TWI611618B - 金屬離子電池 - Google Patents

金屬離子電池 Download PDF

Info

Publication number
TWI611618B
TWI611618B TW105141740A TW105141740A TWI611618B TW I611618 B TWI611618 B TW I611618B TW 105141740 A TW105141740 A TW 105141740A TW 105141740 A TW105141740 A TW 105141740A TW I611618 B TWI611618 B TW I611618B
Authority
TW
Taiwan
Prior art keywords
electrolyte
cavity
ion battery
metal ion
salt
Prior art date
Application number
TW105141740A
Other languages
English (en)
Other versions
TW201824625A (zh
Inventor
江建志
陳光耀
吳俊星
楊昌中
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105141740A priority Critical patent/TWI611618B/zh
Priority to CN201711008676.5A priority patent/CN108206298B/zh
Priority to US15/813,791 priority patent/US11296329B2/en
Application granted granted Critical
Publication of TWI611618B publication Critical patent/TWI611618B/zh
Publication of TW201824625A publication Critical patent/TW201824625A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

本揭露提供一種金屬離子電池,包含:第一腔體,第二腔體以及,控制單元。上述第一腔體包含正極、負極、隔離層、以及第一電解質設置於該第一腔體中,其中該隔離層設置於該正極及該負極之間;上述第二腔體包含第二電解質設置於該第二腔體中,其中該第一電解質與該第二電解質的組成比例不同;以及,上述控制單元係用以控制該第二腔體內的第二電解質是否藉由第一通道添加至該第一腔體中。

