TWI601635B - 鋼鋁複合箔 - Google Patents

鋼鋁複合箔 Download PDF

Info

Publication number
TWI601635B
TWI601635B TW103106845A TW103106845A TWI601635B TW I601635 B TWI601635 B TW I601635B TW 103106845 A TW103106845 A TW 103106845A TW 103106845 A TW103106845 A TW 103106845A TW I601635 B TWI601635 B TW I601635B
Authority
TW
Taiwan
Prior art keywords
layer
steel
aluminum composite
composite foil
containing metal
Prior art date
Application number
TW103106845A
Other languages
English (en)
Other versions
TW201437010A (zh
Inventor
佐脇直哉
寺嶋晉一
田中將元
長崎修司
海野裕人
Original Assignee
新日鐵住金高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金高新材料股份有限公司 filed Critical 新日鐵住金高新材料股份有限公司
Publication of TW201437010A publication Critical patent/TW201437010A/zh
Application granted granted Critical
Publication of TWI601635B publication Critical patent/TWI601635B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)

Description

鋼鋁複合箔 發明領域
本發明是有關於一種鋼鋁複合箔。
本申請案依據2013年2月28日在日本申請之特願2013-39706號主張優先權,且在此引用其內容。
發明背景
在CIGS(Copper-Indium-Gallium-Selenium)、CIS(Copper-Indium-Selenium)、CdTe(Cadmium-Tellur)等的化合物系太陽能電池、非晶矽等的薄膜系太陽能電池、將此等積層複數層的混成式太陽能電池,或有機EL(Electroluminescence)照明中,基於可在強度上支撐CIGS層、CIS層、CdTe層、非晶矽層,或有機EL層等的目的,會使用被稱為基材的底座。
以往,上述基材如專利文獻1所記載地,大多會採用玻璃基材。由於玻璃容易破裂,必須加大厚度以提升強度。但是,將玻璃的厚度加大時,會有太陽能電池和有機EL照明本身會變重的問題。
另一方面,作為取代玻璃基材的基材,有使用不易破裂且適合將厚度作薄的金屬箔的作法被嘗試。作為基 材的金屬箔,可達到抗蝕性、表面平滑性,以及彈塑性變形性的任一項均良好的要求。
基材的抗蝕性是為了使作為基材使用的金屬箔,可歷經20年以上的長期間被暴露在戶外環境中,因而設成必要的。
基材的表面平滑性是為了避免因存在於基材表面的突起狀缺陷,導致積層於基材上的太陽能電池層或有機EL層受到物理性的損傷,因而設成必要的。基材表面宜為不具有突起狀缺陷的平滑表面。
基材的彈塑性變形性是為了可以將基材捲取成卷狀,因而設成必要的。如果可將基材捲曲成卷狀,就可將太陽能電池等的製造步驟,從以往的批式(Batch)處理,變更成用硬質的玻璃基材所無法進行的輥對輥(Roll to Roll)處理之類的連續處理。其結果,變成可以大幅降低太陽能電池和有機EL照明的製造成本。
基材用金屬箔,一般而言,是以採用抗蝕性優異的不鏽鋼的金屬箔(稱為不鏽鋼箔)的使用進行開發。專利文獻2中,是使用在不鏽鏽箔上,還形成有有機被覆膜的基材。
因為不鏽鋼箔有優異的抗蝕性,故被用作基材用金屬箔。但是,不鏽鋼箔因為含有鉻而有價格高的問題。此外,不鏽鋼箔,由於不鏽鋼本身的硬度高,因而在軋延上並不容易,也有製成箔的製造成本較高的問題。因此,與玻璃基材相比,使用頻率低。
另一方面,使用了普通鋼(碳素鋼)的金屬箔(以下稱為普通鋼箔),由於材料本身也比不鏽鋼便宜,又具有高塑性變形能,故製造成本相較於不鏽鋼箔也大幅降低。但是,普通鋼箔本身,並無法滿足作為基材用金屬箔而被要求的抗蝕性。如果有可以滿足基材用金屬箔所要求的上述抗蝕性、表面平滑性,以及彈塑性變形性的普通鋼箔,則可以預期到太陽能電池和有機EL照明等的製造成本大幅減少的情形。
作為提高抗蝕性的普通鋼箔,設有鍍鋁層等的含Al金屬層的普通鋼箔正受到檢討。但是,以往的具有含Al金屬層的普通鋼箔,表面平滑性並不十分充分。
此外,在太陽能電池和有機EL照明的製造步驟中,會有為了在各種目的下進行熱處理,而將已形成CIGS層或有機EL層等的積層膜之後的基材用金屬箔從加熱到數百℃左右進行冷卻的情形。然而,如果在上述的具有含Al金屬層的普通鋼箔中,進行這種熱處理時,會有產生鍍鋁層的剝離或破損的疑慮。
先前技術文獻 專利文獻
專利文獻1:日本國專利特開2006-80370號公報
專利文獻2:日本國專利特開2006-295035號公報
發明概要
本發明是有鑒於上述情事而作成者,其課題為提供同時滿足作為太陽能電池和有機EL照明的基材用金屬箔所要求的抗蝕性、表面平滑性,以及彈塑性變形性,同時即使在加熱到高溫再冷卻的情況中也不易產生含Al金屬層等的剝離或破損的鋼鋁複合箔。
本發明的要旨如以下所述。
(1)關於本發明的一個態樣的鋼鋁複合箔中,設有芯層,其具有鋼層及形成在前述鋼層上的含Al金屬層;以及Al層,其積層於前述芯層的前述含Al金屬層上;當以厚度方向與切割方向呈平行的截面觀看時,前述含Al金屬層中含有離開前述鋼層而分散的Fe-Al合金粒。
(2)上述(1)中記載的鋼鋁複合箔中,其以前述截面觀看時,相對於前述截面中所含有的Fe-Al合金粒,前述含Al金屬層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的面積分率,亦可在7.5面積%以上且低於50面積%的範圍。
(3)上述(1)或(2)中記載的鋼鋁複合箔中,前述含Al金屬層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,亦可在0.1~5μm的範圍。
