TWI719822B - 量測裝置與量測方法 - Google Patents

量測裝置與量測方法 Download PDF

Info

Publication number
TWI719822B
TWI719822B TW109103422A TW109103422A TWI719822B TW I719822 B TWI719822 B TW I719822B TW 109103422 A TW109103422 A TW 109103422A TW 109103422 A TW109103422 A TW 109103422A TW I719822 B TWI719822 B TW I719822B
Authority
TW
Taiwan
Prior art keywords
rod
camera
carrier
guide rail
slidably connected
Prior art date
Application number
TW109103422A
Other languages
English (en)
Other versions
TW202130970A (zh
Inventor
林雨德
楊庭豪
劉祐銘
林家緯
Original Assignee
和碩聯合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和碩聯合科技股份有限公司 filed Critical 和碩聯合科技股份有限公司
Priority to TW109103422A priority Critical patent/TWI719822B/zh
Application granted granted Critical
Publication of TWI719822B publication Critical patent/TWI719822B/zh
Publication of TW202130970A publication Critical patent/TW202130970A/zh

Links

Images

Abstract

一種量測裝置,用以量測工件。量測裝置包括載架、吊掛機構、三稜鏡以及相機。吊掛機構包括第一、第二以及第三桿件。第一桿件滑接載架的一側,並向遠離載架的方向延伸。第二桿件滑接第一桿件,且第二桿件垂直於第一桿件。第三桿件滑接第二桿件,垂直於第二桿件,並向遠離載架的方向延伸。三稜鏡連接第三桿件。三稜鏡具有第一表面、垂直於第一表面的第二表面以及連接第一表面與第二表面的第三表面,且第一表面面向工件。相機連接載架,且相機與第一桿件分別位於載架的兩相對側。相機對準三稜鏡,且面向第二表面。另提出一種量測方法。