Description

金屬離子電池
本揭露關於一種儲能元件,更特別關於一種金屬離子電池。
鋁在地球上蘊藏量非常豐富,以鋁作為材料的電子裝置具有較低的成本。再者,由於鋁具有低可燃性及電子氧化還原性質,大幅提昇金屬離子電池在使用上的安全性。然而,傳統金屬離子電池的電解質組成係針對電池在室溫下運作所設計,若在較低溫度下運作,恐造成金屬離子電池失效。反之,若將金屬離子電池之電解質針對在低溫下運作進行設計,則該金屬離子電池在室溫下則無法正常運作。
因此,業界需要一種新穎的金屬離子電池,以解決習知技術所遭遇到的問題。
根據本揭露實施例,本揭露提供一種儲能元件,例如為金屬離子電池。該金屬離子電池包含:一第一腔體,包含一正極、一負極、一隔離層、以及一第一電解質可設置於該第一腔體中,其中該隔離層可設置於該正極及該負極之間;一第二腔體,包含一第二電解質可設置於該第二腔體中,其中該第一電解質與 該第二電解質的組成比例不同;以及,一控制單元,其中該控制單元可用以控制該第二腔體內的第二電解質是否藉由一第一通道添加至該第一腔體中。
10‧‧‧第一腔體
12‧‧‧正極
14‧‧‧隔離層
16‧‧‧負極
18‧‧‧第一電解質
20‧‧‧控制單元
30‧‧‧第二腔體
38‧‧‧第二電解質
40‧‧‧感測單元
41‧‧‧第一通道
42‧‧‧顯示單元
43‧‧‧第二通道
45‧‧‧第三通道
47‧‧‧第四通道
49‧‧‧第五通道
50‧‧‧第三腔體
58‧‧‧第三電解質
60‧‧‧過濾單元
100‧‧‧金屬離子電池
第1圖為本揭露一實施例所述金屬離子電池之方塊示意圖(block schematic diagram);第2圖為本揭露另一實施例所述金屬離子電池之方塊示意圖;第3圖為文獻中提及之氯化鋁濃度與電解質之導電度、比重、或黏度的關係圖;第4至6圖為本揭露其他實施例所述金屬離子電池之方塊示意圖;第7圖為本揭露實施例1所述金屬離子電池(1)其運作溫度與電量關係圖;第8圖為本揭露實施例2所述金屬離子電池(2)其運作溫度與電量關係圖;以及第9圖為本揭露實施例3所述金屬離子電池(3)其充放電循環測試結果。
以下針對本揭露之金屬離子電池作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同 實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。且在圖式中,實施例之形狀、數量、或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,此外,特定之實施例僅為揭示本揭露使用之特定方式,其並非用以限定本揭露。
本揭露提供一種金屬離子電池。根據本揭露實施例,該金屬離子電池除了具有一第一腔體(作為電化學反應的芯腔體(cell chamber))外(一第一電解質配置於該第一腔體中),更具有一第二腔體(一第二電解質配置於該第二腔體中),作為電解質補充腔體,其中該第一電解質、第二電解質的組成比例不同。因此,該金屬電池可藉由一控制單元自動補充(或一使用者可藉由該控制單元手動補充)該第二電解質至該第一腔體內,使得該金屬離子電池可依據操作環境作最佳的調整。此外,根據本揭露實施例,該金屬離子電池可更具有一配置有一第三電解質的第三腔體,同樣作為電解質補充腔體,其中該第一電解質、第二電解質、以及該第三電解質的組成比例不同。因此,該金屬電池可藉由該控制單元自動補充(或一使用者可藉由該控制單元手動補充)該第三電解質至該第一腔體內,使得該金屬離子電池可依據操作環境作最佳的調整。舉例來說,當本揭露所述之金屬離子電池因操作環境溫度過低(例如低於-35℃)導致第一電解質產生相變化而使該金屬離子電池無法運作時,可藉由該控制單元補充該第二電解質至該第 一腔體內,提昇第一腔體內電解質之金屬鹵化物與該離子液體的莫耳比例,使得該金屬離子電池可在低溫下運作。而當操作環境溫度回到金屬離子電池正常操作溫度時(例如0至40℃),可藉由該控制單元補充該第三電解質至該第一腔體內,降低第一腔體內電解質之金屬鹵化物與該離子液體的莫耳比例,使得該金屬離子電池可在常溫下運作。再者,根據本揭露實施例,本揭露所述金屬離子電池可在使用一段時間後,藉由該控制單元補充第二電解質及/或第三電質進入該第一腔體內,使得該第一腔體內之電解質之金屬鹵化物與該離子液體的莫耳比例回復到該金屬離子電池初始設定值(或回復到該金屬離子電池具有較佳性能之設定值),使該金屬離子電池即使在使用一段時間後仍然接近其原來的電量,延長該金屬離子電池的壽命。
請參照第1圖,係為本揭露一實施例所述金屬離子電池100的示意圖。該金屬離子電池100可為充電式之二次電池,但本揭露亦涵蓋一次電池。該金屬離子電池100可包含一第一腔體10、一第二腔體30、一控制單元20、以及一第一通道41。該第一腔體10可包含,一正極12、一隔離層14、一負極16、以及一第一電解質18設置於該第一腔體10中,其中該隔離層14設置於該正極12及該負極16之間,以避免該正極12與該第一負極16直接接觸。該第二腔體30可包含一第二電解質38,其中該第一電解質18與該第二電解質38的組成及/或比例不同。該第一通道41設置於該第一腔體10及該第二腔體30之間,其中該控制單元20係用以控制該第二腔體30內的該第二電解質38是否藉由該第一通道41添加至該第 一腔體10中。值得注意的是,該第一電解質18、以及該第二電解質38的組成及/或比例係皆不同。
根據本揭露實施例,該第一通道41,可為一單向通道,即電解質僅可藉由該第一通道41由第二腔體30進入該第一腔體10中,而電解質無法由該第一通道41由第一腔體10進入該第二腔體30中。換言之,該第一通道41對於該第一腔體10而言為一流入(flow-in)通道,而該第一通道41對於該第二腔體30而言為一流出(flow-out)通道。如此一來,該第二腔體30內的第二電解質38可藉由該第一通道41進入該第一腔體10,而該第一腔體10內的該第一電解質18則無法藉由該第一通道41進入該第二腔體30。此外,根據本揭露實施例,由於本揭露係藉由將位於第二腔體30內的第二電解質38導入該第一腔體10中,以調整第一腔體10之電解質組成,因此該第一腔體10與該第二腔體30之間無需其他通道將第一腔體10內的電解質導入該第二腔體30中。換言之,該第一腔體10與該第二腔體30之間不具有任何流出(flow-out)通道(對於該第一腔體10而言),因此位於該第一腔體10內的第一電解質18不會流入該第二腔體30中。此外,根據本揭露某些實施例,位於該第一腔體10內的第一電解質18不會在沒有經處理(例如分離或純化)的狀況下,直接流入該第二腔體30中。
根據本揭露實施例,該正極10可包含一集電層及一活性材料設置於該集電層(未圖示)之上。根據本揭露實施例,該正極10亦可由該集電層及活性材料所構成。根據本揭露實施例,該集電層可為導電性碳基材,例如碳布、碳氈、或碳紙。舉例來說, 該導電性碳基材可具有片電阻介於約1mΩ.cm2至6mΩ.cm2之間、以及含碳量大於65wt%。該活性材料包括層狀活性材料或該層狀活性材料的團聚物。根據本揭露實施例,該活性材料可為插層碳材,例如:石墨(包含天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、或膨脹石墨)、石墨烯、奈米碳管或上述材料之組合。根據本揭露實施例,該活性材料13可為層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)或上述材料之組合。該活性材料可具有一孔隙度介於約0.05至0.95之間,例如介於約0.3至0.9之間。此外,根據本揭露實施例,該活性材料可直接成長於該集電層之上(即兩者之間沒有任何介質),或是利用黏著劑將該活性材料固定於該集電層上。
