TWI609516B - 金屬離子電池及其製備方法 - Google Patents

金屬離子電池及其製備方法 Download PDF

Info

Publication number
TWI609516B
TWI609516B TW105141738A TW105141738A TWI609516B TW I609516 B TWI609516 B TW I609516B TW 105141738 A TW105141738 A TW 105141738A TW 105141738 A TW105141738 A TW 105141738A TW I609516 B TWI609516 B TW I609516B
Authority
TW
Taiwan
Prior art keywords
halide
metal
ion battery
metal ion
positive electrode
Prior art date
Application number
TW105141738A
Other languages
English (en)
Other versions
TW201742303A (zh
Inventor
江建志
陳光耀
林俊凱
吳俊星
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US15/597,353 priority Critical patent/US20170338513A1/en
Priority to CN201710345622.1A priority patent/CN107394271B/zh
Priority to JP2017097887A priority patent/JP6701122B2/ja
Priority to KR1020170060863A priority patent/KR102011367B1/ko
Priority to EP17171504.8A priority patent/EP3246980B1/en
Publication of TW201742303A publication Critical patent/TW201742303A/zh
Application granted granted Critical
Publication of TWI609516B publication Critical patent/TWI609516B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

金屬離子電池及其製備方法
本揭露關於一種儲能元件及其製備方法,更特別關於一種金屬離子電池及其製備方法。
鋁在地球上蘊藏量非常豐富,以鋁作為材料的電子裝置具有較低的成本。在儲能元件的應用方面,鋁在電化學充放電的過程中電子轉移數目可達到三,因此可提供較高的能量儲存容量。再者,由於鋁具有低可燃性及電子氧化還原性質,大幅提昇金屬離子電池在使用上的安全性。
然而,傳統金屬離子電池,面臨低電池放電電壓、無放電電壓平台(discharge voltage plateaus)之電容行為、及低電池容量等問題。因此,業界需要一種新的金屬離子電池以解決上述問題。
根據本揭露實施例,本揭露提供一種儲能元件,例如為金屬離子電池。該金屬離子電池包含:一正極;一隔離層;一負極,其中該負極以隔離層與該正極相隔;以及一電解質,設置於該正極與該負極之間,其中該電解質包含離子液體、鹵化鋁、 及金屬鹵化物,其中金屬鹵化物包含鹵化銀、鹵化銅、鹵化鈷、鹵化鐵、鹵化鋅、鹵化銦、鹵化鎘、鹵化鎳、鹵化錫、鹵化鉻、鹵化鑭、鹵化釔、鹵化鈦、鹵化錳、鹵化鉬、或上述之組合。
根據本揭露實施例,本揭露提供一種金屬離子電池的製備方法。該方法包含:提供一正極及一負極;提供一隔離層以分隔該正極及該負極;以及,提供一電解質,使該電解質配置於該正極及該負極之間,其中該電解質包含離子液體、鹵化鋁、及金屬鹵化物,其中該金屬鹵化物包含鹵化銀、鹵化銅、鹵化鈷、鹵化鐵、鹵化鋅、鹵化銦、鹵化鎘、鹵化鎳、鹵化錫、鹵化鉻、鹵化鑭、鹵化釔、鹵化鈦、鹵化錳、鹵化鉬、或上述之組合。
10‧‧‧正極
11‧‧‧集電層
12‧‧‧負極
13‧‧‧活性材料
14‧‧‧隔離膜
20‧‧‧電解質
100‧‧‧金屬離子電池
第1圖係本揭露一實施例所述金屬離子電池之示意圖;以及第2-12圖係顯示本揭露實施例及比較例所述金屬離子電池其充放電過程中,電壓與時間的關係。
以下針對本揭露之金屬離子電池作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。且在圖式中,實施例之形狀、數量、或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分 別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,此外,特定之實施例僅為揭示本揭露使用之特定方式,其並非用以限定本揭露。