(4)上述(1)~(3)中任一項所記載的鋼鋁複合箔中,當以前述截面觀看時,前述Al層中也可含有離開前述鋼層而分散的Fe-Al合金粒。
(5)上述(4)中記載的鋼鋁複合箔中,當以前述截面觀看 時,相對於前述截面中所含有的Fe-Al合金粒,前述含Al層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的面積分率,亦可在7.5面積%以上且低於40面積%的範圍。
(6)上述(4)或(5)中記載的鋼鋁複合箔中,前述Al層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,亦可在0.1~5μm的範圍。
(7)上述(1)~(6)中任一項所記載的鋼鋁複合箔中,其於令以前述厚度方向為法線之前述鋼層的2個外面為鋼層面時,前述含Al金屬層亦可配置在前述各個鋼層面上。
(8)上述(7)中記載的鋼鋁複合箔中,其於令以前述厚度方向為法線之前述含Al金屬層的2個外面為含Al金屬層面時,前述Al層亦可配置在前述各個含Al金屬層面上。
(9)上述(1)~(8)中任一項所記載的鋼鋁複合箔中,前述截面中所含有的空隙以圓當量徑計亦可小於1μm。
(10)上述(1)~(9)中任一項所記載的鋼鋁複合箔中,前述含Al金屬層的化學成分含有1~15質量%的Si,且剩餘部分亦可由Al及不純物所構成。
(11)上述(1)~(10)中任一項所記載的鋼鋁複合箔中,前述Fe-Al合金粒亦可含有選自FeAl3、Fe2Al8Si、FeAl5Si之至少1種金屬間化合物。
(12)上述(1)~(11)中任一項所記載的鋼鋁複合箔中,前述Al層的化學成分亦可由99.0質量%以上的Al及不純物所構成。
(13)上述(1)~(12)中任一項所記載的鋼鋁複合箔中,前 述Al層表面的表面粗糙度Ra亦可為10~25nm。
(14)上述(1)~(13)中任一項所記載的鋼鋁複合箔中,前述Al層的表面上更可設有選自AlN層及Al2O3層之至少1者。
(15)上述(1)~(13)中任一項所記載的鋼鋁複合箔中,前述Al層的表面上更可設有選自溶膠凝膠層及層積層之至少1者。
依據本發明的上述態樣,可以提供同時滿足作為太陽能電池和有機EL照明的基材用金屬箔所要求的抗蝕性、表面平滑性,以及彈塑性變形性,同時即使在加熱到高溫再冷卻的情況中也不易產生含Al金屬層等的剝離或破損的鋼鋁複合箔。
1‧‧‧鋼鋁複合箔
2‧‧‧芯層
3‧‧‧Al層
3a‧‧‧Al層3的表面
4‧‧‧鋼層
4a‧‧‧鋼層4的鋼層面
5‧‧‧含Al金屬層
5a‧‧‧含Al金屬層5的含Al金屬層面
6‧‧‧界面
7‧‧‧Fe-Al合金粒
7a‧‧‧分散在界面上的Fe-Al合金粒
7b‧‧‧分散在含Al金屬層中的Fe-Al合金粒
7c‧‧‧分散在Al層中的Fe-Al合金粒
8‧‧‧各種被覆層
9‧‧‧空隙
圖1所示為本發明一實施形態中鋼鋁複合箔的主要部分的放大截面示意圖;圖2所示為本實施形態的鋼鋁複合箔的變形例的主要部分的放大截面示意圖;圖3所示為本實施形態的鋼鋁複合箔所含有的Fe-Al合金粒及其鄰近處的放大截面示意圖;圖4所示為本實施形態的鋼鋁複合箔的變形例的主要部分的放大截面示意圖;圖5為本實施形態的鋼鋁複合箔的截面示意圖。
用以實施發明之形態
作為應用在太陽能電池或有機EL照明的基材用金屬箔,除了鋁箔和不鏽鋼箔以外,還可舉出鍍鋁鋼箔作候補。這種鍍鋁鋼箔是在普通鋼的鋼板上配置有含Al金屬層之鍍鋁層的金屬箔。鍍鋁鋼箔由於具優異強度,且原料費和製造費等的成本也優異,故可以說是比鋁箔和不鏽鋼箔更有前景的基材用金屬箔。但是,為了將鍍鋁鋼箔作為基材使用,進一步提升表面平滑性,和進一步抑制剝離與破損就變得很必要。
一般而言,鍍鋁鋼箔是藉由將鍍鋁鋼板軋延到變成箔狀為止而被製造。此外,一般而言,上述軋延前的鍍鋁鋼板,是將普通鋼的鋼板浸漬於熱浸鍍鋁浴中而被製造。在這個熱浸鍍鋁浴中,在使熔融溫度降低的目的下,而有使其含有Si的情形。此時,會於鍍鋁層中生成Al相和Si相的共晶組織。又,經由進行熱浸鍍鋁,也會在鍍鋁層和鋼層(底鐵)的界面(邊界)形成Fe-Al合金層。
將鍍鋁鋼箔作為基材使用時,會在鍍鋁鋼箔的鍍鋁層上形成太陽能電池的發電層或有機EL元件。因此,會對此鍍鋁層表面要求高平坦性(表面平滑性)。但是,在鍍鋁層中存在有上述的Al相和Si相的共晶組織時,Al相和Si相的界面會成為容易在鍍鋁層表面產生凹凸的肇因。亦即,可以說含有Si等的合金成分的鍍鋁層,會限制其表面平滑性的提升。
此外,在太陽能電池或有機EL照明的製造步驟 中,包含將基材加熱到較高溫然後冷卻的步驟。當鍍鋁鋼箔承受這種熱歷程時,會有產生鋼層和鍍鋁層的剝離的情形,或在鍍鋁層發生破損的情形。這種剝離和破損的發生,是起因於鋼層的熱膨脹係數和鍍鋁層的熱膨脹係數之間的差較大,或鋼層和鍍鋁層之間的界面存在有Fe-Al合金層等。
如此,為了使用鍍鋁鋼箔作為基材,除了要使表面平滑性提升外,還必須防止鍍鋁層的剝離或破損。
對於這些課題,作為提升鍍鋼箔的表面平滑性的方法,已有以包覆軋延(clad roll)在鍍鋁鋼板上積層純鋁材的作法被檢討。由於純鋁材為不具共晶組織的Al相單相,故進行包覆軋延所得到的鋼鋁複合箔,可滿足作為基材而被要求的表面平滑性。但是,這種鋼鋁複合箔,依然會有鍍鋁層和鋼層之間的剝離或鍍鋁層的破損等的問題。
本案發明者們致力地檢討了,以改質含Al金屬層的鍍鋁層的方式,是否可防止鍍鋁層和鋼層之間的剝離或鍍鋁層的破損。其結果,發現了以下所說明的鋼鋁複合箔。
以下,將就本發明的一實施形態的鋼鋁複合箔作詳細的說明。
本實施形態的鋼鋁複合箔1是如圖1所示地,在芯層2上積層Al層3而構成。此外,芯層2是由鋼層4及形成在鋼層4上的含Al金屬層5所構成。再者,圖1所示的是以厚度方向和切割方向呈平行的截面來觀看時的鋼鋁複合箔1,並放大顯示芯層2的一部分和積層在該芯層2上的Al層3。
構成芯層2的鋼層4,以厚度在5~200μm左右,且為普通鋼(碳素鋼)者為宜。當厚度在此範圍時,就可以保持充分的強度和優異的彈塑性變形性。當厚度在200μm以下時,鋼鋁複合箔1的質量就不會變得過重。此外,當厚度在5μm以上時,就能得到充分的強度。鋼層4的厚度的較佳範圍是在10~160μm。
構成芯層2的含Al金屬層5是藉由含Al鍍層而形成者,更具體而言,是由熱浸鍍鋁形成者。藉由將這個含Al金屬層5形成在鋼層4上,可以提高鋼層4的抗蝕性。含Al金屬層5的化學成分,平均而言,以含有1~15質量%的Si,且剩餘部分由Al及不純物所構成為宜。再者,在本實施形態中的「不純物」是指,從原料或製造環境等混入之物。此外,平均的化學成分是指,在複數個位置進行複數次測定時的平均值。