根據本揭露實施例,該隔離層14之材質可為玻璃纖維、聚乙烯(polyethylene、PE)、聚丙烯(Polypropylene、PP)、不織布、木質纖維、聚醚碸樹脂(Poly(ether sulfones)、PES)、陶瓷纖維等或上述之組合。
根據本揭露實施例,該負極16由一金屬或其合金所構成。該金屬可為鋁、銅、鐵、鋅、鈷、銦、鎳、錫、鉻、鑭、釔、鈦、錳、或鉬。此外,該負極16可更包含一集電層(未繪示),而該金屬或其合金係配置於該集電層上。根據本揭露實施例,該金屬或其合金可直接成長於該集電層之上(即兩者之間沒有任何介質),或是利用黏著劑將該金屬或其合金固定於該集電層上。根據本揭露某些實施例,該金屬可為還原電位小於鋁的金屬,以改善金屬離子電池負極腐蝕的問題。
根據本揭露實施例,該第一電解質18可包含第一離子液體、及一第一金屬鹵化物。該第一離子液體可為任何適用於金屬離子電池之離子液體。舉例來說,該第一離子液體可包含銨鹽(ammonium salt)(例如:烷基銨鹽(alkylammonium salt)、氮雜輪烯鎓鹽(azaannulenium salt)(例如:烷基氮雜輪烯鎓鹽(alkylazaannulenium salt))、氮雜噻唑鎓鹽(azathiazolium salt)(例如:烷基氮雜噻唑鎓鹽(alkylazathiazolium salt))、苯並咪唑鎓鹽(benzimidazolium salt)(例如:烷基苯並咪唑鎓鹽(alkylbenzimidazolium salt))、苯並呋喃鎓鹽(benzofuranium salt)(例如:烷基苯並呋喃鎓鹽(alkylbenzofuranium salt))、苯並三唑鎓鹽(benzotriazolium salt)(例如:烷基苯並三唑鎓鹽(alkylbenzotriazolium salt))、硼雜環戊烯鎓鹽(borolium salt)(例如:烷基硼雜環戊烯鎓鹽(alkylborolium salt))、膽鹼鹽(cholinium salt)(例如:烷基膽鹼鹽(alkylcholinium salt))、噌啉鎓鹽(cinnolinium salt)(例如:烷基噌啉鎓鹽(alkylcinnolinium salt))、二氮雜二環癸烯鎓鹽(diazabicyclodecenium salt)(例如:烷基二氮雜二環癸烯鎓鹽(alkyldiazabicyclodecenium salt))、二氮雜二環壬烯鎓鹽(diazabicyclononenium salt)(例如:烷基二氮雜二環壬烯鎓鹽(alkyldiazabicyclononenium salt))、二氮雜二環十一碳烯鎓鹽(diazabicyclo-undecenium salt)(例如:烷基二氮雜二環十一碳烯鎓鹽(alkyldiazabicyclo-undecenium salt))、二噻唑鎓鹽(dithiazolium salt)(例如:烷基二噻唑鎓鹽(alkyldithiazolium salt))、呋喃鎓鹽(furanium salt)(例如:烷基呋喃鎓鹽(alkylfuranium salt))、胍鎓鹽 (guanidinium salt)(例如:烷基胍鎓鹽(alkylguanidinium salt))、咪唑鎓鹽(imidazolium salt)(例如:烷基咪唑鎓鹽(alkylimidazolium salt))、吲唑鎓鹽(indazolium salt)(例如:烷基吲唑鎓鹽(alkylindazolium salt))、二氫吲哚鎓鹽(indolinium salt)(例如:烷基二氫吲哚鎓鹽(alkylindolinium salt))、吲哚鎓鹽(indolium salt)(例如:烷基吲哚鎓鹽(alkylindolium salt))、嗎啉鎓鹽(morpholinium salt)(例如:烷基嗎啉鎓鹽(alkylmorpholinium salt))、氧硼雜環戊烯鎓鹽(oxaborolium salt)(例如:烷基氧硼雜環戊烯鎓鹽(alkyloxaborolium salt))、氧磷雜環戊烯鎓鹽(oxaphospholium salt)(例如:烷基氧磷雜環戊烯鎓鹽(alkyloxaphospholium salt))、噁嗪鎓鹽(oxazinium salt)(例如:烷基噁嗪鎓鹽(alkyloxazinium salt))、噁唑鎓鹽(oxazolium salt)(例如:烷基噁唑鎓鹽(alkyloxazolium salt))、異噁唑鎓鹽(iso-oxazolium salt)(例如:烷基異噁唑鎓鹽(iso-alkyloxazolium salt))、噁噻唑鎓鹽(oxathiazolium salt)(例如:烷基噁噻唑鎓鹽(alkyloxathiazolium salt))、五唑鎓鹽(pentazolium salt)(例如:烷基五唑鎓鹽(alkylpentazolium salt))、磷雜環戊烯鎓鹽(phospholium salt)(例如:烷基磷雜環戊烯鎓鹽(alkylphospholium salt))、磷鎓鹽(phosphonium salt)(例如:烷基磷鎓鹽(alkylphosphonium salt))、酞嗪鎓鹽(phthalazinium salt)(例如:烷基酞嗪鎓鹽(alkylphthalazinium salt))、哌嗪鎓鹽(piperazinium salt)(例如:烷基哌嗪鎓鹽(alkylpiperazinium salt))、哌啶鎓鹽(piperidinium salt)(例如:烷基哌啶鎓鹽(alkylpiperidinium salt))、吡喃鎓鹽 (pyranium salt)(例如:烷基吡喃鎓鹽(alkylpyranium salt))、吡嗪鎓鹽(pyrazinium salt)(例如:烷基吡嗪鎓鹽(alkylpyrazinium salt))、吡唑鎓鹽(pyrazolium salt)(例如:烷基吡唑鎓鹽(alkylpyrazolium salt))、噠嗪鎓鹽(pyridazinium salt)(例如:烷基噠嗪鎓鹽(alkylpyridazinium salt))、吡啶鎓鹽(pyridinium salt)(例如:烷基吡啶鎓鹽(alkylpyridinium salt))、嘧啶鎓鹽(pyrimidinium salt)(例如:烷基嘧啶鎓鹽(alkylpyrimidinium salt))、吡咯烷鎓鹽(pyrrolidinium salt)(例如:烷基吡咯烷鎓鹽(alkylpyrrolidinium salt))、吡咯鎓鹽(pyrrolium salt)(例如:烷基吡咯鎓鹽(alkylpyrrolium salt))、喹唑啉鎓鹽(quinazolinium salt)(例如:烷基喹唑啉鎓鹽(alkylquinazolinium