TWI658261B - 用於特徵化彎曲部件的稜鏡耦合系統及方法 - Google Patents

用於特徵化彎曲部件的稜鏡耦合系統及方法 Download PDF

Info

Publication number
TWI658261B
TWI658261B TW103129570A TW103129570A TWI658261B TW I658261 B TWI658261 B TW I658261B TW 103129570 A TW103129570 A TW 103129570A TW 103129570 A TW103129570 A TW 103129570A TW I658261 B TWI658261 B TW I658261B
Authority
TW
Taiwan
Prior art keywords
coupling
light
curved
width
mode
Prior art date
Application number
TW103129570A
Other languages
English (en)
Other versions
TW201514457A (zh
Inventor
劉安平
路瑟夫羅斯提斯拉夫費契夫
史喬特羅伯特安東尼
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201514457A publication Critical patent/TW201514457A/zh
Application granted granted Critical
Publication of TWI658261B publication Critical patent/TWI658261B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本文揭示用於特徵化彎曲部件的稜鏡耦合系統及方法。耦合稜鏡之耦合表面介接至該彎曲部件之彎曲外表面以界定耦合介面。量測光經引導穿過該耦合稜鏡且到達該介面,其中該量測光具有3mm或更小之寬度。數位地擷取自該介面反射之TE模式光譜及TM模式光譜。該等模式光譜經處理以決定彎曲部件之至少一個特徵,諸如,應力剖面、壓縮應力、層深度、折射率剖面及雙折射。