藉著使熱浸鍍鋁浴中含有Si,可以使熱浸鍍鋁浴的融點順利地降低。其結果為可以更容易地進行熱浸鍍作業。此外,藉著使熱浸鍍鋁浴中含有Si,可以抑制在鋼層4和含Al金屬層5的界面6生成的硬質Fe-Al合金層的過度成長。當Si含有率為15質量%以下時,就不會在含Al金屬層5中析出的粗大的Si,而不會有損害抗蝕性、鍍層黏著性的疑慮。此外,當Si含有率較低時,恐有含Al金屬層5的所有Al都和鋼層4(底鐵)的Fe發生合金化之虞,故Si含有率以在1質量%以上為宜,較佳為4質量%以上。
含Al金屬層5的厚度以在0.3~25μm的範圍為宜, 較佳為在1~25μm的範圍,更佳為在3~25μm的範圍,最佳為在8~25μm的範圍。當厚度為0.3μm以上時,就能得到合適的抗蝕效果。此外,當厚度為25μm以下時,就不需要將大量Al做成鍍層,因而可以提升生產成本。
如圖1所示,在鋼層4和含Al金屬層5的界面6中,形成有分散的Fe-Al合金粒7。進行熱浸鍍鋁時,在鋼層4和含Al金屬層5的界面6中有形成為層狀的Fe-Al合金相。Fe-Al合金粒7是藉由使這個Fe-Al合金層分散而形成者。Fe-Al合金粒7以含有選自例如,FeAl3、Fe2Al8Si、FeAl5Si的至少1個金屬間化合物為宜。因為Fe-Al合金層非常硬而脆,故會維持在層狀原樣而無法順應使鋼鋁複合箔1發生彈塑性變形時的變形,並會誘發鋼層4和含Al金屬層5的剝離,以及含Al金屬層5的破損。然而,在本實施形態的鋼鋁複合箔1中,藉由Fe-Al合金粒7被分散,在使鋼鋁複合箔1發生彈塑性變形時,就可以防止鋼層4和含Al金屬層5的剝離,以及含Al金屬層5的破損。
形成於鋼層4和含Al金屬層5的界面6的Fe-Al合金層的化學成分,平均而言,以形成Fe:10~35原子%、Al:50~80原子%、Si:0.5~20原子%、且Fe和Al和Si的合計為95原子%以上為宜。從這個Fe-Al合金層所形成的Fe-Al合金粒7的化學成分,平均而言,也是以形成Fe:10~35原子%、Al:50~80原子%、Si:0.5~20原子%、且Fe和Al和Si的合計為95原子%以上為宜。但是,Fe-Al合金粒7會有化學成分依每個粒而異的情況。Fe-Al合金粒7的化學成分,平均而言, 較佳為Fe:15~25原子%、Al:60~75原子%、Si:1~15原子%。
Fe-Al合金粒7中含有,以連接在鋼層4的狀態分散在鋼層4和含Al金屬層5的界面6的Fe-Al合金粒7a,及以離開鋼層4的狀態分散在含Al金屬層5中的Fe-Al合金粒7b。其中,因有以離開鋼層4的狀態分散在含Al金屬層5中的Fe-Al合金粒7b存在,故可以提升彈塑性變形性。
在此,鋼層4的熱膨脹係數(例如,10.5~12.2×10-6/K),和變成含Al金屬層5的Al的熱膨脹係數(例如,22.3×10-6/K)之間的差距很大。但是,藉著Fe-Al合金粒7離開鋼層4而分散在含Al金屬層5中,可以使對含Al金屬層5的熱膨脹的鎖銷效果被發揮。其結果為,本實施形態的鋼鋁複合箔1,就算在太陽能電池或有機EL照明等的製造過程中承受了被加熱到數百℃,然後被冷卻到接近室溫為止的熱歷程,也可以防止鋼層4和含Al金屬層5的剝離,及含Al金屬層5的破損。這個效果經推測是起因於,含Al金屬層5的熱膨脹係數會因Fe-Al合金粒7b而在表觀上降低,而使鋼層4的熱膨脹係數和含Al金屬層5的熱膨脹係數之間的差值變小。再者,為了使Fe-Al合金粒7b分散在含Al金屬層5中,而控制包覆軋延後的冷軋延條件亦可。
以厚度方向與切割方向呈平行的截面觀看時,含Al金屬層5中所含有之離開鋼層4而分散的Fe-Al合金粒7b,相對於上述截面中所含有的Fe-Al合金粒7的面積分率,以在7.5面積%以上且低於50面積%的範圍為宜。這種Fe-Al合 金粒7b的面積分率的下限以10面積%為宜,較佳為15面積%。此外,這種Fe-Al合金粒7b的面積分率的上限以40面積%為宜,較佳為35面積%。當Fe-Al合金粒7b的面積分率為7.5面積%以上時,可以有效地防止鋼層4和含Al金屬層5的剝離,及含Al金屬層5的破損。雖然Fe-Al合金粒7b的面積分率越大越好,但是由於形成50面積%以上者會因製造步驟上的限制而有困難,故宜以低於50面積%作為上限。再者,Fe-Al合金粒7是否有自鋼層4離開,由觀察鋼層4和含Al金屬層5的上述截面以進行判斷亦可。
含Al金屬層5中所含有之離開鋼層4而分散的Fe-Al合金粒7b的粒徑以在0.1~5μm的範圍為宜。這種Fe-Al合金粒7b的粒徑的下限較佳是0.2μm。此外,這種Fe-Al合金粒7b的粒徑的上限以4μm為宜,較佳是3μm。當Fe-Al合金粒7b的粒徑超過5μm時,則在鋼鋁複合箔1被變形時恐有導致含Al金屬層5破損之虞。又,Fe-Al合金粒7b的粒徑低於0.1μm時,即使Fe-Al合金粒7b分散在含Al金屬層5中,仍然會有無法充分發揮熱膨脹的鎖銷效果的疑慮。
鋼層4和含Al金屬層5的界面6,以形成非平坦的凹凸面為宜。經推測這種凹凸狀的界面6是因,藉包覆軋延後的冷軋延而使Fe-Al合金層成為Fe-Al合金粒7被分散時,Fe-Al合金粒7會分別侵入到鋼層4及含Al金屬層5而形成。如此,藉由讓鋼層4和含Al金屬層5之間的界面6變成凹凸面,以在高溫下於鋼層4和含Al金屬層5產生熱膨脹時發揮固定 效果,就可以更有效地防止鋼層4和含Al金屬層5的剝離。
又,Al層3是積層在芯層2的含Al金屬層5上。該Al層3是藉由包覆軋延芯材(鍍鋁鋼板)和Al材、並進一步進行冷軋延而形成。Al層3的厚度以在1~140μm的範圍為宜。Al層3的厚度下限以3μm為宜,較佳為5μm。Al層3的厚度上限以50μm為宜,較佳為30μm。當Al層3的厚度為1μm以上時,則變成用於平坦化Al層3的表面3a的較佳厚度。又,當這個厚度在140μm以下時,由於可不增大Al層3的質量地謀求鋼鋁複合箔1的輕量化,因而較佳。
Al層3的化學成分,平均而言,以由99.0質量%以上的Al及不純物構成為宜。又,Al層3以含有99.9質量%以上的Al為宜。藉此,將不會在Al層3中生成共晶組織,而可以順利地提升Al層3的表面3a的表面平滑性。
Al層3的表面3a,雖然其表面粗糙度Ra在600nm以下時是可以容許的表面平滑性,但是Al層3的表面3a的表面粗糙度Ra仍以在10~25nm的範圍為宜,較佳是在10~20nm的範圍。當Al層3的表面粗糙度Ra在25nm以下時,更能滿足作為太陽能電池或有機EL照明的基材而被要求的表面平滑性。雖然Al層3的表面粗糙度Ra越小越好,但將表面粗糙度Ra做成低於10nm,則平坦化製程的成本會增加。再者,Al層3的表面粗糙度Ra的控制,是在包覆軋延後的冷軋延步驟實施。