salt))、喹啉鎓鹽(quinolinium salt)(例如:烷基喹啉鎓鹽(alkylquinolinium salt))、異喹啉鎓鹽(iso-quinolinium salt)(例如:烷基異喹啉鎓鹽(iso-alkylquinolinium salt))、喹喔啉鎓鹽(quinoxalinium salt)(例如:烷基喹喔啉鎓鹽(alkylquinoxalinium salt))、硒唑鎓鹽(selenozolium salt)(例如:烷基硒唑鎓鹽(alkylselenozolium salt))、硫鎓鹽(sulfonium salt)(例如:烷基硫鎓鹽(alkylsulfonium salt))、四唑鎓鹽(tetrazolium salt)(例如:烷基四唑鎓鹽(alkyltetrazolium salt))、異噻二唑鎓鹽(iso-thiadiazolium salt)(例如:烷基異噻二唑鎓鹽(iso-alkylthiadiazolium salt))、噻嗪鎓鹽(thiazinium salt)(例如:烷基噻嗪鎓鹽(alkylthiazinium salt))、噻唑鎓鹽(thiazolium salt)(例如:烷基噻唑鎓鹽(alkylthiazolium salt))、噻吩鎓鹽(thiophenium salt)(例如:烷基噻吩鎓鹽(alkylthiophenium salt))、硫脲鎓鹽 (thiuronium salt)(例如:烷基硫脲鎓鹽(alkylthiuronium salt))、三氮雜癸烯鎓鹽(triazadecenium salt)(例如:烷基三氮雜癸烯鎓鹽(alkyltriazadecenium salt))、三嗪鎓鹽(triazinium salt)(例如:烷基三嗪鎓鹽(alkyltriazinium salt))、三唑鎓鹽(triazolium salt)(例如:烷基三唑鎓鹽(alkyltriazolium salt))、異三唑鎓鹽(iso-triazolium salt)(例如:烷基異三唑鎓鹽(iso-alkyltriazolium salt))、或脲鎓鹽(uronium salt)(例如:烷基脲鎓鹽(alkyluronium salt))、或上述之組合。
根據本揭露某些實施例,該第一離子液體可為甲基咪唑鎓氯鹽(methylimidazolium chloride)、1-乙基-3-甲基咪唑鎓氯鹽(1-ethyl-3-methylimidazolium chloride)、1-丁基-3-甲基咪唑鎓氯鹽(1-butyl-3-methylimidazolium chloride)、膽鹼氯鹽(cholinium chloride)、或上述之組合。
根據本揭露實施例,該第一金屬鹵化物包含可作為路易斯酸的金屬氟化物、金屬氯化物、或金屬溴化物,使電解質系統維持可逆。此外,為提昇金屬離子電池總發電量及避免金屬離子電池在使用過程中發生自燃的狀況,該第一金屬鹵化物非為鹼金族鹵化物或鹼土族鹵化物。該第一金屬鹵化物可包含鹵化鋁(例如氟化鋁、氯化鋁、或溴化鋁)、鹵化銀(例如氟化銀、氯化銀、或溴化銀)、鹵化銅(例如氟化銅、氯化銅、或溴化銅)、鹵化鐵(例如氟化鐵、氯化鐵、或溴化鐵)、鹵化鈷(例如氟化鈷、氯化鈷、或溴化鈷)、鹵化鋅(例如氟化鋅、氯化鋅、或溴化鋅)、鹵化銦(例如氟化銦、氯化銦、或溴化銦)、鹵化鎘(例如氟化鎘、氯化鎘、或溴化 鎘)、鹵化鎳(例如氟化鎳、氯化鎳、或溴化鎳)、鹵化錫(例如氟化錫、氯化錫、或溴化錫)、鹵化鉻(例如氟化鉻、氯化鉻、或溴化鉻)、鹵化鑭(例如氟化鑭、氯化鑭、或溴化鑭)、鹵化釔(例如氟化釔、氯化銀、或溴化釔)、鹵化鈦(例如氟化鈦、氯化鈦、或溴化鈦)、鹵化錳(例如氟化錳、氯化錳、或溴化錳)、鹵化鉬(例如氟化鉬、氯化鉬、或溴化鉬)、或上述之組合。在此,本揭露所述之第一金屬鹵化物可為帶不同正電價數金屬的鹵化物。舉例來說,本揭露所述之氯化鋁可為AlCl2、AlCl3、或其組合;氯化銅可為CuCl、CuCl2、或其組合;氯化鐵可為FeCl2、FeCl3、或其組合;氯化鈷可為CoCl3、CoCl2、或其組合;氯化鉻可為CrCl2、CrCl3、或其組合;氯化鋅可為ZnCl2、ZnCl4、或其組合;氯化錫可為SnCl2、SnCl4、或其組合;以及,氯化錳可為MnCl2、MnCl3、或其組合。
根據本揭露實施例,該第一電解質可進一步加入添加劑,以提高電導率且降低黏度,或可以其他方式變更電解質以得到有利於金屬之可逆電沉積的電解質。
根據本揭露實施例,該第一電解質18在初始狀態下(即該金屬離子電池在剛始運作時),其第一金屬鹵化物與第一離子液體的莫耳比可約介於1.1:1至1.8:1之間,例如約介於1.2:1至1.75:1之間、約介於1.3:1至1.7:1之間、約介於1.35:1至1.6:1之間、或約介於1.4:1至1.5:1之間。
根據本揭露實施例,該第二電解質38可包含一第二金屬鹵化物,其中該第二金屬鹵化物之定義與上述第一金屬鹵化物相同。根據本揭露實施例,該第一金屬鹵化物可與該第二金屬 鹵化物相同或不同。根據本揭露某些實施例,該第二電解質38僅由該第二金屬鹵化物所組成。此外,該第二電解質38可包含一第二金屬鹵化物及一第二離子液體,其中該第二離子液體之定義與上述第一離子液體相同。根據本揭露實施例,該第一離子液體可與該第二離子液體相同或不同。在此,第二金屬鹵化物與該第二離子液體之莫耳比大於該第一金屬鹵化物與該第一離子液體之莫耳比。舉例來說,該第二金屬鹵化物與該第二離子液體之莫耳比可約介於1.5:1至10:1之間,例如約介於1.6:1至10:1之間、約介於1.7:1至9:1之間、約介於1.8:1至8.5:1之間、或約介於2:1至5:1之間。且該第二金屬鹵化物與該第二離子液體之莫耳比與該第一金屬鹵化物與該第一離子液體之莫耳比不同。
根據本揭露實施例,該第一電解質18可包含氯化鋁(AlCl3)及1-乙基-3-甲基咪唑鎓氯鹽(1-ethyl-3-methylimidazolium chloride),而該第二電解質係氯化鋁。其中,在該第一電解質18中,該氯化鋁與該1-乙基-3-甲基咪唑鎓氯鹽之莫耳比可介於1.3:1至1.65:1之間(例如1.3:1、1.4:1、1.5:1、1.6:1、或1.65:1),使得該金屬離子電池100在初始狀態下可在正常度溫下(例如約0-40℃)進行運作。當該金屬離子電池需在較低溫度(例如低於-35℃)下進行運作、或使用一段時間後導致電量下降時,一使用者可藉由該控制單元20將第二腔體30內的第二電解質38(例如氯化鋁、或氯化鋁與該1-乙基-3-甲基咪唑鎓氯鹽之組合物,且該第二電解質38與該第一電解質18的組成比例不同),導入該第一腔體10中,使得該金 屬離子電池100可在繼續運作。根據本揭露實施例,該控制單元20導入第二電解質方式可為一可定量控制螺桿輸送(screw rod conveyance)單元、或一可定量控制壓力輸送單元。