本揭露提供一種金屬離子電池。根據本揭露實施例,該金屬離子電池之電解質包含可作為路易斯酸的金屬鹵化物及鹵化鋁。因此,在金屬離子電池充放電時,該金屬鹵化物可形成離子尺寸不同於鹵化鋁酸根的鹵化金屬酸根,使離子液體系統維持可逆。此外,根據本揭露某些實施例,例如:該鹵化金屬酸根可與氯化鋁酸根相同具有四面體形(tetrahedral structure)但具有比氯化鋁酸根具有更小的離子尺寸、或為三角型構形(trigonal structure),因此可更易於與活性材料(例如:石墨)進行插層反應,或進一步協助鹵化鋁酸根與活性材料進行插層反應,提昇金屬離子電池放電電壓及總發電量。
請參照第1圖,係為本揭露一實施例所述金屬離子電池100的示意圖,該金屬離子電池100可包含一正極10、一負極12、及一隔離層14,其中該隔離層14可設置於該正極10及該負極12之間,以使得該負極以該隔離層14與該正極相隔,避免該正極10與該負極12直接接觸。該金屬離子電池100包含一電解質20設置於該金屬離子電池100內,並位於該正極與該負極之間,使得電解質20與該正極10及負極12接觸。該金屬離子電池100可為充電式之二次電池,但本揭露亦涵蓋一次電池。
根據本揭露實施例,該正極10可包含一集電層11及一活性材料13設置於該集電層11之上。根據本揭露實施例,該正極10亦可由該集電層11及活性材料13所構成。根據本揭露實施 例,該集電層11可為導電性碳基材,例如碳布、碳氈、或碳紙。舉例來說,該導電性碳基材可具有片電阻介於約1mΩ.cm2至6mΩ.cm2之間、以及含碳量大於65wt%。該活性材料13包括層狀活性材料或該層狀活性材料的團聚物。根據本揭露實施例,該活性材料13可為插層碳材,例如:石墨(包含天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、或膨脹石墨)、石墨烯、奈米碳管或上述材料之組合。根據本揭露實施例,該活性材料13可為層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)或上述材料之組合。該活性材料13可具有一孔隙度介於約0.05至0.95之間,例如介於約0.3至0.9之間。此外,根據本揭露實施例,該活性材料13可直接成長於該集電層11之上(即兩者之間沒有任何介質),或是利用黏著劑將該活性材料13固定於該集電層11上。
根據本揭露實施例,該隔離層14之材質可為玻璃纖維、聚乙烯(polyethylene、PE)、聚丙烯(Polypropylene、PP)、不織布、木質纖維、聚醚碸樹脂(Poly(ether sulfones)、PES)、陶瓷纖維等或上述之組合。
根據本揭露實施例,該負極12可為一金屬或其合金、一集電層、或其組合。舉例來說,該負極12可由該金屬或其合金所構成。此外,該負極12亦可為集電層。再者,該負極12亦可由集電層及金屬或其合金(設置於該集電層)所構成。該負極可包含銀、銅、鐵、鈷、鋁、鋅、銦、鎘、鎳、錫、鉻、鑭、釔、鈦、錳、鉬或包含上述金屬的合金。為提昇金屬離子電池總發電量及避免金屬離子電池在使用過程中發生自燃的狀況,該負極非 為鹼金族(例如:Li)或鹼土族的金屬。該集電層可為導電性碳基材,例如碳布、碳氈、或碳紙。舉例來說,該導電性碳基材可具有片電阻介於約1mΩ.cm2至6mΩ.cm2之間、以及含碳量大於65wt%。
根據本揭露實施例,該電解質20可包含一離子液體、鹵化鋁、及金屬鹵化物。該金屬鹵化物與鹵化鋁之總莫耳數與該離子液體之莫耳比大於或等於約1.1、或大於或等於約1.2,例如介於1.1:1至2.1:1之間、或例如約1.1、約1.3、約1.5、或約1.8。若低於1.1,則傾向路易士中性電解液,插層活性物質少,不利插層反應進行。若大於2.1則在室溫區間不易使金屬鹵化物及鹵化鋁與離子液體形成液相互溶。該離子液體具有一熔點低於100℃,例如可為室溫離子液體(room temperature ion liquid、RTIL)。舉例來說,該離子液體可包含尿素(urea)、氯化膽鹼(Choline chloride)、乙醯氯化膽鹼(ethylchlorine chloride)、鹼金族鹵化物(alkali halide)、二甲基亞碸、烷基咪唑鎓鹽(alkylimidazolium salt)、烷基吡啶鎓鹽(alkylpyridinium salt)、烷基氟吡唑鎓鹽(alkylfluoropyrazolium salt)、烷基三唑鎓鹽(alkyltriazolium salt)、芳烷銨鹽(aralkylammonium salt)、烷基烷氧基銨鹽(alkylalkoxyammonium salt)、芳烷鏻鹽(aralkylphosphonium salt)、芳烷鋶鹽(aralkylsulfonium salt)、及其混合物。根據本揭露實施例,該電解質可更包含添加劑,以提高電導率且降低黏度。