圖2所示為本實施形態的鋼鋁複合箔1的變形例的主要部分的放大截面示意圖。其中,與圖1同樣地,此圖 2顯示以厚度方向和切割方向呈平行的截面觀看時的鋼鋁複合箔1,並放大顯示芯層2的一部分和積層在該芯層2上的Al層3。如該圖2所示地,在本實施形態的鋼鋁複合箔1中,使Al層3中含有離開鋼層4而分散的Fe-Al合金粒7c亦可。
Al層3中含有離開鋼層4而分散的Fe-Al合金粒7c時,對於Al層3的熱膨脹的鎖銷效果可以被順利地發揮。其結果為,即使鋼鋁複合箔1承受了被加熱到數百℃,然後冷卻到接近室溫為止的熱歷程時,仍然可以順利地防止Al層3和含Al金屬層5的剝離、含Al金屬層5和鋼層4的剝離、Al層3的破損,及含Al金屬層5的破損。這個效果經推測是起因於,含Al金屬層3的熱膨脹係數會因Fe-Al合金粒7c而在表觀上降低,而使鋼層4的熱膨脹係數和Al層3的熱膨脹係數之間的差值,及含Al金屬層5的熱膨脹係數和Al層3的熱膨脹係數之間的差值均變小。再者,要使Fe-Al合金粒7c分散在Al層3中,較佳是以讓含Al金屬層5的厚度變成比Fe-Al合金粒7的粒徑範圍的最大值的2倍之值還小的方式,來控制作為原料之鋼板的鍍層附著量(含Al金屬層5的厚度),和Fe-Al合金層的厚度。這樣做時,離開鋼層4而分散的Fe-Al合金粒7的一部分就可藉由冷軋延步驟,經由含Al金屬層5進一步往Al層3中分散。
以厚度方向與切割方向呈平行的截面觀看時,Al層3中所含有之離開鋼層4而分散的Fe-Al合金粒7c,相對於上述截面中所含有的Fe-Al合金粒7的面積分率,以在7.5面積%以上且低於40面積%的範圍為宜。這種Fe-Al合金粒 7c的面積分率的下限以在10面積%為宜,較佳為15面積%。此外,這種Fe-Al合金粒7c的面積分率的上限以在30面積%為宜,較佳為25面積%。當Fe-Al合金粒7c的面積分率在7.5面積%以上時,就可以順利地防止Al層3和含Al金屬層5的剝離、含Al金屬層5和鋼層4的剝離、Al層3的破損,及含Al金屬層5的破損。雖然Fe-Al合金粒7c的面積分率越大越好,但是由於形成40面積%以上會因製造步驟上的限制而有困難,故宜以低於40面積%作為上限。
Al層3中所含有之離開鋼層4而分散的Fe-Al合金粒7c的粒徑以在0.1~5μm的範圍為宜。這種Fe-Al合金粒7c的粒徑的下限以0.2μm為宜,較佳為0.3μm。此外,這種Fe-Al合金粒7c的粒徑的上限以4μm為宜,較佳為3.5μm。當Fe-Al合金粒7c的粒徑超過5μm時,在鋼鋁複合箔1被變形時恐有導致Al層3或含Al金屬層5破損之虞。又,Fe-Al合金粒7c的粒徑低於0.1μm時,即使Fe-Al合金粒7c分散在Al層3中,仍然會有無法充分發揮熱膨脹的鎖銷效果的疑慮。再者,Fe-Al合金粒7c的粒徑必定會變得比Al層3的厚度小。
圖3所示為本實施形態的鋼鋁複合箔1中所含有的Fe-Al合金粒7及其鄰近處的放大截面示意圖。與圖1及圖2同樣地,此圖3所示的是以厚度方向與切割方向呈平行的截面觀看時的鋼鋁複合箔1。如該圖3所示地,本實施形態的鋼鋁複合箔1中有含有空隙9的情形。
此空隙9在鋼鋁複合箔1承受了被加熱到數百℃, 然後冷卻到接近室溫為止的熱歷程時,有可能會變成鋼層4和含Al金屬層5的剝離、含Al金屬層5和Al層3的剝離、含Al金屬層5的破損,或Al層3的破損等的原因。因此,恐有導致鋼鋁複合箔1的電阻變高、光電轉換效率降低、耐溫度循環性降低之虞。據此,此空隙9的尺寸宜越小越好。具體而言,以厚度方向與切割方向呈平行的截面觀看時,截面中所含有的空隙9以圓當量徑(圓量直徑)計時宜小於1μm。當空隙9的圓當量徑小於1μm時,產生鋼層4和含Al金屬層5的剝離、含Al金屬層5和Al層3的剝離、含Al金屬層5的破損,或Al層3的破損等的可能性就會變小。再者,要控制空隙9的圓當量徑,以對包覆軋延步驟前的鍍鋁層(含Al金屬層)及Al材的合計厚度,和包覆軋延及冷軋延下的合計軋縮率進行控制為宜。
圖4所示為本實施形態的鋼鋁複合箔1的變形例的主要部分的放大截面示意圖。如該圖4所示地,在本實施形態的鋼鋁複合箔1的Al層3上形成各種被覆層8亦可。又,被覆層8雖然在其表面粗糙度Ra為600nm以下時具有可以容許的表面平滑性,但這些被覆層8的表面粗糙度Ra,和未形成這些被覆層8時的Al層3的表面3a同樣地,以在10~25nm的範圍為宜,較佳為10~20nm的範圍。
被覆層8以在Al層3上形成例如,厚度0.01~4μm的AlN層或厚度0.05~50μm的Al2O3層為宜。當AlN層的厚度在0.01μm以上,或Al2O3層的厚度在0.05μm以上時,就可以在Al層3的表面形成絕緣性,由於可以作為太陽能電池 或有機EL照明的絕緣性基底膜而產生功能,因而較佳。生成厚度超過4μm的AlN層或厚度超過50μm的Al2O3層的作法,由於會造成生產成本上升,因而不佳。
又,取代AlN層或Al2O3層,而在Al層3上形成0.001~8μm的溶膠凝膠層亦可。溶膠凝膠層是,具有以發展成三次元網狀結構的矽氧烷組合作為主骨架的無機骨架,且這個骨架的架橋氧的至少1個可被以有機基及/或氫原子置換的溶膠凝膠層。藉由設置溶膠凝膠層,可得到和AlN層及Al2O3層同樣的效果。較佳地,形成0.1μm以上的厚度時可更提升上述效果,故較適宜。當溶膠凝膠層的厚度小於0.001μm時,則無法得到上述效果。厚度超過8μm時,生產成本會增加。
又,取代AlN層或Al2O3層,而在Al層3上形成厚度1~50μm的層積層亦可。層積層可以例示為,由選自聚烯烴、聚酯、聚醯胺、聚醯亞胺的塑膠薄膜等所構成的層積層。藉由設置層積層,可得到和AlN層及Al2O3層同樣的效果。當層積層的厚度小於1μm時,則無法得到上述效果。厚度超過50μm時,生產成本會增加。
藉由形成上述結構,在例如,將CIGS的太陽能電池單元串聯連接而成的模組電路下,可以確保500V以上的耐受電壓,並可避免絕緣破壞。又,即使不至於發生絕緣破壞,當存在漏電流時,就會變成太陽能電池模組的光電轉換效率降低的主要原因,而藉由形成上述結構就可以防止該類的洩漏。