請參照第2圖,係為本揭露某些實施例所述金屬離子電池100的示意圖。如第2圖所示,該金屬離子電池100可更包含一感測單元40,用來監控該第一腔體內10之第一電解質18的導電度、溫度、比重、或黏度。此外,該感測單元40可將所獲得之數值(例如第一電解質18的導電度、溫度、比重、或黏度)提供至該控制單元20。根據本揭露實施例,該控制單元20可包含一比對電路(comparison circuitry),用以將感測單元40所獲得之值與一預設值進行比對,並決定是否將該第二腔體30內的第二電解質38藉由該第一通道41添加至該第一腔體10中。請參照第3圖,係為氯化鋁濃度與電解質(包含氯化鋁及1-乙基-3-甲基咪唑鎓氯鹽)之導電度、比重、或黏度的關係圖。使用者可依據第3圖將其所預設定的氯化鋁濃度換算成導電度、比重、或黏度,進行可設定該比對電路(comparison circuitry)的預設值。舉例來說,當該第一電解質18的導電度、或黏度大於該預設值時,該控制單元20可將該第二腔體30內的第二電解質38藉由該第一通道41添加至該第一腔體10中;或者,當該第一電解質18的溫度、或比重小於一預設值時,該控制單元20可將該第二腔體30內的第二電解質38藉由該第一通道41添加至該第一腔體10中。根據本揭露某些實施例,該控制單元20可包含一幫浦,以將該第二腔體30內的第二電解質38藉由該第一通道41添加至該第一腔體10中。
請參照第4圖,係為本揭露某些實施例所述金屬離子電池100的示意圖。如第4圖所示,該金屬離子電池100所述感測單元40係連接至一顯示單元42。該顯示單元42係顯示出該感測單元40所測得之該第一電解質18的導電度、溫度、比重、或黏度,以方便使用者藉由該控制單元20將第二腔體30內的第二電解質38(例如氯化鋁)導入該第一腔體10中。
請參照第5圖,係為本揭露某些實施例所述金屬離子電池100的示意圖。如第5圖所示,該金屬離子電池100可更包含一第三腔體50,其中一第三電解質58設置於該第三腔體58中。值得注意的是,該第一電解質18、第二電解質38、以及該第三電解質58的組成及/或比例係皆不同。該控制單元20可用以控制該第三腔體50內的第三電解質58是否藉由一第二通道43添加至該第一腔體10中。根據本揭露實施例,該第三電解質58可包含一第三離子液體,其中該第三離子液體之定義與上述第一離子液體相同。根據本揭露實施例,該第一離子液體可與該第三離子液體相同或不同。根據本揭露某些實施例,該第三電解質58僅由該第三離子液體所組成。此外,該第三電解質58可包含一第三金屬鹵化物及一第三離子液體,其中該第三金屬鹵化物之定義與上述第一金屬鹵化物相同。根據本揭露實施例,該第三金屬鹵化物可與該第一金屬鹵化物相同或不同。在此,該第三金屬鹵化物與該第三離子液體之莫耳比可小於該第一金屬鹵化物與該第一離子液體之莫耳比。舉例來說,該第三金屬鹵化物與該第三離子液體之莫耳比可約介於0.1:1至0.9:1之間,例如約介於0.2:1至0.8:1之間、約介於 0.3:1至0.7:1之間、或約介於0.4:1至0.6:1之間。
根據本揭露實施例,該第一電解質18可包含氯化鋁(AlCl3)及1-乙基-3-甲基咪唑鎓氯鹽(1-ethyl-3-methylimidazolium chloride)、該第二電解質係氯化鋁、而該第三電解質係1-乙基-3-甲基咪唑鎓氯鹽。其中,在該第一電解質18中,該氯化鋁與該1-乙基-3-甲基咪唑鎓氯鹽之莫耳比可介於1.3:1至1.65:1之間(例如1.3:1、1.4:1、1.5:1、1.6:1、或1.65:1),使得該金屬離子電池100在初始狀態下可在正常度溫下(例如約0-40℃)進行運作。當該金屬離子電池需在較低溫度(例如低於-35℃)下進行運作、或使用一段時間後導致電量下降時,一使用者可藉由該控制單元20將第二腔體30內的第二電解質38(例如氯化鋁)導入該第一腔體10中,使得該金屬離子電池100可在繼續運作。此外,該金屬離子電池需回到正常溫度下進行運作、或使用一段時間後導致電量下降時,可藉由該控制單元20將第三腔體50內的第三電解質58(例如1-乙基-3-甲基咪唑鎓氯鹽、或氯化鋁與該1-乙基-3-甲基咪唑鎓氯鹽之組合物)導入該第一腔體10中,使得該金屬離子電池100可在繼續運作。
根據本揭露實施例,請參照第5圖,該感測單元40,可用來監控該第一腔體10內之第一電解質18的導電度、溫度、比重、或黏度,並將所獲得之數值(例如第一電解質18的導電度、溫度、比重、或黏度)提供至該控制單元20。如此一來,該控制單元20可包含一比對電路(comparison circuitry),用以將感測單元40所獲得之值與一預設值進行比對,並決定是否將該第三腔體50內的第三電解質58藉由該第二通道43添加至該第一腔體10中。舉例來 說,當該第一電解質18的導電度、或黏度小於該預設值時,該控制單元20可將該第三腔體50內的第二電解質58藉由該第二通道43添加至該第一腔體10中;或者,當該第一電解質18的溫度、或比重小於一預設值時,該控制單元20可將該第三腔體50內的第三電解質58藉由該第二通道43添加至該第一腔體10中。
根據本揭露實施例,該第二通道43,可為一單向通道,即電解質僅可藉由該第二通道43由第三腔體50進入該第一腔體10中,而電解質無法由該第二通道43由第一腔體10進入該第三腔體50中。換言之,該第二通道43對於該第一腔體10而言為一流入(flow-in)通道,而該第二通道43對於該第三腔體50而言為一流出(flow-out)通道。如此一來,該第三腔體50內的第三電解質58可藉由該第二通道43進入該第一腔體10,而該第一腔體10內的該第一電解質18則無法藉由該第二通道43進入該第三腔體50。此外,根據本揭露實施例,由於本揭露係藉由將位於第三腔體50內的第三電解質58導入該第一腔體10中,以調整第一腔體10之電解質組成,因此該第一腔體10與該第三腔體50之間無需其他通道將第一腔體10內的電解質導入該第三腔體50中。換言之,該第一腔體10與該第三腔體50之間不具有任何流出(flow-out)通道(對於該第一腔體10而言),因此位於該第一腔體10內的第一電解質18不會流入該第三腔體50中。此外,根據本揭露某些實施例,位於該第一腔體10內的第一電解質18不會在沒有經處理(例如分離或純化)的狀況下,直接流入該第三腔體50中。
請參照第6圖,係為本揭露某些實施例所述金屬離子 電池100的示意圖。如第6圖所示,該金屬離子電池100可更包含一過濾單元60,而該控制單元20可用以控制該第一腔體10內的第一電解質18是否藉由一第三通道45進入該過濾單元60中。該過濾單元60可將該第一電解質18分離為該第二電解質38及該第三電解質58,並藉由一第四通道47將該第二電解質38導入該第二腔體30中、以及藉由一第五通道49將該第三電解質58導入該第三腔體50中,以達到補充第二電解質38及該第三電解質58的目的。根據本揭露實施例,該過濾單元60可包含一過濾材料,其中該過濾材料可例如為:尼龍(Nylon)、聚四氟乙烯(polytetrafluoroethene、PTFE)、聚硫醚(polyether sulfone)、PES)、混合纖維膜(mixed cellulose ester、MCE)、聚四氟乙烯(Polyfluortetraethylene、PVDF)、醋酸纖維(acetate cellulose、CA)、玻璃纖維(glass fiber、GF)、聚丙烯(polypropylene、PP)、聚乙烯(polyethylene、PE)、多孔陶瓷(例如:陽極氧化鋁(Anodic aluminum oxide、AAO)、或氧化鋯(ZrO2))、或上述之組合。根據本揭露實施例,該第一電解質18可包含氯化鋁(AlCl3)及1-乙基-3-甲基咪唑鎓氯鹽(1-ethyl-3-methylimidazolium chloride)、該第二電解質係氯化鋁、而該第三電解質係1-乙基-3-甲基咪唑鎓氯鹽。舉例來說,當感測單元40監控到該第一腔體10內的第一電解質18超過一預設重量時,可傳送一訊號給該控制單元20,而該控制單元20可將該第一腔體10內過量的第一電解質18藉由該第三通道45導入該過濾單元60中。該過濾單元60可將第一電解質18分離為氯化鋁(AlCl3)及1-乙基-3-甲基咪唑鎓氯鹽,並藉由該第四通道47將氯化鋁(AlCl3)導 入該第二腔體30中,以及藉由該第五通道49將該1-乙基-3-甲基咪唑鎓氯鹽導入該第三腔體50中。