Description

量測裝置與量測方法
本揭示是有關於一種量測裝置與量測方法,且特別是有關於一種非接觸式量測裝置與其量測方法。
工件(workpiece)的尺寸量測可概分為接觸式量測(contact measurement)與非接觸式量測(non-contact measurement)等兩種量測技術,以接觸式測量技術為例,其通過探頭接觸工件的表面並在工件的表面上滑移,以獲取工件的訊息。然而,一旦發生探頭的尺寸大於待測結構的尺寸的情況,探頭便可能無法對待測結構的尺寸進行精準的量測。
相較於接觸式測量技術而言,非接觸式量測技術具備量測速度快及短時間內取得大量點資料等優勢,並且可應用於微小結構的量測。在軟硬體設備的提升下,非接觸式量測技術的量測精度已較過去大幅改善,故已逐漸成為市場上的主流。然而,隨著工作的結構複雜度的提高,如何使非接觸式量測技術靈活地因應不同工件的表面起伏變化以對待測結構進行精準的量測,並同時提高量測效率,已成眾家廠商的主要研究項目。
本揭示提供一種量測裝置與量測方法,其具有極佳的操作靈活度,並有助於提高量測精度與量測效率。
本揭示提出一種量測裝置,用以量測工件。量測裝置包括載架、吊掛機構、三稜鏡以及相機。吊掛機構包括第一桿件、第二桿件以及第三桿件。第一桿件滑接載架的一側,並向遠離載架的方向延伸。第二桿件滑接第一桿件,且第二桿件垂直於第一桿件。第三桿件滑接第二桿件。第三桿件垂直於第二桿件,並向遠離載架的方向延伸。三稜鏡連接第三桿件。三稜鏡具有第一表面、垂直於第一表面的第二表面以及連接第一表面與第二表面的第三表面,且第一表面配置用以面向工件。相機連接載架,且相機與第一桿件位於載架的兩相對側。相機對準三稜鏡,且面向第二表面。
本揭示提出一種量測方法,用以量測工件。量測方法包括以下步驟。通過吊掛機構將三稜鏡移動靠近工件上的待測結構。將三稜鏡的第一表面面向待測結構。將相機對準並面向三稜鏡的第二表面。通過相機取得待測結構的影像。依據待測結構的影像取得影像輪廓。依據影像輪廓的像素計算待測結構的尺寸。
基於上述,本揭示的量測裝置與量測方法可通過吊掛機構的輔助使三稜鏡深入工件的內部,並使三稜鏡貼近待工件上的待測結構,避免三稜鏡受到待測結構周邊的其它結構遮擋。另一方面,通過吊掛機構的輔助,三稜鏡能夠靈活因應不同工件的表面起伏變化,並且,通過三稜鏡與相機的配合對待測結構進行精準的量測。因此,本揭示的量測裝置與量測方法,不僅具有極佳的操作靈活度,也有助於提高量測精度與量測效率。
為讓本揭示的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1A是本揭示一實施例的量測裝置的示意圖。圖1B是圖1A的區域R1的局部放大示意圖。圖2A是圖1A的量測裝置與置放於其上的工件的側視示意圖。圖2B是圖2A的區域R2的局部放大示意圖。請參考圖1A至圖2B,在本實施例中,量測裝置100為非接觸式量測裝置,用以量測工件10上的待測結構11的尺寸。舉例來說,工件10可以是機殼,而待測結構11可以是機殼上的倒勾、卡勾或其它凸出結構。
進一步而言,量測裝置100包括載架110、吊掛機構120、三稜鏡130以及相機140,其中吊掛機構120與相機140連接載架110,且三稜鏡130連接吊掛機構120。載架110具有沿著三維空間中的三軸(即X軸、Y軸以及Z軸)滑動的運動自由度(degree of freedom of motion),故吊掛機構120、三稜鏡130以及相機140可隨著載架110相對於工件10移動,並使三稜鏡130移動靠近工件10上的待測結構11,以取得較佳的量測距離並提高量測效率。
在本實施例中,吊掛機構120沿著三維空間中的Z軸向遠離載架110與相機140的方向延伸。接著,吊掛機構120產生轉折並沿著三維空間中的X軸延伸,以進入到相機140的視野(FOV)內。最後,吊掛機構120產生轉折並沿著三維空間中的Z軸向遠離載架110與相機140的方向延伸,其中三稜鏡130大致上安裝於吊掛機構120的最底端處,且相機140在三維空間中的Z軸上對準三稜鏡130。
在本實施例中,通過吊掛機構120的輔助,三稜鏡130可深入工件10的內部,以使三稜鏡130貼近待測結構11,避免三稜鏡130受到待測結構11周邊的其它結構遮擋。另一方面,在三稜鏡130落在相機140的視野內的前提下,吊掛機構120在載架110上的安裝位置可視實際需求進行調整,以使三稜鏡130能夠靈活因應不同工件的表面起伏變化,並通過三稜鏡130與相機140的配合對待測結構11進行精準的量測。
如圖1B與圖2B所示,吊掛機構120包括第一桿件121、第二桿件122以及第三桿件123,其中第一桿件121滑接載架110的一側,且第二桿件122滑接第一桿件121。另一方面,第三桿件123滑接第二桿件122,其中第一桿件121與第三桿件123皆垂直於第二桿件122,且第一桿件121與第三桿件123互為平行。舉例來說,第一桿件121與第三桿件123平行於三維空間中的Z軸,且第二桿件122平行於三維空間中的X軸。
進一步來說,在三維空間中的X軸上,相機140與第一桿件121分別位於載架110的兩相對側。第一桿件121沿著三維空間中的Z軸向遠離載架110與相機140的方向延伸,且第一桿件121具有沿著三維空間中的Z軸相對於載架110滑動的運動自由度。換句話說,第一桿件121向遠離載架110與相機140的方向延伸的長度可視實際需求進行調整。接著,第二桿件122自第一桿件121沿著三維空間中的X軸延伸,以進入到相機140的視野內,且第二桿件122具有沿著三維空間中的X軸相對於第一桿件121滑動的運動自由度。換句話說,第二桿件122深入相機140的視野內的長度可視實際需求進行調整。最後,第三桿件123自第二桿件122沿著三維空間中的Z軸向遠離載架110與相機140的方向延伸,且第三桿件123具有沿著三維空間中的Z軸相對於第二桿件122滑動的運動自由度。換句話說,第三桿件123向遠離載架110與相機140的方向延伸的長度可視實際需求進行調整。
在本實施例中,三稜鏡130連接第三桿件123的末端,且大致上保持在吊掛機構120的最底端處。在三稜鏡130落在相機140的視野內的前提下,三稜鏡130與相機140之間的相對位置與相對距離可通過第一桿件121、第二桿件122以及第三桿件123的滑動加以調整。另一方面,在平行於第三桿件123的方向(即Z軸)上,三稜鏡130與載架110分別位在第二桿件122的兩相對側,且三稜鏡130與鏡頭140分別位在第二桿件122的兩相對側。
請參考圖1A、圖1B以及圖2A,載架110包括第一承載部111與固定於第一承載部111的第二承載部112,其中承載部111與第二承載部112垂直設置。於一些實施例中,吊掛機構120的第一桿件121滑接第一承載部111,且具有沿著三維空間中的X軸或Y軸相對於第一承載部111滑動的運動自由度。也就是說,第一桿件121在吊掛機構120上的安裝位置可調,據以靈活因應不同工作的量測條件。於本實施例中,第一承載部111具有光通口111a,在平行於第三桿件123的方向(即Z軸)上,相機140與三稜鏡130對準光通口111a,以避免自三稜鏡130射向相機140的光線受到遮擋。
於一些實施例中,相機140滑接第二承載部112,且具有沿著三維空間中的Z軸相對於第二承載部112滑動的運動自由度,即相機140在第二承載部112上的安裝位置可視實際需求進行調整。
如圖2B所示,在本實施例中,三稜鏡130具有第一表面131、垂直於第一表面131的第二表面132以及連接第一表面131與第二表面132的第三表面133,其中第一表面131作為入光面,且配置用以面向工件10上的待測結構11。第二表面132作為出光面,且相機140面向第二表面132。另一方面,第三表面133作為反射面,當環境光源照射至待測結構11時,自待測結構11反射的光線可經由第一表面131進入三稜鏡130並在第三表面133產生反射,最後自第二表面132射出並射向相機140,據以取得待測結構11的影像。
舉例來說,相機140中的鏡頭可採用遠心鏡頭,據以在一定的物距範圍內維持影像的放大倍率,避免影像的放大倍率因物距變化而產生不一致的情況。或者是說,相機140中的鏡頭可採用液態鏡頭,據以進行快速調焦,避免影像的放大倍率因物距變化而產生不一致的情況。又或者是說,相機140中的鏡頭可採用整合液態鏡頭的遠心鏡頭(以下稱液態遠心鏡頭),據以在三稜鏡130較難貼近待測結構11的情況下進行快速調焦並取得清晰影像。
請參考圖1B與圖2B,量測裝置100更包括環形光源150,且連接載架110。在平行於第三桿件123的方向(即Z軸)上,環形光源150位在載架110與三稜鏡130之間。環形光源150用以投射光線至工件10,以提高待測結構11的亮度。另一方面,環形光源150具有中空開口151,在平行於第三桿件123的方向(即Z軸)上,相機140與三稜鏡130對準中空開口151,以避免自三稜鏡130射向相機140的光線受到遮擋。換句話說,在平行於第三桿件123的方向(即Z軸)上,環形光源150的中空開口151對準第一承載部111的光通口111a。
請參考圖1A至圖2B,量測裝置100更包括三維運動機構160,且載架110連接三維運動機構160,用以通過三維運動機構160沿著三維空間中的三軸(即X軸、Y軸以及Z軸)滑動。更進一步來說,三維運動機構160包括第一導軌161、第二導軌162以及第三導軌163,其中第一導軌161平行於三維空間中的X軸,第二導軌162平行於三維空間中的Y軸,且第三導軌163平行於三維空間的Z軸。也就是說,第一導軌161、第二導軌162以及第三導軌163互為垂直。
舉例來說,第一導軌161可包括伺服馬達與螺桿,且第二導軌162滑接第一導軌161,用以受第一導軌161的驅動與導引而沿著X軸滑動。第二導軌162可包括伺服馬達與螺桿,且第三導軌163滑接第二導軌162,用以受第二導軌162的驅動與導引而沿著Y軸滑動。另一方面,第三導軌163可包括伺服馬達與螺桿,且載架110的第二承載部112滑接第三導軌163,用以受第三導軌163的驅動與導引而沿著Z軸滑動。
在第二導軌162沿著X軸滑動的過程中,第三導軌163與載架110隨著第二導軌162移動,用以調整三稜鏡130與工件10上的待測結構11在X軸上的相對距離。在第三導軌163沿著Y軸滑動的過程中,載架110隨著第三導軌163移動,用以調整三稜鏡130與工件10上的待測結構11在Y軸上的相對距離。另一方面,在載架110沿著Z軸滑動的過程中,吊掛機構120、三稜鏡130以及相機140隨著載架110移動,用以調整三稜鏡130與工件10上的待測結構11在Z軸上的相對距離。
進一步來說,液態遠心鏡頭具有消除景深差異的優點,並可進行自動調焦。因此,在對待測結構11的尺寸進行量測的過程中,無須通過運動機構160頻繁地調整三稜鏡130在Z軸上的高度,而是調整三稜鏡130在X軸與Y軸上的位置,據以讓量測裝置100快速地對待測結構11在X軸與Y軸上的尺寸進行量測。換句話說,採用液態遠心鏡頭有助於縮減運動機構160移動三稜鏡130所耗費的時間。另一方面,因運動機構160可用以調整三稜鏡130在Z軸上的高度,量測裝置100對待測結構11在Z軸上的尺寸的量測範圍可大為提升。
實務上,三稜鏡130安裝於吊掛機構120的最底端處,據以避免吊掛機構120中的桿件遮擋住三稜鏡130。如此配置下,吊掛機構120也能受運動機構160的驅動而更深入工件10的內部,並避免三稜鏡130與吊掛機構120的桿件碰撞到工件10。若待測結構11周邊的其它結構遮擋住三稜鏡130,則僅需通過運動機構160略微調整三稜鏡130的位置,並通過液態遠心鏡頭進行自動調焦,量測裝置100便能直接對待測結構11的尺寸進行量測。
另一方面,運動機構160可用以調整環形光源150在Z軸上的高度,用以對待測結構11的不同部位提供足夠的亮度。雖然環形光源150在Z軸上的高度的調整也會同時改變三稜鏡130在Z軸上的高度,並改變三稜鏡130與待測結構11之間的相對距離,但量測裝置100可通過液態遠心鏡頭進行自動調焦,以對待測結構11的尺寸進行量測。基於上述設計,量測裝置100對待測結構11的尺寸的量測範圍可大為提升。
在本實施例中,量測裝置100更包括定位平台170,其中第一導軌161安裝於定位平台170,且第二導軌162、第三導軌163以及載架110懸空於定位平台170。同樣地,吊掛機構120、三稜鏡130以及相機140懸空於定位平台170。進一步來說,定位平台170包括基座171與安裝於基座171的定位凸台172,且定位凸台172用以承載並定位工件10。
更進一步來說,定位平台170還包括側擋173與調節螺絲174,其中側擋173安裝於定位凸台172的至少兩側邊,用以定位工件10並避免工件10在定位凸台172上任意滑動。定位凸台172具有用以承載工件10的承載面172a,其中調節螺絲174安裝於承載面172a,且調節螺絲174相對於承載面172a凸出的高度可調。調節螺絲174可構成至少三點支撐,用以平穩地支撐工件10,並確保工件10的平整度。
另一方面,第一桿件121與第三桿件123垂直於定位平台170,且第二桿件122平行於定位平台170。在平行於第三桿件123的方向(即Z軸)上,三稜鏡130位在相機140與定位平台170之間。
在本實施例中,吊掛機構120更包括第一定位塊124、第二定位塊125、第三定位塊126以及第四定位塊127,其中第一桿件121的一端插入並滑接第一定位塊124,且第一桿件121通過第一定位塊124連接載架110。另一方面,第一定位塊124在載架110上的安裝位置可視實際需求進行調整。
第二定位塊125在Z軸上對準第一定位塊124,其中第一桿件121的另一端插入並滑接第二定位塊125,且第二桿件122的一端插入並滑接第二定位塊125。也就是說,第二定位塊125具有供安裝第一桿件121與第二桿件122所用的兩個孔位。第三定位塊126在X軸上對準第二定位塊125,其中第二桿件122的另一端插入並滑接第三定位塊126,且第三桿件123的一端插入並滑接第三定位塊126。也就是說,第三定位塊126具有供安裝第二桿件122與第三桿件123所用的兩個孔位。
第四定位塊127在Z軸上對準第三定位塊126,其中第三桿件123的另一端插入並滑接第四定位塊127,且三稜鏡130安裝於第四定位塊127的一側。也就是說,第四定位塊127具有供安裝第三桿件123所用的一個孔位。另一方面,三稜鏡130可通過卡合固定的方式安裝於第四定位塊127的一側。
在本實施例中,吊掛機構120採用「N」字型的機構設計,其可根據不同機種、不同樣式或不同焦距的鏡頭進行調整。另一方面,定位塊可用以調整吊掛機構120與相機140的相對距離,以擴大量測範圍或靈活調整量測範圍。
圖3是圖1A的三稜鏡的示意圖。請參考圖1B、圖2B以及圖3,在本實施例中,三稜鏡130還具有並列的第一側表面134與第二側表面135,其中第一側表面134與第二側表面135皆連接第一表面131、第二表面132以及第三表面133,且第一表面131、第二表面132以及第三表面133圍繞第一側表面134與第二側表面135。詳細而言,第一側表面134設有定位凸柱134a,且第二側表面135設有定位孔135a。三稜鏡130通過第二側表面135接觸第四定位塊127,其中第四定位塊127可設有定位凸柱,用以插入定位孔135a,使得三稜鏡130卡合固定於第四定位塊127的一側。
在其它實施例中,三稜鏡130的數量可為多個,任二個三稜鏡130的其一的第一側表面134接觸任二個三稜鏡130的另一的第二側表面135,並通過定位凸柱134a與定位孔135a的配合卡合固定。通過多個三稜鏡130的拼接,得以拼接多個第一表面131,並擴大入光面的面積,以取得更大的量測範圍。同樣地,通過多個三稜鏡130的拼接,得以拼接多個第二表面132,並擴大出光面的面積。
圖4是本揭示一實施例的量測方法的流程示意圖。請參考圖2A、圖2B以及圖4,應用於的量測裝置100的量測方法包括以下步驟。在步驟S1中,通過吊掛機構120將三稜鏡130移動靠近工件10上的待測結構11,進一步來說,量測裝置100通過三維運動機構160控制吊掛機構120與三稜鏡130於三維空間中移動,以將三稜鏡130移動靠近工件10上的待測結構11。
在步驟S2中,將三稜鏡130的第一表面131面向待測結構11。在步驟S3中,將相機140對準並面向三稜鏡130的第二表面132。在步驟S4中,通過相機140取得待測結構11的影像。在步驟S5中,依據待測結構11的影像取得影像輪廓。舉例來說,在取得待測結構11的影像的過程中,通過液態遠心鏡頭進行調焦的動作,以取得具有最佳銳利度的影像。舉例來說,基於邊緣偵測原理取得待測結構11的影像輪廓,並應用曲線擬合方法對輪廓邊界進行擬合,接著,尋找最大峰值(peak),其中最大峰值發生處代表著影像輪廓的銳利度最佳。
在步驟S6中,依據影像輪廓的像素計算待測結構11的尺寸。詳細來說,待測結構11的尺寸可以經由影像輪廓的像素與每單位像素的實際尺寸換算得到。舉例來說,在取得具有最佳銳利度的影像輪廓後,操作人員可通過圖形操作介面量取影像輪廓中的特定區塊,並基於影像輪廓的像素進行單位換算,以取得待測結構11中的特定區塊的實際尺寸。舉例來說,待測結構11可以是機殼上的倒勾,而待測結構11中的特定區塊的實際尺寸可以是倒勾的高度。
特別說明的是,在進行步驟S1前,必須先通過量測裝置100對實際尺寸已知的標準件(例如塊規)進行量測,在取得標準件的影像後,對標準件的實際尺寸與標準件的影像的像素進行換算,以取得每單位像素的實際尺寸。
另一方面,在步驟S1中,三稜鏡130移動靠近待測結構11的程度係以三稜鏡130不會接觸到待測結構11與三稜鏡130不會碰撞到待測結構11周邊的其它結構為原則,並同時確保相機140能夠取得待測結構11中的待測區塊的清晰影像。
圖5是圖2A的吊掛結構與工件上的待測結構的局部放大示意圖。如圖5所示,在對待測結構11進行尺寸量測的過程中,若工件10上的其它結構(例如圖中位於待測結構11和三稜鏡130之間的結構)遮擋於三稜鏡130與測待測結構11之間,並導致三稜鏡130無法移動貼近待測結構11,則可將第一距離D1與第二距離D2分別設為定值,其中第一距離D1為三稜鏡130的第二表面132與相機140(見圖2A)之間的距離,且第二距離D2為三稜鏡130的第一表面131與待測結構11之間的距離。詳細來說,將第一距離D1與第二距離D2設為定值的目的是不需要每次調整完第一距離D1與第二距離D2後重新基於待測結構11在相機140所拍攝到影像當中的像素去換算待測結構11實際的大小,可以有效減少整體量測的時間與電腦運算的成本。
圖6是本揭示另一實施例的稜鏡的示意圖。請參考圖6,本實施例的稜鏡130A可應用於圖1A所示的量測裝置100,且稜鏡130A可以是由多個圖3所示的三稜鏡130拼接而成一個口字型結構。詳細而言,這些三稜鏡130的這些第一表面131環繞形成中空容納開口1301,用以容納工件上的待測結構,且這些三稜鏡130的這些第一表面131拼接成一個口字型入光面,以利於自不同方位量測工件上的待測結構。
通過稜鏡130A的採用,使用者無需自待測結構的不同面向進行多次的量測。進一步來說,單一個三稜鏡具有入光方向的限制,因此使用者必須使三稜鏡相對於待測結構進行多次的旋轉,以令三稜鏡的垂直面對準待測結構的不同面向,從而得到待測結構在不同面向上的尺寸。相較於此,通過稜鏡130A進行單次量測,便能得到待測結構在不同面向上的尺寸,據以大幅縮減量測時間。
圖7是本揭示又一實施例的稜鏡的示意圖。請參考圖7,本實施例的稜鏡130B可應用於圖1A所示的量測裝置100,且稜鏡130B與圖6的稜鏡130A大致相似,差異在於:稜鏡130B為一體成型的口字型結構。
圖8是本揭示更一實施例的稜鏡的示意圖。,請參考圖8,本實施例的稜鏡130C可應用於圖1A所示的量測裝置100,且稜鏡130C可以是由圖3所示的三稜鏡130與遮蔽件136組合而成。詳細而言,三稜鏡130的第一表面131與遮蔽件136構成一個中空開口,用以容納待測結構,並將待測結構周邊的其它結構遮擋於外,避免待測結構周邊的其它結構影響到相機的取像結果。
舉例來說,遮蔽件136可為對比件,即遮蔽件136的顏色與工件的顏色為對比色。當工件上的待測結構被遮蔽件136包圍時,遮蔽件136的顏色與待測結構的顏色存在明顯對比,故有利於自影像中快速且精確地抓取出待測結構的邊界特徵。
綜上所述,本揭示的量測裝置與量測方法可通過吊掛機構與三維運動機構的輔助使三稜鏡深入工件的內部,並使三稜鏡貼近待工件上的待測結構,避免三稜鏡受到待測結構周邊的其它結構遮擋。另一方面,通過吊掛機構與三維運動機構的輔助,三稜鏡能夠靈活因應不同工件的表面於三維空間中移動,並且,通過三稜鏡與相機的配合對待測結構進行精準的量測。因此,本揭示的量測裝置與量測方法,不僅具有極佳的操作靈活度,也有助於提高量測精度與量測效率。
雖然本揭示已以實施例揭露如上,然其並非用以限定本揭示,任何所屬技術領域中具有通常知識者,在不脫離本揭示的精神和範圍內,當可作些許的更動與潤飾,故本揭示的保護範圍當視後附的申請專利範圍所界定者為準。
10:工件 11:待測結構 100:量測裝置 110:載架 111:第一承載部 111a:光通口 112:第二承載部 120:吊掛機構 121:第一桿件 122:第二桿件 123:第三桿件 124:第一定位塊 125:第二定位塊 126:第三定位塊 127:第四定位塊 130:三稜鏡 130A、130B、130C:稜鏡 131:第一表面 132第二表面 133:第三表面 134:第一側表面 134a:定位柱 135:第二側表面 135a:定位孔 136:遮蔽件 1301:中空容納開口 140:相機 150:環形光源 151:中空開口 160:三維運動機構 161:第一導軌 162:第二導軌 163:第三導軌 170:定位平台 171:基座 172:定位凸台 172a:承載面 173:側擋 174:調節螺絲 D1:第一距離 D2:第二距離 R1、R2:區域 S1~S6:步驟 X、Y、Z:軸
圖1A是本揭示一實施例的量測裝置的示意圖。 圖1B是圖1A的區域R1的局部放大示意圖。 圖2A是圖1A的量測裝置與置放於其上的工件的側視示意圖。 圖2B是圖2A的區域R2的局部放大示意圖。 圖3是圖1A的三稜鏡的示意圖。 圖4是本揭示一實施例的量測方法的流程示意圖。 圖5是圖2A的吊掛結構與工件上的待測結構的局部放大示意圖。 圖6是本揭示另一實施例的稜鏡的示意圖。 圖7是本揭示又一實施例的稜鏡的示意圖。 圖8是本揭示更一實施例的稜鏡的示意圖。
110:載架
111:第一承載部
111a:光通口
120:吊掛機構
121:第一桿件
122:第二桿件
123:第三桿件
124:第一定位塊
125:第二定位塊
127:第四定位塊
130:三稜鏡
132:第二表面
140:相機
150:環形光源
151:中空開口
170:定位平台
172:定位凸台
172a:承載面
174:調節螺絲
R1:區域
X、Y、Z:軸

Claims (10)

  1. 一種量測裝置,用以量測一工件,該量測裝置包括: 一載架; 一吊掛機構,包括: 一第一桿件,滑接該載架的一側,並向遠離該載架的方向延伸; 一第二桿件,滑接該第一桿件,且該第二桿件垂直於該第一桿件;以及 一第三桿件,滑接該第二桿件,該第三桿件垂直於該第二桿件,並向遠離該載架的方向延伸; 一三稜鏡,連接該第三桿件,該三稜鏡具有一第一表面、垂直於該第一表面的第二表面以及連接該第一表面與該第二表面的第三表面,且該第一表面配置用以面向該工件;以及 一相機,連接該載架,且該相機與該第一桿件位於該載架的兩相對側,該相機對準該三稜鏡,且面向該第二表面。
  2. 如請求項1所述的量測裝置,其中該載架包括一第一承載部與固定於該第一承載部的一第二承載部,該吊掛機構的該第一桿件滑接該第一承載部,且該相機滑接該第二承載部。
  3. 如請求項1所述的量測裝置,更包括: 一三維運動機構,其中該載架連接該三維運動機構。
  4. 如請求項3所述的量測裝置,其中該三維運動機構包括一第一導軌、一第二導軌以及一第三導軌,該第二導軌垂直於該第一導軌並滑接該第一導軌,該第三導軌垂直於該第二導軌並滑接該第二導軌,該載架滑接該第三導軌。
  5. 如請求項1所述的量測裝置,更包括: 一環形光源,連接該載架,在平行於該第三桿件的方向上,該環形光源位在該相機與該三稜鏡之間。
  6. 如請求項5所述的量測裝置,其中在平行於該第三桿件的方向上,該相機與該三稜鏡對準該環形光源的一中空開口。
  7. 如請求項1所述的量測裝置,其中該三稜鏡還具有並列的兩側表面,且該第一表面、該第二表面以及該第三表面圍繞任一該側表面,該兩側表面的其一設有定位凸柱,且該兩側表面的另一設有定位孔。
  8. 如請求項1所述的量測裝置,其中該三稜鏡的數量為多個,且該些三稜鏡拼接成一口字形結構,該些三稜鏡的該些第一表面環繞形成一中空容納開口。
  9. 一種量測方法,用以量測一工件,該量測方法包括: 通過一吊掛機構將一三稜鏡移動靠近該工件上的一待測結構,其中該三稜鏡具有一第一表面、垂直於該第一表面的第二表面以及連接該第一表面與該第二表面的第三表面; 將該三稜鏡的該第一表面面向該待測結構; 將一相機對準並面向該三稜鏡的該第二表面; 通過該相機取得該待測結構的一影像; 依據該待測結構的該影像取得一影像輪廓;以及 依據該影像輪廓的像素計算該待測結構的尺寸。
  10. 如請求項9所述的量測方法,其中該吊掛機構設置在一三維運動機構上,且該三維運動機構用以控制該三稜鏡於一三維空間中移動。
TW109103422A 2020-02-04 2020-02-04 量測裝置與量測方法 TWI719822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109103422A TWI719822B (zh) 2020-02-04 2020-02-04 量測裝置與量測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109103422A TWI719822B (zh) 2020-02-04 2020-02-04 量測裝置與量測方法

Publications (2)

Publication Number Publication Date
TWI719822B true TWI719822B (zh) 2021-02-21
TW202130970A TW202130970A (zh) 2021-08-16

Family

ID=75745973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103422A TWI719822B (zh) 2020-02-04 2020-02-04 量測裝置與量測方法

Country Status (1)

Country Link
TW (1) TWI719822B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746963A (zh) * 2021-08-30 2021-12-03 苏州灵猴机器人有限公司 一种零部件安装方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101836073A (zh) * 2007-10-23 2010-09-15 Gii采集有限责任公司,以总检测有限责任公司的名义营业 用于光学检测零件的方法和系统
WO2015031567A1 (en) * 2013-08-29 2015-03-05 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
WO2015082683A2 (de) * 2013-12-06 2015-06-11 Werth Messtechnik Gmbh Vorrichtung und verfahren zur messung von werkstücken

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101836073A (zh) * 2007-10-23 2010-09-15 Gii采集有限责任公司,以总检测有限责任公司的名义营业 用于光学检测零件的方法和系统
WO2015031567A1 (en) * 2013-08-29 2015-03-05 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
WO2015082683A2 (de) * 2013-12-06 2015-06-11 Werth Messtechnik Gmbh Vorrichtung und verfahren zur messung von werkstücken

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746963A (zh) * 2021-08-30 2021-12-03 苏州灵猴机器人有限公司 一种零部件安装方法、装置、设备及存储介质
CN113746963B (zh) * 2021-08-30 2023-11-21 苏州灵猴机器人有限公司 一种零部件安装方法、装置、设备及存储介质

Also Published As

Publication number Publication date
TW202130970A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
EP3338054B1 (en) Three-dimensional imager
US10907955B2 (en) Three-dimensional imager
CN103363901A (zh) 一种面向同轴对位微装配系统的标定方法
US8823930B2 (en) Apparatus and method for inspecting an object
CN111965192A (zh) 一种多面成像的视觉检测系统及检测方法
CN110044293A (zh) 一种三维重构系统及三维重构方法
TWI719822B (zh) 量測裝置與量測方法
CN103063415A (zh) 一种基于莫尔条纹匹配的长焦距透镜焦距测量方法
CN208953254U (zh) 一种镜头检测装置
CN207798384U (zh) 一种自动测量变焦镜头不同焦段后焦位置的设备
CN109655236A (zh) 传感器像平面与镜头接口端面平行度检测方法及装置
CN204373613U (zh) 测量仪器
JP2019074470A (ja) 画像測定装置の調整方法
CN103654721A (zh) 一种角膜顶点精确对准的方法
CN109764817A (zh) 非接触式透镜中心厚测量系统及方法
CN115876443A (zh) 一种近眼显示设备的测量几何中心对位方法及系统
KR102501212B1 (ko) 관통 구멍의 기하학적 파라미터를 측정하기 위한 방법 및 시스템
KR100781095B1 (ko) 라인센서를 갖는 자동초점모듈을 포함하는 압흔 검사용미분간섭 현미경
CN205245992U (zh) 一种影像测量仪
RU2594173C2 (ru) Устройство для контроля точности установки сборок тепловыделяющих элементов в ядерном реакторе
CN214702138U (zh) 一种测量微凸点高度的装置
CN213302652U (zh) 一种共视野双倍率远心镜头
RU84105U1 (ru) Устройство для контроля параметров лазерного канала управления
RU149457U1 (ru) Устройство контроля положения плоскости изделия для систем автофокусировки
CN219265287U (zh) 一种入射空间角度测量系统