該金屬鹵化物包含可作為路易斯酸的金屬氟化物、金屬氯化物、或金屬溴化物,使電解質系統維持可逆。此外,為提昇金屬離子電池總發電量及避免金屬離子電池在使用過程中發 生自燃的狀況,該金屬鹵化物非為鹼金族鹵化物或鹼土族鹵化物。該金屬鹵化物可包含鹵化銀(例如氟化銀、氯化銀、或溴化銀)、鹵化銅(例如氟化銅、氯化銅、或溴化銅)、鹵化鐵(例如氟化鐵、氯化鐵、或溴化鐵)、鹵化鈷(例如氟化鈷、氯化鈷、或溴化鈷)、鹵化鋅(例如氟化鋅、氯化鋅、或溴化鋅)、鹵化銦(例如氟化銦、氯化銦、或溴化銦)、鹵化鎘(例如氟化鎘、氯化鎘、或溴化鎘)、鹵化鎳(例如氟化鎳、氯化鎳、或溴化鎳)、鹵化錫(例如氟化錫、氯化錫、或溴化錫)、鹵化鉻(例如氟化鉻、氯化鉻、或溴化鉻)、鹵化鑭(例如氟化鑭、氯化鑭、或溴化鑭)、鹵化釔(例如氟化釔、氯化銀、或溴化釔)、鹵化鈦(例如氟化鈦、氯化鈦、或溴化鈦)、鹵化錳(例如氟化錳、氯化錳、或溴化錳)、鹵化鉬(例如氟化鉬、氯化鉬、或溴化鉬)、或上述之組合。在此,本揭露所述之金屬鹵化物可為帶不同正電價數金屬的鹵化物。舉例來說,本揭露所述之氯化銅可為CuCl、CuCl2、或其組合;氯化鐵可為FeCl2、FeCl3、或其組合;氯化鈷可為CoCl3、CoCl2、或其組合;氯化鉻可為CrCl2、CrCl3、或其組合;氯化鋅可為ZnCl2、ZnCl4、或其組合;氯化錫可為SnCl2、SnCl4、或其組合;以及,氯化錳可為MnCl2、MnCl3、或其組合。根據本揭露實施例,該金屬鹵化物不包含鹵化鋁,因此在金屬離子電池充放電時,該金屬鹵化物可形成離子尺寸不同於鹵化鋁酸根的鹵化金屬酸根。
本揭露所述之電解質具有鹵化鋁,例如:氟化鋁、氯化鋁、或溴化鋁,以在金屬離子電池進行充放電時,使該電解質內產生不同種類的鹵化金屬酸根及鹵化鋁酸根。根據本揭露某些實施例,該金屬鹵化物與該鹵化鋁之莫耳數比係1:100至1:1。 若金屬鹵化物與該鹵化鋁之莫耳數比過低,則該金屬鹵化物插層所貢獻電量不足,電池會維持原來單純鹵化鋁的插層行為。若金屬鹵化物與該鹵化鋁之莫耳數比過高,則該金屬鹵化物不易與鹵化鋁於離子液體中互溶,電解液中會有沉積物析出。
由於本揭露所述之金屬鹵化物與活性材料(例如:石墨)插層後的放電平台,小於氯化鋁與活性材料(例如:石墨)之間的放電平台(約1.8V),顯示本揭露所述之金屬鹵化物在金屬離子電池進行充放電時,更傾向與石墨電極進行插層反應。值得注意的是,該負極所包含的金屬可與該金屬鹵化物的金屬相同或不相同。
根據本揭露某些實施例,當本揭露所述之金屬鹵化物為鹵化銅、鹵化鐵、鹵化鈷、鹵化鉻、鹵化鋅、鹵化錫、或鹵化錳(例如氯化銅、氯化鈷、氯化鐵、氯化鉻、氯化鋅、氯化錫、或氯化錳)時,可在金屬離子電池充放電時,產生具有帶正二價金屬的鹵化金屬酸根(例如氯化金屬酸根)。由於具有帶正二價金屬的鹵化金屬酸根可具有三角型構形(trigonal configuration),因此較具有四面體構形(tetrahedral configuration)的氯化鋁酸根(AlCl4 -)更容易與活性材料(例如:石墨)進行插層反應,或進一步協助氯化鋁酸根與活性材料進行插層反應,提昇金屬離子電池放電電壓及總發電量。另一方面,根據本揭露某些實施例,當本揭露所述之金屬鹵化物為FeCl2時,可在金屬離子電池充放電時,產生離子尺寸較氯化鋁酸根(離子尺寸為5.28Å)小的鹵化金屬酸根(例如:FeCl3 -,(平面三角構型離子高度為1.68Å))。如此一來,該具有較小離子尺寸的金屬鹵化物更容易與活性材料(例如:石墨)進行插 層反應,或進一步協助氯化鋁酸根與活性材料進行插層反應,提昇金屬離子電池放電電壓及總發電量。根據本揭露某些實施例,由本揭露所述之金屬鹵氯化物在金屬離子電池充放電後所形成的鹵化金屬酸根,其離子尺寸可小於約5.20Å。
根據本揭露實施例,本揭露亦提供一種金屬離子電池的製備方法,以製備上述金屬離子電池。該方法,包含:提供一正極及一負極;提供一隔離層以分隔該正極及該負極;以及,提供一電解質,使該電解質配置於該正極及該負極之間,其中該電解質包含一離子液體、鹵化鋁及一金屬鹵化物,其中該金屬鹵化物係鹵化銀、鹵化銅、鹵化鐵、鹵化鈷、鹵化鋅、鹵化銦、鹵化鎘、鹵化鎳、鹵化錫、鹵化鉻、鹵化鑭、鹵化釔、鹵化鈦、鹵化錳、鹵化鉬、或上述之組合。
根據本揭露實施例,該正極材料可為利用電化學或氣相法所預插層之材料。