為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例,作詳細說明如下:
實施例1:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(95mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入第一電解質(9ml、由氯化鋁(AlCl3)及氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成、其中AlCl3與[EMIm]Cl之莫耳比約為1.4:1),得到金屬離子電池(1)。
製備一第二電解質,其中該第二電解質由氯化鋁(AlCl3)及氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成,其中AlCl3與[EMIm]Cl之莫耳比約為2.0:1。
接著,將金屬離子電池(1)以定電流(100mA/g)在不同溫度下量測其電容量,結果如第7圖所示。由第7圖可得知,在-10℃時,金屬離子電池(1)電量約為在25℃下時電量的70%;在-27℃時,金屬離子電池(1)電量約為在25℃下時電量的24%;在-40℃時,金屬離子電池(1)電量約為在25℃下時電量的21%;而超過-40 ℃時,一屬離子電池(1)的電量已幾乎為0。
接著,將1ml之第二電解質於-50℃時加入原先已無電量的金屬離子電池(1)中,並以定電流(100mA/g)在量測其電容量,結果如第7圖所示。由第7圖可得知,加入第二電解質於金屬離子電池(1)中,可觀察到產生放熱反應,電池溫度回升至-38℃左右,接著迅速朝向環境溫度(-50℃)下降。加第7圖所示,加入第二電解質(富AlCl3之電解質)後,低溫截止溫度可由-40℃延後至-47℃,金屬離子電池(1)才呈現失效態。
實施例2:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(95mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入第一電解質(9ml、由氯化鋁(AlCl3)及氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成、其中AlCl3與[EMIm]Cl之莫耳比約為1.65:1),得到金屬離子電池(2)。
製備一第二電解質,其中該第二電解質由氯化鋁(AlCl3)及氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成,其中AlCl3與[EMIm]Cl之莫耳比約為2.0:1。
接著,將金屬離子電池(2)以定電流(100mA/g)在不同 溫度下量測其電容量,結果如第8圖所示。由第8圖可得知,在-56℃時,金屬離子電池(2)的電量已幾乎為0。
接著,將1ml之第二電解質於-60℃時加入原先已無電量的金屬離子電池(2)中,並以定電流(100mA/g)在量測其電容量,結果如第8圖所示。由第8圖可得知,加入第二電解質於金屬離子電池(2)中,可觀察到產生放熱反應,電池溫度回升至-40℃左右,接著迅速朝向環境溫度(-60℃)下降。加第8圖所示,加入第二電解質(富AlCl3之電解質)後,低溫截止溫度可由-57℃延後至-61℃,金屬離子電池(2)才呈現失效態。此外,加入第二電解質(富AlCl3之電解質)後金屬離子電池(2)於-56℃的電量,係為未加入該第二電解質前金屬離子電池(2)於-56℃的電量之9倍左右。
實施例3:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(44mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,將其放置於一第一腔體中,並加入第一電解質(9ml、由氯化鋁(AlCl3)、氯化鐵(FeCl2)及氯化1-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成、其中FeCl2加上AlCl3與[EMIm]Cl之莫耳比約為1.4:1、且FeCl2與AlCl3之莫耳比約為1:27)於第一腔體中。接著,將一第二電解質(1ml、由氯化亞鐵(FeCl2)與氯化鋁(AlCl3)及氯化1-乙基-3-甲基咪唑鎓 (1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)所組成、其中(FeCl2加上AlCl3與[EMIm]Cl之莫耳比約為1.5:1、且FeCl2與AlCl3之莫耳比約為1:29)置於一第二腔體中,得到金屬離子電池(3)。
接著,使用電池分析儀量測金屬離子電池(3)之電池效能(量測條件為:以定電流方式進行充放電循環測試(44mA/g)),結果如第9圖。由第9圖可得知,當電池在進行約第380次充放電時,該金屬離子電池(3)顯現出較佳的電池效能。此時,量測該金屬離子電池(3)其第一腔體中電解質的導電度,並參照第3圖換算出此時AlCl3與[EMIm]Cl之莫耳比,將該莫耳比設定為一預設值。接著,繼續進行金屬離子電池(3)之充放電循環測試。由第9圖可得知,當金屬離子電池(3)在進行約第670次充放電時,電量已幾乎為0。此時,將第二腔體中的第二電解質加入該第一腔體中,以調整該第一腔體的電解質達到該預設值,並繼續進行金屬離子電池(3)之充放電循環測試。由第9圖可得知,當加入該第二電解質將該第一腔體的電解質濃度調整到該預設值時,可觀察到該金屬離子電池(3)之充放電容量迅速上昇,並達到金屬離子電池(3)在進行約第380次充放電時的電量水準。
綜合上述,本揭露所述金屬離子電池,由於可補充與本先使用之電解質不同濃度的電解質於該金屬離子電池之化學反應電池芯腔體中,使得該金屬離子電池可依據操作環境作最佳的調整。此外,本揭露所述金屬離子電池,由於可補充與本先使用之電解質不同濃度的電解質於該金屬離子電池之化學反應電池芯腔體中,可使得該第一腔體內之電解質之金屬鹵化物與該離子液 體的莫耳比例回復到該金屬離子電池具有較佳性能之設定值,使該金屬離子電池即使在使用一段時間後仍然接近其原來的電量,延長該金屬離子電池的壽命。
雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧第一腔體
12‧‧‧正極
14‧‧‧隔離層
16‧‧‧負極
18‧‧‧第一電解質
20‧‧‧控制單元
30‧‧‧第二腔體
38‧‧‧第二電解質
41‧‧‧第一通道
100‧‧‧金屬離子電池

