JP2016535854A - プリズム結合システム及び湾曲部品を特徴付ける方法 - Google Patents

プリズム結合システム及び湾曲部品を特徴付ける方法 Download PDF

Info

Publication number
JP2016535854A
JP2016535854A JP2016537839A JP2016537839A JP2016535854A JP 2016535854 A JP2016535854 A JP 2016535854A JP 2016537839 A JP2016537839 A JP 2016537839A JP 2016537839 A JP2016537839 A JP 2016537839A JP 2016535854 A JP2016535854 A JP 2016535854A
Authority
JP
Japan
Prior art keywords
coupling
light
prism
curved
curved part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016537839A
Other languages
English (en)
Other versions
JP6549581B2 (ja
Inventor
リウ,アンピン
ヴァチェフ ルセフ,ロスティスラフ
ヴァチェフ ルセフ,ロスティスラフ
アンソニー シャウト,ロバート
アンソニー シャウト,ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2016535854A publication Critical patent/JP2016535854A/ja
Application granted granted Critical
Publication of JP6549581B2 publication Critical patent/JP6549581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential

Abstract

湾曲部品(20)を特徴付けるためのプリズム結合システム及び方法の開示である。結合プリズム(40)の結合面(44)が湾曲部品の湾曲外表面にインタフェースされ、結合インタフェース(50)が規定される。結合プリズムを通して3mm以下の幅を有する測定光がインタフェースに誘導される。インタフェースから反射されたTE及びTMモードスペクトルがデジタル的に捕捉される。これ等のモードスペクトルが処理され、湾曲部品の表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、複屈折等の少なくとも1つの特性が決定される。