根據本揭露某些實施例,當該電解質包含離子液體、金屬鹵化物、及鹵化鋁時,該金屬鹵化物及鹵化鋁可同時加入離子液體中並進行混合得到該電解質,接著在將該電解質配置於該正極及該負極之間。
根據本揭露某些實施例,當該電解質包含離子液體、金屬鹵化物、及鹵化鋁時,可先將一部份離子液體與金屬鹵化物混合,並配置於該正極及該負極之間。接著,在該正極及該負極間施加一電位差,使該金屬鹵化物與該離子液體反應形成一鹵化金屬酸根,且該鹵化金屬酸根對該正極的活性材料進行插層反應。在施加該電位差之後,在將離子液體與鹵化鋁混合,並配 置於該正極及該負極之間。在此,由於由金屬鹵化物所形成的鹵化金屬酸根會先與活性材料進行插層反應,作為一已預插嵌金屬鹵化物的正極材料,可有助後續製作電池時鹵化鋁酸根與活性材料進行插層反應,提昇金屬離子電池放電電壓及總發電量。
根據本揭露其他實施例,當該電解質包含離子液體、金屬鹵化物、及鹵化鋁時,可先將一部份離子液體與鹵化鋁混合,並配置於該正極及該負極之間。接著,在該正極及該負極間施加一電位差,使該鹵化鋁與該離子液體反應形成一鹵化鋁酸根,且該鹵化鋁酸根對該正極的活性材料進行插層反應。在施加該電位差之後,在將離子液體與金屬鹵化物混合,並配置於該正極及該負極之間。在此,由於由鹵化鋁所形成的鹵化鋁酸根會先與活性材料進行插層反應,作為一已預插嵌金屬鹵化物的正極材料,可有協助後續製作電池時鹵化金屬酸根與活性材料進行插層反應,提昇金屬離子電池放電電壓及總發電量。
根據本揭露實施例,預插層之正極的製備步驟包含:對該金屬鹵化物加熱,產生一金屬鹵化物氣體;以及,利用該金屬鹵化物氣體對該正極進行預插嵌。
根據本揭露實施例,預插層之正極的製備步驟包含:對該鹵化鋁加熱,產生一鹵化鋁氣體;以及,利用該鹵化鋁氣體對該正極進行預插嵌。
為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例及比較實施例,作詳細說明如下:
實施例1:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到 鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(53mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化亞鐵(FeCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及FeCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且FeCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(1)。
接著,使用NEWARE電池分析儀量測實施例1所得之金屬離子電池(1)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.6V,放電截止電壓為0.3V),可得知其最大比容量為159mAh/g,如表1所示。第2圖係繪示為金屬離子電池(1)在充放電過程中,電壓與時間的關係圖。由第2圖可知,金屬離子電池(1)在2.0V至2.6V顯現出多個充電電壓平台,且在2.2V至1.0V顯現出多個放電電壓平台。此外,金屬離子電池(1)在1000mA/g電流下進行充放電測試時,充放電循環次數可達400次以上。
再現性實驗
實施例2:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨 (57mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化亞鐵(FeCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及FeCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且FeCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(2)。
接著,使用NEWARE電池分析儀量測實施例2所得之金屬離子電池(2)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.6V,放電截止電壓為0.2V),可得知其最大比容量為173.3mAh/g,如第3圖與表1所示。
實施例3:
依實施例1所述方式進行,除了將FeCl2與AlCl3的莫耳比由1:13改為1:27,並將膨脹石墨由53mg降低至42mg,得到金屬離子電池(3)。
接著,使用NEWARE電池分析儀量測實施例3所得之金屬離子電池(3)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.7V,放電截止電壓為0.3V),可得知其最大比容量為176mAh/g,如第4圖與如表1所示。