Claims (23)

  1. 一種金屬離子電池,包含:一第一腔體,包含一正極、一負極、一隔離層、以及一第一電解質設置於該第一腔體中,其中該隔離層設置於該正極及該負極之間,其中該第一電解質包含一第一離子液體及一第一金屬鹵化物;一第二腔體,包含第二電解質設置於該第二腔體中,其中該第一電解質與該第二電解質的組成比例不同,其中該第二電解質包含一第二離子液體及一第二金屬鹵化物;以及一控制單元,係用以控制該第二腔體內的第二電解質是否藉由一第一通道添加至該第一腔體中,其中該第二金屬鹵化物與該第二離子液體之莫耳比大於該第一金屬鹵化物與該第一離子液體之莫耳比。
  2. 如申請專利範圍第1項所述之金屬離子電池,其中該第一金屬鹵化物與該第一離子液體之莫耳比係1.1:1至1.8:1。
  3. 如申請專利範圍第1項所述之金屬離子電池,其中該第一金屬鹵化物與該第二金屬鹵化物相同。
  4. 如申請專利範圍第1項所述之金屬離子電池,其中該第一離子液體與該第二離子液體相同。
  5. 如申請專利範圍第1項所述之金屬離子電池,其中該第二金屬鹵化物與該第二離子液體之莫耳比係1.5:1至10:1。
  6. 如申請專利範圍第1項所述之金屬離子電池,更包含:一感測單元,用來監控該第一腔體內之第一電解質的導電 度、溫度、比重、或黏度,並將所獲得的值提供至該控制單元。
  7. 如申請專利範圍第6項所述之金屬離子電池,當該第一電解質的導電度、或黏度大於一預設值時,該控制單元將該第二腔體內的第二電解質藉由該第一通道添加至該第一腔體中。
  8. 如申請專利範圍第6項所述之金屬離子電池,當該第一電解質的溫度、或比重小於一預設值時,該控制單元將該第二腔體內的第二電解質藉由該第一通道添加至該第一腔體中。
  9. 如申請專利範圍第1項所述之金屬離子電池,其中該第一通道為一單向通道,而該第一腔體內的該第一電解質無法藉由該第一通道進入該第二腔體內。
  10. 如申請專利範圍第1項所述之金屬離子電池,其中除該第一通道外,該第一腔體及第二腔體之間並無其他途徑使該第一電解質進入該第二腔體內。
  11. 如申請專利範圍第6項所述之金屬離子電池,更包含:一第三腔體,其中一第三電解質設置於該第三腔體中,其中該第一電解質、第二電解質、以及該第三電解質的組成比例不同,且該控制單元係用以控制該第三腔體內的第三電解質是否藉由一第二通道添加至該第一腔體中。
  12. 如申請專利範圍第11項所述之金屬離子電池,其中該第三電解質包含一第三離子液體。
  13. 如申請專利範圍第12項所述之金屬離子電池,其中該第一離子液體與該第三離子液體相同。
  14. 如申請專利範圍第12項所述之金屬離子電池,其中該第三電解質更包含一第三金屬鹵化物。
  15. 如申請專利範圍第14項所述之金屬離子電池,其中該第一金屬鹵化物與該第三金屬鹵化物相同。
  16. 如申請專利範圍第14項所述之金屬離子電池,其中該第三金屬鹵化物與該第三離子液體之莫耳比小於該第一金屬鹵化物與該第一離子液體之莫耳比。
  17. 如申請專利範圍第14項所述之金屬離子電池,其中該第三金屬鹵化物與該第三離子液體之莫耳比係0.1:1至0.9:1。
  18. 如申請專利範圍第11項所述之金屬離子電池,當該第一電解質的導電度、或黏度小於一預設值時,該控制單元將該第三腔體內的第三電解質藉由該第二通道添加至該第一腔體中。
  19. 如申請專利範圍第11項所述之金屬離子電池,當該第一電解質的溫度、或比重大於一預設值時,該控制單元將該第三腔體內的第三電解質藉由該第二通道添加至該第一腔體中。
  20. 如申請專利範圍第11項所述之金屬離子電池,其中該第二通道為一單向通道,而該第一腔體內的該第一電解質無法藉由該第二通道進入該第三腔體內。
  21. 如申請專利範圍第11項所述之金屬離子電池,其中除該第二通道外,該第一腔體及第三腔體之間並無其他途徑使該第一電解質進入該第三腔體內。
  22. 如申請專利範圍第11項所述之金屬離子電池,更包含: 一過濾單元,其中該控制單元係用以控制該第一腔體內的第一電解質是否藉由一第三通道進入該過濾單元中。
  23. 如申請專利範圍第22項所述之金屬離子電池,其中該過濾單元將該第一電解質分為該第二電解質及該第三電解質,並藉由一第四通道將該第二電解質導入該第二腔體、以及藉由一第五通道將該第三電解質導入該第三腔體。
TW105141740A 2016-12-16 2016-12-16 金屬離子電池 TWI611618B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105141740A TWI611618B (zh) 2016-12-16 2016-12-16 金屬離子電池
CN201711008676.5A CN108206298B (zh) 2016-12-16 2017-10-25 金属离子电池
US15/813,791 US11296329B2 (en) 2016-12-16 2017-11-15 Metal-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141740A TWI611618B (zh) 2016-12-16 2016-12-16 金屬離子電池