Description

関連技術の相互参照
本出願は、2013年8月29日出願の米国特許出願第14/013,481号の米国特許法第120条に基づく優先権を主張するものであって、その内容に依拠し、参照により全内容を本明細書に援用するものである。
本開示は部品の応力測定に関し、特にはプリズム結合システム及び湾曲部品を光学的に特徴付ける方法に関するものである。
スマートフォンやタブレット用の弾力性があり、破損及び傷に強く、タッチ対応の保護フラットカバーウィンドウ等の化学強化ガラス部品が様々な用途において重要になってきている。これ等のガラス部品は熱強化ガラスより薄くて軽いが、イオン交換処理によって達成可能な高い表面圧縮応力(例えば約8×10Pa)によってより強靭である。
このようなフラットガラス製品の迅速な採用、継続的な改善、及び劇的な市場の成長は応力プロファイルの2つの主要なパラメータである表面圧縮応力(CS)及び層深さ(DOL)を測定するための迅速な非破壊技術が利用できることによって促進されたものである。このような測定は、いずれも日本の折原製作所(株)が製造し、ルケオ(株)が販売しているFSM6000LE等の市販の高解像度のプリズム結合システムを用いて行うことができる。第3の重要なパラメータである中央張力(CT)は、圧縮力と引張力との間の力平衡条件を参照することによって推測することができる。
プリズム結合システムは、イオン交換領域の横電界(TE)及び横磁界(TM)光伝搬モードの角結合スペクトル(「モードスペクトル」)を捕捉する。応力は応力光学係数(SOC)を用いて2つのスペクトル間の差から抽出される。SOCが小さい(〜3×10−6RIU/MPa、ここでRIUは屈折率単位を表わす)ため、応力が誘発された部分の屈折率は2つのはるかに大きな屈折率の数値間の小さな差を表わす。その結果、応力のプロファイルの大きさ及び形状は、回収されたTE及びTMプロファイルにおける小さな誤差の影響を強く受ける。このようの誤差を抑制するためにはTE及びTMモードスペクトルを高解像度で捕捉する必要がある。
優れた強度特性によって、化学強化ガラス部品が、既存の試験管等の湾曲ガラス部品及び個人向け電子装置の非平坦な外部ガラス又はプラスチック部品の望ましい代替品となっている。しかし、そのような湾曲部品の応力プロファイルや幾つかの重要なパラメータ等、1つ以上の特性の測定を目的としたTE及びTMモードスペクトルの迅速な非破壊測定には問題があることが判明した。
本開示の1つの態様は、湾曲外表面を有する湾曲部品の少なくとも1つの特性を決定する方法である。本方法は結合プリズムの結合面を湾曲外表面にインタフェースさせて結合インタフェースを規定するステップを有している。また、本方法は、結合プリズムを通して測定光をインタフェースに誘導するステップであって、測定光が3mm以下の幅を有するステップも有している。本方法はインタフェースから反射されたTE及びTMモードスペクトルをデジタル的に捕捉するステップを更に有している。また、本方法はTE及びTMモードスペクトルを処理し、湾曲部品の少なくとも1つの特性を決定するステップも有している。1つの例において、少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、及び複屈折から成る特性の群から選択される。
本開示の別の態様は、湾曲外表面を有する湾曲部品の少なくとも1つの特性を決定する方法である。本方法は、湾曲部品の外表面にインタフェースして結合インタフェースを規定する結合プリズムを有する結合プリズム組立体に集束測定光を誘導するステップであって、湾曲外表面が半径R1≧0.5mm及び半径R2≧20mによって規定されるステップ、測定光を結合インタフェースから反射させるステップであって、反射させる前に測定光が3mm以下の幅を有するように制限しつつ反射させるステップ、反射測定光を検出してTE及びTMモードスペクトルを取得するステップ、及びTE及びTMモードスペクトルを処理し、湾曲部品の少なくとも1つの特性を決定するステップを有している。
本開示の別の態様は、湾曲外表面を有する湾曲部品の少なくとも1つの特性を決定するためのプリズム結合システムである。本システムは測定光を生成する光源システム、入力及び出力面、並びに湾曲外表面とインタフェースして結合インタフェースを規定する結合面を備えた結合プリズムを有する結合プリズム組立体であって、測定光の幅を3mm以下に規定する手段を含んで成る組立体、インタフェースから反射され、出力面から出射した測定光を受光し、TE及びTMモードスペクトルをデジタル的に捕捉するように配置された検出器システム、及びTE及びTMモードスペクトルを処理して湾曲部品の少なくとも1つの特性を決定するコントローラを有している。
更なる特徴及び効果は以下の「発明を実施するための形態」に述べてあり、当業者とって、一部はその説明から容易に明らかであり、本明細書、その特許請求の範囲、及び添付図面に示された実施の形態を実施することによって認識できるであろう。上記概要説明及び以下の「発明を実施するための形態」の両方とも、単なる例示であって、本特許請求の性質及び特徴を理解するための概要又は枠組みを提供することを意図したものであることが理解されよう。
添付図面は理解を深めるために添付したものであり、本明細書に組み込まれその一部を構成するものである。図面は1つ以上の実施の形態を示し「発明を実施するための形態」と共に様々な実施の形態の原理及び作用の説明に役立つものである。従って、添付図面と併せて以下の「発明を実施するための形態」から、本開示がより完全に理解されるであろう。
例示的な湾曲部品の等角図。 第1の曲率半径(R1)及び層深さ(DOL)を有するイオン交換領域を示す図1Aの湾曲部品のx−y平面の断面図。 第2の曲率半径(R2)を示す図1Aの湾曲部品のy−z平面の断面図。 第2の曲率半径が無限大である完全に円筒な部品の一例を示す、図1Aと同様の図。 本明細書に開示の方法を利用して、湾曲部のモードスペクトルの測定に使用できるプリズム結合システムの例示的な実施の形態の概略図。 TE/TM偏光子及び検出器を示す図2のプリズム結合システムの例示的な光検出器システムの立面図。 図2のプリズム結合システムを使用して、図3Aの光検出器システムによって捕捉されたTE及びTMモードスペクトルの概略図。 結合プリズム、及び結合プリズムの入力面の近傍に配置され、プリズム結合面において利用可能な光を、z方向には制約しない、狭い空間領域に制限する細いスロットを有する光制限部材を示す図2のプリズム結合システムの例示的な結合プリズム組立体の拡大図。 入力面ではなく出力面の近傍に配置された光制限部材を示す、図4Aと同様の図。 部品−プリズム間の結合インタフェースを規定する細長の光学的接触領域及び測定光ビームによって形成された照明領域を示す図4A又は図4Bのように配置された結合プリズムのトップダウン図。 y−z平面及びx−z面に投影された面外角度φを有する例示的な面外光ビームを示す図4Cの照明領域の立面図。 図4A及び図4Bの例示的な光制限部材の立面図。 図4A及び図4Bの例示的な光制限部材の正面図。 入力及び出力面がスリット開口部を画成する不透明領域を有する例示的な結合プリズムの立面図。 結合面に湾曲部を有する例示的な結合プリズムの立面図。 図6A及び6Bの結合プリズムの特徴を組み合わせた例示的な結合プリズムの立面図。 2つの不透明な光吸収ブロックに支持された薄いプリズムを有する例示的な結合プリズム組立体を示す図。 結合プリズムが湾曲した結合面を有する例を示す、図7Aと同様の図。 結合プリズムが上端部及び湾曲結合面を画成する交換可能な平凹円柱レンズ部を有する例を示す図7Bと同様の図。 限られた直径及び限られた長さの湾曲部を図2のプリズム結合システム内に保持し、位置合わせするために使用される例示的な位置合わせ固定具のトップダウン図。
図に示すどの座標又は軸も参考であって方向又は配向を制限することを意図したものではない。更に、「垂直」及び「水平」等の方向は当該図面における機能の選択に関する説明を容易にするために使用されているものであって、方向又は配向を制限することを意図したものではない。
以下、添付図面に例を示す本開示の様々な実施の形態について詳細に説明する。図面全体を通し、可能な限り、同一又は同様の部品については同一又は同様の参照番号又は符号を用いている。図は必ずしも縮尺通りではなく、本開示の重要な側面を示すために図のどこが簡略化されているか当業者には見分けが付くであろう。
以下に記載の請求項は本「発明を実施するための形態」に組み込まれその一部を構成するものである。
米国特許出願第13/463,322号明細書及び第61/706,891号明細書を含む、本明細書に記載のあらゆる出版物又は特許文献の全開示内容は、参照により本明細書に援用されるものとする。
湾曲部品
図1Aは例示的な湾曲部品20を示す等角図であり、図1Bは湾曲部品のx−y平面の断面図である。湾曲部品20は本体22及び湾曲外表面24を有している。1つの例において、湾曲部品20はガラスから成り、ベース(又はバルク)屈折率nを有している。図1Aは極座標(r,θ)と共にデカルト座標を示している。図1Cは湾曲部品20のy−z平面の断面図である。1つの例において、湾曲部品20はロッドであってもよく、中空内部部分を有する管であってもよい。1つの例において、湾曲部品20は中心軸A0を有している。
湾曲部品20の外表面24はx−y平面において第1の曲率半径R1を有し、y−z平面において第2の曲率半径R2を有している。1つの例において、第1の曲率半径R1は比較的小さくてもよいが、第2の曲率半径R2は比較的大きい。1つの例において、第1の曲率半径R1≧0.5mmである一方、第2の曲率半径R2≧20mである。図1Dに示す湾曲部品20の例において、第2の曲率半径R2=∞であって図1Dは円筒である。例として示すように湾曲は外向きであってよく、又は内向きであってもよい。本明細書において、第1及び第2の曲率半径R1及びR2を用いて、内向き又は外向きのいずれかの湾曲を示す。