又,形成在本實施形態的鋼鋁複合箔1上的光電轉換層可以使用,CIGS、CIS、CdTe等的化合物系太陽能電池、非晶矽等的薄膜系太陽能電池、使該等積層複數層的混成式太陽能電池。此外,也可以在鋼鋁複合箔1上形成有機EL照明電路。特別地,上述的CIGS、CIS的主成分並未被特別限制,宜為至少1種黃銅礦(chalcopyrite)構造的化合物半導體,又,光電轉換層的主成分宜為含有Ib族元素和IIIb族元素和VIb族元素的至少1種化合物半導體。進一步地,從讓光吸收率變高,且可得到高的光電轉換效率來看,上述光電轉換層的主成分宜為含有下列的至少1種元素的化合物半導體,選自Cu及Ag等的至少1種Ib族元素,和選自Al、Ga及In等的至少1種IIIb族元素,和選自S、Se及Te等的至少1種VIb族元素。具體而言,上述化合物半導體可以採用,CuAlS2、CuGaS2、CuInS2、CuAlSe2、CuGaSe2、CuInSe2(CIS)、AgAlS2、AgGaS2、AgInS2、AgAlSe2、AgGaSe2、AgInSe2、AgAlTe2、AgGaTe2、AgInTe2、Cu(In1-xGax)Se2(CIGS)、Cu(In1-xAlx)Se2、Cu(In1-xGax)(S,Se)2、Ag(In1-xGax)Se2及Ag(In1-xGax)(S,Se)2等。
本實施形態的鋼鋁複合箔1,以在太陽能電池的發電層或有機EL元件形成側的一邊的箔面上,具有含Al金屬層5及Al層3為宜。但是,本實施形態的鋼鋁複合箔1,在與太陽能電池的發電層或有機EL元件形成側的一邊的箔面反向的箔面之另一邊的箔面上,也可具有含Al金屬層5。或者,本實施形態的鋼鋁複合箔1,在與太陽能電池的發電層 或有機EL元件形成側的一邊的箔面反向的箔面之另一邊的箔面上,也可具有含Al金屬層5及Al層3。
圖5為本實施形態的鋼鋁複合箔的截面示意圖,本實施形態的鋼鋁複合箔1是例示為,在太陽能電池的發電層或有機EL元件形成側的一邊的箔面和其另一邊的箔面上,均具有含Al金屬層5及Al層3的情況。如圖5所示,以厚度方向與切割方向呈平行的截面觀看時,於令以厚度方向為法線之鋼層4的2個外面為鋼層面4a(鋼層面4a為界面6)時,以將含Al金屬層5配置在各自的鋼層面4a上為宜。並且,在上述截面觀看時,於令以厚度方向為法線之含Al金屬層5的2個外面為含Al金屬層面5a時,以將Al層3配置在各自的含Al金屬層面5a上為宜。再者,在圖5中,省略了Fe-Al合金粒7(7a、7b、7c)、空隙9,或各種被覆層8等的圖示。
在例如,僅在一邊的箔面設有含Al金屬層5及Al層3的鋼鋁複合箔1被捲曲成卷狀的情形中,於太陽能電池或有機EL照明等的製造時,也有必須使被捲曲成卷狀的鋼鋁複合箔1的捲曲方向反轉的情形。對此,一邊的箔面上設有含Al金屬層5及Al層3,且另一邊的箔面上也設有含Al金屬層5及Al層3的鋼鋁複合箔1,於太陽能電池或有機EL照明等的製造時,由於在任一邊的箔面上都可以形成太陽能電池的發電層或有機EL元件,因而具有優異的操作性。
此外,僅在一邊的箔面設有含Al金屬層5及Al層3的鋼鋁複合箔1,因為鋼層4和含Al金屬層5之間的塑性變形能和機械性質的差異、鋼層4和Al層3之間的塑性變形能和 機械性質的差異、及含Al金屬層5和Al層3之間的塑性變形能和機械性質的差異,在接續包覆軋延的冷軋延後,會有在鋼鋁複合箔1上發生翹曲的情形。於鋼鋁複合箔1發生翹曲時,要在鋼鋁複合箔1上形成太陽能電池的發電層或有機EL元件會變得困難。對此,由於在與太陽能電池的發電層或有機EL元件形成側的一邊的箔面反向的箔面之另一邊的箔面上也設有含Al金屬層5的鋼鋁複合箔1,在接續包覆軋延的冷軋延後,將不易在鋼鋁複合箔1上發生翹曲,因而較佳。又,由於在與太陽能電池的發電層或有機EL元件形成側的一邊的箔面反向的箔面之另一邊的箔面上也設有含Al金屬層5與Al層3的鋼鋁複合箔1,在接續包覆軋延的冷軋延後,更不易在鋼鋁複合箔1上進一步發生翹曲,因而較佳。
再者,藉由將鋼板浸漬於熱浸鍍鋁浴中以製造鍍鋁鋼板時,以厚度方向與切割方向呈平行的截面觀看時,可以形成遍及鋼層4的輪廓線的全部周長的含Al金屬層5。此時,可以僅在含Al金屬層5的2個含Al金屬層面5a的其中一個含Al金屬層面5a上積層Al層3,或者在含Al金屬層5的2個含Al金屬層面5a上都積層Al層3亦可。另一方面,也有將遍及鋼層4的輪廓線的全部周長而以含Al金屬層5所形成的鍍鋁鋼板的側緣(在鋼板的板寬方向的端部,且沿著鋼板的長度方向的部分)切斷的情形。被切斷側緣的鍍鋁鋼板,以厚度方向與切割方向呈平行的截面觀看時,只有在以厚度方向作成法線的鋼層4的2個鋼層面4a上配置有含Al金屬層5。此時,可以僅在含Al金屬層5的2個含Al金屬層面5a的其 中一個含Al金屬層面5a上積層Al層3,或者在含Al金屬層5的2個含Al金屬層面5a上都積層Al層3亦可。亦即,本實施形態的鋼鋁複合箔1,可以將含Al金屬層5遍及鋼層4的輪廓線的全部周長而設置,也可以僅配置在鋼層4的2個鋼層面4a上。於是,本實施形態的鋼鋁複合箔1,依需要,可以僅在含Al金屬層5的2個含Al金屬層面5a的其中一個含Al金屬層面5a上積層Al層3,或者在含Al金屬層5的2個含Al金屬層面5a上都積層Al層3亦可。再者,以簾塗法(curtain coating)等製造鍍鋁鋼板時,以厚度方向與切割方向呈平行的截面觀看時,只有在以厚度方向為法線之鋼層4的2個鋼層面4a的其中一個鋼層面4a上配置有含Al金屬層5。此時,在所形成的含Al金屬層5上積層Al層3亦可。
如上所述,測定鋼層4的厚度、含Al金屬層5的厚度、含Al金屬層5的化學成分、Al層3的厚度、Al層3的化學成分、Al層3的表面粗糙度Ra、Fe-Al合金粒7(7a、7b、7c)的粒徑、Fe-Al合金粒7(7a、7b、7c)的面積分率、Fe-Al合金粒7(7a、7b、7c)的構成相、及空隙9的圓當量徑的方法,在以將和軋延方向直交的板寬方向變成觀察面的方式沿厚度方向作平面切割而成的切割面上進行觀察為宜。再者,宜對從複數個切割面內的複數個觀察視野所測定的各測定值作平均。
藉由對上述的切割面的金屬組織進行影像分析,可以求出平均厚度、粒徑、面積分率、表面粗糙度Ra等。影像分析宜以,使觀察視野在板寬方向變成200μm以內的 倍率而進行,並以將板寬方向的合計視野變成3000μm以上的方式,對至少15個視野以上進行分析為宜。又,以在分析視野內所觀察到的各Fe-Al合金粒7(7a、7b、7c)的圓當量徑作為粒徑進行測定,以調查粒徑範圍。此外,離開鋼層4的Fe-Al合金粒7在橫跨含Al金屬層5和Al層3兩者的位置中存在時,將含Al金屬層5中所含有的部分當作Fe-Al合金粒7b、Al層3中所含有的部分當作Fe-Al合金粒7c,分別算出面積分率與圓當量徑(粒徑)。再者,上述的表面粗糙度Ra,使用表面粗糙度測定機進行測定亦可。