Publications (2)

Publication Number Publication Date
TWI611618B true TWI611618B (zh) 2018-01-11
TW201824625A TW201824625A (zh) 2018-07-01

Family

ID=61728633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141740A TWI611618B (zh) 2016-12-16 2016-12-16 金屬離子電池

Country Status (3)

Country Link
US (1) US11296329B2 (zh)
CN (1) CN108206298B (zh)
TW (1) TWI611618B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296246A (zh) * 2012-02-24 2013-09-11 福特全球技术公司 电解质补充系统及方法
TW201543733A (zh) * 2014-02-28 2015-11-16 Ind Tech Res Inst 金屬離子電池及其製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415949A (en) * 1992-10-02 1995-05-16 Voltek, Inc. Metal-air cell and power system using metal-air cells
JP4217290B2 (ja) 1998-02-19 2009-01-28 Fdk株式会社 負極にアルミニウムを用いた非水電解液電池
CN1197183C (zh) 2000-03-01 2005-04-13 东芝株式会社 铝电池
JP2009032400A (ja) * 2007-07-24 2009-02-12 Toyota Motor Corp 空気電池システム
US8535818B2 (en) * 2008-11-19 2013-09-17 GM Global Technology Operations LLC Method and apparatus for rejuvenation of degraded pouch-type lithium ion battery cells
US20100316914A1 (en) 2009-06-14 2010-12-16 Correia Pedro Manuel Brito Da Silva Rechargeable battery with aluminium anode containing a non aqueous electrolyte consisting of an ether as solvent and a lithium salt of an imide
CN101645500B (zh) 2009-09-08 2011-10-26 无锡欧力达新能源电力科技有限公司 碳基嵌渗硫材料的制备和以此为正极活性材料的铝二次电池
CN101662020B (zh) 2009-09-24 2011-03-23 无锡欧力达新能源电力科技有限公司 一种二次铝电池及其正极活性材料的制备
CN101764256B (zh) 2009-11-20 2013-06-19 无锡欧力达新能源电力科技有限公司 一种可再充铝电池及其制备方法
CN101764254B (zh) 2009-11-20 2011-12-28 无锡欧力达新能源电力科技有限公司 二次铝电池及其正极的制备方法
CN101794907B (zh) 2009-11-20 2012-09-19 无锡欧力达新能源电力科技有限公司 一种铝聚合物二次电池及其制备方法
CZ2010703A3 (cs) * 2010-09-23 2012-04-04 He3Da S.R.O. Lithiový akumulátor
US20120082904A1 (en) 2010-09-30 2012-04-05 Brown Gilbert M High energy density aluminum battery
US9466853B2 (en) 2010-09-30 2016-10-11 Ut-Battelle, Llc High energy density aluminum battery
WO2013049097A1 (en) 2011-09-26 2013-04-04 Cornell University Aluminum ion battery including metal sulfide or monocrystalline vanadium oxide cathode and ionic liquid based electrolyte
DE102011088682A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Elektrolytflüssigkeitsdosiereinrichtung für Lithium-Zellen
US9297091B2 (en) 2012-09-18 2016-03-29 Sumitomo Electric Industries, Ltd. Method for producing aluminum film and method for producing aluminum foil
JP6195236B2 (ja) 2013-05-13 2017-09-13 学校法人 関西大学 アルミニウム二次電池
CN103825045A (zh) 2014-03-26 2014-05-28 北京科技大学 一种铝离子电池及其制备方法
CN103915611A (zh) 2014-04-08 2014-07-09 童东革 一种水系铝离子电池阳极材料及其制备方法
CN104183835B (zh) 2014-08-22 2015-09-23 南京中储新能源有限公司 一种铝碳气凝胶复合材料及以此为负极的二次铝电池
CN104241596A (zh) 2014-08-22 2014-12-24 北京科技大学 一种可充电铝离子电池及其制备方法
CN104201350A (zh) 2014-08-22 2014-12-10 南京中储新能源有限公司 基于石墨烯气凝胶/硫复合材料的二次电池
US20160108534A1 (en) 2014-10-17 2016-04-21 Ut-Battelle, Llc Aluminum deposition devices and their use in spot electroplating of aluminum
CN104393290B (zh) 2014-10-29 2016-08-24 北京科技大学 一种采用MoS2为正极材料的铝离子电池及其制备方法
CN104701541A (zh) 2015-01-06 2015-06-10 北京科技大学 一种ws2做正极的铝离子电池及其制备方法
CN104810544A (zh) 2015-04-20 2015-07-29 北京科技大学 一种可充电铝离子电池及其制备方法
CN104868179B (zh) 2015-05-13 2017-11-17 北京科技大学 一种可充放电铝离子熔盐电池及其制备方法
CN104993130A (zh) 2015-05-25 2015-10-21 石嘴山市天和创润新材料科技有限公司 一种非水溶液铝离子二次电池及其制备方法
CN104952629B (zh) 2015-06-08 2019-05-10 深圳博磊达新能源科技有限公司 一种铝电容电池及其制备方法
CN204857848U (zh) * 2015-08-01 2015-12-09 天能集团(河南)能源科技有限公司 自动循环散热补水铅酸蓄电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296246A (zh) * 2012-02-24 2013-09-11 福特全球技术公司 电解质补充系统及方法
TW201543733A (zh) * 2014-02-28 2015-11-16 Ind Tech Res Inst 金屬離子電池及其製造方法

Also Published As

Publication number Publication date
CN108206298B (zh) 2020-06-05
US20180175399A1 (en) 2018-06-21
CN108206298A (zh) 2018-06-26
TW201824625A (zh) 2018-07-01
US11296329B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
Zhang et al. 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries
Levi et al. Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for Li-ion batteries
JP6195236B2 (ja) アルミニウム二次電池
CN106463711B (zh) 用于金属基蓄电池的枝晶抑制性电解质
CN108183257A (zh) 有机凝胶电解质、应用、钠基双离子有机固态电池及其制备方法
US10367227B2 (en) Electrolyte composition and metal-ion battery employing the same
KR20180095442A (ko) 물 용매화된 유리/비결정 고체 이온 전도체
CN105870449B (zh) 一种全固态锂-空气电池复合正极材料及全固态锂-空气电池
US10665905B2 (en) Metal-ion battery
TW201827416A (zh) 鋁離子電池
US20150249272A1 (en) Sodium secondary battery
JP2005229103A (ja) 電気化学素子用非水電解液およびそれを含む電気二重層コンデンサもしくは二次電池
CN101944587B (zh) 锂锰扣式二次电池负极及电池
TWI606627B (zh) 金屬離子電池
CN110060883A (zh) 一种水系电解液及其应用
CN109962289B (zh) 电解质组合物及包含其的金属离子电池
Sun et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors
Du et al. Transparent dual ionic (Zn2+-Al3+) hydrogel with high conductivity for self-chargeable Zn//WO3-x electrochromic devices
Seki et al. Imidazolium-based room-temperature ionic liquid for lithium secondary batteries: relationships between lithium salt concentration and battery performance characteristics
TWI611618B (zh) 金屬離子電池
CN107204243A (zh) 一种锌离子超级电容器电解液
JP6587579B2 (ja) リチウムイオンキャパシタ
TWI659010B (zh) 電解質組成物及包含其之金屬離子電池
RU2522947C2 (ru) Суперконденсатор с неорганическим композиционным твердым электролитом (варианты)
US10079116B2 (en) Aluminum-ion capacitor and uses thereof