Description

用於特徵化彎曲部件的稜鏡耦合系統及方法 【相關申請案之交叉引用】
本申請案根據專利法主張2013年8月29日申請之美國申請案第14,013,481號之優先權權益,本文依賴該案之內容且該案之全文以引用之方式併入本文中。
本揭示案係關於量測部件中之應力,且詳言之,係關於用於光學地特徵化彎曲部件之稜鏡耦合系統及方法。
化學強化之玻璃部件對於各種應用(包括用於智慧型手機及平板電腦之彈性、防摔且防劃傷之具有觸控功能的保護平蓋窗)已變得很重要。該等玻璃部件比熱回火之玻璃輕薄,但更堅韌,此係歸因於可經由離子交換製程實現之高表面壓縮(例如,近似8×108Pa)。
該等平板玻璃產品之快速採用、持續改良及顯著市場增長係由用於量測應力剖面之兩個主要參數之快速無損技術的可用性推動,該等參數為:表面壓縮應力(CS)及層深度(DOL)。該等量測可使用市售之高解析度稜鏡耦合系統 (諸如,由日本Orihara Industrial Co.,Ltd製造且由日本Luceo銷售之FSM-6000LE)進行。第三關鍵參數(中心張力(CT))可藉由引起壓縮力與拉力之間的力平衡要求推斷出。
稜鏡耦合系統擷取離子交換區域之橫向電場(TE)光學傳播模式及橫向磁場(TM)光學傳播模式之角耦合光譜(「模式光譜」)。應力自藉由使用應力光學係數(stress-optic coefficient,SOC)自兩個光譜之差異提取的。歸因於小SOC(約3×10-6RIU/MPa,其中RIU表示折射率單位),應力誘發部分之折射率表示兩個大得多之指數之間的小差異。因此,應力剖面之量值及形狀受恢復之TE剖面及TM剖面中之小誤差的強烈影響。為減小該等誤差,TE模式光譜及TM模式光譜之高解析度擷取係必要的。
化學強化之玻璃部件之極佳強度特性使得該等部件成為現有彎曲玻璃部件(諸如,試管),及個人電子裝置之非平坦外部玻璃或塑膠部件之理想替代。然而,已證明為了量測一或多個特徵(諸如,應力剖面或應力剖面之一些關鍵參數)對該等彎曲部件進行的TE模式光譜及TM模式光譜之快速無損量測係成問題的。
本揭示案之態樣為一種用於決定具有彎曲外表面之彎曲部件之至少一個特徵的方法。方法包括以下步驟:將耦合稜鏡之耦合表面介接至彎曲外表面以界定耦合介面。方法亦包括以下步驟:引導量測光穿過耦合稜鏡且到達介面,其中量測光具有3mm或更小之寬度。方法進一步包括以下步 驟:數位地擷取自介面反射之TE模式光譜及TM模式光譜。方法亦包括以下步驟:處理TE模式光譜及TM模式光譜以決定彎曲部件之至少一個特徵。在實例中,至少一個特徵係選自包含以下之特徵的群組:表面應力、應力剖面、壓縮應力、層深度、折射率剖面及雙折射。
本揭示案之另一態樣為一種用於決定具有彎曲外表面之彎曲部件之至少一個特徵的方法。該方法包括以下步驟:將聚焦量測光引導至耦合稜鏡組合件,該耦合稜鏡組合件具有與彎曲部件之外表面介接以界定耦合介面之耦合稜鏡,其中彎曲外表面由半徑R10.5mm及半徑R220mm界定;反射來自耦合介面之量測光,同時在該反射步驟之前將量測光限制為具有3mm或更小之寬度;偵測反射之量測光以獲得TE模式光譜及TM模式光譜;及處理TE模式光譜及TM模式光譜以決定彎曲部件之至少一個特徵。
本揭示案之另一態樣為一種用於決定具有彎曲外表面之彎曲部件之至少一個特徵的稜鏡耦合系統。該系統包括:光源系統,該光源系統產生量測光;耦合稜鏡組合件,該耦合稜鏡組合件具有:耦合稜鏡,該耦合稜鏡具有輸入表面及輸出表面,及耦合表面,該耦合表面與彎曲外表面介接以界定耦合介面,其中耦合稜鏡組合件包含用於將量測光之寬度界定為3mm或更小之構件(means);偵測器系統,該偵測器系統經設置以接收自介面反射且退出輸出表面之量測光以數位地擷取TE模式光譜及TM模式光譜;及控制器,該控制器處理TE模式光譜及TM模式光譜以決定彎曲部件之至 少一個特徵。
將在隨後的【實施方式】中闡述額外特徵及優點,且對熟習此項技術者而言,額外的特徵及優點將部分地自描述中顯而易見或藉由實踐書面描述及其申請專利範圍以及隨附圖式中描述之實施例來認識到。應理解,前文一般描述及下文【實施方式】兩者僅為示例性的且意在提供概述或框架以理解申請專利範圍之性質及特性。
10‧‧‧稜鏡耦合系統
20‧‧‧彎曲部件
22‧‧‧主體
24‧‧‧彎曲外表面
25‧‧‧離子交換區域
38‧‧‧耦合稜鏡組合件
40‧‧‧耦合稜鏡
40T‧‧‧薄稜鏡區段
42‧‧‧輸入表面
42a‧‧‧不透明區段
42b‧‧‧不透明區段
44‧‧‧耦合表面
44C‧‧‧圓柱形彎曲部分
44L‧‧‧凹形平坦圓柱透鏡區段
44F‧‧‧平坦底座
46‧‧‧輸出表面
46a‧‧‧不透明區段
46b‧‧‧不透明區段
47‧‧‧狹縫
48‧‧‧狹縫
50‧‧‧介面
52‧‧‧介接流體
60‧‧‧光源
62‧‧‧量測光
62R‧‧‧反射光
62F‧‧‧光/光束
62L‧‧‧照明區域
66‧‧‧光學濾光片
70‧‧‧光散射元件
80‧‧‧聚焦光學系統
82‧‧‧光源系統
90‧‧‧收集光學系統
92‧‧‧焦平面
100‧‧‧TM/TE偏光片
100TE‧‧‧TE偏光區段
100TM‧‧‧TM偏光區段
110‧‧‧偵測器
112‧‧‧光敏表面
112TE‧‧‧TE區段
112TM‧‧‧TM區段
120‧‧‧框接收器
130‧‧‧光偵測器系統
136‧‧‧孔隙
140‧‧‧偵測系統
150‧‧‧控制器
152‧‧‧處理器
154‧‧‧記憶體單元
200‧‧‧光限制組件
202‧‧‧成角正面
204‧‧‧截頭頂面
206‧‧‧背面
208‧‧‧底面
210‧‧‧平行側面
220‧‧‧中心狹槽
222‧‧‧內表面
224‧‧‧底部
250‧‧‧方塊
252‧‧‧窄槽
254‧‧‧安裝與對準特徵
300‧‧‧對準夾具
310‧‧‧矩形外框
312‧‧‧內部
314‧‧‧垂直內側壁
316‧‧‧水平內側壁
320‧‧‧水平導向組件
322‧‧‧末端
324‧‧‧內表面
326‧‧‧彈性組件
330‧‧‧支撐柱
332‧‧‧末端
340‧‧‧彈性組件
350‧‧‧對準螺釘
A0‧‧‧中心軸線
A1‧‧‧光學軸線
A2‧‧‧光學軸線
DOL‧‧‧層深度
f‧‧‧焦距
h1‧‧‧高度
h2‧‧‧高度
l1‧‧‧底部長度
l2‧‧‧頂部長度
OP1‧‧‧光學路徑
OP2‧‧‧光學路徑
r‧‧‧半徑
R1‧‧‧第一曲率半徑
R2‧‧‧第二曲率半徑
s‧‧‧寬度
SI‧‧‧影像信號
SL‧‧‧光源控制信號
TE‧‧‧橫向電場
TM‧‧‧橫向磁場
w‧‧‧寬度
WL‧‧‧寬度
α‧‧‧角度
φ‧‧‧角度
φ'‧‧‧投影角度
包括隨附圖式以提供進一步理解,且隨附圖式併入本說明書中並構成本說明書之一部分。圖式圖示一或多個實施例,並與【實施方式】一起用以說明各種實施例的原理及操作。因此,本揭示案將結合隨附圖式根據以下【實施方式】更全面地理解,在隨附圖式中:第1A圖為示例性彎曲部件之等角視圖;第1B圖為沿x-y平面所取且圖示第一曲率半徑(R1)及具有層深度(DOL)之離子交換區域的第1A圖之彎曲部件之橫截面視圖;第1C圖為沿y-z平面所取且圖示第二曲率半徑(R2)的第1A圖之彎曲部件之橫截面視圖;第1D圖類似於第1A圖,且圖示第二曲率半徑為無窮之完美圓柱形部件的實例;第2圖為稜鏡耦合系統之示例性實施例之示意圖,該稜鏡耦合系統可用於使用本文中揭示之方法量測彎曲部件之模式光譜; 第3A圖為第2圖之稜鏡耦合系統之示例性光偵測器系統之立視圖,圖示了TE/TM偏光片及偵測器;第3B圖為由第3A圖之光偵測器系統使用第2圖之稜鏡耦合系統擷取之TE模式光譜及TM模式光譜的示意圖;第4A圖為第2圖之稜鏡耦合系統之示例性耦合稜鏡組合件之近視圖,該視圖圖示耦合稜鏡及光限制組件,該光限制組件鄰近耦合稜鏡輸入表面設置且具有窄槽,該窄槽將稜鏡耦合表面上可用之光限制於狹窄空間區域,該狹窄空間區域在z方向上不受約束;第4B圖類似於第4A圖,且圖示鄰近輸出表面而非輸入表面設置之光限制組件;第4C圖為如第4A圖或第4B圖中設置之耦合稜鏡之自頂向下視圖,該視圖圖示長且窄之光學接觸區域,該區域界定部件-稜鏡耦合介面,且該視圖亦圖示由量測光束形成之照明區域;第4D圖為第4C圖之照明區域之立視圖,且圖示y-z平面及示例性平面外光束,該等光束在投射至x-z平面上時具有平面外角度φ;第5A圖及第5B圖為第4A圖及第4B圖之示例性光限制組件之立視圖及前視圖;第6A圖為示例性耦合稜鏡之立視圖,其中輸入表面及輸出表面包括界定狹縫開口之不透明區域;第6B圖為在耦合表面上具有彎曲區段之示例性耦合稜鏡的立視圖; 第6C圖為組合第6A圖及第6B圖之耦合稜鏡之特徵的示例性耦合稜鏡的立視圖;第7A圖為包括由兩個不透明吸光方塊支撐之薄稜鏡的示例性耦合稜鏡組合件;第7B圖類似於第7A圖,且圖示其中耦合稜鏡具有彎曲耦合表面之實例;第7C圖類似於第7B圖,且圖示其中耦合稜鏡具有頂部區段及界定彎曲耦合表面之可更換之凹形平坦圓柱透鏡區段之實例;及第8圖為示例性對準夾具之自頂向下視圖,該對準夾具用於將具有有限直徑及有限長度之彎曲部件固持且對準至第2圖之稜鏡耦合系統內。
圖式中圖示之任何坐標或軸線係為了參考,且不意欲對方向或定向進行限制。另外,對方向(諸如,「垂直」及「水平」)之引用可用於便於針對選擇給定圖式中之特徵的論述,且不意欲對方向或定向進行限制。
現在詳細參考本揭示案之各種實施例,該等實施例之實例圖示在隨附圖式中。在可能的情況下,貫穿圖式使用相同或相似元件符號及標誌指示相同或相似部件。圖式不一定按比例繪製,且熟習此項技術者將認識到圖式經簡化以說明本揭示案之關鍵態樣。
以下所述之申請專利範圍併入於此【實施方式】中且構成【實施方式】之一部分。
本文中提及之任何公開案或專利文獻之全部揭示內容(包括美國專利申請案第13/463,322號及第61/706,891號)以引用之方式併入本文中。
彎曲部件
第1A圖為示例性彎曲部件20之等角視圖,且第1B圖為在x-y平面中所取之彎曲部件的橫截面視圖。彎曲部件20具有主體22及彎曲外表面24。在實例中,彎曲部件20由玻璃製成且具有基礎(或本體)折射率n s 。第1A圖圖示笛卡爾坐標連同極坐標(r,θ)。第1C圖為在y-z平面中所取之彎曲部件20的橫截面視圖。在實例中,彎曲部件20可為桿,或可為具有中空內部部分之管。在實例中,彎曲部件20具有中心軸線A0。