又,藉由對上述切割面的金屬組織進行影像分析,可以求出空隙9的圓當量徑。影像分析是以,將觀察視野在板寬方向上變成200μm以內的倍率而進行,並以將板寬方向的合計視野變成3000μm以上的方式,對複數個視野進行分析為宜。
此外,藉由在上述的切割面用EPMA(電子探針顯微分析,Electron Probe Micro Analysis)或EDX(能量色散X射線分析,Energy Dispersive X-Ray Analysis)等進行分析,可以求出化學成分、構成相等。再者,上述化學成分利用輝光放電分光儀(通常也被稱為高頻GDS)進行分析亦可。
測定上述各種被覆層8的厚度及化學成分的方法,有效的有,以濺射法從金屬箔的表面沿膜厚方向邊往下挖邊作分析的手法,以及於金屬箔的膜厚方向的切割面進行線分析或點分析的手法。在利用濺射法的手法中,於加深測定深度時則會花費過多的時間;而在對切割面進行線分 析或點分析的手法中,會比較容易進行截面整體的濃度分布的測定和再現性的確認等。在線分析或點分析下,為了使分析的精確度提升時,於線分析中將分析間隔縮小而進行分析、於點分析中則將分析區域擴大而進行分析都是有效的。各種被覆層8的鑒定是預先測定標準試料(即濃度100%)的值,並藉上述化學成分的分析來判別其濃度為50%以上的區域而進行。在這些分析中所用的分析裝置,可以利用EPMA、EDX、GDS、AES(歐傑電子能譜術,Auger Electron Spectroscopy)、TEM(穿透式電子顯微鏡,Transmission Electron Microscope)等。再者,各種被覆層8的厚度是否滿足上述數值限定的判定,可依各種被覆層8的平均厚度作評估。即使有局部上各種被覆層8的厚度未滿足數值限定的情形,在上述判定中也不予考慮。
接著,將就本發明的一實施形態的鋼鋁複合箔的製造方法作詳細的說明。
本實施形態的鋼鋁複合箔1的製造方法,具有包覆軋延芯材和Al材以作成包覆材的包覆軋延步驟,和對該包覆材進行冷軋延而得到鋼鋁複合箔1的冷軋延步驟。又,在包覆軋延步驟前,還設有用於得到作為芯材的鍍鋁鋼板的熱浸鍍步驟亦可。又,在冷軋延步驟後,還有在鋼鋁複合箔1上形成各種被覆層8的成膜步驟亦可。以下,針對各步驟依序進行說明。
熱浸鍍步驟
製造出鋼板(鋼層)上配置有鍍鋁層(含Al金屬層)的鍍鋁 鋼板(芯材)的步驟並無特別限制。亦可採用例如,噴鍍法、濺鍍法、離子鍍法、蒸鍍法、電鍍法等。但是,作為芯材,以使用在普通鋼之鋼板上施加熱浸鍍鋁而製成的鍍鋁鋼板為宜。亦即,在包覆軋延步驟前,宜利用含有1~15質量%的Si,且剩餘部分由Al及不純物構成的的化學成分的熱浸鍍鋁浴,以進行對鋼板形成鍍層的熱浸鍍步驟,並宜藉由此熱浸鍍步驟,以得到鋼板(鋼層)上配置有鍍鋁層(含Al金屬層)的鍍鋁鋼板(芯材)。藉熱浸鍍鋁法,可以便宜地大量生產具有鍍鋁層的鍍鋁鋼板。又,藉由利用具有上述化學成分的熱浸鍍鋁浴,可以使熱浸鍍鋁浴的融點順利地降低,而可以在較低溫下進行熱浸鍍鋁。在鋼板和鍍鋁層的界面6上,形成有鋼板的Fe和鍍鋁層的Al合金化而形成的Fe-Al合金層。
在熱浸鍍步驟後包覆軋延步驟前的鍍鋁層的厚度宜在1~60μm的範圍。又,這種鍍鋁層的厚度下限以5μm為宜,較佳為10μm。這種鍍鋁層的厚度上限以40μm為宜,較佳為30μm。藉由將鍍鋁層的厚度設定在上述範圍內,可以將冷軋延步驟後的鋼鋁複合箔1的含Al金屬層5的厚度控制在上述的理想範圍中。
此外,在熱浸鍍步驟後包覆軋延步驟前的鋼板厚度宜在50~2000μm的範圍。又,這種鋼板的厚度下限以100μm為宜,較佳為200μm。這種鋼板的厚度上限以1500μm為宜,較佳為1200μm。當鋼板的厚度低於50μm時,冷軋延後的鋼鋁複合箔1的厚度會變得過薄而有變得強度不足 之虞。又,鋼板的厚度超過2000μm時,鍍鋁鋼板的厚度會過厚而對後續步驟造成負擔,且軋延道次(pass)會變多而有導致成本增加之虞。
此外,在熱浸鍍步驟中,將以厚度方向作成法線的鋼板(鋼層)的2個板面視為鋼板面時,將鍍鋁層(含Al金屬層)形成在各自的鋼板面上亦可。在鋼板的2個鋼板面上,形成有鍍鋁層時,則於接續包覆軋延的冷軋延後,在鋼鋁複合箔1上將不易發生翹曲,因此,可將後續步驟的處理變容易而較佳。再者,供應至熱浸鍍鋁的鋼板,最後是變成鋼鋁複合箔1的鋼層4,以熱浸鍍鋁所形成的鍍鋁層,最後是變成鋼鋁複合箔1的含Al金屬層5。
包覆軋延步驟
在包覆軋延步驟中,是在使由含有Fe-Al合金層的鍍鋁層(含Al金屬層)形成在鋼板(鋼層)上而變成的芯材(鍍鋁鋼板)和Al材形成重疊的狀態下進行包覆軋延,以得到包覆材。在包覆軋延步驟中,以在鍍鋁層(含Al金屬層)上接合Al材為宜,對包覆軋延的軋延條件則無特別限定。包覆軋延的溫度以在室溫到500℃之間為宜。例如,可以用加熱溫度400℃及軋縮率9%的條件進行包覆軋延,或者也可以用溫度20℃(室溫)及軋縮率15%的條件進行包覆軋延。又,將軋縮率設成比15%大亦可。
此外,供應至包覆軋延步驟的Al材,以由99.0質量%以上的Al及不純物所構成的Al板為宜,較佳是由99.9%質量以上的Al及不純物所構成的Al板。由於這種Al材不會 生成共晶組織,故可以順利地提升冷軋延後的鋼鋁複合箔1的Al層3的表面3a的表面平滑性。
供應至包覆軋延步驟的Al材厚度以在1~1500μm的範圍為宜。又,這種Al材的厚度下限以10μm為宜,較佳為40μm。這種Al材的厚度上限以1000μm為宜,較佳為500μm。當Al材的厚度低於1μm時,因過薄恐有讓包覆軋延時的操作變困難之虞。又,當Al材的厚度超過1500μm時,要軋延到作為基材的適當厚度為止的軋延道次會變多恐有導致成本增加之虞。
又,在包覆軋延步驟中,將以厚度方向作成法線的鍍鋁層(含Al金屬層)的2個板面(芯材的2個板面)視為鍍層面時,以包覆軋延將Al材接合在各自的鍍層面上亦可。在鍍鋁層(含Al金屬層)的2個鍍層面上形成有Al層時,則在接續包覆軋延的冷軋延後,將不易在鋼鋁複合箔1上發生翹曲,因此,在後續步驟的處理會變容易而較佳。再者,供應至包覆軋延中的Al材,最後是變成鋼鋁複合箔1的Al層3。
冷軋延步驟
冷軋延步驟,是藉由對在包覆軋延步驟所得到的包覆材進行冷軋延,而使含Al金屬層(鍍鋁層)中的Fe-Al合金層的一部分離開鋼層(鋼板)以控制分散於含Al金屬層中的Fe-Al合金粒,並得到鋼鋁複合箔1。
冷軋延可以藉由使用串聯式冷軋延設備或可逆式軋延設備的任一個,進行複數次軋延道次而實施。特別 地,以使用可在每一個軋延道次調整軋縮率及通板速度的可逆式軋延設備進行冷軋延為宜。藉由在每一個軋延道次調整軋縮率及通板速度同時進行冷軋延,可以使Fe-Al合金粒的一部分順利地分散在含Al金屬層中。此外,可以順利地降低Al層的表面粗糙度Ra。