實施例4:
依實施例1所述方式進行,除了將活性材質為膨脹石墨由57mg增加至63mg,並將FeCl2與AlCl3的莫耳比由1:13改為3:11,得到金屬離子電池(4)。
接著,使用NEWARE電池分析儀量測實施例4所得之金屬離子電池(4)之電池效能(量測條件為:以定電流方式進行充 放電測試(1000mA/g),充電截止電壓為2.8V,放電截止電壓為0.3V),可得知其最大比容量為169mAh/g,如第5圖與表1所示。
比較例1:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(59mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3與[EMIm]Cl之比約為1.4:1,得到金屬離子電池(5)。
接著,使用NEWARE電池分析儀量測比較例1所得之金屬離子電池(5)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.45V,放電截止電壓為1.5V),可得知其最大比容量為72.1mAh/g,如第6圖與表1所示。
由表1可知,與電解質僅包含氯化鋁的金屬離子電池(5)相比,當金屬離子電池之電解質進一步包含氯化鋁及氯化鐵時,所得之金屬離子電池之比容量可提昇至2.4倍,且顯現出多個充放電電壓平台。
實施例5:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(77mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化鋅(ZnCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及ZnCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且ZnCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(6)。
接著,使用NEWARE電池分析儀量測實施例5所得之金屬離子電池(6)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.7V,放電截止電壓為0.2V),可得知其最大比容量為106mAh/g,如表2所示。第7圖係繪示為金屬離子電池(6)在充放電過程中,電壓與時間的關係圖。由第7圖可知,金屬離子電池(6)在1.9V至2.7V顯現出多個充電電壓平台,且在2.3V至0.2V顯現出多個放電電壓平台。
實施例6:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到 鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(66mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化銅(CuCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及CuCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且CuCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(7)。
接著,使用NEWARE電池分析儀量測實施例6所得之金屬離子電池(7)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.7V,放電截止電壓為0.25V),可得知其最大比容量為112mAh/g,如表2所示。第8圖係繪示為金屬離子電池(7)在充放電過程中,電壓與時間的關係圖。由第8圖可知,金屬離子電池(7)在1.9V至2.7V顯現出多個充電電壓平台,且在2.3V至0.25V顯現出多個放電電壓平台。
實施例7:
提供一厚度為0.025mm之鋁箔,對其進行裁切,得到鋁電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(42mg))。接著,按照鋁電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化錳(MnCl2)/氯化l-乙基-3-甲基咪唑鎓 (1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及MnCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且MnCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(8)。