彎曲部件20之外表面24在x-y平面中具有第一曲率半徑R1,且在y-z平面中具有第二曲率半徑R2。在實例中,第一曲率半徑R1可相對較小,而第二曲率半徑R2相對較大。在實例中,第一曲率半徑R10.5mm,而第二曲率半徑R220mm。在如第1D圖中所示之彎曲部件20之實例中,第二曲率半徑R2=∞,以使得第1D圖為圓柱。曲率可如實例方式所示為向外的,或亦可為向內的。第一半徑R1及第二半徑R2在本文中用於描述向內或向外曲率。
在第二曲率半徑R2≠∞之實例中,第二曲率半徑R2相比於第一曲率半徑R1足夠大以使彎曲部件20在彎曲部件20之表面之一部分內為實質上圓柱形或圓錐形,該部分將用於進行模式光譜量測。第二曲率半徑R2部分地由耦合稜鏡 40(以下結合第2圖引入及論述)之大小指定。在實例中,第二曲率半徑R2在z方向上比耦合稜鏡40之長度大許多倍。
亦在實例中,第一曲率半徑R1不必為恆定的,如在圓錐表面中。彎曲部件20亦可具有複合表面,諸如,平坦部分與彎曲部分之組合,且為便於說明,圖式中圖示簡單的彎曲部件。
在實例中,彎曲部件20由玻璃製成,該玻璃經受離子交換製程,藉此,至少一種類型之離子經交換穿過外表面24且進入主體22中。離子交換製程界定具有折射率剖面n(r)之離子交換區域25(第1B圖及第1C圖),該折射率剖面n(r)可能對s偏光(橫向電場,TE)光與p偏光的(橫向磁場,TM)光不同,該p偏光的光平行於光之入射平面而偏光。
如自外表面24直接向內(亦即,在垂直於外表面24之方向上)量測的離子交換區域25之(徑向)深度被稱為「層深度」或DOL。DOL之示例性範圍為5微米至150微米。DOL通常比樣本之一半厚度小,包括樣本為中空管,且樣本厚度由管壁之厚度表示的情況。
在彎曲部件20中形成離子交換區域25的離子交換製程可在彎曲部件20之外表面24處及附近引起雙折射B。此雙折射B可用於使用已知技術計算外表面24處(及附近)之應力(例如,壓縮應力CS)及/或應力剖面S(r)。應力剖面經由S(r)=B(r)/SOC(其中SOC為應力光學係數)及B(r)=[n TM(r)-n TE(r)]與雙折射B相關。
彎曲部件20之光學模式光譜(亦即,TE模式光譜 及TM模式光譜)未使用現有基於稜鏡耦合之光學儀器恰當成像及擷取,該等儀器用於量測平坦部件。當彎曲部件20與先前技術之耦合稜鏡接觸時,光學角譜(亦即,TE模式光譜、TM模式光譜)之影像變得模糊且有時亦失真。此情況使自動識別導向光學模式之有效折射率成問題,此情況進而使得對依賴該等量測之一或多個特徵(例如,應力剖面S(r))的精確決定成問題。
在實驗中,將習知稜鏡耦合系統(例如,日本東京Orihara Industrial Co.,Ltd.製造之FSM-6000LE稜鏡耦合儀器)用於量測具有第一曲率半徑R1=8.5mm且R2=∞之圓柱形玻璃樣本中的應力。對應於耦合至近表面波導區域(該區域由離子交換區域25界定)中導向之TE模式及TM模式的暗線可僅在樣本經精確對準以使得經量測圓柱之軸線及圓柱與稜鏡之耦合表面之間的接觸線位於與用於光輸入及光輸出之稜鏡面正交之平面中時觀察到。
另外,即使在最佳對準之情況下,模式光譜之暗線與通常用近表面平面波導在平坦玻璃樣本量測期間觀察之清晰高對比度線相比亦非常寬且非常淡。模式光譜之經擷取影像可能不由市售FSM-6000LE系統軟體自動處理以獲得應力參數,此係歸因於光譜線之對比度不足。歸因於不良對比度以及歸因於影像圖案對樣本對準之強相依性,手動偵測模式光譜影像之光譜線位置導致明顯誤差。
用於量測彎曲部件之稜鏡耦合系統
第2圖為適合用於量測彎曲部件(諸如,彎曲部件 20)之模式光譜的示例性稜鏡耦合系統(「系統」)10之示意圖。系統10包括耦合稜鏡組合件38,以下更詳細論述。系統10包括在耦合稜鏡組合件38處相交之光學軸線A1及光學軸線A2。
系統10包括(沿軸線A1依序為):光源60,該光源60發出波長λ之量測光62;可選光學濾光片66,該濾光片66可交替地包括在軸線A2上之偵測器路徑中;可選光散射元件70;及可選聚焦光學系統80,該系統形成聚焦(量測)光(光束)62F,如下文所說明。因此,在系統10之實例中,光源60與耦合稜鏡組合件38之間沒有光學元件。光源60、可選濾光片66、可選光散射元件70及可選聚焦光學系統80構成產生經聚焦量測光62F之示例性光源系統82。
系統10亦包括(自耦合稜鏡組合件38沿軸線A2依序為):收集光學系統90,該系統具有焦平面92及焦距f且接收如下文所說明之經反射光62R;TM/TE偏光片100,該偏光片具有TM偏光區段100TM及TE偏光區段100TE;及光偵測器系統130。軸線A1界定光源60與耦合稜鏡組合件38之間的光學路徑OP1之中心。軸線A2界定耦合稜鏡組合件38與光偵測器系統130之間的光學路徑OP2之中心。收集光學系統90、TM/TE偏光片100及光偵測器系統130構成示例性偵測系統140。
偵測系統140亦可包括收集光學系統90之每一側上之孔隙136。孔隙136可經配置以降低由光偵測器系統130偵測之「過耦合」光之量。在此,「過耦合光」為反射光62R, 該反射光62R來自耦合稜鏡40但不表示實際TM模式光譜及TE模式光譜,如下更詳細說明。
第3A圖為光偵測器系統130之近視圖。在實例中,光偵測器系統130包括:偵測器110(例如,CCD攝影機),該偵測器110可用於大於1100nm之波長且可由IR類比偵測器替代;及框接收器120(參見第2圖)。在以下論述之其他實施例中,偵測器100包含CMOS偵測器或一或兩個線性光偵測器(亦即,一列積體光二極體或光感測元件)。偵測器110亦可包含一或多個微測輻射熱計、微測輻射熱計攝影機、一或多個銦鎵砷(InGaAs)基光偵測器或InGaAs攝影機。
偵測器110包括光敏表面112。光敏表面112實質上位於收集光學系統90之焦平面92中,其中光敏表面大體上垂直於軸線A2。此舉用於將退出耦合稜鏡組合件38之反射光62R之角分佈轉換成偵測器110之感測器平面處之光的橫向空間分佈。
將光敏表面112分成TE區段112TE及TM區段112TM允許偵測器110同時記錄針對反射光62R之TE偏光及TM偏光之角反射光譜(含有模式光譜)的數位影像。此同時偵測消除量測雜訊源,考慮到系統參數可隨時間偏移,該雜訊源可在於不同時間進行TE量測及TM量測的情況下出現。
第3B圖為由第3A圖之示例性光偵測器系統擷取之TE模式光譜及TM模式光譜的示意圖。為了便於說明,TE模式光譜及TM模式光譜經圖示為具有高對比度。
示例性光源60包括可見或紅外雷射、可見或紅外發光二極體、可見或紅外放大自發射(amplified-spontaneous-emission,ASE)源、可見或紅外超發光二極體(super-luminescent-diode,SLD)源及較寬頻寬源,諸如,與使光譜變窄之適當構件(包括波長選擇性濾光片或繞射光柵)結合之熱絲燈及石英燈。由光源60產生之光62之示例性操作波長λ包括可見波長(諸如,405nm、488nm、590nm、633nm)及紅外波長(諸如(標稱地)820nm、940nm、1060nm、1550nm、1613nm、1900nm或2200nm。
以上列舉類型之具有範圍為400nm至2200nm之主波長及適當亮度的任何光源60可經配置以使得本文中揭示之量測方法在結合光偵測器系統130(該系統在光源之波長λ下敏感)時且在包括適當窄化光譜的情況下成為可能。所需亮度視偵測器110之敏感性及雜訊等效功率(包括基本偵測器雜訊及外部電氣雜訊或背景光)而定。
系統10包括控制器150,該控制器可經配置以控制系統操作。控制器150亦經配置以接收及處理來自光偵測器系統130之(影像)信號SI,該等信號SI表示經擷取TE模式光譜影像及TM模式光譜影像。控制器150包括處理器152及記憶體單元(「記憶體」)154。控制器150可經由光源控制信號SL控制光源60之啟動及操作,且接收及處理來自光偵測器系統130(例如,來自框接收器120,如圖所示)之影像信號SI。在一個實施例中,可依序收集TE光譜及TM光譜,其中TE/TM偏光片100可含有僅傳送單一偏光之單一區段。 在此情況下,偏光片可在偏光方向上具有90°差異之兩個定向之間旋轉,且控制器150可控制偏光片在兩個定向之間的切換,且控制彼切換與TE光譜及TM光譜之依序收集之同步。
在實例中,控制器150包含電腦且包括讀取裝置,例如,軟式磁碟機、CD-ROM驅動機、DVD驅動機、磁性光碟(MOD)裝置(未圖示)或用於自電腦可讀媒體(諸如,軟碟、CD-ROM、DVD、MOD、隨身碟或諸如,網路或網際網路之另一數位源)讀取指令及/或資料之任何其他數位裝置,包括網路連接裝置,諸如,乙太網裝置(未圖示)。控制器150經配置以執行儲存於韌體及/或軟體(未圖示)中之指令,包括用於實施本文中揭示之表面雙折射/應力量測之信號處理指令。在實例中,術語「控制器」及「電腦」為可互換的。
控制器150可程式化以執行本文中描述之功能,包括系統10之操作及影像信號SI之前述信號處理,以實現量測經量測彎曲部件之至少一個特徵,諸如,表面應力、應力剖面、壓縮應力、層深度、折射率剖面及雙折射。
如本文中所使用,術語「電腦」並不僅限於在此項技術中被稱為電腦之彼等積體電路,而是廣泛地代表電腦、處理器、微控制器、微電腦、可程式邏輯控制器、特殊應用積體電路及其他可程式電路,且該等術語在本文中可互換使用。
軟體可實施或有助於本文中揭示之系統10之操作之執行,包括前述信號處理。軟體可能可操作地安裝在控制器150中,且詳言之安裝在處理器152及記憶體154中。軟體功能性可涉及程式設計,包括可執行程式碼,且該等功能 性可用於實施本文中揭示之方法。此軟體程式碼可由下通用電腦(例如,由處理器152)執行。
