한 재료 층의 증착을 허용할 수 있다. 본 개시내용의 방법들 및 장치는 리소그래픽 및 스캐너 기반 계측 단계들을 제거함으로써 전체 프로세싱 시간을 감소시킬 수 있고, 이는, 예컨대, 최적의 막 조성을 결정하기 위해 요구되는 시간의 양을 감소시킨다.
[0063] 전술한 바가 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 다른 및 추가적인 실시예들이 본 개시내용의 기본적인 범위로부터 벗어나지 않으면서 고안될 수 있고, 본 개시내용의 범위는 다음의 청구항들에 의해 결정된다.

Claims (15)

  1. 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이(overlay) 에러를 조절하는 방법으로서,
    제 1 영역 및 제 2 영역을 포함하는 블로커 플레이트(blocker plate)를 통해 가스들의 가스 유동 프로파일을 조절(modulating)하는 단계 ― 상기 제 1 영역 및 상기 제 2 영역은 각각, 복수의 홀들을 가짐 ―;
    상기 블로커 플레이트의 제 1 및 제 2 영역들의 복수의 홀들을 통해 챔버 바디(chamber body) 내로 상기 가스들을 도입하는 단계;
    기판의 제 1 영역 및 제 2 영역을 향하여 상기 챔버 바디 내에서 가스들을 유동시키는 단계; 및
    상기 기판 상으로의 적어도 부분적인 막의 증착 후에, 상기 기판을 회전시키는 단계
    를 포함하는,
    방법.
  2. 제 1 항에 있어서,
    이중 구역 가열기로 상기 기판의 온도를 제어함으로써, 상기 기판의 중앙-대-에지 온도 프로파일을 통일(unifying)시키는 단계를 더 포함하며,
    상기 이중 구역 가열기는 제 1 가열 구역 및 제 2 가열 구역을 포함하고, 상기 제 2 가열 구역은 상기 제 1 가열 구역을 한정(circumscribe)하는,
    방법.
  3. 제 1 항에 있어서,
    계측 툴로 상기 패터닝 막들 중 하나 또는 그 초과에 걸쳐 막 모폴러지(morphology)를 모니터링하는 단계를 더 포함하는,
    방법.
  4. 제 1 항에 있어서,
    상기 블로커 플레이트는,
    상기 블로커 플레이트의 제 2 영역에서의 홀들의 밀도보다 더 높은, 상기 블로커 플레이트의 제 1 영역에서의 홀들의 밀도를 포함하는,
    방법.
  5. 제 4 항에 있어서,
    상기 블로커 플레이트의 제 1 영역은 중앙 영역이고, 상기 블로커 플레이트의 제 2 영역은 에지 영역인,
    방법.
  6. 제 1 항에 있어서,
    상기 기판은 섀도우 링에 의해 지지되면서 회전되는,
    방법.
  7. 제 1 항에 있어서,
    상기 기판은 180°만큼 회전되는,
    방법.
  8. 하나 또는 그 초과의 패터닝 막들의 국부적인 응력 및 오버레이 에러를 조절하는 방법으로서,
    제 1 영역 및 제 2 영역을 포함하는 블로커 플레이트를 통해 가스들의 가스 유동 프로파일을 조절하는 단계 ― 상기 제 1 영역 및 상기 제 2 영역은 각각, 복수의 홀들을 가짐 ―;
    상기 블로커 플레이트의 제 1 및 제 2 영역들의 복수의 홀들을 통해 챔버 바디 내로 상기 가스들을 도입하는 단계;
    기판의 제 1 영역 및 제 2 영역을 향하여 상기 챔버 바디 내에서 가스들을 유동시키는 단계; 및
    이중 구역 가열기로 상기 기판의 온도를 제어함으로써, 상기 기판의 중앙-대-에지 온도 프로파일을 통일시키는 단계
    를 포함하며,
    상기 이중 구역 가열기는 제 1 가열 구역 및 제 2 가열 구역을 포함하고, 상기 제 2 가열 구역은 상기 제 1 가열 구역을 한정하는,
    방법.
  9. 제 8 항에 있어서,
    상기 기판 상으로의 적어도 부분적인 막의 증착 후에, 상기 기판을 회전시키는 단계를 더 포함하는,
    방법.
  10. 제 9 항에 있어서,
    상기 기판을 회전시키는 단계는 엑스-시튜(ex-situ)로 수행되는,
    방법.
  11. 제 8 항에 있어서,
    상기 블로커 플레이트는, 상기 블로커 플레이트의 제 2 영역에서의 홀들의 밀도보다 더 높은, 상기 블로커 플레이트의 제 1 영역에서의 홀들의 밀도를 갖는,
    방법.
  12. 제 8 항에 있어서,
    상기 챔버 바디 내의 압력은 0.4 T 내지 10 T인,
    방법.
  13. 챔버 바디로서,
    하나 또는 그 초과의 프로세싱 영역들;
    상기 하나 또는 그 초과의 프로세싱 영역들 내로 가스들을 전달하기 위한 블로커 플레이트를 포함하는 가스 분배 어셈블리 ― 상기 블로커 플레이트는 제 1 영역 및 제 2 영역을 포함하고, 상기 제 1 영역 및 상기 제 2 영역은 각각, 복수의 홀들을 가짐 ―;
    이중 구역 가열기 ― 상기 이중 구역 가열기는 제 1 가열 구역 및 제 2 가열 구역을 포함하고, 상기 제 2 가열 구역은 상기 제 1 가열 구역을 한정하고, 가열 구역들 중 하나는 상기 이중 구역 가열기의 중심 축으로부터 5 mm 내지 200 mm에 있음 ―; 및
    기판을 지지하도록 구성된 섀도우 링
    을 포함하는,
    챔버 바디.
  14. 제 13 항에 있어서,
    상기 가열 구역들 중 하나는 상기 이중 구역 가열기의 중심 축으로부터 110 mm 내지 120 mm에 있는,
    챔버 바디.
  15. 제 13 항에 있어서,
    상기 블로커 플레이트는 상기 블로커 플레이트의 제 2 영역에서의 홀들의 밀도보다 더 높은, 상기 블로커 플레이트의 제 1 영역에서의 홀들의 밀도를 갖고, 상기 블로커 플레이트의 제 1 영역은 중앙 영역이고, 상기 블로커 플레이트의 제 2 영역은 에지 영역인,
    챔버 바디.
KR1020217038629A 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어 KR102401034B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227016710A KR102503734B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462059751P 2014-10-03 2014-10-03
US62/059,751 2014-10-03
US14/549,380 2014-11-20
US14/549,380 US9390910B2 (en) 2014-10-03 2014-11-20 Gas flow profile modulated control of overlay in plasma CVD films
KR1020177012186A KR102333160B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어
PCT/US2015/048153 WO2016053567A1 (en) 2014-10-03 2015-09-02 Gas flow profile modulated control of overlay in plasma cvd films