接著,使用NEWARE電池分析儀量測實施例7所得之金屬離子電池(8)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.7V,放電截止電壓為0.3V),可得知其最大比容量為162mAh/g,如圖9與如表2所示。
由表2可知,與電解質僅包含氯化鋁的金屬離子電池(5)相比,當金屬離子電池之電解質進一步包含氯化鋁及氯化鋅(或氯化錳、氯化銅)時,所得之金屬離子電池之比容量可提昇1.38倍至2.25倍,且顯現出多個充放電電壓平台。
實施例8:
提供一厚度為0.24mm之碳纖維紙(由台灣碳能製造及販售),對其進行裁切,得到負極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為天然石墨(128mg))。接著,按照負極、隔離膜、及石 墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化亞鐵(FeCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及FeCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且FeCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(9)。
接著,使用NEWARE電池分析儀量測實施例8所得之金屬離子電池(9)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為2.7V,放電截止電壓為0.2V),可得知其最大比容量為96mAh/g,如第10圖與如表3所示。
實施例9:
提供一厚度為0.1mm之不銹鋼(由新日鐵製造及販售,型號YUS190,成份主要是鐵及鉻),對其進行裁切,得到不銹鋼電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(62mg))。接著,按照不銹鋼電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化鐵(FeCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及FeCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且FeCl3與AlCl3的莫耳比約為1:13),得到金屬離子電池(10)。
接著,使用NEWARE電池分析儀量測實施例9所得之金屬離子電池(10)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為3.3V,放電截止電壓為 0.2V),可得知其最大比容量為87mAh/g,如第11圖與如表3所示。
實施例10:
提供一厚度為0.025mm之銅箔(友和代理,廠牌是Alfa Aesar),對其進行裁切,得到不銹鋼電極。接著,提供隔離膜(玻璃濾紙(2層)、商品編號為沃特曼(Whatman)GFA)及一石墨電極(包含一活性材質配置於一集電基板上,其中該集電基板為碳纖維紙、活性材質為膨脹石墨(66mg))。接著,按照銅箔(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,並以鋁塑膜將其封裝並注入電解質(氯化鋁(AlCl3)/氯化鐵(FeCl2)/氯化l-乙基-3-甲基咪唑鎓(1-ethyl-3-methylimidazolium chloride、[EMIm]Cl)、其中AlCl3及FeCl2的總合與[EMIm]Cl之莫耳比約為1.4:1,且FeCl2與AlCl3的莫耳比約為1:13),得到金屬離子電池(11)。
接著,使用NEWARE電池分析儀量測實施例10所得之金屬離子電池(11)之電池效能(量測條件為:以定電流方式進行充放電測試(1000mA/g),充電截止電壓為3.3V,放電截止電壓為0.3V),可得知其最大比容量為105mAh/g,如第12圖與表3所示。
由表3可知,即使將電極由鋁換為碳纖維紙或是不銹鋼,當所使用電解質同時包含氯化鋁及氯化鐵時,所得之金屬離子電池之比容量可提昇1.38倍至1.55倍(與電解質僅為氯化鋁的金屬離子電池(5)相比),且顯現出多個充放電電壓平台。
雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧正極
11‧‧‧集電層
12‧‧‧負極
13‧‧‧活性材料
14‧‧‧隔離膜
20‧‧‧電解質
100‧‧‧金屬離子電池