在操作中,程式碼及可能相關聯之資料記錄儲存於通用電腦平臺內、處理器152內及/或記憶體154中。然而,在其他時間,軟體可儲存於其他位置及/或經傳輸用於載入適當通用電腦系統中。本文中所論述之實施例涉及呈藉由至少一個機器可讀媒體載送之程式碼之一或多個模組形式的一或多個軟體產品。由電腦150之處理器152執行該程式碼使得平臺能夠以實質上在本文中論述且說明之實施例中執行的方式實施目錄及/或軟體下載功能。
電腦150及/或處理器152可各自利用電腦可讀媒體或機器可讀媒體(例如,記憶體154),該媒體係指參與提供指令至處理器以供執行(包括例如決定彎曲部件20之表面雙折射/應力之量或應力剖面S(x))之任何媒體。記憶體154構成電腦可讀媒體。此媒體可採取許多形式,包括(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如,作為上文所論述伺服器平臺中之一者操作之任何一或多個電腦中的任何儲存裝置。揮發性媒體包括動態記憶體,諸如,此電腦平臺之主記憶體。實體傳輸媒體包括同軸電纜、銅線及光纖,包括包含電腦系統內之匯流排的電線。
因此,電腦可讀媒體之共用形式包括(例如):軟碟、軟性磁碟、硬碟、磁帶、隨身碟及任何其他磁性媒體;CD-ROM、DVD及任何其他光學媒體;較不常用之媒體,諸 如打孔卡片、紙帶及具有孔洞圖案之任何其他實體媒體;RAM、PROM、EPROM、FLASH-EPROM及任何其他記憶體晶片或匣);及傳輸資料或指令之載波、傳輸該載波之電纜或鏈路或電腦可讀取程式設計程式碼及/或資料之任何其他媒體。在將一或多個指令之一或多個序列載送至處理器152以供執行時可涉及許多該等形式之電腦可讀媒體。
系統10可為前述市售稜鏡耦合儀器(諸如,由日本東京Orihara Industrial Co.,Ltd.製造及銷售之FSM-6000LE稜鏡耦合儀器)之修改版本。
耦合稜鏡組合件
第4A圖及第4B圖為耦合稜鏡組合件38之示例性配置的側視圖,該耦合稜鏡組合件38圖示為與示例性彎曲部件20介接且包括示例性光限制組件200。第5A圖及第5B圖為第4A圖及第4B圖之示例性光限制組件200之立視圖及前視圖。
耦合稜鏡組合件38包括耦合稜鏡40,該耦合稜鏡40具有輸入表面42、耦合表面44及輸出表面46。耦合稜鏡40具有折射率n p >n s 。耦合稜鏡40藉由使耦合稜鏡之耦合表面44與一部分彎曲外表面24光學接觸而與彎曲部件20介接。第4C圖為第4A圖及第4B圖之耦合稜鏡40之自頂向下視圖,且圖示部件外表面24與耦合表面44之間狹長光學接觸區域,該區域界定狹長部件-稜鏡耦合介面(「介面」)50。
第4C圖亦圖示由量測光束62F形成之照明區域62L。在實例中,照明區域62L及介面50為長形的且實質上 沿照明區域62L及介面50各自之長軸對準。第4D圖為照明區域62L之立視圖,圖示y-z平面及平面外光束62F及62R。平面外角度表示為φ。照明區域62L在x方向上具有寬度wL。示例性照明區域62L經圖示為具有恆定寬度wL,但wL亦可隨照明區域之長度變化。
在實例中,折射率為n f 之介接流體52之薄層用於促進耦合稜鏡40與彎曲部件20之間的光學耦合,且構成介面50之一部分。在實例中,n p n f n s n f 之示例性值=1.64。在另一實例中,介接流體反射率n f =n p ±0.02。在特定相關實例中,稜鏡折射率可為n p =1.72。
第4A圖及第4B圖之耦合稜鏡組合件38包括前述示例性光限制組件200,該光限制組件200適用於在輸入表面42(第4A圖)或輸出表面46(第4B圖)處與耦合稜鏡40介接。示例性光限制組件200為由不透明材料製成或具有不透明塗層之截頭直角稜鏡之形式。光限制組件200具有成角正面202、截頭頂面204、背面206、底面208及平行側面210。光限制組件200具有高度h1、底面208處之底部長度l1、截頭頂面204處之頂部長度l2及寬度w,如圖所示。底面208及成角正面202界定角度α。
光限制組件200包括在表面202、表面204及表面206處開口之中心狹槽220。中心狹槽220具有內表面222及底部224,該底部224位於底面208上方且因此具有高度h2<h1。在一個實例中,內表面222平行於側面210,且因此界定具有均勻寬度s之狹槽220。在其他實例中,中心狹槽220 可經配置以具有沿中心狹槽220之長度例如直線地或以彎曲形式變化的寬度s。狹槽寬度s可經選擇以界定各種光限製程度。在實例中,狹槽220之內表面222具有吸光塗層,例如,被漆成黑色、氧化或陽極化等,以減少鏡面反射及漫反射。
下表1中闡明用於示例性光限制組件200之尺寸的示例性值:
在實例中,一或兩個光限制組件200相對於耦合稜鏡40設置以將照明區域62L限制為狹長介面50,且將光束62F及光束62F限制為在y-z平面外具有窄角度φ範圍(第4D圖)。在實例中,照明區域62L之大小及角度φ之範圍由中心狹槽220之寬度s界定。在實例中,一或兩個光限制組件緊挨地鄰近耦合稜鏡40之輸入表面42及/或輸出表面46設置。在另一實例中,一或兩個光限制組件與耦合稜鏡40之輸入表面42及/或輸出表面46間隔開。
由光偵測器系統130擷取之模式光譜影像(參見例如第3B圖)表示用於自介面50之反射的角譜的TM波。影像之亮區對應於高反射,且暗線對應於將量測光62F耦合至經導向漏溢模式或有時耦合至經良好界定之漏溢模式。延伸之暗區通常與耦合至漏溢模式及輻射模式至基板中相關聯。相比於使用由習知FSM-6000LE儀器供應之無限制稜鏡組合件的5mm(0.197吋)之無限制有效照明及收集寬度,使用系統10之耦合稜鏡組合件38中之光限制組件200執行的實驗導致TE模式光譜及TM模式光譜之對比度及清晰度提高數倍。
示例性彎曲部件20之實驗包括擷取具有第一曲率半徑R1=8.5mm及23微米之DOL之樣本的模式光譜影像。相比於5mm之標準收集寬度之模式光譜對比度,模式光譜影像展示狹槽寬度s<3mm之對比度之顯著改良及狹槽寬度s<1.5mm之更大改良。根據上文描述之光限制組件200之該等觀測值及尺寸及耦合稜鏡40之彼等觀測值及尺寸,模式光譜對比度之改良可在稜鏡耦合表面44由聚焦之光束62F照明時獲得,該光束62F經窄化至約3mm或更小。
量測彎曲部件期間之對比度改良亦可在入射到稜鏡組合件38上之光束62F在稜鏡耦合表面44之平面中具有投影時觀察到,該等投影經限制為相對於照明帶之對稱線具有小於約10°之對角,該對稱線經設計以與彎曲部件20之彎曲部分與稜鏡耦合表面44之間的接觸線重合。
模式光譜之對比度之改良係部分歸因於不與樣本交 互之排斥光。此光排斥在描述之實驗中之狹槽寬度s之範圍為1.5mm至3mm時已大量存在。對於更小之狹槽寬度s,可能存在更大之改良。對比度改良亦係部分歸因於排斥光線,該等光線在耦合表面44之平面中之投影與界定介面50之樣本-稜鏡接觸線形成大角度。
對於大狹槽寬度s,該等非所欲光線可由孔隙136(參見第2圖)或通常安置在系統10之偵測系統140中之其他孔隙阻擋。因此,例如,當穿過稜鏡組合件38且到達光偵測器系統130之光線62R在耦合表面44之平面上具有投影,該等透鏡經限制為小於約5°之角度φ(參見第4D圖)時,歸因於光限制組件200之改良之角分量對於狹槽大小s<1.5mm變得更加重要。注意,在一些情況下,在與樣本之彎曲表面交互之後,來自光束62R之反射光線之投影角度φ'可稍微不同於來自光束62F之相應入射線的投影角度φ。
因此,可靠近或遠離耦合稜鏡40放置且限制照明以使得φ±10°(且詳言之φ±5°)之任何狹槽、狹縫之組合或孔隙(例如,孔隙136)之組合可有助於改良經量測模式光譜之對比度。φ之角範圍經界定為△φ,且在實例中,限制為20°,或在更窄實例中,限制為10°。
照明區域62L之寬度wL及與照明區域相關聯之角範圍△φ兩者可由系統10之至少兩個孔隙界定。在如上所述之實例中,兩個孔隙為狹槽220在光限制組件200之正面202及背面206處之輸入端及輸出端(參見例如第5A圖)。在其他實例中,孔隙中之一者可為偵測系統140之一部分,諸如, 孔隙136,該等孔隙用於減少歸因於不需要之寄生照明以及「超耦合」效應之對比度降低,其中一些聚焦光62F以反射光62R到達光偵測器系統130時,反射光62R增加應觀察到暗線之位置處的光強度之方式共鳴地耦合至及耦合出彎曲部件20。
因此,系統10中之一個孔隙可為光限制組件200之狹槽220,其中另一孔隙由簡單狹縫或受限開口界定,該狹縫或開口經添加以界定照明區域62L之寬度。標準稜鏡耦合系統中之此孔隙通常過大以致不能有效幫助改良用於量測彎曲部件之模式光譜對比度。對於曲率半徑R1<10mm,在實例中,兩個孔隙由狹槽220界定在光限制組件200之前端202及後端206處。
當量測系統10中之彎曲部件20時,反射光62R自稜鏡之整個耦合表面朝向光偵測器系統130發送。對於彼信號,僅小部分反射光62R自狹長介面50反射。與彎曲部件20之區域交互的量測光62F在光偵測器系統130之視場內傳播或偏移出該視場,該等區域實質上與耦合稜鏡40分離且逐漸遠離耦合稜鏡彎曲。此情況經識別為在使用習知稜鏡耦合量測系統量測彎曲部件20時模式光譜之急劇對比度降級的一個原因。
更多耦合稜鏡組合件實例
第6A圖為示例性耦合稜鏡組合件38之立視圖,其中耦合稜鏡40之輸入表面42及輸出表面46包括各別不透明區段42a、42b及不透明區段46a、46b,該等區段界定光可穿 過之狹縫47及狹縫48。在實例中,不透明區段42a、42b及不透明區段46a、46b由形成於輸入表面42及輸出表面46之不透明區段上之吸收層界定。狹縫47及狹縫48可使用習知遮罩技術界定。在另一實例中,不透明區段42a、42b及不透明區段46a、46b可為緊挨地鄰近(例如,緊密接觸或稍微間隔開)的輸入表面42及輸出表面46放置之獨立片或膜。狹縫47及狹縫48出於同一目的用作光限制組件200之中心狹槽220以界定量測光62的寬度,且因此出於術語之一致性亦可稱為「狹槽」。