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177012186A Division KR102333160B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227016710A Division KR102503734B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어

Publications (2)

Publication Number Publication Date
KR20210145860A true KR20210145860A (ko) 2021-12-02
KR102401034B1 KR102401034B1 (ko) 2022-05-20

Family

ID=55631239

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217038629A KR102401034B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어
KR1020177012186A KR102333160B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어
KR1020227016710A KR102503734B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020177012186A KR102333160B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어
KR1020227016710A KR102503734B1 (ko) 2014-10-03 2015-09-02 플라즈마 cvd 막들에서의 오버레이의 가스 유동 프로파일 조절식 제어

Country Status (5)

Country Link
US (3) US9390910B2 (ko)
KR (3) KR102401034B1 (ko)
CN (1) CN107075671B (ko)
TW (2) TWI670392B (ko)
WO (1) WO2016053567A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490116B2 (en) * 2015-01-09 2016-11-08 Applied Materials, Inc. Gate stack materials for semiconductor applications for lithographic overlay improvement
US9828672B2 (en) 2015-03-26 2017-11-28 Lam Research Corporation Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma
KR102372842B1 (ko) * 2016-04-22 2022-03-08 어플라이드 머티어리얼스, 인코포레이티드 Pecvd 오버레이 개선을 위한 방법
WO2019033052A1 (en) * 2017-08-11 2019-02-14 Applied Materials, Inc. APPARATUS AND METHODS FOR IMPROVING CHEMICAL VAPOR PHASE (CVD) DEPOSITION UNIFORMITY
JP7326275B2 (ja) 2017-12-01 2023-08-15 アプライド マテリアルズ インコーポレイテッド エッチング選択性の高いアモルファスカーボン膜
US10760158B2 (en) * 2017-12-15 2020-09-01 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing
WO2019169298A1 (en) * 2018-03-01 2019-09-06 Applied Materials, Inc. Systems and methods of formation of a metal hardmask in device fabrication
US10526703B2 (en) * 2018-03-15 2020-01-07 Taiwan Semiconductor Manufacturing Company Ltd. Film formation apparatus for forming semiconductor structure having shower head with plural hole patterns and with corresponding different plural hole densities
CN111954921B (zh) 2018-04-09 2024-05-31 应用材料公司 用于图案化应用的碳硬掩模及相关的方法
KR102670420B1 (ko) * 2018-04-24 2024-05-28 어플라이드 머티어리얼스, 인코포레이티드 카본 하드-마스크의 플라즈마-강화 화학 기상 증착
US11603591B2 (en) * 2018-05-03 2023-03-14 Applied Materials Inc. Pulsed plasma (DC/RF) deposition of high quality C films for patterning
US11029297B2 (en) 2018-08-08 2021-06-08 Applied Materials, Inc. Method of gas composition determination, adjustment, and usage
US10734219B2 (en) * 2018-09-26 2020-08-04 Asm Ip Holdings B.V. Plasma film forming method
KR20210087084A (ko) * 2018-11-30 2021-07-09 어플라이드 머티어리얼스, 인코포레이티드 3d nand 애플리케이션을 위한 막 스택 오버레이 개선
KR102623545B1 (ko) * 2018-12-17 2024-01-10 삼성전자주식회사 반도체 소자 제조 장치
KR20220037456A (ko) * 2019-07-01 2022-03-24 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 결합 재료들을 최적화하는 것에 의한 막 특성들의 조절