冷軋延的通板速度,以在30~400m/分鐘的範圍下對每一個軋延道次作設定為宜。通板速度可以藉由施加與包覆材的塑性變形所需要的能量相當,且為規定以上的能量,而使Fe-Al合金粒的一部分分散在含Al金屬層中。特別地,藉由將通板速度設成30m/分鐘以上,可以將規定以上的能量施加於包覆材上,破壞含Al金屬層與Fe-Al合金粒和鋼層的黏著,並讓含Al金屬層可以用如將Fe-Al合金粒包進去的方式進行塑性變形,結果可將Fe-Al合金粒分散至含Al金屬層中及/或Al層中。當給予包覆材的能量較小時,則恐有變成Fe-Al合金粒會原樣地停留在鋼層和含Al金屬層的界面之虞,又,含Al金屬層會無法用如將Fe-Al合金粒包進去的方式進行塑性變形,恐有形成粗大的空隙之虞。此外,當通板速度在400m/分鐘以下時,並無引發板斷裂之虞。較佳的冷軋延的通板速度為30~300m/分鐘。
再者,冷軋延的通板速度,可以將所有軋延道次的通板速度都設成相同,也可以依每一個軋延道次作變更。並且,由通板速度形成的合金粒分散效果,較先前階段下的軋延道次的影響較大,隨著歷經軋延道次將變得難以得到分散效果。因此,藉由隨著每一個軋延道次而加速通板 速度,可以將合金粒的分散控制在更理想的範圍同時還可以提升生產效率。另一方面,藉由隨著每一個軋延道次而降低通板速度,則可以將合金粒的分散控制在較佳範圍,同時可容易控制箔形狀。
冷軋延的各個軋延道次的軋縮率,宜將第1軋延道次及第2軋延道次的各軋縮率設成15~40%的範圍。又,第2軋延道次以後的軋延道次的軋縮率,以設成剛經過的前一個的軋延道次的軋縮率以下為宜。藉由這樣地控制各軋延道次的軋縮率,就可以在各軋延道次對含Al金屬層賦予充分的塑性變形量,並可以使Fe-Al合金粒的分散順利地發生。具體而言,軋延道次的軋縮率在上述範圍時,對含Al金屬層的塑性變形量會變得充分,Fe-Al合金層被分裂成Fe-Al合金粒的同時,含Al金屬層的一部分會侵入Fe-Al合金粒和鋼層(底鐵)的界面,結果,Fe-Al合金粒會分散到含Al金屬層中及/或Al層中。特別地,因為後半段的軋延道次會變得不能得到比加工硬化還大的軋縮率,故第1軋延道次以在高軋縮進行為宜。
當第1軋延道次及第2軋延道次各自的軋縮率皆為15%以上時,含Al金屬層的塑性變形量會變大,不但能使Fe-Al合金層分裂而得到Fe-Al合金粒,還可以使Fe-Al合金粒分散到含Al金屬層中及/或Al層中,因而較佳。又,當第1軋延道次及第2軋延道次各自的軋縮率皆為30%以下時,鋼鋁複合箔1的形狀控制會變容易,因而較佳。
再者,Fe-Al合金粒往含Al金屬層中及/或Al層的 分散,在冷軋延步驟下給與包覆材的能量和含Al金屬層的塑性變形量為預定以上時就可以順利地被達成。因此,宜將通板速度與軋縮率兩者都控制在本實施形態的上述範圍內。如果只控制其中任一者時,恐有無法引發Fe-Al合金粒分散之虞。
再者,Al層3的表面粗糙度的控制宜以,對在最終道次使用的工作輥,採用輥粗糙度(表面粗糙度Ra)在10nm以下的鏡面輥,同時讓Al層3的Al純度在99.0質量%以上的範圍而進行控制。當滿足上述條件時,就可以順利地將冷軋延後的鋼鋁複合箔1的Al層3的表面3a的表面粗糙度Ra控制在10~25nm的範圍。
又,宜使包覆軋延步驟前的鍍鋁層(含Al金屬層)的厚度和Al材的厚度合計為20μm以上,且包覆軋延步驟和冷軋延步驟的合計軋縮率為65%以上。當滿足上述條件時,就可以順利地將冷軋延後的鋼鋁複合箔1所含有的空隙9控制在以圓當量徑計低於1μm。
在包覆軋延步驟及冷軋延步驟的鍍鋁層(含Al金屬層)及Al材(Al層)的塑性變形中,含有沿軋延方向被拉伸的變形,及如同填補空隙的變形2種。當包覆軋延步驟前的芯材的鍍鋁層(含Al金屬層)和Al材(Al層)的合計厚度滿足上述條件時,不僅沿軋延方向被拉伸的變形,連如同填補空隙的變形也會順利形成。另一方面,上述厚度未滿足上述條件時,會因為鍍鋁層(含Al金屬層)和Al材(Al層)的合計體積不足,而無法產生沿軋延方向被拉伸的變形,其結果 恐有導致空隙殘存之虞。又,包覆軋延步驟和冷軋延步驟的合計軋縮率滿足上述條件時,可以順利產生如同填補空隙的變形。
包覆軋延步驟和冷軋延步驟的合計軋縮率是定義為,相對於「包覆軋延前的鋼板(鋼層)、鍍鋁層(含Al金屬層)、及Al材(Al層)的合計厚度(包覆軋延前的原料的合計厚度)」,「從包覆軋延前的原料的合計厚度,至形成冷軋延後的鋼鋁複合箔的厚度為止所減少的厚度」的比例。亦即為,(包覆軋延步驟和冷軋延步驟的合計軋縮率)=[(包覆軋延前的鋼層、含Al金屬層,及Al層的合計厚度)-(冷軋延後的鋼鋁複合箔的厚度)]÷(包覆軋延前的鋼層、含Al金屬層,及Al層的合計厚度)×100。
成膜步驟
透過包覆軋延步驟及冷軋延步驟,可以將本實施形態的鋼鋁複合箔1製出。成膜步驟中,亦可依需要,在冷軋延步驟後的鋼鋁複合箔1的Al層3的表面3a形成各種被覆層8。
於鋼鋁複合箔1的Al層3的表面3a,作為被覆層8而形成AlN層時,宜進行加熱處理。加熱處理以例如,將鋼鋁複合箔1置於含有10體積%±2體積%的氨或聯氨(hydrazine)的惰性氣體(氬氣、氮氣、氮氣和氫氣的混合氣體等)中,在500~600℃的溫度範圍下進行1~10小時的加熱亦可。
要在鋼鋁複合箔1的Al層3的表面3a形成Al2O3層 時,宜對Al層3的表面3a作陽極氧化處理。
要在鋼鋁複合箔1的Al層3的表面3a,形成溶膠凝膠層時,宜進行溶膠凝膠層的成膜處理。例如,可以調製出在最終的燒黏步驟所得到的被覆膜中的氫濃度[H](mol/l)和矽濃度[Si](mol/l)的比變成,0.1≦[H]/[Si]≦10的溶膠。接著,將所調製的溶膠塗佈於Al層3的表面3a並使其乾燥。最後透過在乾燥後進行燒黏的作法,就能製造出設有無機有機混合膜被覆物的鋼鋁複合箔1。
要在鋼鋁複合箔1的Al層3的表面3a,形成層積層時,宜進行層積層的成膜處理。例如,可將選自聚烯烴、聚酯、聚醯胺、聚醯亞胺的塑膠薄膜,透過尼龍系黏著劑,積層在Al層3的表面3a後進行加熱,並以1MPa左右的壓力進行熱壓接。透過這種熱層積法,可以製造出設有層積層的鋼鋁複合箔1。又,也可以使用由聚酼亞胺形成的耐熱樹脂,作為選自聚醯亞胺的塑膠薄膜的替代品。
如以上所說明地,依據本實施形態的鋼鋁複合箔1,因為在位於鋼層4和Al層3之間的含Al金屬層5中,含有離開鋼層4而分散的Fe-Al合金粒7b,故可推測成,含Al金屬層5的熱膨脹係數會變成在鋼層4的熱膨脹係數和Al層3的熱膨脹係數的中間左右者。藉此,即使鋼鋁複合箔1承受了被加熱到400℃以上之後再被冷卻到接近室溫為止的熱歷程,也不容易發生含Al金屬層5等的剝離或破損。