在第6A圖之實施例中,狹槽由兩個狹縫47及48組成,一個狹縫靠近或在輸入稜鏡表面上,且一個狹縫靠近或在輸出稜鏡表面上。第6A圖亦表示另一實施例,其中耦合稜鏡40含有三個區域,其中中心區域48在量測波長下為透明的,而耦合稜鏡40之兩側上之區域在量測波長下強烈吸收。此耦合稜鏡40可藉由將由相同或類似玻璃製成之三個稜鏡融合在一起而獲得,其中兩個外部玻璃摻雜有鐵或其他吸收鐵,且可能在還原環境中經退火以增強量測波長下之吸收。
第6B圖類似於第6A圖,且圖示示例性耦合稜鏡40,其中耦合表面44包括圓柱形彎曲部分44C,在實例中,該圓柱形彎曲部分44C向內完全且具有約R1(亦即,~R1)之曲率半徑。此特定耦合稜鏡40可連同阻光特徵(諸如,一或多個光限制組件200或不透明區段42a、42b及/或不透明區段46a、46b)有利地用於耦合稜鏡組合件38。在實例中,彎曲部分44C之半徑在約0.5R1與1.5R1之間。在實例中,尤 其是當部件20之彎曲部分之半徑小於R1時,利用介接流體52,其中n f >n s
第6C圖圖示示例性耦合稜鏡40,該示例性耦合稜鏡40組合第6A圖及第6B圖之耦合稜鏡之特徵,以使得所得耦合稜鏡具有圓柱形彎曲部分44C及不透明區段42a、42b及46a、46b兩者。在實例中,圓柱形彎曲部分44C具有與狹縫48之寬度實質上相同之寬度。在另一實例中,圓柱形彎曲部分44C比狹縫48寬。
第7A圖為耦合稜鏡組合件38之另一示例性實施例的立視圖,該耦合稜鏡組合件38包括夾在兩個方塊250之間的窄耦合稜鏡40。方塊250為不透明的且可為整體不透明材料方塊之部分或兩個獨立方塊。因此,方塊250界定窄槽252,窄耦合稜鏡40位於該窄槽252內。在實例中,方塊250面向窄耦合稜鏡40之面在量測波長下具有強光吸收,或可與使用膠水或其他材料耦合的稜鏡介接,該膠水或其他材料在量測波長下具有強光學吸收。
示例性窄耦合稜鏡40具有約3mm或更小之寬度,且在實例中,具有約2mm或更小之寬度。窄耦合稜鏡40之寬度之下限由不利散射及繞射效應界定,在實例中,該等效應出現在寬度小於約0.2mm時。在實例中,方塊250可包括用於相對於方塊安裝及對準耦合稜鏡40之安裝與對準特徵254。在實例中,耦合稜鏡40位於窄槽252中,該窄槽252確保用於良好模式光譜對比度之所需之光限制以及相對於系統10之剩餘部分之適當對準。
第7B圖類似於第7A圖,不同之處在於耦合稜鏡40之耦合表面44為彎曲的,且詳言之,具有大體上圓柱形凹形曲率。在實例中,彎曲耦合表面44之曲率半徑類似於待量測之彎曲部件20之第一曲率半徑R1,且在實例中,可稍微大於待量測之彎曲部件20之第一曲率半徑R1。凹形圓柱耦合表面44之使用允許彎曲部件20之自對準用於量測,且可明顯減少量測時間。
第7C圖類似於第7B圖,且圖示示例性耦合稜鏡組合件38,其中耦合稜鏡40包括具有平坦底座44F及可更換之凹形平坦圓柱透鏡區段(「圓柱透鏡」)44L之薄稜鏡區段40T,該凹形平坦圓柱透鏡區段44L與平坦底座44F介接且界定彎曲耦合表面44。在實例中,至少一部分圓柱透鏡44由方塊250固持。在實例中,薄稜鏡區段40T由方塊250經由黏著劑、折射率匹配油、真空或藉由光學接觸固持。
對準夾具
成功量測彎曲部件20中之應力要求模式光譜具有足夠對比度,此情況進而要求耦合稜鏡40相對於彎曲部件精確對準。詳言之,耦合稜鏡40需要以匹配如由光限制組件200之中心狹槽220界定之照明區域62L(第5A圖)、由不透明區段42a、42b及不透明區段46a、46b界定之狹縫47及狹縫48(第6A圖)或由方塊250及窄耦合稜鏡40界定之窄槽252(第7A圖)的方式接觸彎曲部件20之外表面24。輕微角偏差(<1°)導致光譜線(條紋)傾斜,此舉導致量測誤差。較大角偏差(僅幾度)導致條紋模糊且甚至消失。
對於不提供彎曲部件20之對準之耦合稜鏡組合件38,對準夾具可用於此對準,同時允許彎曲部件之精準定位及角對準以最佳化經量測之模式光譜對比度。
第8圖為用於相對於耦合稜鏡40固持及對準彎曲部件20之示例性對準夾具300的自頂而下視圖。對準夾具300經配置以與耦合稜鏡組合件38介接。對準夾具300包括矩形外框310,該外框310具有由相對垂直內側壁314及相對水平內側壁316界定之內部312。對準夾具300包括空間間隔且平行之水平導向組件320,該等水平導向組件320設置於框內部312內,且具有經配置以沿垂直內側壁314或在垂直內側壁314內(例如,在軌道中,未圖示)滑動之末端322。水平導向組件320具有相對內表面324。
對準夾具300亦包括垂直設置之支撐柱330,該等支撐柱330固定至下導向組件320且穿過上支撐組件,以使得後者可沿支撐柱垂直平移。每一支撐柱330具有末端332,該末端332與框架310之頂部垂直內側壁314上之各個彈性組件340介接。水平導向組件320之內表面324包括彈性組件326,該等彈性組件326用於在不損壞彎曲部件的情況下嚙合彎曲部件20之外表面24。圖示示例性圓柱彎曲部件20(虛線)由彈性組件326固持。
對準夾具300亦包括對準螺釘350,該等對準螺釘350穿過外框架310之螺紋區段以嚙合下支撐組件320。對準螺釘350可用於朝向上支撐組件推進下支撐組件320,從而擠壓彈性組件326之間的彎曲部件20。彈性組件340藉由壓縮 允許下支撐組件320之向上移動,同時亦充當阻礙上支撐組件向上移動之力緩衝器,從而使部件保持沿螺釘350指定之方向對準。對準螺釘350亦可用於提供彎曲部件20在框架內部312內之選擇定向,且因此在對準夾具300與耦合稜鏡組合件38介接時提供相對於耦合稜鏡40之選擇定向。
為降低彎曲部件20之旋轉與側向移動之間的耦合,對準夾具300可經定位,以使得耦合稜鏡40及彎曲部件明顯更靠近對準螺釘350中之一者。以此方式,較近之對準螺釘350使得彎曲部件20相對於稜鏡上之照明帶之主要側向移動成為可能,而另一螺釘使得相對於同一照明帶之主要旋轉成為可能。例如,藉由一至三次反復使用兩個對準螺釘350,彎曲部件20之最佳定位及對準之集合可相對快速發生。使用對準夾具300之益處在於相比於手動對準減少了量測時間,特別是在相同或類似形狀之多個部件待依序量測時。藉由使用此對準夾具,對第一部件之準確對準足夠確保所有隨後部件之快速對準。
模式光譜增寬效應
當量測在耦合稜鏡組合件38中完美對準之呈理想圓柱形式之彎曲部件20時,期望TE模式光譜及TE模式光譜之光譜線的增寬較小,此係歸因於耦合至具有光束62F之彎曲波導,光束的光線具有平面外角度φ。相比於具有相同橫截面之直線波導之彼等有效折射率,彎曲波導之本征模式之有效折射率稍微變化。
用於矩形波導之有效折射率變化之以下方程式可用 於估計歸因於此效應之最大可能增寬: 其中n 0 為峰值折射率,2T為矩形波導之厚度,且ρ為見於傾斜入射光線之曲率半徑。對於彎曲部件20,厚度2T可由0.5DOL更換以說明近似三角形折射率剖面。對於衝擊介面50之光線,在ρ=R1/sin2φ之入射平面中,其中R1為圓柱半徑。對於0.5mm之狹槽,φ範圍為約-10°至+10°(其中最大角度φ表示為φ max ),但對於大部分光,範圍為-5°至+5°,因此在R1=8.5mm的情況下,ρ相應地採用高於1.1m之值。因此,增寬效應為:
此線增寬位準與用FSM-6000LE量測系統觀察之最窄線相當,該等最窄線之寬度由光學解析度或由量測中之模式之漏溢特徵限制。此說明為何本文中揭示之系統及方法可用於量測具有小至1mm之第一半徑R1之彎曲部件20。在此情況下,增寬可為近似2×10-4,此僅僅接近最小模式間隔。此增寬僅對具有小半徑R1(例如,R1<2mm)及大DOL之彎曲部件20很重要且藉由使用較窄狹槽而減輕增寬。
模式光譜增寬之以上估計可改變且用於決定將增寬效應限制為所需值所需的狹槽寬度。允許之增寬比典型模式間隔△n ms 小約1/3,在許多實際關注之情況下,該間隔為約5×10-4RIU。接著,狹槽可允許之以弧度計之角範圍△φ為:
在許多情況下,典型模式間隔與DOL成反比。在實例中,離子交換區域25具有約1.5×10-2RIU之最大折射率增量,DOL之約2μm μm 之每一增量為光譜添加額外模式,故典型 模式間隔約為
因此,待由光限制器允許之角範圍△φ應不大於:
在實例中,對於R1=10mm、DOL=50μmn 0 1.52、△φ 0.54rad 31。,以使得φ應小於約15°。此係線增寬將導致線之實質合併的限制,該實質合併將導致不能實行該等線之分辨。甚至更小之線增寬導致線對比度之降低,此舉導致明顯難以基於強度辨別以用於模式之自動識別。
更嚴格準則(例如,)可用於充分限制此對比度降低。在此情況下,光限制器允許之角範圍△φ應不大於: 且對於具有約0.015RIU之最大折射率增量及50μm之DOL的典型離子交換玻璃,φ應不大於約10°。最終,為消除歸因於耦合至彎曲波導模式導致之線增寬的效應,在實例中,對於典型高解析度量測系統,增寬應低於約2×10-5RIU,在此情況下:
對於具有用於半徑R1之各種值之彎曲部件20(諸如,對於圓錐表面),基於揭示之關係採用範圍底部處之R1值應以保守估計一或多個光限制組件200的參數。另一方面,對於較不保持估計,典型的R1範圍之下半部分之任何值可允許足夠效能。
量測彎曲部件20,其中R1在允許之方向上小至1mm,其中R2至少為100m以防止可觀測之光譜線增寬,及至少20m以避免明顯量測降級。若稜鏡長度在z方向(參見第1A圖)上減小(例如,自12mm減小至2mm與4mm之間)以限制歸因於非所欲凸出之光譜線角擴散,則可接受R2之較小值。
在實例中,照明區域62L之寬度wL可隨照明區域之長度(亦即,z方向)變化。如上所述,在一個實例中,光限制組件200之狹槽寬度s可在前端202與後端206之間變化,同時仍允許模式光譜對比度之實質改良。詳言之,在前端202與後端206之間的寬度s在約(2/3).s與約(1.5).s之間變化的狹槽220可導致與恆定寬度狹槽相似之對比度改良。
對熟習此項技術者而言,可在不脫離如所附申請專利範圍中界定之本揭示案之精神或範疇的情況下對本揭示案之較佳實施例進行各種修改將是顯而易見的。因此,若修改及變化在所附申請專利範圍及所附申請專利範圍之等效物之範疇內,則本揭示案涵蓋該等修改及變化。

Claims (8)

  1. 一種用於決定具有一彎曲外表面並具有由一離子交換區域定義的一接近表面的波導區域之一彎曲部件之至少一個特徵的方法,該方法包含以下步驟:將一耦合稜鏡之一耦合表面介接至該彎曲外表面以界定靠近該接近表面的波導區域的一耦合介面;引導量測光穿過該耦合稜鏡且到達該耦合介面,並將該量測光的一部分耦合到藉由該接近表面的波導區域支援的TE及TM模式,其中該量測光具有3mm或更小之一寬度;數位地擷取自該耦合介面反射且由該接近表面的波導區域所支援的該TE及TM模式所定義之TE模式光譜及TM模式光譜;及處理該TE模式光譜及該TM模式光譜以決定該彎曲部件之該至少一個特徵;其中該耦合稜鏡具有輸入表面及輸出表面,且該方法進一步包含以下步驟:引導該量測光穿過光限制組件,該光限制組件相對於該輸出表面中可操作地設置,其中該光限制組件包括具有一恆定寬度或一變化寬度之一狹槽,其中該狹槽界定該量測光之該寬度。
  2. 如請求項1所述之方法,其中該至少一個特徵係選自包含以下之特徵的群組:表面應力、應力剖面、壓縮應力、層深度、折射率剖面及雙折射。
  3. 如請求項1或2所述之方法,其中該彎曲部件為圓柱形的,且具有一第一曲率半徑R10.5mm。
  4. 如請求項1或2所述之方法,該方法包括以下步驟:將該彎曲部件支撐在一可調整對準夾具中以對準該彎曲部件與該耦合稜鏡。
  5. 一種用於決定具有一彎曲外表面之一彎曲部件之至少一個特徵的方法,該方法包含以下步驟:將一耦合稜鏡之一耦合表面介接至該彎曲外表面以界定一耦合介面;引導量測光穿過該耦合稜鏡且到達該耦合介面,其中該量測光具有3mm或更小之一寬度;數位地擷取自該耦合介面反射之TE模式光譜及TM模式光譜;及處理該TE模式光譜及該TM模式光譜以決定該彎曲部件之該至少一個特徵;其中該耦合稜鏡具有輸入表面及輸出表面,且該方法進一步包含以下步驟:引導該量測光穿過分別鄰近該輸入表面及該輸出表面安置之第一光限制組件及第二光限制組件,該第一光限制組件及該第二光限制組件分別具有第一狹槽及第二狹槽,該第一狹槽及該第二狹槽具有一恆定寬度或一變化寬度,其中該第一狹槽及該第二狹槽界定該量測光之該寬度,其中該耦合稜鏡具有3mm或更小之一寬度,且由不透明方塊可操作地支撐。
  6. 一種用於決定具有一彎曲外表面之一彎曲部件之至少一個特徵的方法,該方法包含以下步驟:將一耦合稜鏡之一耦合表面介接至該彎曲外表面以界定一耦合介面,其中該耦合稜鏡具有3mm或更小之一寬度,且由不透明方塊可操作地支撐;引導量測光穿過該耦合稜鏡且到達該耦合介面,其中該量測光具有3mm或更小之一寬度;數位地擷取自該耦合介面反射之TE模式光譜及TM模式光譜;及處理該TE模式光譜及該TM模式光譜以決定該彎曲部件之該至少一個特徵。
  7. 一種用於決定具有一彎曲外表面且具有一接近表面的離子交換波導區域之一彎曲部件之至少一個特徵的稜鏡耦合系統,該稜鏡耦合系統包含:一光源系統,該光源系統產生量測光;一耦合稜鏡組合件,該耦合稜鏡組合件具有:一耦合稜鏡,該耦接稜鏡具有輸入表面及輸出表面;及一耦合表面,該耦合表面與該彎曲外表面介接以界定具有該接近表面的離子交換波導區域的一耦合介面,其中該耦合稜鏡組合件包含用於將該量測光之一寬度界定為3mm或更小之構件,其中該耦合稜鏡組合件包含一光限制組件,該光限制組件相對於該輸出表面可操作地設置,其中該光限制組件包括一狹槽,該狹槽界定該量測光之該寬度;一偵測器系統,該偵測器系統經設置以接收自該耦合介面反射且退出該輸出表面之量測光以數位地擷取由該接近表面的離子交換波導區域所支援的TE及TM模式所定義的TE模式光譜及TM模式光譜;及一控制器,該控制器處理該TE模式光譜及該TM模式光譜以決定該彎曲部件之該至少一個特徵。
  8. 如請求項7所述之系統,其中該至少一個特徵係選自包含以下之特徵的群組:表面應力、應力剖面、壓縮應力、層深度、折射率剖面及雙折射。
TW103129570A 2013-08-29 2014-08-27 用於特徵化彎曲部件的稜鏡耦合系統及方法 TWI658261B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/013,481 US10156488B2 (en) 2013-08-29 2013-08-29 Prism-coupling systems and methods for characterizing curved parts
US14/013,481 2013-08-29

Publications (2)

Publication Number Publication Date
TW201514457A TW201514457A (zh) 2015-04-16
TWI658261B true TWI658261B (zh) 2019-05-01

Family

ID=51564800

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108109898A TWI746944B (zh) 2013-08-29 2014-08-27 用於特徵化彎曲部件的稜鏡耦合系統及方法
TW103129570A TWI658261B (zh) 2013-08-29 2014-08-27 用於特徵化彎曲部件的稜鏡耦合系統及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108109898A TWI746944B (zh) 2013-08-29 2014-08-27 用於特徵化彎曲部件的稜鏡耦合系統及方法

Country Status (7)

Country Link
US (2) US10156488B2 (zh)
EP (1) EP3039408A1 (zh)
JP (2) JP6549581B2 (zh)
KR (2) KR102272826B1 (zh)
CN (2) CN110646378B (zh)
TW (2) TWI746944B (zh)
WO (1) WO2015031567A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
JP6603671B2 (ja) 2014-04-23 2019-11-06 コーニング インコーポレイテッド 応力のプリズム結合測定におけるコントラストの向上方法
US9919958B2 (en) 2014-07-17 2018-03-20 Corning Incorporated Glass sheet and system and method for making glass sheet
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
WO2016196748A1 (en) 2015-06-04 2016-12-08 Corning Incorporated Methods of characterizing ion-exchanged chemically strengthened glasses containing lithium
TWI762083B (zh) 2015-09-17 2022-04-21 美商康寧公司 特性量測經離子交換之含鋰化學強化玻璃的方法
US11060930B2 (en) * 2015-09-30 2021-07-13 Suzhou Ptc Optical Instrument Co., Ltd Glass surface stress meter and multiple-tempered glass surface stress meter
CN105241593A (zh) * 2015-10-30 2016-01-13 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
US10900850B2 (en) 2017-07-28 2021-01-26 Corning Incorporated Methods of improving the measurement of knee stress in ion-exchanged chemically strengthened glasses containing lithium
US10859451B2 (en) * 2018-03-02 2020-12-08 Corning Incorporated Prism coupling methods of characterizing stress in glass-based ion-exchanged articles having problematic refractive index profiles
CN111954804B (zh) * 2018-04-02 2024-03-22 康宁股份有限公司 具有宽计量工艺窗口的棱镜耦合应力计
US10801833B2 (en) * 2018-04-09 2020-10-13 The Boeing Company Strain sensitive surfaces for aircraft structural analysis and health monitoring
US10871400B2 (en) * 2018-08-27 2020-12-22 Corning Incorporated Retardation profile for stress characterization of tubing
US11105612B2 (en) * 2019-03-22 2021-08-31 Corning Incorporated Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
TW202111292A (zh) * 2019-07-31 2021-03-16 美商康寧公司 用於測量基於玻璃的樣品的基於應力的特徵的系統和方法
CN114729878A (zh) * 2019-11-01 2022-07-08 康宁股份有限公司 具有改善的强度过渡位置检测及倾斜补偿的棱镜耦合系统及方法
US11573078B2 (en) * 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile
TWI719822B (zh) * 2020-02-04 2021-02-21 和碩聯合科技股份有限公司 量測裝置與量測方法
WO2023097076A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
CN115265868B (zh) * 2022-09-29 2022-12-16 江苏延陵玻璃有限公司 一种异质真空玻璃表面应力检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136886A (en) * 1977-05-04 1978-11-29 Toshiba Corp Surface stress measuring apparatus of chemically tempered glass
JPH11281501A (ja) * 1998-03-30 1999-10-15 Orihara Seisakusho:Kk 表面応力測定装置
TW201245690A (en) * 2011-03-18 2012-11-16 Asahi Glass Co Ltd Device for measuring surface stress of glass and method for measuring surface stress of glass