Claims (20)

  1. 一種金屬離子電池,包含:一正極;一隔離層;一負極,其中該負極以隔離層與該正極相隔;以及一電解質,設置於該正極與該負極之間,其中該電解質包含離子液體、鹵化鋁、及金屬鹵化物,其中該金屬鹵化物係鹵化銀、鹵化銅、鹵化鐵、鹵化鈷、鹵化鋅、鹵化銦、鹵化鎘、鹵化鎳、鹵化錫、鹵化鉻、鹵化鑭、鹵化釔、鹵化鈦、鹵化錳、鹵化鉬、或上述之組合。
  2. 如申請專利範圍第1項所述之金屬離子電池,其中該金屬鹵化物與鹵化鋁之總莫耳數與該離子液體之莫耳的比係1.1:1至2.1:1。
  3. 如申請專利範圍第1項所述之金屬離子電池,其中該金屬鹵化物與該鹵化鋁之莫耳數比係1:100至1:1。
  4. 如申請專利範圍第1項所述之金屬離子電池,其中該正極由一集電層及一活性材料所構成。
  5. 如申請專利範圍第4項所述之金屬離子電池,其中該集電層係導電性碳基材。
  6. 如申請專利範圍第5項所述之金屬離子電池,其中該導電性碳基材係碳布、碳氈、或碳紙。
  7. 如申請專利範圍第4項所述之金屬離子電池,其中該活性材料係層狀活性材料。
  8. 如申請專利範圍第4項所述之金屬離子電池,其中該活 性材料係石墨、奈米碳管、石墨烯、或上述之組合。
  9. 如申請專利範圍第8項所述之金屬離子電池,其中該石墨係天然石墨、人工石墨、熱解石墨、發泡石墨、膨脹石墨、或上述材料的組合。
  10. 如申請專利範圍第1項所述之金屬離子電池,其中該負極包含金屬或其合金、集電層、或其組合。
  11. 如申請專利範圍第10項所述之金屬離子電池,其中該金屬或其合金包含銀、銅、鐵、鈷、鋁、鋅、銦、鎘、鎳、錫、鉻、鑭、釔、鈦、錳、或鉬。
  12. 如申請專利範圍第1項所述之金屬離子電池,其中在該金屬離子電池進行充放電後,該金屬鹵化物可與該離子液體形成一鹵化金屬酸根,而該鹵化鋁可與該離子液體形成一鹵化鋁酸根。
  13. 如申請專利範圍第12項所述之金屬離子電池,其中該鹵化金屬酸根之離子尺寸小於該鹵化鋁酸根之離子尺寸。
  14. 如申請專利範圍第1項所述之金屬離子電池,其中該離子液體包含尿素(urea)、氯化膽鹼(Choline chloride)、乙醯氯化膽鹼(ethylchlorine chloride)、鹼金族鹵化物(alkali halide)、二甲基亞碸、烷基咪唑鎓鹽(alkylimidazolium salt)、烷基吡啶鎓鹽(alkylpyridinium salt)、烷基氟吡唑鎓鹽(alkylfluoropyrazolium salt)、烷基三唑鎓鹽(alkyltriazolium salt)、芳烷銨鹽(aralkylammonium salt)、烷基烷氧基銨鹽(alkylalkoxyammonium salt)、芳烷鏻鹽(aralkylphosphonium salt)、芳烷鋶鹽(aralkylsulfonium salt)、或上述材料的組合。
  15. 一種金屬離子電池的製備方法,包含:提供一正極及一負極;提供一隔離層以分隔該正極及該負極;以及提供一電解質,使該電解質配置於該正極及該負極之間,其中該電解質包含離子液體、鹵化鋁、及金屬鹵化物,其中該金屬鹵化物係鹵化銀、鹵化銅、鹵化鐵、鹵化鈷、鹵化鋅、鹵化銦、鹵化鎘、鹵化鎳、鹵化錫、鹵化鉻、鹵化鑭、鹵化釔、鹵化鈦、鹵化錳、鹵化鉬、或上述之組合。
  16. 如申請專利範圍第15項所述之金屬離子電池的製備方法,其中該正極材料係利用電化學或氣相法(vapor phase intercalation)所得的預插層之材料。
  17. 如申請專利範圍第16項所述之金屬離子電池的製備方法,其中該預插層之材料的製備步驟包含:將該離子液體與該金屬鹵化物混合,並配置於該正極及該負極之間;使該金屬鹵化物與該離子液體反應形成一鹵化金屬酸根;以及在該正極及該負極間施加一電位差,且該鹵化金屬酸根對該正極進行插層反應,得到由預插層之材料組成之正極。
  18. 如申請專利範圍第16項所述之金屬離子電池的製備方法,其中該預插層之材料的製備步驟包含:將該離子液體與該鹵化鋁混合,並配置於該正極及該負極之間;使該鹵化鋁與該離子液體反應形成一鹵化鋁酸根;以及 在該正極及該負極間施加一電位差,且該鹵化鋁酸根對該正極進行插層反應,得到由預插層之材料組成之正極。
  19. 如申請專利範圍第16項所述之金屬離子電池的製備方法,其中該預插層之材料的製備步驟包含:對該金屬鹵化物加熱,產生一金屬鹵化物氣體;以及利用該金屬鹵化物氣體對該正極進行預插嵌。
  20. 如申請專利範圍第16項所述之金屬離子電池的製備方法,其中該預插層之材料的製備步驟包含:對該鹵化鋁加熱,產生一鹵化鋁氣體;以及利用該鹵化鋁氣體對該正極進行預插嵌。
TW105141738A 2016-05-17 2016-12-16 金屬離子電池及其製備方法 TWI609516B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/597,353 US20170338513A1 (en) 2016-05-17 2017-05-17 Metal-ion battery and method for preparing the same
CN201710345622.1A CN107394271B (zh) 2016-05-17 2017-05-17 金属离子电池及其制备方法
JP2017097887A JP6701122B2 (ja) 2016-05-17 2017-05-17 金属イオンバッテリー及びその製造方法
KR1020170060863A KR102011367B1 (ko) 2016-05-17 2017-05-17 금속-이온 배터리 및 이의 제조 방법
EP17171504.8A EP3246980B1 (en) 2016-05-17 2017-05-17 Metal-ion battery and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201662337629P 2016-05-17 2016-05-17