US11859284B2 (en) * 2019-08-23 2024-01-02 Taiwan Semiconductor Manufacturing Company Ltd. Shower head structure and plasma processing apparatus using the same
US11236424B2 (en) 2019-11-01 2022-02-01 Applied Materials, Inc. Process kit for improving edge film thickness uniformity on a substrate
WO2021154673A1 (en) * 2020-01-28 2021-08-05 Lam Research Corporation Segmented gas distribution plate for high-power, high-pressure processes
US12020907B2 (en) * 2020-04-09 2024-06-25 Applied Materials, Inc. Faceplate with localized flow control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006032A1 (en) * 2008-07-11 2010-01-14 Applied Materials, Inc. Chamber components for cvd applications
US20120221138A1 (en) * 2009-10-28 2012-08-30 Ligadp Co., Ltd. Metal organic chemical vapor deposition device and temperature control method therefor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645884B1 (en) * 1999-07-09 2003-11-11 Applied Materials, Inc. Method of forming a silicon nitride layer on a substrate
US6596344B2 (en) 2001-03-27 2003-07-22 Sharp Laboratories Of America, Inc. Method of depositing a high-adhesive copper thin film on a metal nitride substrate
US20030017268A1 (en) * 2001-07-18 2003-01-23 Applied Materials, Inc. .method of cvd titanium nitride film deposition for increased titanium nitride film uniformity
JP4804038B2 (ja) * 2004-06-21 2011-10-26 キヤノン株式会社 像加熱装置及びこの装置に用いられるヒータ
US7857947B2 (en) * 2005-07-27 2010-12-28 Applied Materials, Inc. Unique passivation technique for a CVD blocker plate to prevent particle formation
JP2007042951A (ja) * 2005-08-04 2007-02-15 Tokyo Electron Ltd プラズマ処理装置
KR20070102764A (ko) * 2006-04-17 2007-10-22 주식회사 엘지화학 Pecvd 법에 기반한 다층 박막 구조의 제조방법
US7867578B2 (en) 2006-06-28 2011-01-11 Applied Materials, Inc. Method for depositing an amorphous carbon film with improved density and step coverage
US7297376B1 (en) 2006-07-07 2007-11-20 Applied Materials, Inc. Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers
CN101911253B (zh) * 2008-01-31 2012-08-22 应用材料公司 闭环mocvd沉积控制
US20110290175A1 (en) * 2009-06-07 2011-12-01 Veeco Instruments, Inc. Multi-Chamber CVD Processing System
GB0922647D0 (en) * 2009-12-24 2010-02-10 Aviza Technologies Ltd Methods of depositing SiO² films
US8222100B2 (en) 2010-01-15 2012-07-17 International Business Machines Corporation CMOS circuit with low-k spacer and stress liner
KR101897604B1 (ko) * 2010-04-28 2018-09-12 어플라이드 머티어리얼스, 인코포레이티드 수명이 짧은 종들을 위한 빌트-인 플라즈마 소스를 구비한 프로세스 챔버 리드 설계
US9543406B2 (en) 2010-11-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for overlay marks
KR20140092892A (ko) * 2011-11-08 2014-07-24 어플라이드 머티어리얼스, 인코포레이티드 개선된 증착 균일성을 위한 전구체 분배 피처들
US8679987B2 (en) 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006032A1 (en) * 2008-07-11 2010-01-14 Applied Materials, Inc. Chamber components for cvd applications
US20120221138A1 (en) * 2009-10-28 2012-08-30 Ligadp Co., Ltd. Metal organic chemical vapor deposition device and temperature control method therefor