第2の曲率半径R2≠∞である例において、第2の曲率半径R2が第1の曲率半径R1と比較して十分大きく、モードスペクトル測定を行う予定の湾曲部品20の表面の一部が実質的に円筒形又は円錐形を成している。第2の曲率半径R2はある程度結合プリズム40(図2に関連して以下に紹介及び説明する)の大きさに左右される。1つの例において、第2の曲率半径R2は結合プリズム40のz方向の長さの何倍も大きい。
また、1つの例において第1の曲率半径R1は、円錐面のように一定である必要はない。湾曲部品20は、平面と湾曲部の組合せ等の複雑な表面を有することもできるが、説明を簡単にするために図には簡単な湾曲部品が示してある。
1つの例において、湾曲部品20がガラスから成り、イオン交換処理を受けて少なくとも1つの種類のイオンが外表面24を通して本体22中に交換されている。イオン交換処理によって、入射面に平行に偏光されるp偏光(横磁界、TM)光よりs偏光(横電界、TE)光に対し異なり得る屈折率プロファイルn(r)を有するイオン交換領域25(図1B及び1C)が規定される。
外表面24から直接内側に向けて(即ち、垂直な方向に)測定したイオン交換領域25の(半径方向)の深さを「層深さ」又はDOLを呼ぶ。DOLの例示的な範囲は5〜150マイクロメートルである。ほとんどの場合、DOLはサンプルの厚さの半分未満であり、これにはサンプルが中空管であってサンプルの厚さが管壁の厚さで示される場合も含まれる。
湾曲部品20にイオン交換領域25を形成するイオン交換処理によって湾曲部品20の外表面24及び近傍に複屈折Bを生じさせることができる。この複屈折Bを利用し、公知の技術を用いて、外表面24(及び近傍)の応力(例えば、圧縮応力CS)及び/又は応力プロファイルS(r)を計算することができる。応力プロファイルはS(r)=B(r)/SOCを介して複屈折Bに関連している。ここで、SOCは応力光学係数であり、B(r)=[nTM(r)−nTE(r)]である。
平坦な部品の測定に用いられる既存のプリズム結合に基づく光学装置では、湾曲部品20の光学モードのスペクトル(即ち、TE及びTMモードスペクトル)が適切に結像捕捉されない。湾曲部品20が従来の結合プリズムに接触すると、光角度スペクトル(即ち、TE、TMモードスペクトル)の像がぼやけ、歪む場合もある。このことが誘導光モードの有効な屈折率の自動識別を問題あるものにし、それがこのような測定に依存している1つ以上の特性(例えば、応力プロファイルS(r))を正確に決定することを難しくしている。
実験において、従来のプリズム結合システム(例えば、日本の東京に所在する折原製作所(株)製のFSM−6000LEプリズム結合装置)を用いて、第1の曲率半径R1=8.5mm、及びR2=∞の円筒形のガラスサンプルの応力を測定した。イオン交換領域25によって規定された表面近傍の導波路領域に誘導されたTEモード及びTMモードとの結合に対応する暗線は、測定した円筒の軸、及び円筒とプリズムの結合面の接触線が光の入出力に用いられるプリズム面に直交する平面内にあるようにサンプルを正確に位置合わせした場合に限り観察することができた。
更に、最適に位置合わせした場合でも、表面近傍に平面導波路を有する平坦なガラスサンプルの測定中に通常観察される、鮮明で高コントラストの線と比較すると、モードスペクトルの暗線は非常に幅が広く非常にぼやけていた。スペクトル線のコントラストが不十分であったため、捕捉したモードスペクトルの画像を市販のFSM−6000LEシステムのソフトウェアで自動処理し、応力パラメータを取得することができなかった。モードスペクトル画像のスペクトル線の位置を手動で検出することは、コントラストが不足していること、及び画像パターンがサンプルの位置合わせに強く依存していることから重大なエラーにつながる。
湾曲部品を測定するためのプリズム結合システム
図2は湾曲部品20等の湾曲部品のモードスペクトルの測定に適した、プリズム結合システム(「システム」)10の概略図である。システム10は以下に詳細に説明する結合プリズム組立体38を備えている。システム10は結合プリズム組立体38において交差する光軸A1及びA2を有している。
システム10は、以下に説明するように、軸A1に沿って順に波長λの測定光62を発光する光源60、別法として軸A2上の検出経路内に含めることができる任意の光フィルター66、任意の光散乱要素70、及び集束(測定)光(光ビーム)62Fを形成する任意の集束光学系80を備えている。従って、例示的なシステム10においては光源60と結合プリズム組立体38との間に光学素子は存在していない。光源60、任意のフィルター66、任意の光散乱要素70、及び任意の集束光学系80によって、集束測定光62Fを生成する例示的な光源システム82が構成される。
システム10は結合プリズム組立体38から軸A2に沿って順に、焦点面92及び焦点距離fを有し、以下に説明するように反射光62Rを受光する収集光学系90、TM偏光部100TM及びTE偏光部100TEを有するTM/TE偏光子100、及び光検出器システム130も備えている。軸A1は光源60と結合プリズム組立体38との間の光路OP1の中心を規定する。軸A2は結合プリズム組立体38と光検出器システム130との間の光路OP2の中心を規定する。収集光学系90、TM/TE偏光子100、及び光検出器システム130によって例示的な検出システム140が構成される。
検出システム140は収集光学系90のいずれかの側にアパチャー136も含むことができる。アパチャー136は光検出器システム130によって検出される「過結合」光の量を抑制するように構成することができる。ここで、「過結合光」は、以下に詳細に説明するように、結合プリズム40からのものであるが、実際のTM及びTEモードスペクトルを表わしていない反射光62Rである。
図3Aは光検出器システム130の拡大図である。1つの例において、光検出器システム130は検出器110(例えば、CCDカメラ)を含んでいるが、1100nmより長い波長に対しては、赤外アナログ検出器及びフレーム取り込み装置120(図2参照)に置き換えてもよい。以下に説明する別の実施の形態において、検出器100はCMOS検出器又は1つ若しくは2つの線形光検出器(即ち、一連の集積フォトダイオード又は光感知要素)を含んでいる。検出器110は1つ以上のマイクロボロメータ、マイクロボロメータカメラ、1つ以上のInGaAs系の光検出器又はInGaAsカメラも含むことができる。
検出器110は感光面112を有している。感光面112は収集光学システム90の焦点面92内に実質的に存在し軸A2に対し略垂直である。このことが結合プリズム組立体38を出射した反射光62Rの角度分布を検出器110のセンサ面において光の横方向空間分布に変換するのに役立つ。
感光面112をTE部、112TE、及びTM部、112TMに分割することにより、検出器110による反射光62RのTE及びTM偏光に関する(モードスペクトルを含む)角度反射スペクトルのデジタル画像の同時記録が可能になる。この同時記録によって、システムパラメータが時間と共にドリフトする可能性があることを考慮すると、TE及びTMの測定を異なる時間に実施したとすれば発生する可能性がある測定雑音源が排除される。
図3Bは、図3Aの例示的な光検出器システムによって捕捉されたTE及びTMモードスペクトルの概略図である。TE及びTMモードスペクトルは説明のために高コントラストを有しているものとして図示してある。
例示的な光源60には可視光又は赤外線レーザー、可視光又は赤外線発光ダイオード、可視光又は赤外線増幅自然放出(ASE)源、スーパールミネッセントダイオード(SLD)源、及び波長選択フィルター又は回折格子等の光スペクトルを狭くする適切な手段を備えた熱フィラメントランプや石英ランプ等の広帯域源がある。光源60によって生成される光62の例示的な動作波長λには、405nm、488nm、590nm、633nm等の可視波長及び(公称)820nm、940nm、1,060nm、1,550nm、1,613nm、1,900nm又は2,200nm等の赤外波長がある。
光源の波長λに感度を有する光検出器システム130と組み合わせ、場合により光スペクトルの適切な狭小化を含めると、400nm〜2200nmの主な波長域及び適切な明るさを有する上記列挙した種類のうちの任意の光源60を本明細書に開示した測定方法を可能にするように構成することができる。必要な明るさは、検出器の基本雑音及び外部の電気雑音や背景光を含む検出器110の感度及び雑音等価電力に依存する。
システム10はシステムの動作を制御するように構成することができるコントローラ150を備えている。また、コントローラ150は、捕捉されたTE及びTMモードスペクトル画像を表す(画像)信号SIを光検出器システム130から受信し処理するようにも構成されている。コントローラ150はプロセッサ152及びメモリユニット(「メモリ」)154を備えている。コントローラ150は、光源制御信号SLを介して光源60の起動及び動作を制御することができると共に、光検出器システム130(例えば、図示のフレーム取込み器120)から画像信号SIを受信し処理する。1つの実施の形態において、TE及びTMスペクトルを順次収集することができ、この場合TE/TM偏光子100は1つの偏光のみを通過させる1つの部分を含むことができる。この場合、偏光子を偏光方向に90°の差を有する2つの方向の間を回転させることができ、コントローラ150が偏光子の2つの方向間の切り替え、及び切り替えとTE及びTMの順次収集との同期を制御することができる。