Publications (2)

Publication Number Publication Date
TW201742303A TW201742303A (zh) 2017-12-01
TWI609516B true TWI609516B (zh) 2017-12-21

Family

ID=61023246

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105140794A TWI606630B (zh) 2016-05-17 2016-12-09 金屬離子電池
TW105141738A TWI609516B (zh) 2016-05-17 2016-12-16 金屬離子電池及其製備方法
TW105141735A TWI606627B (zh) 2016-05-17 2016-12-16 金屬離子電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105140794A TWI606630B (zh) 2016-05-17 2016-12-09 金屬離子電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105141735A TWI606627B (zh) 2016-05-17 2016-12-16 金屬離子電池

Country Status (1)

Country Link
TW (3) TWI606630B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340552B1 (en) 2017-12-22 2019-07-02 Industrial Technology Research Institute Electrolyte composition and metal-ion battery employing the same
TWI654170B (zh) 2017-12-22 2019-03-21 財團法人工業技術研究院 電解質組成物及包含其之金屬離子電池
TWI663767B (zh) * 2018-07-06 2019-06-21 國立臺灣科技大學 金屬離子電池及其製備方法
TWI672844B (zh) 2018-12-19 2019-09-21 財團法人工業技術研究院 鋁電池充電方法及鋁電池充電裝置
CN111384360B (zh) 2018-12-27 2022-02-22 财团法人工业技术研究院 金属离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201543733A (zh) * 2014-02-28 2015-11-16 Ind Tech Res Inst 金屬離子電池及其製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201543733A (zh) * 2014-02-28 2015-11-16 Ind Tech Res Inst 金屬離子電池及其製造方法

Also Published As

Publication number Publication date
TW201742304A (zh) 2017-12-01
TW201742303A (zh) 2017-12-01
TWI606630B (zh) 2017-11-21
TWI606627B (zh) 2017-11-21
TW201742296A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Dong et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors
JP6701122B2 (ja) 金属イオンバッテリー及びその製造方法
TWI609516B (zh) 金屬離子電池及其製備方法
Zhang et al. 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries
Pu et al. Liquid‐type cathode enabled by 3D sponge‐like carbon nanotubes for high energy density and long cycling life of Li‐S batteries
Gui et al. Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodium‐Ion Capacitors
JP4519685B2 (ja) 非水電解質電池
JP6621442B2 (ja) 金属イオンバッテリー
JP2020524359A (ja) 導電性の変形可能な準固体ポリマー電極を有する形状適合性のアルカリ金属電池
JP2008511967A (ja) 溶融塩電解質と高電圧正極活物質とを有する電池
US9722247B2 (en) Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery
Bae et al. A general strategy of anion-rich high-concentration polymeric interlayer for high-voltage, all-solid-state batteries
Cai et al. High‐Energy Density Aqueous Alkali/Acid Hybrid Zn–S Battery
JP7074131B2 (ja) ビニルスルホン化合物、リチウムイオン電池用電解液及びリチウムイオン電池
US20220246897A1 (en) Secondary battery
US20170352497A1 (en) Electrolyte additive for hybrid supercapacitors to reduce charge transfer resistance, and hybrid supercapacitor including the same
JP2023182616A (ja) エネルギー貯蔵装置のための非水性溶媒電解質組成物
Zheng et al. In situ construction of inorganic component-rich polymers as interfacial stabilizers for high-rate lithium metal batteries
WO2023042262A1 (ja) リチウム2次電池
TWI663767B (zh) 金屬離子電池及其製備方法
US10804541B2 (en) Electrode and device employing the same
Thangaraj et al. Effect of various ratios of poly (3-hexylthiophene) with polyvinyl alcohol gel-polymer electrolytes in flexible sodium-ion batteries using Samanea saman tree-leaf-derived carbon quantum dots decorated with SnO2 and NaVO3
JP2013206645A (ja) 活物質及び蓄電デバイス
KR102248668B1 (ko) 고용량 알루미늄 이차전지 및 이의 제조 방법
TWI429595B (zh) 具Ti、Li、Sn複合材料之電池負極材料的形成方法