Also Published As

Publication number Publication date
US10373822B2 (en) 2019-08-06
TWI670392B (zh) 2019-09-01
KR102333160B1 (ko) 2021-11-29
CN107075671A (zh) 2017-08-18
US20180096843A1 (en) 2018-04-05
KR102503734B1 (ko) 2023-02-23
CN107075671B (zh) 2019-09-13
KR102401034B1 (ko) 2022-05-20
WO2016053567A1 (en) 2016-04-07
TWI705154B (zh) 2020-09-21
KR20170063943A (ko) 2017-06-08
KR20220070069A (ko) 2022-05-27
TW201945585A (zh) 2019-12-01
US9837265B2 (en) 2017-12-05
US20160307752A1 (en) 2016-10-20
TW201614098A (en) 2016-04-16
US9390910B2 (en) 2016-07-12
US20160099147A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
US10373822B2 (en) Gas flow profile modulated control of overlay in plasma CVD films
KR102564160B1 (ko) 펄스된 저주파수 rf 전력에 의한 고 선택도 및 저 응력의 탄소 하드마스크
TWI791678B (zh) 高蝕刻選擇性的非晶碳膜
KR101234256B1 (ko) 플라즈마 에칭 방법 및 플라즈마 에칭 장치
CN107438892B (zh) 等离子处理方法以及等离子处理装置
US10304668B2 (en) Localized process control using a plasma system
US9847221B1 (en) Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
KR102306470B1 (ko) 감소된 트리밍 레이트에서 탄소 함유 막을 트리밍하는 방법
US20180158692A1 (en) Apparatus for achieving ultra-high selectivity while etching silicon nitride
TWI576914B (zh) Pattern forming method and substrate processing system
US20180269119A1 (en) Surface modification control for etch metric enhancement
US20110151142A1 (en) Pecvd multi-step processing with continuous plasma
KR102016773B1 (ko) 반도체 장치의 제조 방법
US7371436B2 (en) Method and apparatus for depositing materials with tunable optical properties and etching characteristics
US20170125241A1 (en) Low temp single precursor arc hard mask for multilayer patterning application
US20240128089A1 (en) Method to selectively etch silicon nitride to silicon oxide using water crystallization
KR20170132666A (ko) 고 종횡비 실린더 에칭을 위해 측벽 패시베이션을 디포짓하기 위한 기법
JP2023535388A (ja) ホウ素がドープされたシリコン材料を利用した集積プロセス

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant