TWI649914B - 能量儲存裝置電極用底塗箔 - Google Patents

能量儲存裝置電極用底塗箔 Download PDF

Info

Publication number
TWI649914B
TWI649914B TW105117625A TW105117625A TWI649914B TW I649914 B TWI649914 B TW I649914B TW 105117625 A TW105117625 A TW 105117625A TW 105117625 A TW105117625 A TW 105117625A TW I649914 B TWI649914 B TW I649914B
Authority
TW
Taiwan
Prior art keywords
primer
energy storage
storage device
foil
electrode
Prior art date
Application number
TW105117625A
Other languages
English (en)
Other versions
TW201717453A (zh
Inventor
柴野佑紀
畑中辰也
吉本卓司
Original Assignee
日商日產化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日產化學工業股份有限公司 filed Critical 日商日產化學工業股份有限公司
Publication of TW201717453A publication Critical patent/TW201717453A/zh
Application granted granted Critical
Publication of TWI649914B publication Critical patent/TWI649914B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/753Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc. with polymeric or organic binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本發明為提供一種能量儲存裝置電極用底漆箔,其為具有集電基板與於該集電基板的至少一面所形成的底漆層,底漆層為含有碳奈米試管,且該集電基板的一面之每單位面積重量為0.1g/m2以下者。該底漆箔因可有效率地進行超音波熔接,藉由使用此可提供低電阻的能量儲存裝置及簡便且有效率的製造方法。

Description

能量儲存裝置電極用底塗箔
本發明係關於能量儲存裝置電極用底漆箔。
近年來,鋰離子二次電池或雙電層電容器為代表的能量儲存裝置因對應電動車或電動機器等用途上而要求高容量化與充放電之高速化。
作為配合該要求之一方策,有提案指出於活性物質層與集電基板之間配置底漆層,以強固活性物質層及集電基板的接著性,同時降低這些接觸界面之電阻(例如、參照專利文獻1)。
一般而言,在能量儲存裝置中,作為自正極及負極取出電流的端子,於正極及負極各熔接金屬片(Metal tab)(Metal tab)。
金屬片(Metal tab)通常熔接於集電基板上,即使為形成底漆層的電極,在集電基板上未形成底漆層及活性物質層的部位也會進行與金屬片(Metal tab)之熔接(例如參照專利文獻1)。
作為於形成底漆層之集電基板上形成金屬片 (Metal tab)接合部位的方法,有於集電基板上的金屬片(Metal tab)接合部位不形成底漆層及活性物質層,將於集電基板上所形成的底漆層及活性物質層進行部分性剝離等方法。
然而,在一部分不形成底漆層的情況時,集電基板的汎用性會降低,各種電極必須各準備相異的集電基板。另一方面,在剝離一旦形成的底漆層等方法,由於增加一步驟,因此會降低裝置之生產性。
特別為欲達到裝置之高容量化,而重疊複數片電極板使用時,如上述的集電基板露出部分之形成相關的問題會更大。
由如此觀點來看,熔接集電基板與金屬片(Metal tab)時,對於集電基板上,在有底漆層形成,且未形成活性物質層之部分進行熔接的技術已被報告(例如參照專利文獻2)。
該文獻為將集電基板單面中之底漆層的每單位面積重量設定在0.05~3g/m2
然而,至今對於電動車、電動機器等製品之安全性、生產性等要求日益提高,隨之有關蓄電裝置的技術更期待進一步的深入。
特別是可在較高生產性下製造具有較高安全性的蓄電裝置之方法,由可在滿足低價格且高安全性之近年來的市場需求之製品製造上直接貢獻之觀點來看,為該技術領域中強烈要求的方法。
然而,依據本發明者們的檢討得知,在有關專利文獻2之製造方法中,即使滿足該條件時,依據碳材料之種類,仍有無法良好地重覆實現超音波熔接之情形。
[先行技術文獻] [專利文獻]
[專利文獻1]日本特開2010-170965號公報
[專利文獻2]國際公開第2014/034113號
本發明係有鑑於上述事情所成者,係以提供可進行超音波熔接之同時,可賦予低電阻之能量儲存裝置的能量儲存裝置電極用底漆箔、以及具備此的能量儲存裝置電極及能量儲存裝置為目的。
本發明者們由底漆層之熔接性及具備此的裝置之低電阻化的觀點來看,再三詳細檢討的結果,發現將形成於集電基板的至少一面的底漆層中所含的碳材料作為碳奈米試管(以下有時簡稱為CNT),且進一步藉由將CNT含有底漆層之每單位面積重量設定在所定範圍,而可於集電基板上,在形成有CNT含有底漆層的部分有效率地進行超音波熔接,同時發現使用具備該低每單位面積重 量之底漆箔的電極時,亦可得到低電阻之能量儲存裝置,而完成本發明。
即,本發明為提供以下者;
1. 具有集電基板,與於該集電基板的至少一面所形成的底漆層,前述底漆層為含有碳奈米試管,且該前述集電基板之一面的每單位面積重量為0.1g/m2以下者為特徴之能量儲存裝置電極用底漆箔。
2. 前述底漆層中,前述集電基板的至少一面上,以覆蓋該面全體之態樣下形成的1.之能量儲存裝置電極用底漆箔。
3. 前述底漆層為含有基質高分子(Matrix polymer)之1.或2.的能量儲存裝置電極用底漆箔。
4. 前述底漆層為含有碳奈米試管分散劑的1.~3.中任一項的能量儲存裝置電極用底漆箔。
5. 前述碳奈米試管分散劑為三芳基胺系高分支聚合物或於側鏈含有噁唑啉基的乙烯基系聚合物之4.的能量儲存裝置電極用底漆箔。
6. 前述每單位面積重量為未達0.05g/m2的1.~5.中任一項之能量儲存裝置電極用底漆箔。
7. 前述底漆層的厚度為0.01~10μm之1.~6.中任一項之能量儲存裝置電極用底漆箔。
8. 前述集電基板為鋁箔或銅箔之1.~7.中任一項之能量儲存裝置電極用底漆箔。
9. 具有如1.~8.中任一項的能量儲存裝置電極用底 漆箔,與形成於該底漆層的表面一部分或全部的活性物質層之能量儲存裝置電極。
10. 前述活性物質層為形成於前述底漆層表面的一部分的9.之能量儲存裝置電極。
11. 以前述活性物質層殘留前述底漆層的周緣並覆蓋此以外的部分全體之態樣下所形成的10.之能量儲存裝置電極、
12. 具備如9.~11.中任一項的能量儲存裝置電極之能量儲存裝置、
13. 具有具備一片或複數片的如10.或11.所記載的電極與金屬片(Metal tab)而構成的電極結構體的至少1個,前述電極的至少一片在形成前述底漆層,且未形成前述活性物質層的部分與前述金屬片(Metal tab)進行超音波熔接的能量儲存裝置。
14. 前述金屬片(Metal tab)係由含有選自鋁、銅及鎳的至少1種金屬所構成的10.之能量儲存裝置。
15. 使用一片或複數片的10.或11.的電極之能量儲存裝置的製造方法中,含有將前述電極的至少一片在形成前述底漆層,且未形成前述活性物質層的部分與金屬片(Metal tab)進行超音波熔接的步驟之能量儲存裝置的製造方法。
依據本發明,可提供可有效率地進行超音波 熔接之具有CNT層的能量儲存裝置電極用之底漆箔。
藉由使用具有該底漆箔的電極,可提供低電阻的能量儲存裝置及其簡便且有效率的製造方法。
[實施發明的形態]
以下對於本發明做更詳細說明。
有關本發明之能量儲存裝置電極用底漆箔(以下稱為底漆箔)為具有集電基板與形成於該集電基板的至少一面之底漆層,底漆層含有碳奈米試管,且該集電基板的一面之每單位面積重量為0.1g/m2以下者。
作為本發明中之能量儲存裝置,例如可舉出雙電層電容器、鋰二次電池、鋰離子二次電池、質子聚合物電池、鎳氫電池、鋁固體電容器、電解電容器、鉛蓄電池等各種能量儲存裝置,但本發明之底漆箔特別適用於雙電層電容器、鋰離子二次電池。
本發明中,作為構成底漆層之碳材料,使用CNT。
CNT一般可藉由電弧放電方法、化學氣相成長法(CVD法)、雷射.消融法等而製作,但於本發明所使用的CNT係亦可藉由任一方法而得者。又,有於CNT中1片碳膜(石墨烯卡片(tab))被捲成圓筒狀的單層CNT(以下亦簡稱為SWCNT)、2片石墨烯卡片(tab)捲成同心圓狀的2層CNT(以下亦稱為DWCNT)、複數石墨 烯卡片(tab)捲成同心圓狀的多層CNT(以下亦稱為MWCNT),但本發明中,可使用各SWCNT、DWCNT、MWCNT之單體,亦可組合複數種類後使用。
且,在上述方法中,製造SWCNT、DWCNT或MWCNT時,因有時會殘留鎳、鐵、鈷、釔等觸媒金屬,故有時欲除去該雜質而必須進行純化。對於雜質的除去,藉由硝酸、硫酸等酸處理之同時進行超音波處理為有效。然而,藉由硝酸、硫酸等酸處理中,構成CNT之π共軛系被破壞,可能會造成CNT原本特性的損害,故以適當條件下進行純化後使用者為佳。
本發明之底漆層係以使用含有CNT、溶劑與視必要的基質高分子及/或CNT分散劑之含有CNT之組成物(分散液)而製作者為佳。
作為溶劑,一直以來只要為使用於含有CNT之組成物之調製者即可,並無特別限定,例如可舉出水;四氫呋喃(THF)、二乙基醚、1,2-二甲氧基乙烷(DME)等醚類;二氯甲烷、氯仿、1,2-二氯乙烷等鹵素化烴類;N,N-二甲基甲醯胺(DMF)、N,N-二甲基乙醯胺(DMAc)、N-甲基-2-吡咯啶酮(NMP)等醯胺類;丙酮、甲基乙基酮、甲基異丁基酮、環己酮等酮類;甲醇、乙醇、異丙醇、n-丙醇等醇類;n-庚烷、n-己烷、環己烷等脂肪族烴類;苯、甲苯、二甲苯、乙基苯等芳香族烴類;乙二醇單乙基醚、乙二醇單丁基醚、丙二醇單甲基醚等甘醇醚類;乙二醇、丙二醇等甘醇類等有機溶劑,這些溶劑可單獨使 用,亦可混合2種以上後使用。
特別由可提高CNT的孤立分散之比例的觀點來看,以水、NMP、DMF、THF、甲醇、異丙醇為佳,這些溶劑可單獨使用,或可混合2種以上使用。
作為基質高分子,例如可舉出聚氟化亞乙烯基(PVdF)、聚四氟伸乙基、四氟乙烯-六氟丙烯共聚物、氟化亞乙烯基-六氟丙烯共聚物〔P(VDF-HFP)〕、氟化亞乙烯基-氯化3氟化乙烯共聚物〔P(VDF-CTFE)〕等氟系樹脂、聚乙烯吡咯啶酮、乙烯-丙烯-二烯三元共聚物、PE(聚乙烯)、PP(聚丙烯)、EVA(乙烯-乙酸乙烯基共聚物)、EEA(乙烯-丙烯酸乙基共聚物)等聚烯烴系樹脂;PS(聚苯乙烯)、HIPS(高衝擊聚苯乙烯)、AS(丙烯腈-苯乙烯共聚物)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、MS(甲基丙烯酸甲基-苯乙烯共聚物)、苯乙烯-丁二烯橡膠等聚苯乙烯系樹脂;聚碳酸酯樹脂;氯化乙烯基樹脂;聚醯胺樹脂;聚醯亞胺樹脂;聚丙烯酸鈉、PMMA(聚甲基甲基丙烯酸酯)等(甲基)丙烯酸樹脂;PET(聚乙烯對苯二甲酸乙二醇酯)、聚伸乙基對苯二甲酸乙二醇酯、聚乙烯萘二甲酸酯、聚伸乙基萘二甲酸酯、PLA(聚乳酸)、聚-3-羥基丁酸、聚己內酯、聚琥珀酸丁二醇酯、聚乙烯琥珀酸酯/己二酸等聚酯樹脂;聚伸苯基醚樹脂;變性聚伸苯基醚樹脂;聚縮醛樹脂;聚碸樹脂;聚伸苯基硫化物樹脂;聚乙烯醇樹脂;聚乙醇酸;變性澱粉;乙酸纖維素、羧基甲基纖維素、三乙 酸纖維素;幾丁質、殼聚醣;木質素等熱可塑性樹脂或聚苯胺及其半氧化物的聚苯胺基體;聚噻吩;聚吡咯;聚伸苯基乙炔;聚伸苯基;聚乙炔等導電性高分子,進一步可舉出環氧樹脂;胺基甲酸酯丙烯酸酯;酚樹脂;三聚氰胺樹脂;尿素樹脂;醇酸樹脂等熱硬化性樹脂或光硬化性樹脂等,但對於本發明之導電性碳材料分散液,作為溶劑以使用水為較佳,故作為基質高分子亦以水溶性者為佳,例如以聚丙烯酸鈉、羧基甲基纖維素鈉、水溶性纖維素醚、海藻酸鈉、聚乙烯醇、聚苯乙烯磺酸、聚乙二醇等為佳,特佳為聚丙烯酸鈉、羧基甲基纖維素鈉等。
基質高分子可以市售品方式獲得,作為如此市售品,例如可舉出聚丙烯酸鈉(和光純藥工業(股)製之聚合度2,700~7,500)、羧基甲基纖維素鈉(和光純藥工業(股)製)、海藻酸鈉(關東化學(股)製之鹿1級)、METOLOSESH系列(羥基丙基甲基纖維素、信越化學工業(股)製)、METOLOSESE系列(羥基乙基甲基纖維素、信越化學工業(股)製)、JC-25(完全皂化型聚乙烯醇、JAPAN VAME.PVAVAL(股)製)、JM-17(中間皂化型聚乙烯醇、JAPAN VAME.PVAVAL(股)製)、JP-03(部分皂化型聚乙烯醇、JAPAN VAME.PVAVAL(股)製)、聚苯乙烯磺酸(Aldrich公司製之固體成分濃度18質量%、水溶液)等。
基質高分子之含有量並無特別限定,但於組成物中以0.0001~99質量%程度者為佳,以0.001~90質量%程度 者為較佳。
作為CNT分散劑,並無特別限定,可適宜地選自一直以來作為CNT分散劑而使用者,例如可舉出羧基甲基纖維素(CMC)、聚乙烯吡咯啶酮(PVP)、丙烯酸樹脂乳膠、水溶性丙烯酸系聚合物、苯乙烯乳膠、矽乳膠、丙烯酸矽乳膠、氟樹脂乳膠、EVA乳膠、乙酸乙烯酯乳膠、氯化乙烯基乳膠、胺基甲酸酯樹脂乳膠、國際公開第2014/04280號記載之三芳基胺系高分支聚合物、國際公開第2015/029949號記載之於側鏈具有噁唑啉基的乙烯基系聚合物等,但對於本發明,以國際公開第2014/04280號記載之三芳基胺系高分支聚合物、國際公開第2015/029949號記載之於側鏈具有噁唑啉基的乙烯基系聚合物為佳。
具體而言,可適用將下述式(1)及(2)所示三芳基胺類與醛類及/或酮類在酸性條件下進行縮合聚合所得之高分支聚合物。
對於上述式(1)及(2),Ar1~Ar3各獨立表示式(3)~(7)所示中任一的二價有機基,特別以式 (3)所示取代或非取代之伸苯基為佳。
(式中,R5~R38各獨立表示氫原子、鹵素原子、可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之烷氧基、羧基、磺酸基、磷酸基、膦酸基或彼等鹽)。
又,對於式(1)及(2),Z1及Z2各獨立表示氫原子、可具有碳數1~5的分支結構的烷基或式(8)~(11)所示中任一種一價有機基(但,Z1及Z2在同時不會成為上述烷基),作為Z1及Z2,各獨立為氫原子、2-或3-噻吩基,以式(8)所示基為佳,特佳為Z1及Z2中任一方為氫原子,而另一方為氫原子、2-或3-噻吩基、式(8)所示基,特別以R41為苯基者,或R41為甲氧基者為較佳。
且,R41為苯基時,對於後述酸性基導入法,使用於 聚合物製造後導入酸性基之方法時,亦有於該苯基上導入酸性基之情況。
作為上述具有碳數1~5的分支結構的烷基,可舉出在上述所例示之相同者。
{式中,R39~R62各獨立表示氫原子、鹵素原子、可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基、苯基、OR63、COR63、NR63R64、COOR65(這些式中,R63及R64各獨立表示氫原子、可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基或苯基,R65表示可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基或苯基)、羧基、磺酸基、磷酸基、膦酸基或這些鹽}。
對於上述式(2)~(7),R1~R38各獨立表示氫原子、鹵素原子、可具有碳數1~5的分支結構之烷基或可具有碳數1~5的分支結構之烷氧基、羧基、磺酸基、磷酸基、膦酸基或這些鹽。
其中,作為鹵素原子,可舉出氟原子、氯原子、溴原子、碘原子。
作為可具有碳數1~5的分支結構之烷基,可舉出甲基、乙基、n-丙基、異丙基、n-丁基、sec-丁基、tert-丁基、n-戊基等。
作為可具有碳數1~5的分支結構之烷氧基,可舉出甲氧基、乙氧基、n-丙氧基、異丙氧基、n-丁氧基、sec-丁氧基、tert-丁氧基、n-戊氧基等。
作為羧基、磺酸基、磷酸基及膦酸基的鹽,可舉出鈉,鉀等鹼金屬鹽;鎂、鈣等2族金屬鹽;銨鹽;丙基胺、二甲基胺、三乙基胺、乙二胺等脂肪族胺鹽;咪唑啉、哌嗪、嗎啉等脂環式胺鹽;苯胺、二苯基胺等芳香族胺鹽;吡啶鎓鹽等。
對於上述式(8)~(11),R39~R62各獨立表示氫原子、鹵素原子、可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基、苯基、OR63、COR63、NR63R64、COOR65(這些式中,R63及R64各獨立表示氫原子、可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基或苯基,R65表示可具有碳數1~5的分支結構之烷基、可具有碳數1~5的分支結構之鹵烷基或苯基)、羧基、磺酸基、磷酸基、膦酸基或這些鹽。
其中,作為可具有碳數1~5的分支結構之鹵烷基,可舉出二氟甲基、三氟甲基、溴二氟甲基、2-氯乙基、2-溴乙基、1,1-二氟乙基、2,2,2-三氟乙基、1,1,2,2-四氟乙基、2-氯-1,1,2-三氟乙基、五氟乙基、3-溴丙基、 2,2,3,3-四氟丙基、1,1,2,3,3,3-六氟丙基、1,1,1,3,3,3-六氟丙烷-2-基、3-溴-2-甲基丙基、4-溴丁基、全氟戊基等。
且作為鹵素原子、可具有碳數1~5的分支結構之烷基,可舉出與上述式(2)~(7)所例示基之相同者。
特別考慮到進一步提高與集電基板之密著性時,上述高分支聚合物為,式(1)或(2)所示重複單位之至少1個芳香環中,具有選自羧基、磺酸基、磷酸基、膦酸基、及這些鹽的至少1種酸性基者為佳,具有磺酸基或其鹽者為較佳。
作為使用於上述高分支聚合物的製造之醛化合物,可舉出甲醛、對甲醛、乙醛、丙基醛、丁基醛、異丁基醛、戊醛、己醛、2-甲基丁基醛、己基醛、十一烷基醛、7-甲氧基-3,7-二甲基辛基醛、環己烷羧基醛、3-甲基-2-丁基醛、乙二醛、丙二醛、琥珀酸醛、戊二酸醛、己二酸醛等飽和脂肪族醛類;丙烯醛、甲基丙烯醛等不飽和脂肪族醛類;糠醛、吡啶醛、噻吩醛等雜環式醛類;苯甲醛、甲苯醛、三氟甲基苯甲醛、苯基苯甲醛、水楊酸醛、大茴香醛、乙醯氧基苯甲醛、對苯二甲酸醛、乙醯苯甲醛、甲醯基安息香酸、甲醯基安息香酸甲基、胺基苯甲醛、N,N-二甲基胺基苯甲醛、N,N-二苯基胺基苯甲醛、萘醛、蒽基醛、菲基醛等芳香族醛類、苯基乙醛、3-苯基丙醛等芳烷基醛類等,其中亦以使用芳香族醛類為佳。
又,作為使用於上述高分支聚合物的製造之酮化合物,可舉出烷基芳基酮、二芳基酮類,例如苯乙 酮、苯丙酮、二苯基酮、苯基萘酮、二萘酮、苯基甲苯酮、二甲苯酮等。
上述高分支聚合物之平均分子量並無特別限定,但重量平均分子量以1,000~2,000,000為佳,以2,000~1,000,000為較佳。
且,本發明中之重量平均分子量為藉由凝膠滲透層析法所得之測定值(聚苯乙烯換算)。
作為具體的高分支聚合物,可舉出下述式所示者,但並未限定於此等。
另一方面,作為於側鏈具有噁唑啉基之乙烯基系聚合物(以下稱為噁唑啉聚合物)為具有以下重複單位者為佳,該重複單位為,將於如式(13)所示2位具有含有聚合性碳-碳雙鍵之基之噁唑啉單體,進行自由基聚合後獲得之噁唑啉環的第2位鍵結於聚合物主鏈或間隔基者。
上述X表示含有聚合性碳-碳雙鍵之基,R100~R103彼此獨立表示氫原子、鹵素原子、可具有碳數1~5的分支結構之烷基、碳數6~20的芳基或碳數7~20的芳烷基。
作為噁唑啉單體所具有的含有聚合性碳-碳雙鍵之基,僅含有聚合性碳-碳雙鍵即可,並無特別限定,但以含有聚合性碳-碳雙鍵的鏈狀烴基為佳,例如以乙烯基、烯丙基、異丙烯基等碳數2~8的烯基等為佳。
作為鹵素原子、可具有碳數1~5的分支結構之烷基,可舉出與上述之相同者。
作為碳數6~20的芳基之具體例子,可舉出苯基、二甲苯基、甲苯基、聯苯基、萘基等。
作為碳數7~20的芳烷基之具體例子,可舉出苯甲基、苯基乙基、苯基環己基等。
作為於式(13)所示2位具有含有聚合性碳-碳雙鍵之基的噁唑啉單體之具體例子,可舉出2-乙烯基-2-噁唑啉、2-乙烯基-4-甲基-2-噁唑啉、2-乙烯基-4-乙基-2-噁唑啉、2-乙烯基-4-丙基-2-噁唑啉、2-乙烯基-4-丁基-2-噁唑啉、2-乙烯基-5-甲基-2-噁唑啉、2-乙烯基-5-乙基- 2-噁唑啉、2-乙烯基-5-丙基-2-噁唑啉、2-乙烯基-5-丁基-2-噁唑啉、2-異丙烯基-2-噁唑啉、2-異丙烯基-4-甲基-2-噁唑啉、2-異丙烯基-4-乙基-2-噁唑啉、2-異丙烯基-4-丙基-2-噁唑啉、2-異丙烯基-4-丁基-2-噁唑啉、2-異丙烯基-5-甲基-2-噁唑啉、2-異丙烯基-5-乙基-2-噁唑啉、2-異丙烯基-5-丙基-2-噁唑啉、2-異丙烯基-5-丁基-2-噁唑啉等,由獲得容易性等觀點來看,以2-異丙烯基-2-噁唑啉為佳。
又,考慮使用水系溶劑調製含有CNT之組成物時,噁唑啉聚合物以水溶性者為佳。
如此水溶性噁唑啉聚合物亦可為上述式(13)所示噁唑啉單體之均聚物,但欲使其對水的溶解性更提高,將上述噁唑啉單體與具有親水性官能基之(甲基)丙烯酸酯系單體的至少2種單體進行自由基聚合所得者為佳。
作為具有親水性官能基之(甲基)丙烯酸系單體的具體例子,可舉出(甲基)丙烯酸、丙烯酸2-羥基乙基、丙烯酸甲氧基聚乙二醇、丙烯酸與聚乙二醇之單酯化物、丙烯酸2-胺基乙基及其鹽、甲基丙烯酸2-羥基乙基、甲基丙烯酸甲氧基聚乙二醇、甲基丙烯酸與聚乙二醇之單酯化物、甲基丙烯酸2-胺基乙基及其鹽、(甲基)丙烯酸鈉、(甲基)丙烯酸銨、(甲基)丙烯腈、(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-(2-羥基乙基)(甲基)丙烯醯胺、苯乙烯磺酸鈉等,這些可單獨下使用,亦可組合2種以上使用。彼等中,以(甲基)丙烯 酸甲氧基聚乙二醇、(甲基)丙烯酸與聚乙二醇之單酯化物為佳。
又,在不會對噁唑啉聚合物之CNT分散能有著壞影響之範圍下,可併用上述噁唑啉單體及具有親水性官能基之(甲基)丙烯酸系單體以外的其他單體。
作為其他單體之具體例子,可舉出(甲基)丙烯酸甲基、(甲基)丙烯酸乙基、(甲基)丙烯酸丁基、(甲基)丙烯酸2-乙基己基、(甲基)丙烯酸硬脂基、(甲基)丙烯酸全氟乙基、(甲基)丙烯酸苯基等(甲基)丙烯酸酯單體;乙烯、丙烯、丁烯、戊烯等α-烯烴系單體;氯化乙烯基、氯化亞乙烯基、氟化乙烯基等鹵烯烴系單體;苯乙烯、α-甲基苯乙烯等苯乙烯系單體;乙酸乙烯酯、丙酸乙烯酯等羧酸乙烯基酯系單體;甲基乙烯基醚、乙基乙烯基醚等乙烯基醚系單體等,這些各可單獨下使用,亦可組合2種以上後使用。
對於在本發明所使用的噁唑啉聚合物之製造上使用的單體成分,其中噁唑啉單體之含有率由可進一步提高所得之噁唑啉聚合物的CNT分散能之觀點來看,以10質量%以上為佳,以20質量%以上為較佳,以30質量%以上為更佳。且,單體成分中之噁唑啉單體的含有率上限值為100質量%,此時可得到噁唑啉單體之均聚物。
另一方面,由進一步提高所得之噁唑啉聚合物的水溶性之觀點來看,單體成分中之具有親水性官能基之(甲基)丙烯酸系單體的含有率以10質量%以上為佳,20質 量%以上為較佳,30質量%以上為更佳。
又,單體成分中之其他單體的含有率如上述,其為對所得之噁唑啉聚合物的CNT分散能不會產生影響的範圍,又依據該種類為相異,故無法一概並論而決定,但以5~95質量%為佳,較佳為10~90質量%的範圍做適當設定即可。
噁唑啉聚合物的平均分子量並無特別限定,但重量平均分子量以1,000~2,000,000為佳,以2,000~1,000,000為較佳。
可在本發明中使用的噁唑啉聚合物為,將上述單體可藉由一直以來公知的自由基聚合進行合成,但亦可以市售品方式而獲得,作為如此市售品,例如可舉出EpocroxWS-300((股)日本觸媒製之固體成分濃度10質量%、水溶液)、EpocroxWS-700((股)日本觸媒製之固體成分濃度25質量%、水溶液)、EpocroxWS-500((股)日本觸媒製之固體成分濃度39質量%、水/1-甲氧基-2-丙醇溶液)、Poly(2-ethyl-2-oxazoline)(Aldrich)、Poly(2-ethyl-2-oxazoline)(AlfaAesar)、Poly(2-ethyl-2-oxazoline)(VWR International,LLC)等。
且,作為溶液而販賣時,可直接使用,亦可以作為目的之溶劑進行取代後使用。
在本發明所使用的含有CNT之組成物中,CNT與分散劑的混合比率為質量比下可在1,000:1~1: 100之程度。
又,組成物中之分散劑的濃度若為可將CNT分散於溶劑的濃度即可,並無特別限定,但在組成物中以0.001~30質量%程度者為佳,以0.002~20質量%程度者為較佳。
且,於組成物中之CNT的濃度係取決於作為目的之底漆層的每單位面積重量或被要求的機械性、電性、熱特性等而變化者,又至少CNT的一部分進行孤立分散,僅可在本發明所規定的每單位面積重量製作底漆層,即可任意者,但於組成物中以0.0001~30質量%程度者為佳,以0.001~20質量%程度者為較佳,以0.001~10質量%程度者為更佳。
且,於本發明所使用的含有CNT之組成物,亦可含有與所使用的分散劑引起交聯反應的交聯劑或可自身交聯的交聯劑。這些交聯劑可溶解於所使用的溶劑者為佳。
作為三芳基胺系高分支聚合物的交聯劑,例如可舉出三聚氰胺系、取代尿素系或這些聚合物系交聯劑等,這些交聯劑可各單獨使用或混合2種以上後使用。且,較佳為具有至少2個交聯形成取代基之交聯劑,可舉出CYMEL(註冊商標)、甲氧基甲基化乙二醇脲、丁氧基甲基化乙二醇脲、羥甲基化乙二醇脲、甲氧基甲基化三聚氰胺、丁氧基甲基化三聚氰胺、羥甲基化三聚氰胺、甲氧基甲基化苯並胍胺、丁氧基甲基化苯並胍胺、羥甲基化苯並胍胺、 甲氧基甲基化尿素、丁氧基甲基化尿素、羥甲基化尿素、甲氧基甲基化硫脲、甲氧基甲基化硫脲、羥甲基化硫脲等化合物及這些化合物之縮合體例子。
作為噁唑啉聚合物的交聯劑,例如僅為具有2個以上具有與羧基、羥基、硫醇基、胺基、亞磺醯酸基、環氧基等噁唑啉基之反應性的官能基之化合物即可,並無特別限定,具有2個以上羧基之化合物為佳。尚且,亦可將含有下述官能基的化合物作為交聯劑使用,也就是在薄膜形成時之加熱或在酸觸媒之存在下產生上述官能基而引起交聯反應之官能基,例如羧酸之鈉鹽、鉀鹽、鋰鹽、銨鹽等。
作為引起與噁唑啉基之交聯反應的化合物之具體例子,可舉出在酸觸媒的存在下發揮交聯反應性之稱為聚丙烯酸或其共聚物等合成高分子及羧基甲基纖維素或海藻酸之天然高分子的金屬鹽、藉由加熱發揮交聯反應性的上述合成高分子及天然高分子之銨鹽等,特別以在酸觸媒存在下或加熱條件下發揮交聯反應性的聚丙烯酸鈉、聚丙烯酸鋰、聚丙烯酸銨、羧基甲基纖維素鈉、羧基甲基纖維素鋰、羧基甲基纖維素銨等為佳。
與如此噁唑啉基引起交聯反應的化合物,可作為市售品而獲得,作為如此市售品,例如可舉出聚丙烯酸鈉(和光純藥工業(股)製之聚合度2,700~7,500)、羧基甲基纖維素鈉(和光純藥工業(股)製)、海藻酸鈉(關東化學(股)製之鹿1級)、Aaron A-30(聚丙烯酸 銨、東亞合成(股)製之固體成分濃度32質量%、水溶液)、DN-800H(羧基甲基纖維素銨、大賽璐精細化工(股)製)海藻酸銨((股)kimica製)等。
作為進行自身交聯的交聯劑,例如可舉出對於羥基為醛基、環氧基、乙烯基、異氰酸酯基、烷氧基、對羧基為醛基、胺基、異氰酸酯基、環氧基、對胺基為異氰酸酯基、醛基等彼此反應之交聯性官能基存在於同一分子內的化合物、或具有以相同交聯性官能基彼此進行反應的羥基(脫水縮合)、巰基(二硫化物結合)、酯基(克萊森縮合)、矽烷醇基(脫水縮合)、乙烯基、丙烯酸基等化合物等。
作為進行自身交聯的交聯劑之具體例子,可舉出在酸觸媒之存在下發揮交聯反應性之多官能丙烯酸酯、四烷氧基矽烷、具有封閉型異氰酸酯基之單體及至少具有1個羥基、羧酸、胺基之單體的嵌段共聚物等。
進行如此自身交聯之交聯劑,可以市售品方式獲得,作為如此市售品,例如在多官能丙烯酸酯,可舉出A-9300(乙氧基化異氰脲酸三丙烯酸酯、新中村化學工業(股)製)、A-GLY-9E(Ethoxylated glycerine triacrylate(EO9mol)、新中村化學工業(股)製)、A-TMMT(季戊四醇四丙烯酸酯、新中村化學工業(股)製)、在四烷氧基矽烷可舉出四甲氧基矽烷(東京化成工業(股)製)、四乙氧基矽烷(東橫化學(股)製)、具有封閉型異氰酸酯基之聚合物中可舉出ELASTRON系列 E-37、H-3、H38、BAP、NEW BAP-15、C-52、F-29、W-11P、MF-9、MF-25K(第一工業製藥(股)製)等。
這些交聯劑之添加量可依據所使用的溶劑、使用的基材、所要求的黏度、所要求的膜形狀等做進一步的變動,但對於分散劑為0.001~80質量%,以0.01~50質量%為佳,較佳為0.05~40質量%。雖這些交聯劑有時會因自身的縮合而引起交聯反應,但其為與分散劑引起交聯反應者,於分散劑中存在交聯性取代基時,可藉由這些交聯性取代基促進交聯反應。
在本發明中,作為欲促進交聯反應的觸媒,可添加p-甲苯磺酸、三氟甲磺酸、吡啶鎓p-甲苯磺酸、水楊酸、磺基水楊酸、檸檬酸、安息香酸、羥基安息香酸、萘羧酸等酸性化合物及/或2,4,4,6-四溴環己二烯酮、安息香甲苯磺酸酯、2-硝基苯甲基甲苯磺酸酯、有機磺酸烷基酯等熱酸產生劑。
觸媒之添加量對於CNT分散劑而言為0.0001~20質量%,以0.0005~10質量%為佳,較佳為0.001~3質量%。
欲形成底漆層之含有CNT的組成物之調製法,並無特別限定,可將CNT及溶劑、以及視必要使用的分散劑、基質聚合物及交聯劑做任意順序的混合而調製出分散液即可。
此時,藉由將混合物進行分散處理之較佳處理,可進一步提高CNT的分散比例。作為分散處理可舉出進行機 械性處理之球磨機、珠磨機、噴射研磨機等的濕式處理或使用水浴型或探針型聲波儀的超音波處理,特別以使用噴射研磨機的濕式處理或超音波處理為佳。
分散處理的時間為任意,但以1分鐘至10小時程度為佳,以5分鐘至5小時程度為較佳。此時,視必要可施予加熱處理。
且,使用交聯劑及/或基質高分子時,可在調製由分散劑、CNT及溶劑所成的混合物後再添加。
可將以上說明的含有CNT之組成物塗布於集電基板的至少一面,將此經自然或加熱乾燥,形成底漆層而製造出本發明之底漆箔。
此時,將含有CNT之組成物塗布於集電基板之面全體,將底漆層形成於集電基板面全面者為佳。
本發明中,將底漆箔與後述之金屬片(Metal tab)在箔之底漆層部分藉由超音波熔接等熔接可有效率地接合,故集電基板之每一面的底漆層之每單位面積重量為0.1g/m2以下,以0.09g/m2以下為佳,較佳為未達0.05g/m2
另一方面,欲可再現性良好地得到保持底漆層之功能的優良特性之電池,將集電基板之每一面的底漆層之每單位面積重量設定在0.001g/m2以上為佳,較佳為0.005g/m2以上,更佳為0.01g/m2以上,特佳為0.015g/m2以上。
又,底漆層之厚度若滿足上述每單位面積重量者即可並無特別限定,但若考慮到熔接效率及減低所得之裝置的 內部電阻,以0.01~10μm為佳。
本發明中之底漆層的每單位面積重量為對於底漆層之面積(m2)的底漆層之質量(g)比例,底漆層形成為圖型狀時,該面積僅為底漆層之面積,未含在形成為圖型狀的底漆層之間露出的集電基板之面積。
底漆層的質量,例如自底漆箔切出適當尺寸的試驗卡片(tab),測定該質量W0後,自底漆箔剝離底漆層,測定剝離底漆層後之質量W1,自該差(W0-W1)所算出或者預先測定集電基板之質量W2,其後測定形成底漆層之底漆箔的質量W3,可由該差(W3-W2)算出。
作為剝離底漆層之方法,例如可舉出於溶解或膨潤底漆層的溶劑中,浸漬底漆層,再以布等擦拭底漆層等方法。
每單位面積重量可由公知法調整。例如藉由塗佈形成底漆層時,可藉由變化欲形成底漆層的塗布液(含有CNT之組成物)之固體成分濃度、塗佈次數、塗布機之塗布液投入口的清除率(clearance)等而做調整。
若欲增加每單位面積重量時,可提高固體成分濃度,或增加塗佈次數,或增大清除率。若欲減少每單位面積重量時,降低固體成分濃度,或減少塗佈次數,或減少清除率
作為集電基板,可適宜地選擇一直以來作為能量儲存裝置電極之集電基板所使用者,例如可使用銅、鋁、鎳、金、銀及這些合金,或可使用碳材料、金屬氧化 物、導電性高分子等薄膜,使用超音波熔接等熔接製作電極結構體時,使用由銅、鋁、鎳、金、銀及這些合金所成的金屬箔為佳。
集電基板的厚度並無特別限定,但在本發明中以1~100μm為佳。
作為含有CNT之組成物的塗佈方法,例如可舉出旋轉塗佈法、浸塗法、流動塗布法、噴墨法、噴霧塗布法、棒塗佈法、凹版塗佈法、狹縫塗布法、輥塗佈法、柔版印刷法、轉印印刷法、刷毛塗布、刮刀塗佈法、氣刀塗佈法等,由作業效率等觀點來看,以噴墨法、鑄造方法、浸塗法、棒塗佈法、刮刀塗佈法、輥塗佈法、凹版塗佈法、柔版印刷法、噴霧塗布法為佳。
加熱乾燥時的溫度亦可為任意者,以50~200℃程度為佳,以80~150℃程度為較佳。
本發明之能量儲存裝置電極可在上述底漆箔之底漆層上,形成活性物質層而製作。
其中,作為活性物質,可使用一直以來使用於能量儲存裝置電極的各種活性物質。
例如,若為鋰二次電池或鋰離子二次電池的情況時,作為正極活性物質,可使用可對鋰離子吸附.離脫之硫屬化合物或含有鋰離子之硫屬化合物、聚負離子系化合物、硫單體及其化合物等。
作為如此可吸附脫離鋰離子的硫屬化合物,例如可舉出FeS2、TiS2、MoS2、V2O6、V6O13、MnO2等。
作為含有鋰離子的硫屬化合物,例如可舉出LiCoO2、LiMnO2、LiMn2O4、LiMo2O4、LiV3O8、LiNiO2、LixNiyM1-yO2(但,M表示選自Co、Mn、Ti、Cr,V、Al、Sn、Pb、及Zn的至少1種以上金屬元素,0.05≦x≦1.10、0.5≦y≦1.0)等。
作為聚負離子系化合物,例如可舉出LiFePO4等。
作為硫化合物,例如可舉出Li2S、魯班酸(Rubean acid)等。
另一方面,作為構成上述負極之負極活性物質,可使用鹼金屬、鹼合金、選自可吸附儲存.釋出鋰離子的周期表4~15族的元素之至少1種單體、氧化物、硫化物、氮化物或可逆地吸附儲存.釋出鋰離子的碳材料。
作為鹼金屬,可舉出Li、Na、K等,作為鹼金屬合金,例如可舉出Li-Al、Li-Mg、Li-Al-Ni、Na-Hg、Na-Zn等。
作為選自吸附儲存釋出鋰離子的周期表4~15族之元素的至少1種元素的單體,例如可舉出矽或錫、鋁、鋅、砒素等。
作為相同氧化物,例如可舉出錫矽氧化物(SnSiO3)、鋰氧化鉍(Li3BiO4)、鋰氧化鋅(Li2ZnO2)、鋰氧化鈦(Li4Ti5O12)等。
作為同樣硫化物,可舉出鋰硫化鐵(LixFeS2(0≦x≦3))、鋰硫化銅(LixCuS(0≦x≦3))等。
作為同樣氮化物,可舉出含有鋰之過渡金屬氮化物, 具體可舉出LixMyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、鋰鐵氮化物(Li3FeN4)等。
作為可將鋰離子可逆地吸附儲存.釋出的碳材料,可舉出石墨、碳黑、焦碳、玻璃狀碳、碳繊維、碳奈米試管或這些燒結體等。
又,雙電層電容器的情況,作為活性物質可使用碳質材料。
作為該碳質材料,可舉出活性碳等,例如可舉出將酚樹脂經碳化後經賦活處理所得之活性碳。
活性物質層可係將以上所說明的活性物質、黏合劑聚合物及視必要含有溶劑之電極泥漿,塗布於底漆層上,經自然或加熱乾燥後所形成者。
活性物質層的形成部位可配合所使用的裝置之單元形態等而適宜設定即可,可在底漆層之表面全部或其一部分,但若目的為以使用於層合單元等,作為將金屬片(Metal tab)與電極藉由超音波熔接等熔接進行接合的電極結構體使用時,則為了殘留熔接部,於底漆層的表面一部分塗布電極泥漿形成活性物質層者為佳。特別為在層合單元用途上,對於留下底漆層的周緣以外之部分進行電極泥漿塗佈而形成活性物質層者為佳。
作為黏合劑聚合物,可使用適宜地選自公知材料而使用,例如可舉出聚氟化亞乙烯基(PVdF)、聚乙烯吡咯啶酮、聚四氟伸乙基、四氟乙烯-六氟丙烯共聚物、氟化亞乙烯基-六氟丙烯共聚物〔P(VDF-HFP)〕、 氟化亞乙烯基-氯化3氟化乙烯共聚物〔P(VDF-CTFE)〕、聚乙烯醇、聚醯亞胺、乙烯-丙烯-二烯三元共聚物、苯乙烯-丁二烯橡膠、羧基甲基纖維素(CMC)、聚丙烯酸(PAA)、聚苯胺等導電性高分子等。
且,黏合劑聚合物的添加量對於活性物質100質量份而言,以0.1~20質量份為佳,特佳為1~10質量份。
作為溶劑,可舉出以上述含有CNT之組成物所例示的溶劑,再由彼等中配合黏合劑之種類而做適宜選擇即可,但在PVdF等非水溶性黏合劑的情況時,以NMP為佳,PAA等水溶性的黏合劑時以水為佳。
且,上述電極泥漿可含有導電助劑。作為導電助劑,例如可舉出碳黑、灶黑、乙炔黑、木炭晶須、碳繊維、天然黑鉛、人造黑鉛、氧化鈦、氧化釕、鋁、鎳等。
作為電極泥漿的塗佈方法,可舉出與上述含有CNT之組成物之相同方法。
又,加熱乾燥時的溫度亦為任意,但以50~400℃程度為佳,以80~150℃程度為較佳。
又,電極可視必要進行噴霧。噴霧法可使用一般所採用的方法,但特別以模壓機法或滾筒噴霧法為佳。在滾筒噴霧法之噴霧壓並無特別限定,以0.2~3ton/cm為佳。
有關本發明之能量儲存裝置為具備上述能量儲存裝置電極者,更具體為具備至少一對正負極、介在此 等各極間之分離器與電解質而構成,正負極的至少一方係由上述能量儲存裝置電極所構成。
該能量儲存裝置因作為電極使用上述能量儲存裝置電極而係其特徴,故其他裝置構成構件之分離器或電解質等可從公知材料適當選擇而使用。
作為分離器,例如可舉出纖維素系分離器、聚烯烴系分離器等。
作為電解質,可為液體、固體中任一種,又水系、非水系中任一種亦可,但本發明之能量儲存裝置電極在應用於使用非水系電解質的裝置時,可發揮實用上充分的性能。
作為非水系電解質,可舉出將電解質鹽溶解於非水系有機溶劑所成的非水系電解液。
作為電解質鹽,可舉出4氟化硼酸鋰、6氟化磷酸鋰、過氯酸鋰、三氟甲磺酸鋰等鋰鹽;四甲基銨六氟磷酸鹽、四乙基銨六氟磷酸鹽、四丙基銨六氟磷酸鹽、甲基三乙基銨六氟磷酸鹽、四乙基銨四氟硼酸鹽、四乙基銨高氯酸鹽等4級銨鹽、鋰雙(三氟甲烷磺醯基)醯亞胺、鋰雙(氟磺醯基)醯亞胺等鋰醯亞胺等。
作為非水系有機溶劑,可舉出丙烯碳酸酯、乙烯碳酸酯、丁烯碳酸酯等烯碳酸酯;二甲基碳酸酯、甲基乙基碳酸酯、二乙基碳酸酯等二烷基碳酸酯;乙腈等腈類、二甲基甲醯胺等醯胺類等。
能量儲存裝置的形態並無特別限定,可採用 圓筒型、扁平捲回角型、複合角型、銅板型、扁平捲回層合型、複合層合型等一直以來公知的各種形態之單元。適用於銅板型時,可將上述本發明之能量儲存裝置電極沖孔成所定圓盤狀後使用。
例如鋰離子二次電池為於銅板單元的墊圈與間隔物進行熔接的蓋子上,設置所定片數的沖孔成所定形狀的鋰箔,於其上面,重疊含浸電解液的同形狀分離器,且自上面將活性物質層於下面而重疊本發明之能量儲存裝置電極,載置外殼與密封墊,以銅板單元壓膠機進行密封而製作。
應用於層合層合型時,可使用在活性物質層形成於底漆層表面之一部分的電極中,於形成有底漆層且未形成活性物質層的部分(熔接部),與金屬片(Metal tab)進行熔接所得之電極結構體。
此時,構成電極結構體之電極可為一片亦可為複數片,一般為使用正負極皆為複數片者。
欲形成正極的複數片電極,與欲形成負極的複數片電極板呈一片一片交互重疊者為佳,此時於正極與負極之間介著上述分離器者為佳。
金屬片(Metal tab)即使在複數片電極的最外側電極之熔接部進行熔接,複數片電極之中,於任意隣接的2片電極之熔接部間也可夾著金屬片(Metal tab)而熔接。
金屬片(Metal tab)之材質僅一般使用於能量儲存裝置者即可,並無特別限定,例如可舉出鎳、鋁、 鈦、銅等金屬;不銹鋼、鎳合金、鋁合金、鈦合金、銅合金等合金等,若考慮到熔接效率時,含有選自鋁、銅及鎳的至少1種金屬所構成者為佳。
金屬片(Metal tab)的形狀以箔狀為佳,該厚度以0.05~1mm程度為佳。
熔接方法可使用在金屬彼此熔接時所使用的公知方法,作為該具體例子,可舉出TIG熔接、點熔接、雷射熔接、超音波熔接等,但如上述,本發明之底漆層係成為特別適合於超音波熔接的每單位面積重量,故以超音波熔接進行電極與金屬片(Metal tab)的接合者為佳。
作為超音波熔接之方法,可舉出例如將複數片電極配置於砧座和喇叭之間,於熔接部配置金屬片(Metal tab)施予超音波後一次熔接的方法,或將電極彼此先進行熔接後,再熔接金屬片(Metal tab)的方法等。
本發明中的任一方法,不僅使金屬片(Metal tab)與電極在上述熔接部進行熔接,亦可使複數片電極彼此在形成底漆層且未形成活性物質層的部分進行相互超音波熔接。
熔接時的壓力、頻率數、輸出、處理時間等並無特別限定,考慮到所使用的材料或底漆層之每單位面積重量等而做適宜設定即可。
將如上述所製作的電極結構體收納於層合包中,注入上述電解液後,藉由熱封後得到層合單元。
如此所得之能量儲存裝置係構成為,具有具備金屬片 (Metal tab)、一片或複數片電極而構成之電極結構體的至少一個,電極為具有集電基板、形成於該集電基板的至少一面之底漆層、形成於該底漆層表面之一部分的活性物質層,底漆層為含有CNT,且該集電基板之每一面的每單位面積重量為0.1g/m2以下,若使用複數片電極時,這些電極會在形成底漆層且未形成活性物質層的部分相互超音波熔接,同時電極之中的至少一片會在形成底漆層且未形成活性物質層的部分與金屬片(Metal tab)進行超音波熔接。
[實施例]
以下舉出實施例及比較例,更具體說明本發明,但本發明並未限定於下述實施例。且所使用的測定裝置如以下所示。
(1)探針型超音波照射裝置(分散處理)
裝置:Hielscher Ultrasonics公司製UIP1000
(2)線圈(wire)棒塗布機(薄膜製作)
裝置:股份有限公司SMT製PM-9050MC
(3)超音波熔接機(超音波熔接試驗)
裝置:日本Emerson(股)製之2000Xea 40:0.8/40MA-XaeStand
(4)充放電測定裝置(二次電池評估)
裝置:北斗電工股份有限公司製HJ1001SM8A
(5)Micrometer(黏合劑、活性層之膜厚測定)
裝置:股份有限公司Mitutoyo製IR54
(6)均勻分散機(電極泥漿之混合)
裝置:T.K.Robo Mix(附有均勻分散機2.5型( 32))(Primics(股)製)
(7)薄膜旋轉型高速混合機(電極泥漿之混合)
裝置:Filmix40型(Primics(股)製)
(8)自轉.公轉混合機(電極泥漿之脫泡)
裝置:Surprised Kentaro(ARE-310)((股)Thinky製)
(9)滾筒噴霧裝置(電極之壓縮)
裝置:超小型卓上熱滾筒噴霧機HSR-60150H(寶泉(股)製)
〔1〕底漆箔之製造
〔比較例1-1〕
將作為分散劑使用以與國際公開第2014/042080號的合成例2之相同方法進行合成的下述式所示PTPA-PBA-SO3H0.50g溶解於分散媒之2-丙醇43g及水6.0g,對該溶液中添加MWCNT(Nanocyl公司製“NC7000”外徑10nm)0.50g。於該混合物使用探針型超音波照射裝置在室溫(約25℃)進行30分鐘超音波處理,得到無沈澱物且MWCNT均勻分散的黑色含有MWCNT之分散液。
於所得之含有MWCNT之分散液50g中,加入含有聚丙烯酸(PAA)的水溶液之Aaron A-10H(東亞合成 (股)、固體成分濃度25.8質量%)3.88g與2-丙醇46.12g並攪拌,得到底漆液A1。
將所得之底漆液A1於集電基板之鋁箔(厚度20μm)上以線圈棒塗布機(OSP13、濕膜厚13μm)均勻地展開後,在120℃進行20分乾燥後形成底漆層,製作成底漆箔B1。準備20片切出的底漆箔5×10cm者,測定質量後,以浸漬2-丙醇與水之1:1(質量比)混合液的紙擦拭底漆層,而測定落下的金屬箔質量,由擦拭落下的前後質量差所算出的底漆層之每單位面積重量為0.167g/m2
且對於所得之底漆箔B1的反對側之面亦同樣地塗布底漆液A1,並乾燥後,製作出於鋁箔兩面形成底漆層的底漆箔C1。
〔實施例1-1〕
將在比較例1-1所製作的底漆液A1以2-丙醇稀釋至2倍,得到底漆液A2。
使用所得之底漆液A2以外,與比較例1-1同樣地,製作出底漆箔B2及C2,算出底漆箔B2之每單位面積重量為0.088g/m2
〔實施例1-2〕
將在比較例1-1所製作的底漆液A1以2-丙醇稀釋至4倍後得到底漆液A3。
使用所得之底漆液A3以外,與比較例1-1同樣地製作出底漆箔B3及C3,算出底漆箔B3之每單位面積重量為0.042g/m2
〔實施例1-3〕
將在比較例1-1所製作的底漆液A1以2-丙醇稀釋至6倍,得到底漆液A4。
使用所得之底漆液A4以外,與比較例1-1同樣地,製作出底漆箔B4及C4,算出底漆箔B4之每單位面積重量為0.032g/m2
〔比較例1-2〕
混合作為分散劑之含有噁唑啉聚合物的水溶液之EpocroxWS-700((股)日本觸媒製之固體成分濃度25質量%、重量平均分子量4×104、噁唑啉基量4.5mmol/g)2.0g與蒸餾水47.5g,進一步對此混合MWCNT0.5g。對於所得之混合物,使用探針型超音波照射裝置在室溫下進 行30分鐘超音波處理,得到無沈澱物而均勻分散MWCNT的黑色含有MWCNT的分散液。
於所得之含有MWCNT的分散液50g中,加入含有聚丙烯酸銨(PAA-NH4)之水溶液的Aaron A-30(東亞合成(股)、固體成分濃度31.6質量%)0.7g、海藻酸鈉(海藻酸Na)(關東化學(股)、鹿1級)0.2g與蒸餾水49.1g並攪拌後得到底漆液A5。
將所得之底漆液A5於集電基板之鋁箔(厚度20μm)以線圈棒塗布機(OSP13、濕膜厚13μm)進行均勻展開後,在120℃進行20分鐘乾燥後形成底漆層,製作出底漆箔B5。準備20片所切出的底漆箔5×10cm者,測定質量後,以浸漬水的紙擦拭底漆層,測定所落下的金屬箔的質量,由擦拭落下前後的質量差算出底漆層之每單位面積重量的結果為0.113g/m2
進一步對所得之底漆箔B5的反對側之面亦同樣地塗布底漆液A5並乾燥後,製作出於鋁箔的兩面形成底漆層的底漆箔C5。
〔實施例1-4〕
使用線圈棒塗布機(OSP4、濕膜厚4μm)以外,與比較例1-2同樣地,製作出底漆箔B6及C6,算出底漆箔B6之每單位面積重量為0.035g/m2
〔實施例1-5〕
使用線圈棒塗布機(OSP3、濕膜厚3μm)以外,與比較例1-2同樣地,製作出底漆箔B7及C7,算出底漆箔B7的每單位面積重量為0.027g/m2
〔實施例1-6〕
使用線圈棒塗布機(OSP2、濕膜厚2μm)以外,與比較例1-2同樣地,製作出底漆箔B8及C8,算出底漆箔B8之每單位面積重量為0.016g/m2
〔比較例1-3〕
取代MWCNT使用乙炔黑(AB、電氣化學工業(股)製之Denka Block)以外,與比較例1-1同樣地,製作出底漆液A9、底漆箔B9及C9,算出底漆箔B9之每單位面積重量為0.166g/m2
〔比較例1-4〕
取代MWCNT使用AB以外,與實施例1-1同樣地,製作出底漆液A10、底漆箔B10及C10,算出底漆箔B10之每單位面積重量為0.081g/m2
〔比較例1-5〕
取代MWCNT使用AB以外,與實施例1-2同樣地,製作出底漆液A11、底漆箔B11及C11,算出底漆箔B11之每單位面積重量為0.036g/m2
〔比較例1-6〕
取代MWCNT使用AB以外,與實施例1-3同樣地,製作出底漆液A12、底漆箔B12及C12,算出底漆箔B12之每單位面積重量為0.026g/m2
〔比較例1-7〕
取代MWCNT使用AB以外,與比較例1-2同樣地,製作出底漆箔B13及C13,算出底漆箔B13的每單位面積重量為0.146g/m2
〔比較例1-8〕
取代MWCNT使用AB以外,與實施例1-4同樣地,製作出底漆箔B14及C14,算出底漆箔B14的每單位面積重量為0.052g/m2
〔比較例1-9〕
取代MWCNT使用AB以外,與實施例1-5同樣地,製作出底漆箔B15及C15,底漆箔B15的每單位面積重量為0.044g/m2
〔比較例1-10〕
取代MWCNT使用AB以外,與實施例1-6同樣地,製作出底漆箔B16及C16,底漆箔B16的每單位面積重量 為0.029g/m2
〔超音波熔接試驗〕
對於以實施例1-1~1-6及比較例1-1~1-10所製作之各底漆箔,藉由下述方法進行超音波熔接試驗。
使用日本Emerson(股)的超音波熔接機(2000Xea,40:0.8/40MA-XaeStand),於砧座上之鋁卡片(tab)(寶泉(股)製之厚度0.1mm、寬5mm)上,層合5片於兩面形成底漆層的底漆箔,自上面對著喇叭賦予超音波振動而進行熔接。熔接面積為3×12mm,熔接後接觸於喇叭底漆箔並無破損,欲使卡片(tab)與底漆箔剝離時的箔片有破損時為○、在卡片(tab)與箔之間剝離時為×。結果如表1所示。
如表1所示,有關每單位面積重量超過0.1g/m2者,在卡片(tab)-底漆箔之間的熔接強度並非充分,在卡片(tab)-底漆箔之間會剝離,但每單位面積重量為0.1g/m2以下者為在卡片(tab)-底漆箔之間的熔接強度充分,且即使欲在卡片(tab)-底漆箔之間使其剝離,底漆箔會破損。由以上得知,欲將底漆箔與金屬片(Metal tab)以充分的強度進行熔接,底漆層之每單位面積重量必須設定在0.1g/m2以下。
〔比較例1-11〕
取代鋁箔使用銅箔(厚度15μm)以外,與比較例1-1同樣地,製作出底漆箔C16。
〔實施例1-7〕
取代鋁箔使用銅箔(厚度15μm)以外,與實施例1-1同樣地,製作出底漆箔C17。
〔實施例1-8〕
取代鋁箔使用銅箔(厚度15μm)以外,與實施例1-2同樣地,製作出底漆箔C18。
〔實施例1-9〕
取代鋁箔使用銅箔(厚度15μm)以外,與實施例1-3同樣下,製作出底漆箔C19。
〔超音波熔接試驗〕
對於在實施例1-7~1-9及比較例1-11所製作的各底漆箔,使用鎳鍍銅片(寶泉(股)製之厚度0.1mm、寬5mm)以外,藉由與上述同樣方法,進行超音波熔接試驗。熔接後接觸於喇叭的底漆箔並無破損,欲使卡片(tab)與底漆箔剝離時箔片有破損時為○,在卡片(tab)與箔之間剝離時為×。結果如表2所示。
如表2所示已知,作為集電基板使用銅箔時,欲使底漆箔與金屬片(Metal tab)在充分強度下進行熔接,底漆層的每單位面積重量亦必須設定在0.1g/m2以下。
〔2〕將錳酸鋰作為正極的鋰離子二次電池之製作
〔比較例2-1〕
將作為活性物質的錳酸鋰(LMO、(股)豐島製作所製)26.1g、作為黏合劑的聚氟化亞乙烯基(PVdF)之NMP溶液(12質量%、(股)Kureha、KF聚合物 L#1120)19.3g、作為導電助劑之AB0.58g及N-甲基吡咯啶酮(NMP)3.99g以均勻分散機在3,500rpm下進行1分鐘混合。其次,使用薄膜旋轉型高速混合機以周速20m/秒進行60秒的混合處理,進一步再以自轉.公轉混合機在1000rpm進行2分鐘脫泡後,製作出電極泥漿(固體成分濃度58質量%、LMO:PVdF:AB=90:8:2(質量比))。
將所得之電極泥漿在以比較例1-1製作之、於單面上塗布底漆層的底漆箔B1之底漆層全面進行均勻(濕膜厚100μm)展開後,在80℃進行30分鐘乾燥,其次在120℃進行30分乾燥後於底漆層上形成活性物質層,再以滾筒噴霧機進行壓著後,製作出活性物質層之厚度30μm的電極D1。
將所得之電極D1沖孔成直徑10mm之圓盤狀,測定質量後,在100℃進行15小時真空乾燥後,移至裝滿氬氣之手套箱中。
於2032型銅板單元(寶泉(股)製)之墊圈與間隔物經熔接的蓋子,設置重疊6片沖孔成直徑14mm的鋰箔(本荘化學(股)製之厚度0.17mm)者,於該上面,浸漬於電解液(Kishida化學(股)製之乙烯碳酸酯:二乙基碳酸酯(1:1、體積比),含有電解質之鋰六氟磷酸鹽1mol/L)24小時以上,疊上一片沖孔成直徑16mm的分離器(Celgard(股)製之2400)。進一步自上面,將塗布活性物質之面朝下,重疊電極D1。滴入一滴電解液後, 載上外殼與密封墊,以銅板單元壓膠機進行密封。其後24小時靜置後作成試驗用二次電池。
〔實施例2-1〕
使用在實施例1-1所製作的底漆箔B2以外,與比較例2-1同樣地,製作出電極D2及試驗用之二次電池。
〔實施例2-2〕
使用在實施例1-2所製作的底漆箔B3以外,與比較例2-1同樣地,製作出電極D3及試驗用之二次電池。
〔實施例2-3〕
使用在實施例1-3所製作的底漆箔B4以外,與比較例2-1同樣地,製作出電極D4及試驗用之二次電池。
〔比較例2-2〕
使用在比較例1-2所製作的底漆箔B5以外,與比較例2-1同樣地,製作出電極D5及試驗用之二次電池。
〔實施例2-4〕
使用在實施例1-4所製作的底漆箔B6以外,與比較例2-1同樣地,製作出電極D6及試驗用之二次電池。
〔實施例2-5〕
使用在實施例1-5所製作的底漆箔B7以外,與比較例2-1同樣地,製作出電極D7及試驗用之二次電池。
〔實施例2-6〕
使用在實施例1-6所製作的底漆箔B8以外,與比較例2-1同樣地,製作出電極D8及試驗用之二次電池。
〔比較例2-3〕
使用在比較例1-3所製作的底漆箔B9以外,與比較例2-1同樣地製作出電極D9及試驗用之二次電池。
〔比較例2-4〕
使用在比較例1-4所製作的底漆箔B10以外,與比較例2-1同樣地,製作出電極D10及試驗用之二次電池。
〔比較例2-5〕
使用在比較例1-5所製作的底漆箔B11以外,與比較例2-1同樣地,製作出電極D11及試驗用之二次電池。
〔比較例2-6〕
使用在比較例1-6所製作的底漆箔B12以外,與比較例2-1同樣地,製作出電極D12及試驗用之二次電池。
〔比較例2-7〕
使用在比較例1-7所製作的底漆箔B13以外,與比較例2-1同樣地,製作出電極D13及試驗用之二次電池。
〔比較例2-8〕
使用在比較例1-8所製作的底漆箔B14以外,與比較例2-1同樣地,製作出電極D14及試驗用之二次電池。
〔比較例2-9〕
使用在比較例1-9所製作的底漆箔B15以外,與比較例2-1同樣下,製作出電極D15及試驗用之二次電池。
〔比較例2-10〕
使用在比較例1-10所製作的底漆箔B16以外,與比較例2-1同樣地,製作出電極D16及試驗用之二次電池。
〔比較例2-11〕
使用無垢鋁箔以外,與比較例2-1同樣地,製作出電極D17及試驗用之二次電池。
對於在上述實施例2-1~2-6及比較例2-1~2-11所製作的鋰離子二次電池,將作為電極之正極的物性以下述條件進行評估。將3C放電時之平均電壓如表3所示。
.電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(將LMO的容量設定在148mAh/g,使每5循環的 放電率上昇後,最後將放電率回至0.5C)
.截止電壓:4.50V-3.00V
.溫度:室溫
可得知對於每單位面積重量為0.1g/m2以下之可超音波熔接的底漆箔,作為碳材料使用AB者中,平均電壓會急速降低,而且依情況比使用無垢之鋁箔的二次電池變得更低電壓,相對於此,在作為碳材料使用MWCNT者中,平均電壓為高,可達成充分低電阻化。
〔3〕將錳酸鋰作為正極之層合單元的製作
〔實施例3-1〕
將作為活性物質之錳酸鋰(LMO、(股)豐島製作製)26.1g、作為黏合劑之聚氟化亞乙烯基(PVdF)的 NMP溶液(12質量%、(股)Kureha、KF聚合物L#1120)19.3g、作為導電助劑之AB0.58g及N-甲基吡咯啶酮(NMP)3.99g以均勻分散機在3,500rpm進行1分鐘混合。其次,使用薄膜旋轉型高速混合機以周速20m/秒進行60秒混合處理,進一步以自轉.公轉混合機,在1000rpm進行2分鐘脫泡後,製作出電極泥漿(固體成分濃度58質量%、LMO:PVdF:AB=90:8:2(質量比))。
將在實施例1-2所製作的於單面塗布底漆層之底漆箔B3切成短邊8cm×長邊20cm的長方形。於該上面,將上述所得的電極泥漿,於短邊兩側殘留1.5cm的中心部以5cm寬度成20cm的帶狀方式進行均勻展開後,在80℃進行30分鐘乾燥,其次在120℃進行30分乾燥後於底漆層上形成活性物質層,再以滾筒噴霧機進行壓著後,製作出活性物質層之厚度30μm的電極片。活性物質之每單位面積重量為沖孔成直徑10mm之圓盤狀後,藉由測定質量而所測定之結果為7.58mg/cm2
對於所得之電極片,使塗布有活性物質層之部位成4cm×5cm,且使上述長邊中之活性物質層未塗佈的部位成為1.5cm×1cm而進行沖孔,作為正極E1。在形成底漆層且未形成活性物質層的部分將鋁卡片(tab)(寬4mm×6.5cm、厚度0.1mm、寶泉(股)製)以超音波熔接機進行熔接。
將作為活性物質之石墨(Gr、日本黑鉛工業(股)製 之CGB-15)11.3g、作為黏合劑之聚丙烯腈系黏合劑的水分散液(14.9質量%之CHENGDU INDIGO POWER SOURCES CO.,LTD、LA-132)3.22g、作為導電助劑的AB0.24g及水15.3g以均勻分散機進行3,500rpm的1分鐘混合。其次,使用薄膜旋回型高速混合機在周速20m/秒下進行60秒的混合處理,再以自轉.公轉混合機在1000rpm進行2分鐘脫泡後,製作出電極泥漿(固體成分濃度40質量%、Gr:LA-132:AB=94:4:2(質量比))。
將無垢的銅箔(厚度18μm)切成短邊8cm×長邊20cm的長方形。於該上面,將上述所得的電極泥漿,於短邊兩側殘留1.5cm之中心部以5cm寬且20cm的帶狀方式均勻地展開後,在80℃進行30分鐘乾燥,其次在120℃進行30分乾燥後於底漆層上形成活性物質層,再以滾筒噴霧機進行壓著後,製作出活性物質層厚度20μm之電極片。活性物質之每單位面積重量藉由沖孔成直徑10mm之圓盤狀,再測定質量所得之結果為3.54mg/cm2
對於所得之電極片,使塗布活性物質層的部位成為4.4cm×5.4cm,且使於上述長邊未塗佈活性物質層的部位成為1.5cm×1cm而進行沖孔,作為負極F1。於未形成活性物質層的部分,將鍍鎳之銅卡片(tab)(寬4mm×6.5cm、厚度0.1mm、寶泉(股)製)以超音波熔接機進行熔接。
欲覆蓋電極塗佈面,將正極E1使用分離器(Celgard (股)製之2400)密封袋子後,將正極E1與負極F1層合成電極塗佈面為對向,於層合薄膜(大日本印刷(股)製)將卡片(tab)進行熱壓著而固定。真空下,在100℃進行9小時乾燥後,移至裝滿氬氣的手套箱中。注入電解液(Kishida化學(股)製之乙烯碳酸酯:二乙基碳酸酯(1:1、體積比),含有電解質之鋰六氟磷酸鹽1mol/L)0.5mL,在0.5氣壓進行20分鐘減壓浸透後,在真空將解放部位進行熱壓著而使其密封後製作出試驗用之層合單元。
〔比較例3-1〕
使用無垢的鋁箔以外,與實施例3-1同樣地,製作出正極E2、負極F2、及試驗用的層合單元。正極及負極之每單位面積重量各為7.35mg/cm2及3.49mg/cm2
對於在上述實施例3-1及比較例3-1所製作的層合單元,以下述條件進行評估。1C放電時的平均電壓及放電容量如表4所示。
.電流:將0.1C定電流充放電進行2循環後,進行0.5C定電流充電,再進行0.5C、3C、5C、10C定電流放電(將LMO的容量作為148mAh/g,提高每3循環之放電率)
.截止電壓:4.50V-3.00V
.溫度:室溫
如實施例3-1所示,對於每單位面積重量為0.1g/m2以下的可進行超音波熔接之底漆箔,無須剝離底漆層或者製作底漆層未塗佈的部分等步驟,即可於形成底漆層且未形成活性物質層之部分,熔接鋁卡片(tab),而製作出層合單元。又,如表3所示得知,對於1C放電,在無垢鋁箔中電壓為低,幾乎無法放電,相對於此,在底漆箔中電池為低電阻故可放電。

Claims (14)

  1. 一種能量儲存裝置電極用底漆箔,其特徵為具有集電基板,與形成於該集電基板的至少一面的底漆層,前述底漆層為含有碳奈米試管,且該前述集電基板的一面之每單位面積重量為未達0.05g/m2
  2. 如請求項1之能量儲存裝置電極用底漆箔,其中前述底漆層於前述集電基板之至少一面上係以覆蓋該面全體之態様下形成。
  3. 如請求項1或2之能量儲存裝置電極用底漆箔,其中前述底漆層含有基質高分子。
  4. 如請求項1或2之能量儲存裝置電極用底漆箔,其中前述底漆層含有碳奈米試管分散劑。
  5. 如請求項4之能量儲存裝置電極用底漆箔,其中前述碳奈米試管分散劑為三芳基胺系高分支聚合物或於側鏈含有噁唑啉基之乙烯基系聚合物。
  6. 如請求項1或2之能量儲存裝置電極用底漆箔,其中前述底漆層之厚度為0.01~10μm。
  7. 如請求項1或2之能量儲存裝置電極用底漆箔,其中前述集電基板為鋁箔或銅箔。
  8. 一種能量儲存裝置電極,其特徵為具有如請求項1~7中任一項之能量儲存裝置電極用底漆箔,與形成於該底漆層表面的一部分或全部之活性物質層。
  9. 如請求項8之能量儲存裝置電極,其中前述活性物質層形成於前述底漆層表面之一部分。
  10. 如請求項9之能量儲存裝置電極,其中前述活性物質層為,殘留前述底漆層的周緣,以覆蓋此以外的部分全體之態様下所形成者。
  11. 一種能量儲存裝置,其特徵為具備如請求項8~10中任一項之能量儲存裝置電極。
  12. 一種能量儲存裝置,其特徵為至少具有1個具備一片或複數片的如請求項9或10之電極與金屬片(Metal tab)所構成的電極結構體,前述電極的至少一片形成前述底漆層,且在未形成前述活性物質層之部分與前述金屬片(Metal tab)以超音波熔接者。
  13. 如請求項12之能量儲存裝置,其中前述金屬片(Metal tab)為含有選自鋁、銅及鎳的至少1種金屬所構成。
  14. 一種能量儲存裝置之製造方法,其為使用一片或複數片的如請求項9或10之電極的能量儲存裝置之製造方法,其特徵為具有將前述電極的至少一片,在形成前述底漆層,且未形成前述活性物質層的部分,進行與金屬片(Metal tab)之超音波熔接的步驟者。
TW105117625A 2015-06-04 2016-06-03 能量儲存裝置電極用底塗箔 TWI649914B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-113956 2015-06-04
JP2015113956 2015-06-04
JP2015-227790 2015-11-20
JP2015227790 2015-11-20