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE480697A (zh) 1960-11-02
US3433611A (en) 1965-09-09 1969-03-18 Ppg Industries Inc Strengthening glass by multiple alkali ion exchange
US3873209A (en) 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
US3883221A (en) 1974-02-01 1975-05-13 Bell Telephone Labor Inc Portable prism-grating coupler
US4207000A (en) 1978-02-27 1980-06-10 Rca Corporation Waveguide method for determining stress at the convex surface of a body
JPS5937452B2 (ja) 1978-08-29 1984-09-10 株式会社東芝 風冷強化ガラスの表面応力測定装置
EP0023577B1 (en) 1979-07-06 1985-11-21 Kabushiki Kaisha Toshiba Surface stress measurement
JPS57157130A (en) 1981-03-25 1982-09-28 Toshiba Corp Measuring method for surface stress of curved surface reinforced glass
JPS5821213A (ja) 1981-07-31 1983-02-08 Canon Inc 光結合装置
IT1175776B (it) * 1984-02-13 1987-07-15 Siv Soc Italiana Vetro Apparecchiatura per la misurazione automatica di tensioni in un corpo trasparente mediante luce diffusa
JPS6332338A (ja) * 1986-07-26 1988-02-12 Hitachi Ltd 光学特性測定装置
SE462408B (sv) 1988-11-10 1990-06-18 Pharmacia Ab Optiskt biosensorsystem utnyttjande ytplasmonresonans foer detektering av en specific biomolekyl, saett att kalibrera sensoranordningen samt saett att korrigera foer baslinjedrift i systemet
US5119452A (en) * 1989-06-13 1992-06-02 Ricoh Company, Ltd. High efficiency prism coupling device and method for producing the same
JP2724025B2 (ja) * 1990-05-18 1998-03-09 株式会社日立製作所 薄膜光学定数の測定方法
JPH04310836A (ja) 1991-04-10 1992-11-02 Olympus Optical Co Ltd 屈折率分布測定方法
US5446534A (en) 1993-03-05 1995-08-29 Optical Solutions, Inc. Broad band waveguide spectrometer
ATE226320T1 (de) * 1993-03-26 2002-11-15 Hoffmann La Roche Optisches verfahren und vorrichtung zur analyse von substanzen an sensoroberflächen
JPH06332338A (ja) 1993-05-18 1994-12-02 Canon Inc 定着装置
US5953125A (en) * 1995-09-01 1999-09-14 Zygo Corporation Optical gap measuring apparatus and method
US5859814A (en) * 1996-10-18 1999-01-12 The Board Of Trustees Of The Leland Stanford Junior University Magneto-optic recording system and method
US6459492B1 (en) * 1997-03-14 2002-10-01 Agilent Technologies, Inc. Non-contact position sensor
AU3488800A (en) * 1999-02-12 2000-08-29 Pennsylvania State University, The Strengthening, crack arrest and multiple cracking in brittle materials using residual stresses
JP3668120B2 (ja) 2000-10-19 2005-07-06 独立行政法人科学技術振興機構 試料油特性測定装置および試料油特性測定方法
US6731388B1 (en) 2001-08-31 2004-05-04 The University Of Toledo Method of measuring surface plasmon resonance using interference structure of reflected beam profile
CN1173166C (zh) * 2002-08-22 2004-10-27 上海交通大学 双面金属波导测量方法及其装置
US6970256B1 (en) * 2003-04-16 2005-11-29 Jackson John H Apparatus and methods for measuring thickness and refractive index
US7193719B2 (en) 2004-05-17 2007-03-20 Virginia Tech Intellectual Properties, Inc. Device and method for tuning an SPR device
CN1280655C (zh) * 2004-05-27 2006-10-18 上海交通大学 采用棱镜/波导耦合单元实现光谱整形的装置及整形方法
JP5148061B2 (ja) * 2005-08-24 2013-02-20 出光興産株式会社 照明装置用ハウジング構造体、およびその製造方法、該構造体を用いたバックライト装置
WO2009148128A1 (ja) * 2008-06-05 2009-12-10 株式会社クラレ プラスチックシートおよび電飾看板
JP5777109B2 (ja) 2008-07-29 2015-09-09 コーニング インコーポレイテッド ガラスの化学強化のための二段階イオン交換
EP2361388B1 (en) 2008-11-24 2013-09-25 Corning Inc. Methods for characterizing molecules
CN101419344A (zh) * 2008-11-27 2009-04-29 上海交通大学 基于古斯汉欣位移效应的光束平移电控制装置及方法
DE102009016234B4 (de) 2009-04-03 2014-03-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlformer
CN102472664A (zh) * 2009-08-11 2012-05-23 皇家飞利浦电子股份有限公司 多光谱成像
KR101832509B1 (ko) * 2009-10-24 2018-02-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 고 비축 반사율을 갖는 침지형 반사 편광기
US8163561B2 (en) * 2009-11-30 2012-04-24 Corning Incorporated Method for depth resolved sensing of biological entities based on surface plasmon resonance sensors
DE102010001336B3 (de) * 2010-01-28 2011-07-28 Carl Zeiss SMT GmbH, 73447 Anordnung und Verfahren zur Charakterisierung der Polarisationseigenschaften eines optischen Systems
EP2385339A1 (en) 2010-05-05 2011-11-09 Leica Geosystems AG Surface sensing device with optical monitoring system
JP2013532366A (ja) 2010-07-09 2013-08-15 アルダン アサノビッチ サパカリエフ 質量分析法及びそれらの装置
JP5531944B2 (ja) 2010-12-22 2014-06-25 マツダ株式会社 ターボ過給機付きディーゼルエンジン
US8602592B2 (en) * 2011-04-07 2013-12-10 Coherent, Inc. Diode-laser illuminator with interchangeable modules for changing irradiance and beam dimensions
CN102759332B (zh) * 2011-04-27 2016-09-28 上海微电子装备有限公司 散射计量装置及其计量方法
US9140543B1 (en) * 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
US9109881B2 (en) 2013-06-17 2015-08-18 Corning Incorporated Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136886A (en) * 1977-05-04 1978-11-29 Toshiba Corp Surface stress measuring apparatus of chemically tempered glass
JPH11281501A (ja) * 1998-03-30 1999-10-15 Orihara Seisakusho:Kk 表面応力測定装置
TW201245690A (en) * 2011-03-18 2012-11-16 Asahi Glass Co Ltd Device for measuring surface stress of glass and method for measuring surface stress of glass

Also Published As

Publication number Publication date
JP6875459B2 (ja) 2021-05-26
CN105705936A (zh) 2016-06-22
TWI746944B (zh) 2021-11-21
CN110646378A (zh) 2020-01-03
KR102318409B1 (ko) 2021-10-28
US20190025141A1 (en) 2019-01-24
KR20160048926A (ko) 2016-05-04
JP2016535854A (ja) 2016-11-17
CN105705936B (zh) 2019-11-05
CN110646378B (zh) 2023-02-28
KR20210083393A (ko) 2021-07-06
JP6549581B2 (ja) 2019-07-24
US20150066393A1 (en) 2015-03-05
TW201514457A (zh) 2015-04-16
WO2015031567A1 (en) 2015-03-05
EP3039408A1 (en) 2016-07-06
JP2019194613A (ja) 2019-11-07
US10156488B2 (en) 2018-12-18
US10495530B2 (en) 2019-12-03
TW201937141A (zh) 2019-09-16
KR102272826B1 (ko) 2021-07-06

Similar Documents

Publication Publication Date Title
TWI658261B (zh) 用於特徵化彎曲部件的稜鏡耦合系統及方法
US9442028B2 (en) Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
TWI680285B (zh) 稜鏡耦合系統及用於對層深度大的波導件標定特徵之方法
US11079280B2 (en) Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US8957374B2 (en) Systems and methods for measuring birefringence in glass and glass-ceramics
US9696207B2 (en) Method of enhancing contrast in prism coupling measurements of stress
US20230168186A1 (en) Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
US20220404220A1 (en) Prism coupling systems and methods employing light-blocking members