1つの例において、コントローラ150はコンピュータを含み、フロッピー(登録商標)ディスク、CD−ROM、 DVD、MOD、フラッシュドライブ等のコンピュータ可読媒体又はネットワークやインターネット等のその他のデジタル源から命令及び/又はデータを読み取るための「フロッピー」ディスクドライブ、CD−ROMドライブ、DVDドライブ、光磁気ディスク(MOD)ドライブ(図示せず)等の読取装置又はイーサネット装置(図示せず)等のネットワーク接続装置を含むその他のデジタル装置を備えている。本明細書に開示した表面複屈折/応力測定を実行するための信号処理命令を含む、ファームウェアに記憶された命令及び/又はソフトウェア(図示せず)を実行するようにコントローラ150を構成することができる。1つの例において、「コントローラ」と「コンピュータ」という用語は互換可能である。
コントローラ150は本明細書に記載の機能を果たすようにプログラムすることができる。これにはシステム10の動作及び表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、複屈折等の被測定湾曲部品の少なくとも1つの特性評価を得るための前述の画像信号SIの信号処理が含まれる。
本明細書において「コンピュータ」という用語は、単に当技術分野においてコンピュータと呼ばれる集積回路のみならず、コンピュータ、プロセッサ、マイクロコントローラ、マイクロコンピュータ、プログラマブルロジックコントローラ、特定用途向け集積回路、及びその他のプログラム可能な回路を広く意味し、これ等の用語は本明細書において同義的に使用される。
ソフトウェアは前記信号処理を含む本明細書に開示したシステム10の動作性能を実行又は補助することができる。ソフトウェアは、コントローラ150、特にプロセッサ152及びメモリ154に動作可能にインストールすることができる。ソフトウェアの機能は、実行可能なコードを含むプログラミングに関与することができ、このような機能を利用して本明細書に開示した方法を実行することができる。このようなソフトウェアコードはプロセッサ152のような汎用コンピュータで実行することができる。
動作中、コード及び、場合により、関連するデータレコードが汎用コンピュータのプラットフォームのプロセッサ152及び/又はメモリ154に記憶される。しかし、他の時点では、ソフトウェアは他の場所に記憶及び/又は適切な汎用コンピュータシステムに移送してロードすることができる。本明細書において説明する実施の形態は少なくとも1つの機械可読媒体に担持された1つ以上のコードモジュールの形態を成す1つ以上のソフトウェア製品を含んでいる。このようなコードをコンピュータ150のプロセッサ152によって実行することにより、プラットフォームが基本的に本明細書において説明及び例示する方法でカタログ及び/又はソフトウェアダウンロード機能を実行することができる。
コンピュータ150及び/又はプロセッサ152は、各々コンピュータ可読媒体又は機械可読媒体(例えば、メモリ154)を用いることができる。このような媒体は、例えば、湾曲部品20の表面の複屈折/応力の量又は応力プロファイルS(x)を決定することを含む命令をプロセッサに提供して実行させることに関与する任意の媒体を意味する。メモリ154はコンピュータ可読媒体を構成する。このような媒体は不揮発性媒体、揮発性媒体、及び伝送媒体を含みこれに限定されない多くの形態を成すことができる。不揮発性媒体には、例えば、前述のサーバプラットフォームの1つとして動作する任意のコンピュータの任意の記憶装置等の光又は磁気ディスクが含まれる。揮発性媒体にはこのようなコンピュータプラットフォームの主記憶装置等の動的メモリが含まれる。物理的な伝送媒体には、コンピュータシステム内においてバスを構成する線を含む、同軸ケーブル、銅線、及び光ファイバーが含まれる。
従って、コンピュータ可読媒体の一般的な形態には、例えば、「フロッピー」ディスク、フレキシブルディスク、ハードディスク、磁気テープ、フラッシュドライブ、及びその他の磁気媒体、CD−ROM、DVD、及びその他の光媒体、パンチカード、紙テープ、及び穴パターンを有するその他の物理媒体等のあまり一般的ではない媒体、RAM、PROM、EPROM、FLASH−EPROM、及び他の任意のメモリチップ若しくはカートリッジ、データ若しくは命令を運ぶ搬送波、このような搬送波を運ぶケーブル若しくはリンク、又はコンピュータがプログラミングコード及び/若しくはデータを読み取ることができるその他の媒体が含まれる。コンピュータ可読媒体のこのような形態の多くは、1つ以上の命令の1つ以上のシーケンスをプロセッサ152に運んで実行させることに関与することができる。
システム10は日本の東京に所在する折原製作所(株)が製造販売しているFSM−6000LEプリズム結合装置等の前述の市販プリズム結合装置の改良型であってよい。
結合プリズム組立体
図4A及び4Bは結合プリズム組立体38の例示的な構成を示す側面図であって、例示的な湾曲部品20とインタフェースしている状態を示し、例示的な光制限部材200を備えている。図5A及び5Bは図4A及び4Bの例示的な光制限部材200の立面図及び正面図である。
結合プリズム組立体38は、入力面42、結合面44、及び出力面46を有する結合プリズム40を備えている。結合プリズム40は屈折率n>nを有している。結合プリズム40は、結合プリズムの結合面44と湾曲外表面24の部分とを光学的に接触させることによって、湾曲部品20とインタフェースしている。図4Cは、図4A及び図4Bの結合プリズム40のトップダウン図であって、細長の部品−プリズム間の結合インタフェース(「インタフェース」)50を規定する、部品の外表面24と結合面44との間の細長い光学的接触領域を示している。
図4Cは測定光ビーム62Fによって形成された照明領域62Lも示している。1つの例において、照明領域62L及びインタフェース50は細長であり、各々の長軸に沿って実質的に位置合わせされている。図4Dはy−z面及び面外光ビーム62F及び62Rを示す照明領域62Lの立面図である。面外角度をφで示す。照明領域62Lのx方向の幅はwである。例示的な照明領域62Lは一定の幅wを有しているように示されているが、wも照明領域の長さに応じて変化することができる。
1つの例において、屈折率がnであるインタフェース流体52の薄い層を用いて結合プリズム40と湾曲部品20との間の光学的結合が促進され、インタフェース50の一部を構成している。1つの例において、n≧n>nである。nの例示的な値は、n=1.64である。別の例において、インタフェース流体の屈折率n=n±0.02である。具体的に関連する1つの例において、プリズムの屈折率n=1.72とすることができる。
図4A及び4Bの結合プリズム組立体38は、前述の例示的な光制限部材200を備えている。光制限部材200は、入力面42(図4A)又は出力面46(図4B)のいずれかにおいて、結合プリズム40とインタフェースするように構成されている。例示的な光制限部材200は、不透明な材料から成るか、又は不透明なコーティングを有する切頭直角プリズムの形態を成している。光制限部材200は傾斜前面202、切断上面204、裏面206、底面208、及び平行側面210を有している。図示のように、光制限部材200は高さh1、底面208における基線長l1、切断上面204における上端長l2、及び幅wを有している。底面208と傾斜前面202とによって角度αが規定される。
光制限部材200は面202、204、及び206に開放された中央スロット220を備えている。中央スロット220は内面222、及び底面208の上方に存在する、底部224を有しておるため、高さh2<h1を有している。1つの例において、内面222が側面210に平行であって、均一な幅sを有するスロット220を画成している。別の例において、中央スロット220を長さ方向に沿って、例えば、直線状又は曲線状に変化する幅sを有するように構成することができる。スロット幅sを選択することによって種々の光制限の程度を規定することができる。1つの例において、スロット220の内面222が、鏡面及び拡散反射を抑制するために、例えば、黒塗装、酸化、又は陽極酸化等によって、光吸収コーティングを有している。
例示的な光制限部材200の寸法の例示的な値を以下の表1に示す。
Figure 2016535854
1つの例において、1つ又は2つの光制限部材200が結合プリズム40に相対して配置され、照明領域62Lが細長のインタフェース50に制限される共に、光ビーム62Fが制限され、62Fが狭い範囲のy−z平面外角度φ(図4D)を有している。1つの例において、照明領域62Lの大きさ及び角度φの範囲が中央スロット220の幅sによって規定される。1つの例において、1つ又は2つの光制限部材が結合プリズム40の入力面42及び/又は出力面46に直接隣接して配置される。別の例において、1つ又は2つの光制限部材は結合プリズム40の入力面42及び/又は出力面46から離隔して配置される。
光検出器システム130によって捕捉されたモードスペクトル画像(例えば、図3B参照)はTM波用のインタフェース50からの反射角度スペクトルを表わしている。画像上の明るい領域は高反射に対応し、暗線は測定光62Fの導波モード又は場合により明確な漏洩モードへの結合に対応している。広がった暗い領域は通常漏洩モードへの結合及び放射モードの基板への結合と関連している。システム10の結合プリズム組立体38に光制限部材200を用いて行った実験では、従来のFSM−6000LE装置に付属の非制限的なプリズム組立体の制限されていない有効照明及び5mm(0.197インチ)の収集幅を採用した場合と比較して、TE及びTMモードスペクトルのコントラスト及び鮮明度が数倍増加した。
例示的な湾曲部品20に対する実験には、第1の曲率半径R1=8.5mm及びDOLが23マイクロメートルのサンプルのモードスペクトル画像の捕捉が含まれていた。モードスペクトル画像は、標準の5mmの収集幅におけるモードスペクトルのコントラストと比較して、スロット幅s<3mmにおいてコントラストが目に見えて改善され、スロット幅s<1.5mmにおいては更に大きく改善された。これらの観察結果及び前述の光制限部材200の寸法、並びに結合プリズム40の寸法から、約3mm以下に絞った集束光ビーム62Fをプリズムの結合面44に照射したとき、モードスペクトルのコントラストを改善することができる。
湾曲部品の測定において、プリズム組立体に入射した光ビーム62Fのプリズム結合面44の平面への投影が、湾曲部品20の湾曲部とプリズムの結合面44との接触線に一致するように設計された照射ストリップの対称線に対し、約10°未満のサブテンド角度に制限されるときもコントラストの改善を観測することができる。
モードスペクトルのコントラストの改善は、1つにはサンプルと相互作用しない光を排除したことにある。この光の排除は、前述の実験においてスロット幅sを1.5mm〜3mmの範囲において既に十分である。更に小さいスロット幅sに対し、更に大きな改善があり得る。コントラストの改善は、もう1つにはインタフェース50を規定するサンプル−プリズム間の接触線に対し大きな角度を形成する、結合面44の平面に投影される光線を排除したことにある。
大きなスロット幅sに対し、これ等の望ましくない光線はアパチャー136(図2参照)又は通常システム10の検出システム140に配置される、その他のアパチャーによって阻止することができる。従って、スロットの寸法s<1.5mmに対し、光制限部材200による改善の角度成分は、例えば、プリズム組立体38を通過し、光検出器システム130に到達する、光線62Rの結合面44の平面に対する投影が約5°未満の角度φ(図4D参照)に制限されたとき更に顕著になる。場合によっては、サンプルの湾曲面と相互作用した後、ビーム62Rからの反射光線の投影角度φ’はビーム62Fからの対応する入射光線の投影角度φと多少異なり得る。
従って、結合プリズム40の近傍又は遠方に配置可能であり、φ≦±10°、特にはφ≦±5°となるように照明を制限する任意のスロット、スリットの組合せ、又はアパチャー(例えば、アパチャー136)の組合せが、測定されたモードスペクトルのコントラストの向上に寄与することができる。φの角度範囲をΔφと定義し、例えば20°又はより狭い例では10°に限定される。
照明領域62Lの幅W及び照明領域に関連する角度範囲Δφの両方をシステム10の少なくとも2つのアパチャーによって規定することができる。前述の例において、2つのアパチャーは、光制限部材200の前面202及び裏面206のスロット220の入力端部及び出力端部である。別の例において、アパチャーの1つは不要な寄生照明及び反射光62Rが光検出器システム130に到達したとき、暗線が観測されるべき位置(例えば、ある角度)の光強度を増大させるように集束光62Fの一部が湾曲部品に対し共鳴的に結合非結合する「過結合」の影響によるコントラストの低下を抑制する、アパチャー136等の検出システム140の一部であってよい。
従って、システム10における1つのアパチャーは光制限部材200のスロット220であってよく、この場合、別のアパチャーは照明領域62Lの幅を規定するために付加される簡単なスリット又は制限された開口によって規定される。標準のプリズム結合システムにおけるこのようなアパチャーは、湾曲部品の測定において、モードスペクトルのコントラストの向上に効果的に役立たせるためには通常大き過ぎる。1つの例において、曲率半径R1<10mmに対し、光制限部材200の前端面202及び裏端面206のスロット220によって2つのアパチャーが規定される。
システム10において湾曲部品20を測定するとき、反射光62Rがプリズムの全結合面から光検出器システム130に向けて送られる。その信号のうち、反射光62Rの僅かな部分が細長のインタフェース50から反射される。実質的に結合プリズム40から分離された湾曲部品20の領域及び結合プリズムから離れる方向に次第に湾曲する湾曲部品20の領域と相互作用する測定光62Fは拡散するか又は光検出器システム130の視野の外に偏光される。このことが、従来のプリズム結合測定システムを用いて湾曲部品20を測定したときの、モードスペクトルにおける劇的なコントラストの低下の1つの原因として特定されている。
結合プリズム組立体の更なる実施例
図6Aは結合プリズム40の入力面42及び出力面46が、それぞれ光が通過できるスリット47及び48を規定する不透明な部42a、42b及び46a、46bを備えている例示的な結合プリズム組立体38の立面図である。1つの例において、不透明な部42a、42b及び46a、46bは入力面42及び出力面46の不透明部分の上に形成された吸収層によって規定される。スリット47及び48は従来のマスキング技術を用いて画成することができる。別の例において、不透明な部分42a、42b及び46a、46bは入力面42及び出力面46に直接隣接(例えば、密接に接触又は僅かに離隔)して配置された別々のシート又は薄膜であってよい。スリット47及び48は測定光62の幅を規定するという光制限部材200の中央スロット220と同じ目的を果たすので、用語を統一する上において「スロット」と呼ぶこともできる。
図6Aの実施の形態において、スロットは、1つは入力プリズム面上又はその近傍及び1つは出力プリズム面上又はその近傍の2つのスリット47及び48によって構成される。図6Aは結合プリズム40が、測定波長において透明な中央領域48、及びその両側の測定波長において吸収が強い領域の3つの領域を含む別の実施の形態も示している。このような結合プリズム40は、2つの外側のガラスに鉄又はその他の吸収イオンがドープされ、場合により、測定波長における吸収を増強するために還元環境下においてアニールされた同一又は同様のガラスから成る3つのプリズムを互いに融合することによって得ることができる。
図6Bは図6Aと同様の図であって、結合面44が1つの例において内側に湾曲し約R1(即ち、〜R1)の曲率半径を有する円筒状に湾曲した部分44Cを備えた例示的な結合プリズム40を示す図である。この特定の結合プリズム40は、1つ以上の光制限部材200又は不透明部分42a、42b及び/又は46a、46b等の遮光機能と共に結合プリズム組立体38に有利に用いることができる。1つの例において、湾曲部分44Cの曲率半径が約0.5R1〜1.5R1である。1つの例において、特に部品20の湾曲部分の半径がR1より小さい場合、n>nのインタフェース流体52が用いられる。
図6Cは、図6A及び6Bの結合プリズムの特徴を組み合わせた例示的な結合プリズム40を示す図であり、従って得られた結合プリズムは円筒状に湾曲した部分44C及び不透明部分42a、42b及び46a、46bの両方を有している。1つの例において、円筒状に湾曲した部分44Cはスリット48の幅と略同じ幅を有している。別の例において、円筒状に湾曲した部分44Cはスリット48より広い。
図7Aは、2つのブロック250に挟まれた細い結合プリズム40を含む結合プリズム組立体38の別の例示的な実施の形態の立面図である。ブロック250は不透明であり、不透明な材料の1つのブロックの一部又は2つの別々のブロックであってよい。従って、ブロック250は内部に細い結合プリズム40が存在する細いスロット252を画成する。1つの例において、細い結合プリズム40に対向するブロックの250の面が測定波長において強い光吸収を有するか、又は測定波長において強い光吸収を有する接着剤又はその他の材料を用いて、結合プリズムとインタフェースさせることができる。
例示的な細い結合プリズム40は約3mm以下の幅を有し、1つの例において約2mm以下の幅を有している。細い結合プリズム40の幅の下限は、1つの例において約0.2mm未満の幅において生じる、有害な散乱及び回折効果によって規定される。1つの例において、ブロック250は結合プリズム40を取り付けてブロックに対して位置合わせする取付け位置合わせ機能254を備えることができる。1つの例において、内部に結合プリズム40が存在する細いスロット252によって、モードスペクトルの良好なコントラストに必要な光制限及びシステム10の他の部分との適切な位置合わせが保証される。
図7Bは結合プリズム40の結合面44が湾曲を成し、特に略円筒凹状の湾曲を有していることを除き、図7Aと同様である。1つの例において、湾曲を成す結合面44の曲率半径が、測定される湾曲部品20の第1の曲率半径R1と同様であり、1つの例において、僅かに大きくてもよい。凹状の円筒結合面を用いることにより、測定のための湾曲部品20の自己位置合わせが可能になり、測定時間が著しく短縮される。
図7Cは図7Bと同様であり、結合プリズム40が平坦なベース44Fを有する薄いプリズム部分40T及び平坦なベース44Fにインタフェースすると共に湾曲結合面44を画成する交換可能な平凹円柱レンズ部(「円柱レンズ」)44Lを備えた例示的な結合プリズム組立体38を示している。1つの例において、円柱レンズ44の少なくとも一部がブロック250に保持される。1つの例において、薄いプリズム部分40Tが接着剤、屈折率整合油、若しくは真空を介して、又は光学的接触によってブロック250に保持される。
位置合わせ固定具
湾曲部品20の応力をうまく測定するためにはモードスペクトルが十分なコントラストを有している必要があり、そのためには結合プリズム40を湾曲部品に対して正確に位置合わせする必要がある。特に、結合プリズム40が光制限部材200の中央スロット220(図5A)、不透明部分42a、42b及び46a、46bによって画成されるスリット47及び48(図6A)、又はブロック250及び細い結合プリズム40によって画成される細いスロット252(図7A)によって規定される照明領域62Lと一致するように湾曲部品20の外表面24に接触している必要がある。僅かな角度のずれ(<1°)がスペクトル線(フリンジ)の傾斜につながり、それが測定誤差になる。(僅か数度の)より大きな角度のずれはフリンジのぼやけや消失にもつながる。
湾曲部品20の位置合わせを備えていない結合プリズム組立体38については、位置合わせ固定具を用いてそのような位置合わせを行うことができ、湾曲部品の微細な位置決め及び角度調整を行って測定されるモードスペクトルのコントラストを最適化することができる。
図8は結合プリズム40に対し、湾曲部品20を保持及び位置合わせするために使用される、例示的な位置合わせ固定具300のトップダウン図である。位置合わせ固定具300は結合プリズム組立体38とインタフェースするように構成されている。位置合わせ固定具300は、対向する垂直内側壁314及び対向する水平内側壁316によって画成された内部312を有する矩形の外枠310を備えている。位置合わせ固定具300は枠の内部312に配置され、長さに沿って又は垂直内側壁314内(例えばトラック内、図示せず)をスライドする端部322を有する離隔平行配置された水平案内部材320を備えている。水平案内部材320は対向する内表面324を有している。
位置合わせ固定具300は垂直に配置された支柱330も備えている。支柱330は下部の案内部材320に固定され、上部の支持部材を貫通し、後者が支柱に沿って上下に平行移動できるようになっている。各々の支持柱330は、枠310の上部垂直内側壁314上のそれぞれの弾性部材340とインタフェースする端部332を有している。水平案内部材320は、湾曲部品20を損傷することなく湾曲部品の外表面24に係合させるのに使用される弾性部材326を備えている。弾性部材326に保持された例示的な円筒状の湾曲部品(破線)を示す。
位置合わせ固定具300は、外枠310のネジ部を通して下部の支持部材320に係合する位置合わせネジ350も備えている。位置合わせネジ350を用いて下部の支持部材320を上部の支持部材に付勢することにより、湾曲部品20を弾性部材326の間に押圧挟持することができる。弾性部材340は、上部支持部材が上方に移動するのを妨げる力緩衝機能を果たす一方、収縮することによって下部支持部材320を上方に移動させることができるため、ネジ350によって決定される方向に沿って部品の位置合わせが維持される。位置合わせ固定具300を結合プリズム組立体38とインタフェースさせたとき、位置合わせネジ350を用いて、枠内部312において、従って、結合プリズム40に対し、湾曲部品20の方向を選択することもできる。
湾曲部品20の回転と横方向のシフトとの間の結合を抑制するために、結合プリズム40及び湾曲部品が、他方より一方の位置合わせネジ350にかなり近くなるように位置合わせ固定具300を配置することができる。このように、近い方の位置合わせネジ350によって、主にプリズム上の照明ストリップに対する湾曲部品20の横移動が可能になる一方、他のネジによって、主に同一の照明ストリップに対する回転が可能になる。湾曲部品20の最適な位置決め及び位置合わせは比較的早く、例えば、両方の位置合わせネジ350を用いて1〜3回繰り返すことによって完了する。位置合わせ固定具300を使用する効果は、特に多数の同一又は同様の形状を順次測定する場合、手動位置合わせと比較して測定時間が短縮されることである。このような位置合わせ固定具を使用した場合、最初の部品を注意深く位置合わせするだけで、後続のすべての部品の迅速な位置合わせが保証される。
モードスペクトル拡大効果
結合プリズム組立体38に完全に位置合わせされた理想的な円筒形状を成す湾曲部品20を測定すると、面外角度φを有する光線を含む光ビーム62Fが曲がった導波路に結合することによるTE及びTMモードスペクトルのスペクトル線の微小な広がりが期待される。曲がった導波路の固有モードの実行屈折率は同一の断面を有する直線状の導波路と比較して僅かにシフトする。
矩形導波路の実行屈折率シフトに関する下記式を用いて、この効果によって起こり得る最高の拡大を推定することができる。
Figure 2016535854
ここで、nはピーク屈折率、2Tは矩形導波路の厚さ、及びρは斜め入射光線から見た曲率半径である。湾曲部品20に関し、略三角形の屈折率プロファイルを説明するために厚さ2Tを0.5・DOLで置換することができる。インタフェース50に入射する光線に関し、入射面ρ=sinφであり、ここでR1は円筒の半径である。0.5mmのスロットに関し、φは、ほとんどの光は−5〜+5度の範囲であるが、約−10〜+10度(最大角度φをφmaxで示す)の範囲であり、従ってρはそれに応じてR1=8.5mmに対し、1.1mを超える値をとる。従って、拡大効果は次のようになる。
Figure 2016535854
この線の拡大レベルは、測定における広がりが、光学的分解能又はモードが漏洩しやすい性質のいずれかによって制限される、FSM−6000LE測定システムで観測される最も細い線に匹敵する。このことが、本明細書に開示したシステム及び方法を用いて1mm程度の小さな第1の半径R1を有する湾曲部品20を測定できる理由を説明している。この場合、拡大は約2×10−4であろうと思われ、最小モード間隔に近づくことはほとんどない。この拡大は小さな半径R1(例えば、R1<2mm)及び大きなDOLを有する湾曲部品20にとってのみ重要であり、狭いスロットを使用することによって軽減される。
前述のモードスペクトル拡大の推定を翻して、拡大効果を望ましい値に制限するために必要なスロット幅の決定に用いることができる。許容される拡大は典型的なモード間隔Δnmsの約1/3未満であり、実用的な関心の多くの例において、約5×10−4RIUである。次に、ラジアンで表したスロットに許容される角度範囲Δφは次のようになる。
Figure 2016535854
多くの場合、典型的なモード間隔はDOLに反比例する。約1.5×10−2RIUの最大屈折率増分を有する例示的なイオン交換領域25において、約2μmのDOLの各増分によってスペクトルに余分なモードが追加されため、典型的なモード間隔は次のようになる。
Figure 2016535854
従って、光制限器に許容される角度範囲Δφは下記以下でなければならない。
Figure 2016535854
1つの例において、R1=10mm、DOL=50μm、及びn≒1.52に対し、Δφは≒0.54ラジアン≒31°であり、従ってφは約15°より小さくなければならない。これが、線の拡大によって、線の解像を不可能にすると思われる実質的な線の融合につながる限界であると思われる。これより小さい線の拡大であっても、線のコントラストの低下につながり、それがモード自動識別における強度に基づく識別に対し重大な困難をもたらす。
例えば、
Figure 2016535854
等のより厳しい基準を適用して、このようなコントラストの低下を十分に制限することができる。この場合、光制限器に許容される角度範囲Δφは下記以下でなければはならない。
Figure 2016535854
また、最大屈折率増分が約0.015RIU及びDOLが50μmの典型的なイオン交換ガラスに対し、φは約10°以下でなければならない。最後に、曲げ導波路モードへの結合による線の拡大の影響を排除するためには、1つの例において、線の拡大が約2×10−5RIU未満でなければならず、この場合Δφは以下のようになる。
Figure 2016535854
円錐面等の半径R1の値が範囲を有する湾曲部品20について、本開示の関係に基づいて光制限部材200のパラメータを控え目に見積もる場合、当該範囲の最低の半径R1の値を用いる必要がある。一方、あまり控え目でない見積もりでは、R1として当該範囲の下半分の代表的な任意の値によって適切な性能を得ることができる。
目に見えるスペクトル線の拡大を防止するためにR2を少なくとも100m及び顕著な測定劣化を避けるために少なくとも20mとし、許可された方向のR1を1mmと小さくした湾曲部材20を測定した。z方向のプリズムの長さ(図1A参照)を短くして(例えば、12mmから2と4mmとの間)望ましくない膨らみによるスペクトル線の角度広がりを制限した場合、R2の小さい方の値を許容できる。
1つの例において、照明領域62Lの幅wが照明領域の長さ(即ち、z方向)の関数として変化することができる。前述のように、1つの例において、依然としてモードスペクトルのコントラストの実質的な改善を可能にしながら、光制限部材200のスロット幅sを前面202と裏面206との間で変化させることができる。特に、前面202と裏面206との間で、幅sが約(2/3)・sと約(1.5)・sとの間で変化するスロット220は、幅が一定のスロットと同様のコントラストの改善をもたらすことができる。
添付した特許請求の範囲の精神及び範囲を逸脱せずに、本明細書に記載の好ましい実施の形態に対し様々な改良が可能であることは当業者にとって明らかであろう。従って、本開示は、添付の特許請求の範囲及びその均等物の範囲に属することを条件に、かかる改良及び変形を含むものである。
10 プリズム結合システム
20 湾曲部品
24 外表面
25 イオン交換領域
38 結合プリズム組立体
40 結合プリズム
44 結合面
50 インタフェース
60 光源
62L 照明領域
80 集束光学系
90 収集光学系
110 検出器
112 感光面
130 光検出器システム
150 コントローラ
200 光制限部材
220 スロット
300 位置合わせ固定具
310 外枠
320 案内部材(支持部材)
326 弾性部材
330 支柱
340 弾性部材
350 位置合わせネジ

Claims (10)

  1. 湾曲外表面を有する湾曲部品の少なくとも1つの特性を決定する方法であって、
    結合プリズムの結合面を前記湾曲外表面にインタフェースさせて結合インタフェースを規定するステップと、
    前記結合プリズムを通して、3mm以下の幅を有する測定光を前記インタフェースに誘導するステップと、
    前記インタフェースから反射されたTE及びTMモードスペクトルをデジタル的に捕捉するステップと、
    前記TE及びTMモードスペクトルを処理し、前記湾曲部品の前記少なくとも1つの特性を決定するステップと、
    を有して成ることを特徴とする方法。
  2. 前記少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、及び複屈折から成る特性の群から選択されることを特徴とする請求項1記載の方法。
  3. 前記結合プリズムが入力及び出力面を有し、
    前記入力及び出力面の少なくとも一方に対し動作可能に配置された、少なくとも1つの光制限部材を通して前記測定光を誘導するステップであって、該少なくとも1つの光制限部材が、一定又は変化する幅のいずれかを有するスロット備え、該スロットが前記測定光の前記幅を規定するものであるステップを更に有して成ることを特徴とする請求項1又は2記載の方法。
  4. 前記結合プリズムが入力及び出力面を有し、
    前記入力及び出力面の近傍にそれぞれ配置された、第1及び第2の光制限部材を通して前記測定光を誘導するステップであって、該第1及び第2の光制限部材が、それぞれ一定又は変化する幅のいずれかを有する第1及び第2のスロットを有し、該第1及び第2のスロットが前記測定光の前記幅を規定するものであるステップを更に有して成ることを特徴とする請求項1〜3いずれか1項記載の方法。
  5. 前記湾曲部品が円筒状であり、第1の曲率半径R1≧0.5mmを有して成ることを特徴とする請求項1〜4いずれか1項記載の方法。
  6. 前記結合プリズムが、3mm以下の幅を有し、不透明なブロックによって動作可能に支持されて成ることを特徴とする請求項1〜5いずれか1項記載の方法。
  7. 前記湾曲部品を調整可能な位置合わせ固定具に保持し、該湾曲部品を前記結合プリズムに位置合わせするステップを有して成ることを特徴とする請求項1〜6いずれか1項記載の方法。
  8. 湾曲外表面を有する湾曲部品の少なくとも1つの特性を決定するためのプリズム結合システムであって、
    測定光を生成する光源システムと、
    入力及び出力面、並びに前記湾曲外表面とインタフェースして結合インタフェースを規定する結合面を備えた結合プリズムを有する結合プリズム組立体であって、前記測定光の幅を3mm以下に規定する手段を含んで成る組立体と、
    前記インタフェースから反射され、前記出力面から出射した測定光を受光し、TE及びTMモードスペクトルをデジタル的に捕捉するように配置された検出器システムと、
    前記TE及びTMモードスペクトルを処理し、前記湾曲部品の前記少なくとも1つの特性を決定するコントローラと、
    を備えたことを特徴とするシステム。
  9. 前記少なくとも1つの特性が、表面応力、応力プロファイル、圧縮応力、層深さ、屈折率プロファイル、及び複屈折から成る特性の群から選択されることを特徴とする請求項8記載のシステム。
  10. 前記結合プリズム組立体が、前記入力及び出力面の少なくとも一方に対し動作可能に配置された少なくとも1つの光制限部材を含み、各光制限部材が前記測定光の前記幅を規定するスロットを有して成ることを特徴とする請求項8又は9記載のシステム。
JP2016537839A 2013-08-29 2014-08-28 プリズム結合システム及び湾曲部品を特徴付ける方法 Active JP6549581B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/013,481 US10156488B2 (en) 2013-08-29 2013-08-29 Prism-coupling systems and methods for characterizing curved parts
US14/013,481 2013-08-29
PCT/US2014/053069 WO2015031567A1 (en) 2013-08-29 2014-08-28 Prism-coupling systems and methods for characterizing curved parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019119697A Division JP6875459B2 (ja) 2013-08-29 2019-06-27 プリズム結合システム及び湾曲部品を特徴付ける方法