Publications (2)

Publication Number Publication Date
TW201717453A TW201717453A (zh) 2017-05-16
TWI649914B true TWI649914B (zh) 2019-02-01

Family

ID=57440521

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107144196A TWI713944B (zh) 2015-06-04 2016-06-03 能量儲存裝置電極用底塗箔
TW105117625A TWI649914B (zh) 2015-06-04 2016-06-03 能量儲存裝置電極用底塗箔

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107144196A TWI713944B (zh) 2015-06-04 2016-06-03 能量儲存裝置電極用底塗箔

Country Status (7)

Country Link
US (1) US11251435B2 (zh)
EP (1) EP3306716A4 (zh)
JP (2) JP6260740B2 (zh)
KR (2) KR20180016969A (zh)
CN (1) CN107615536A (zh)
TW (2) TWI713944B (zh)
WO (1) WO2016194747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713944B (zh) * 2015-06-04 2020-12-21 日商日產化學工業股份有限公司 能量儲存裝置電極用底塗箔

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415919A (zh) * 2014-03-31 2017-02-15 泰克年研究发展基金会公司 钝态金属活化方法和其用途
CN109997264A (zh) * 2016-12-02 2019-07-09 日产化学株式会社 含有碳纳米管的薄膜
KR20230162126A (ko) * 2016-12-02 2023-11-28 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스용 언더코트층 및 에너지 저장 디바이스 전극용 언더코트박
EP3728100B1 (en) 2017-12-19 2023-09-06 3M Innovative Properties Company Confined-space davit
JPWO2019188547A1 (ja) * 2018-03-29 2021-05-13 日産化学株式会社 導電性薄膜形成用分散液
CN111902969A (zh) * 2018-03-29 2020-11-06 日产化学株式会社 储能器件用电极和储能器件
CN111902970A (zh) * 2018-03-29 2020-11-06 日产化学株式会社 储能器件用电极和储能器件
JPWO2019188539A1 (ja) * 2018-03-29 2021-03-25 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188550A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318637B2 (ja) * 2018-03-29 2023-08-01 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318638B2 (ja) * 2018-03-29 2023-08-01 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188545A1 (ja) * 2018-03-29 2021-04-22 日産化学株式会社 導電性薄膜形成用組成物
US11961968B2 (en) 2018-04-09 2024-04-16 Nissan Chemical Corporation Lithium ion secondary battery
WO2019198531A1 (ja) 2018-04-09 2019-10-17 日産化学株式会社 非水電解液用添加剤、非水電解液、及びリチウムイオン二次電池
JP7359156B2 (ja) * 2018-11-02 2023-10-11 日産化学株式会社 活物質複合体形成用組成物、活物質複合体、および活物質複合体の製造方法
JP7205723B2 (ja) * 2019-07-19 2023-01-17 トヨタ自動車株式会社 超音波接合方法
JPWO2021065844A1 (zh) 2019-10-01 2021-04-08
CN114730886A (zh) * 2019-11-29 2022-07-08 三洋电机株式会社 非水电解质二次电池用电极板及非水电解质二次电池
CN111969257B (zh) * 2020-08-24 2022-02-01 海志电源技术(赣州)有限公司 一种高比能量动力铅酸电池的制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201419634A (zh) * 2012-08-29 2014-05-16 Showa Denko Kk 蓄電裝置及其製造方法
TW201424104A (zh) * 2012-09-14 2014-06-16 Nissan Chemical Ind Ltd 能量儲存裝置電極用複合集電體及電極

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571950A (en) * 1994-04-28 1996-11-05 Exxon Chemical Patents Inc. Method for testing soot-related viscosity increase
JP2005050669A (ja) * 2003-07-28 2005-02-24 Tdk Corp 電極、及び、それを用いた電気化学素子
JP5439823B2 (ja) * 2009-01-19 2014-03-12 日産化学工業株式会社 カーボンナノチューブ分散・可溶化剤
JP4487220B1 (ja) 2009-01-26 2010-06-23 トヨタ自動車株式会社 リチウム二次電池用正極およびその製造方法
CN102695557B (zh) * 2009-11-25 2015-10-21 日产化学工业株式会社 碳纳米管分散剂
KR20130043122A (ko) * 2011-01-14 2013-04-29 쇼와 덴코 가부시키가이샤 집전체
KR101569599B1 (ko) * 2011-03-14 2015-11-16 아사히 가세이 케미칼즈 가부시키가이샤 유기 무기 복합체와 그 제조 방법, 유기 무기 복합막과 그 제조 방법, 포토닉 결정, 코팅재, 열가소성 조성물, 미세 구조체, 광학 재료, 반사 방지 부재 및 광학 렌즈
CN102306800B (zh) 2011-08-16 2015-11-25 清华大学 集流体及锂离子电池
WO2013153916A1 (ja) * 2012-04-09 2013-10-17 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、電気化学素子用集電体、電気化学素子、及び、電気化学素子用集電体を作製するための塗工液
KR20150087372A (ko) 2012-11-19 2015-07-29 가부시키가이샤 유에이씨제이 집전체, 전극 구조체, 축전부품 및 집전체용 조성물
CN106947280B (zh) * 2013-08-27 2020-03-03 日产化学工业株式会社 导电性碳材料分散剂以及导电性碳材料分散液
DE102014200485A1 (de) 2014-01-14 2015-07-16 Siemens Aktiengesellschaft Fahrzeug, insbesondere Schienenfahrzeug mit einer druckluftbetriebenen Toiletteneinrichtung
KR20180016969A (ko) * 2015-06-04 2018-02-20 닛산 가가쿠 고교 가부시키 가이샤 에너지 저장 디바이스 전극용 언더코트박

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201419634A (zh) * 2012-08-29 2014-05-16 Showa Denko Kk 蓄電裝置及其製造方法
TW201424104A (zh) * 2012-09-14 2014-06-16 Nissan Chemical Ind Ltd 能量儲存裝置電極用複合集電體及電極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713944B (zh) * 2015-06-04 2020-12-21 日商日產化學工業股份有限公司 能量儲存裝置電極用底塗箔

Also Published As

Publication number Publication date
JP2018049847A (ja) 2018-03-29
JP7035496B2 (ja) 2022-03-15
EP3306716A4 (en) 2019-01-23
CN107615536A (zh) 2018-01-19
KR102351833B1 (ko) 2022-01-17
TW201921791A (zh) 2019-06-01
JP6260740B2 (ja) 2018-01-17
JPWO2016194747A1 (ja) 2017-09-28
EP3306716A1 (en) 2018-04-11
TW201717453A (zh) 2017-05-16
US11251435B2 (en) 2022-02-15
TWI713944B (zh) 2020-12-21
US20180269488A1 (en) 2018-09-20
KR20180016969A (ko) 2018-02-20
WO2016194747A1 (ja) 2016-12-08
KR20180101638A (ko) 2018-09-12

Similar Documents

Publication Publication Date Title
TWI649914B (zh) 能量儲存裝置電極用底塗箔
TWI782902B (zh) 能量儲藏裝置用電極
EP3401982B1 (en) Electrode for energy storage devices
JP6528907B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔およびエネルギー貯蔵デバイス電極の製造方法
WO2018101301A1 (ja) カーボンナノチューブ含有薄膜
JP7047807B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
JP6531868B2 (ja) エネルギー貯蔵デバイス電極およびエネルギー貯蔵デバイス
WO2019188545A1 (ja) 導電性薄膜形成用組成物
WO2019188547A1 (ja) 導電性薄膜形成用分散液
EP3780158A1 (en) Energy storage device electrode and energy storage device
EP3780159A1 (en) Composition for forming undercoat layer of energy storage device
EP3783697A1 (en) Composition for forming undercoat layer of energy storage device
JP2019175744A (ja) エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JP2019175729A (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物