Publications (2)

Publication Number Publication Date
JP2016535854A true JP2016535854A (ja) 2016-11-17
JP6549581B2 JP6549581B2 (ja) 2019-07-24

Family

ID=51564800

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016537839A Active JP6549581B2 (ja) 2013-08-29 2014-08-28 プリズム結合システム及び湾曲部品を特徴付ける方法
JP2019119697A Active JP6875459B2 (ja) 2013-08-29 2019-06-27 プリズム結合システム及び湾曲部品を特徴付ける方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019119697A Active JP6875459B2 (ja) 2013-08-29 2019-06-27 プリズム結合システム及び湾曲部品を特徴付ける方法

Country Status (7)

Country Link
US (2) US10156488B2 (ja)
EP (1) EP3039408A1 (ja)
JP (2) JP6549581B2 (ja)
KR (2) KR102272826B1 (ja)
CN (2) CN110646378B (ja)
TW (2) TWI658261B (ja)
WO (1) WO2015031567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028075A (ja) * 2017-07-28 2019-02-21 コーニング インコーポレイテッド イオン交換で化学的に強化されたリチウム含有ガラスにおけるニー応力の測定を改善する方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
WO2015164243A1 (en) 2014-04-23 2015-10-29 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
US9919958B2 (en) 2014-07-17 2018-03-20 Corning Incorporated Glass sheet and system and method for making glass sheet
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
JP6694448B2 (ja) * 2015-06-04 2020-05-13 コーニング インコーポレイテッド イオン交換により化学強化されたリチウム含有ガラスを特徴付ける方法
TWI762083B (zh) 2015-09-17 2022-04-21 美商康寧公司 特性量測經離子交換之含鋰化學強化玻璃的方法
CN105241593A (zh) * 2015-10-30 2016-01-13 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
US11060930B2 (en) * 2015-09-30 2021-07-13 Suzhou Ptc Optical Instrument Co., Ltd Glass surface stress meter and multiple-tempered glass surface stress meter
US10859451B2 (en) * 2018-03-02 2020-12-08 Corning Incorporated Prism coupling methods of characterizing stress in glass-based ion-exchanged articles having problematic refractive index profiles
JP7271567B2 (ja) * 2018-04-02 2023-05-11 コーニング インコーポレイテッド 幅広い計量プロセスウインドウを有するプリズム結合応力計
US10801833B2 (en) * 2018-04-09 2020-10-13 The Boeing Company Strain sensitive surfaces for aircraft structural analysis and health monitoring
US10871400B2 (en) * 2018-08-27 2020-12-22 Corning Incorporated Retardation profile for stress characterization of tubing
WO2020198016A1 (en) * 2019-03-22 2020-10-01 Corning Incorporated Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
TW202111292A (zh) * 2019-07-31 2021-03-16 美商康寧公司 用於測量基於玻璃的樣品的基於應力的特徵的系統和方法
CN114729878A (zh) * 2019-11-01 2022-07-08 康宁股份有限公司 具有改善的强度过渡位置检测及倾斜补偿的棱镜耦合系统及方法
US11573078B2 (en) * 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile
TWI719822B (zh) * 2020-02-04 2021-02-21 和碩聯合科技股份有限公司 量測裝置與量測方法
WO2023097076A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
CN115265868B (zh) * 2022-09-29 2022-12-16 江苏延陵玻璃有限公司 一种异质真空玻璃表面应力检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136886A (en) * 1977-05-04 1978-11-29 Toshiba Corp Surface stress measuring apparatus of chemically tempered glass
US4207000A (en) * 1978-02-27 1980-06-10 Rca Corporation Waveguide method for determining stress at the convex surface of a body
US4655589A (en) * 1984-02-13 1987-04-07 Societa Italiana Vetro-Siv-S.P.A. Apparatus for automatic measurement of stress in a transparent body by means of scattered light
JPS6332338A (ja) * 1986-07-26 1988-02-12 Hitachi Ltd 光学特性測定装置
JPH11281501A (ja) * 1998-03-30 1999-10-15 Orihara Seisakusho:Kk 表面応力測定装置
WO2012128184A1 (ja) * 2011-03-18 2012-09-27 旭硝子株式会社 ガラスの表面応力測定装置およびガラスの表面応力測定方法
US9140543B1 (en) * 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL270942A (ja) 1960-11-02
US3433611A (en) 1965-09-09 1969-03-18 Ppg Industries Inc Strengthening glass by multiple alkali ion exchange
US3873209A (en) 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
US3883221A (en) 1974-02-01 1975-05-13 Bell Telephone Labor Inc Portable prism-grating coupler
JPS5937452B2 (ja) 1978-08-29 1984-09-10 株式会社東芝 風冷強化ガラスの表面応力測定装置
DE3071243D1 (en) 1979-07-06 1986-01-02 Toshiba Kk Surface stress measurement
JPS57157130A (en) 1981-03-25 1982-09-28 Toshiba Corp Measuring method for surface stress of curved surface reinforced glass
JPS5821213A (ja) 1981-07-31 1983-02-08 Canon Inc 光結合装置
SE462408B (sv) 1988-11-10 1990-06-18 Pharmacia Ab Optiskt biosensorsystem utnyttjande ytplasmonresonans foer detektering av en specific biomolekyl, saett att kalibrera sensoranordningen samt saett att korrigera foer baslinjedrift i systemet
US5119452A (en) * 1989-06-13 1992-06-02 Ricoh Company, Ltd. High efficiency prism coupling device and method for producing the same
JP2724025B2 (ja) * 1990-05-18 1998-03-09 株式会社日立製作所 薄膜光学定数の測定方法
JPH04310836A (ja) 1991-04-10 1992-11-02 Olympus Optical Co Ltd 屈折率分布測定方法
US5446534A (en) 1993-03-05 1995-08-29 Optical Solutions, Inc. Broad band waveguide spectrometer
EP0617273B1 (de) * 1993-03-26 2002-10-16 F. Hoffmann-La Roche Ag Optisches Verfahren und Vorrichtung zur Analyse von Substanzen an Sensoroberflächen
JPH06332338A (ja) 1993-05-18 1994-12-02 Canon Inc 定着装置
US5953125A (en) * 1995-09-01 1999-09-14 Zygo Corporation Optical gap measuring apparatus and method
US5859814A (en) * 1996-10-18 1999-01-12 The Board Of Trustees Of The Leland Stanford Junior University Magneto-optic recording system and method
US6459492B1 (en) * 1997-03-14 2002-10-01 Agilent Technologies, Inc. Non-contact position sensor
WO2000047529A1 (en) * 1999-02-12 2000-08-17 The Pennsylvania State University Strengthening, crack arrest and multiple cracking in brittle materials using residual stresses
JP3668120B2 (ja) 2000-10-19 2005-07-06 独立行政法人科学技術振興機構 試料油特性測定装置および試料油特性測定方法
US6731388B1 (en) 2001-08-31 2004-05-04 The University Of Toledo Method of measuring surface plasmon resonance using interference structure of reflected beam profile
CN1173166C (zh) * 2002-08-22 2004-10-27 上海交通大学 双面金属波导测量方法及其装置
US6970256B1 (en) * 2003-04-16 2005-11-29 Jackson John H Apparatus and methods for measuring thickness and refractive index
US7193719B2 (en) 2004-05-17 2007-03-20 Virginia Tech Intellectual Properties, Inc. Device and method for tuning an SPR device
CN1280655C (zh) * 2004-05-27 2006-10-18 上海交通大学 采用棱镜/波导耦合单元实现光谱整形的装置及整形方法
JP5148061B2 (ja) * 2005-08-24 2013-02-20 出光興産株式会社 照明装置用ハウジング構造体、およびその製造方法、該構造体を用いたバックライト装置
WO2009148128A1 (ja) * 2008-06-05 2009-12-10 株式会社クラレ プラスチックシートおよび電飾看板
EP2321230A4 (en) 2008-07-29 2012-10-10 Corning Inc TWO-STAGE ION EXCHANGE FOR GLASS CHEMICAL REINFORCEMENT
EP2361388B1 (en) * 2008-11-24 2013-09-25 Corning Inc. Methods for characterizing molecules
CN101419344A (zh) * 2008-11-27 2009-04-29 上海交通大学 基于古斯汉欣位移效应的光束平移电控制装置及方法
DE102009016234B4 (de) 2009-04-03 2014-03-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlformer
US9420241B2 (en) * 2009-08-11 2016-08-16 Koninklijke Philips N.V. Multi-spectral imaging
EP2491443B1 (en) * 2009-10-24 2021-03-24 3M Innovative Properties Company Immersed reflective polarizer with high off-axis reflectivity
US8163561B2 (en) * 2009-11-30 2012-04-24 Corning Incorporated Method for depth resolved sensing of biological entities based on surface plasmon resonance sensors
DE102010001336B3 (de) * 2010-01-28 2011-07-28 Carl Zeiss SMT GmbH, 73447 Anordnung und Verfahren zur Charakterisierung der Polarisationseigenschaften eines optischen Systems
EP2385339A1 (en) * 2010-05-05 2011-11-09 Leica Geosystems AG Surface sensing device with optical monitoring system
DE112011102315T5 (de) * 2010-07-09 2013-06-20 Aldan Asanovich Sapargaliyev Verfahren der Massenspektrometrie und Einrichtung für seine Ausführung
JP5531944B2 (ja) 2010-12-22 2014-06-25 マツダ株式会社 ターボ過給機付きディーゼルエンジン
US8602592B2 (en) * 2011-04-07 2013-12-10 Coherent, Inc. Diode-laser illuminator with interchangeable modules for changing irradiance and beam dimensions
CN102759332B (zh) * 2011-04-27 2016-09-28 上海微电子装备有限公司 散射计量装置及其计量方法
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
US9109881B2 (en) 2013-06-17 2015-08-18 Corning Incorporated Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136886A (en) * 1977-05-04 1978-11-29 Toshiba Corp Surface stress measuring apparatus of chemically tempered glass
US4207000A (en) * 1978-02-27 1980-06-10 Rca Corporation Waveguide method for determining stress at the convex surface of a body
US4655589A (en) * 1984-02-13 1987-04-07 Societa Italiana Vetro-Siv-S.P.A. Apparatus for automatic measurement of stress in a transparent body by means of scattered light
JPS6332338A (ja) * 1986-07-26 1988-02-12 Hitachi Ltd 光学特性測定装置
JPH11281501A (ja) * 1998-03-30 1999-10-15 Orihara Seisakusho:Kk 表面応力測定装置
WO2012128184A1 (ja) * 2011-03-18 2012-09-27 旭硝子株式会社 ガラスの表面応力測定装置およびガラスの表面応力測定方法
US9140543B1 (en) * 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028075A (ja) * 2017-07-28 2019-02-21 コーニング インコーポレイテッド イオン交換で化学的に強化されたリチウム含有ガラスにおけるニー応力の測定を改善する方法
KR20200031164A (ko) * 2017-07-28 2020-03-23 코닝 인코포레이티드 리튬을 함유한 이온-교환 화학적 강화 유리에서 변곡 응력의 측정을 개선하는 방법
JP2021012205A (ja) * 2017-07-28 2021-02-04 コーニング インコーポレイテッド イオン交換で化学的に強化されたリチウム含有ガラスにおけるニー応力の測定を改善する方法
JP7116132B2 (ja) 2017-07-28 2022-08-09 コーニング インコーポレイテッド イオン交換で化学的に強化されたリチウム含有ガラスにおけるニー応力の測定を改善する方法
US11561139B2 (en) 2017-07-28 2023-01-24 Corning Incorporated Methods of improving the measurement of knee stress in ion-exchanged chemically strengthened glasses containing lithium
KR102582100B1 (ko) 2017-07-28 2023-09-22 코닝 인코포레이티드 리튬을 함유한 이온-교환 화학적 강화 유리에서 변곡 응력의 측정을 개선하는 방법
KR20230141887A (ko) * 2017-07-28 2023-10-10 코닝 인코포레이티드 리튬을 함유한 이온-교환 화학적 강화 유리에서 변곡 응력의 측정을 개선하는 방법
KR102619527B1 (ko) 2017-07-28 2023-12-29 코닝 인코포레이티드 리튬을 함유한 이온-교환 화학적 강화 유리에서 변곡 응력의 측정을 개선하는 방법

Also Published As

Publication number Publication date
TWI658261B (zh) 2019-05-01
KR20210083393A (ko) 2021-07-06
WO2015031567A1 (en) 2015-03-05
KR102272826B1 (ko) 2021-07-06
EP3039408A1 (en) 2016-07-06
TW201514457A (zh) 2015-04-16
US20150066393A1 (en) 2015-03-05
TWI746944B (zh) 2021-11-21
KR102318409B1 (ko) 2021-10-28
US10495530B2 (en) 2019-12-03
JP6875459B2 (ja) 2021-05-26
KR20160048926A (ko) 2016-05-04
CN110646378B (zh) 2023-02-28
US10156488B2 (en) 2018-12-18
JP6549581B2 (ja) 2019-07-24
CN105705936A (zh) 2016-06-22
CN105705936B (zh) 2019-11-05
CN110646378A (zh) 2020-01-03
JP2019194613A (ja) 2019-11-07
TW201937141A (zh) 2019-09-16
US20190025141A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6875459B2 (ja) プリズム結合システム及び湾曲部品を特徴付ける方法
JP7072615B2 (ja) 導波路の特性を評価する方法
US9442028B2 (en) Prism coupling methods with improved mode spectrum contrast for double ion-exchanged glass
US8957374B2 (en) Systems and methods for measuring birefringence in glass and glass-ceramics
US9696207B2 (en) Method of enhancing contrast in prism coupling measurements of stress
CA2649595A1 (en) Accessory for attenuated total internal reflectance (atr) spectroscopy
JP4696959B2 (ja) 光学検出装置
US20230168186A1 (en) Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
US20220404220A1 (en) Prism coupling systems and methods employing light-blocking members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250