又,本實施形態的鋼鋁複合箔1,由於鋼層4被覆有含Al金屬層5及Al層3,故具優異的抗蝕性。又,本實施 形態的鋼鋁複合箔1,由於含Al金屬層5上配置有Al層3,故具優異的表面平滑性。又,本實施形態的鋼鋁複合箔1,由於Fe-Al合金層分裂而成為Fe-Al合金粒7分散,故具有優異的彈塑性變形性。
亦即,本實施形態的鋼鋁複合箔1,在同時滿足作為太陽能電池和有機EL照明的基材用金屬箔所要求的抗蝕性、表面平滑性,以及彈塑性變形性的同時,即使在加熱到高溫再冷卻的情況中也可以順利地抑制含Al金屬層5等的剝離或破損。因此,本實施形態的鋼鋁複合箔1,可以作為太陽能電池和有機EL照明的基材用金屬箔而適當地應用。
此外,在本實施形態的鋼鋁複合箔1的Al層3中含有離開鋼層4而分散的Fe-Al合金粒7c時,即使鋼鋁複合箔1承受到被加熱到400℃以上之後再被冷卻到接近室溫的熱歷程,仍然可以更加順利地防止Al層3和含Al金屬層5的剝離、含Al金屬層5和鋼層4的剝離、Al層3的破損,及含Al金屬層5的破損。
又,本實施形態的鋼鋁複合箔1的Al層3含有99.0質量%以上的Al時,就不會在Al層3中生成共晶組織。因此,在Al層3的表面3a就不會出現共晶組織中本有的微小凹凸,而可以更加提升鋼鋁複合箔1的表面平滑性。
又,本實施形態的鋼鋁複合箔1中所含有的空隙9以圓當量徑計低於1μm時,就可以更加有效地防止鋼層4和含Al金屬層5的剝離、含Al金屬層5和Al層3的剝離、含Al 金屬層5的破損,或Al層3的破損。
依據本實施形態的鋼鋁複合箔1的製造方法,包覆軋延芯材和Al材以製成包履材,並對該包覆材進行冷軋延,以使含Al金屬層5中的Fe-Al合金層的一部分離開鋼層並形成分散於含Al金屬層5中及/或Al層3中的Fe-Al合金粒7b及7c。因此,被推測成,可以讓含Al金屬層5的熱膨脹係數在鋼層4的熱膨脹係數和Al層3的熱膨脹係數的中間左右。
又,本實施形態的鋼鋁複合箔1的製造方法,是經由包覆軋延及冷軋延,分裂存在鋼層和含Al金屬層的界面的Al-Fe合金層,並經由冷軋延,使含Al金屬層中及/或Al層3中的Fe-Al合金粒7b及7c分散。因此,可以將以往是造成鍍鋁層剝離或者破損的原因的Al-Fe合金層變化成有用的組織形態。
亦即,本實施形態的鋼鋁複合箔1的製造方法,可以製造出在同時滿足作為太陽能電池和有機EL照明的基材用金屬箔所要求的抗蝕性、表面平滑性,以及彈塑性變形性的同時,即使在加熱到高溫再冷卻的情況中也不易產生含Al金屬層等的剝離或破損的基材用金屬箔。
實施例1
雖然以實施例更具體地說明本發明的一態樣的效果,但在實施例下的條件,是為了確認本發明的實施可行性及效果而採用的其中一個條件例,本發明並不受限於這一個條件例。只要不脫離本發明的要旨,並可達到本發 明的目的,本發明仍然可以採用各種條件。
(實驗例1)
準備厚度0.05~2mm的SPCC(Steel Plate Cold Commercial)作為鋼板。對這個鋼板的的單面或雙面,用表1~表9所示的熱浸鍍鋁浴施行熱浸鍍鋁,製成鍍鋁鋼板。在所得到的鍍鋁層和鋼板的界面,可形成具有表1~表9所示的化學成分及平均厚度的Fe-Al合金層。再者,熱浸鍍鋁浴的化學成分,在表1~表9所示的Si以外的剩餘部分是Al及不純物。再者,在本實施例中,表中所示的「-」是表示未使用、未實施,或不適用。
接著,將鍍鋁鋼板作為芯材,對這個芯材的單面或雙面,將表1~表9所示的Al材作成表皮材使用,並以表10~表18所示的溫度及軋縮率進行包覆軋延,以製造出包覆材。藉由進一步對所得到的包覆材進行冷軋延,可製造出實施例1~222的鋼鋁複合箔。又,也製造了比較例1~6的金屬箔。於表10~表18表示冷軋延條件。再者,冷軋延是以可逆式軋延機進行,並可依需要,使用將輥粗糙度(表面粗糙度Ra)加工成10nm以下的鏡面輥來實施最後加工道次的軋延。
對於實施例1~222的鋼鋁複合箔及比較例1~6的金屬箔,是在以將與軋延方向呈直交的板寬方向變成觀察面的方式沿厚度方向作平面切割而成的切割面上進行觀察。並且,對鋼鋁複合箔的平均厚度、鋼層的平均厚度、含Al金屬層的平均厚度、含Al金屬層的化學成分、含Al金屬層中所含有的離開鋼層而分散的Fe-Al合金粒的粒徑範圍、含 Al金屬層中所含有的離開鋼層而分散的Fe-Al合金粒相對於所有Fe-Al合金粒的面積分率、Al層的平均厚度、Al層的表面粗糙度Ra、Al層中所含有的離開鋼層而分散的Fe-Al合金粒的粒徑範圍、Al層中所含有的離開鋼層而分散的Fe-Al合金粒相對於所有Fe-Al合金粒的面積分率、空隙的圓當量徑進行了測定。
鋼層、含Al金屬層,及Al層的平均厚度是測定任意選擇的20個位置的厚度而作成其平均值。又,含Al金屬層及Al層的化學成分,是藉由使用輝光放電分光儀(通常也被稱為高頻GDS),以進行元素分析而求出。再者,含Al金屬層的化學成分,在表19~表27所示的Si以外的剩餘部分是Al及不純物。並且,Al層的化學成分,在表19~表27所示的Al以外的剩餘部分是不純物。又,含Al金屬層及Al層中所含有之離開鋼層而分散的Fe-Al合金粒的金屬間化合物,與表1~表9所示的Fe-Al合金層的金屬間化合物相對應。
Fe-Al合金粒的粒徑範圍及面積分率、空隙的圓當量徑,是從影像分析求出。影像分析是以,將觀察視野在板寬方向上變成200μm以內的倍率而進行,並以將板寬方向的合計視野變成3000μm以上的方式,觀察至少15個視野以上。由15個視野以上的觀察結果,可求出含Al金屬層中所含有之離開鋼層而分散的Fe-Al合金粒,及Al層中所含有之離開鋼層而分散的Fe-Al合金粒的粒徑範圍。又,由15個視野以上的觀察結果,可求出含Al金屬層中所含有之離開鋼層而分散的Fe-Al合金粒對所有Fe-Al合金粒的面積分 率,及Al層中所含有之離開鋼層而分散的Fe-Al合金粒對所有的Fe-Al合金粒的面積分率。
又,空隙是用SEM(Scanning Electron Microscope)觀察上述截面,並對金屬組織作影像分析而進行評估。以將板寬方向的合計視野變成3000μm以上的方式,在複數個視野進行觀察。在此的全部的觀察視野內,當圓當量徑超過1μm的空隙連1個也沒有被目視辨識到則判斷成「無」,而即使只有1個圓當量徑超過1μm的空隙被目視辨識到則判斷成「有」。
表面平滑性的評估
鋼鋁複合箔的Al層的表面粗糙度Ra為600nm以下時則將表面平滑性判斷成可容許,並將25nm以下時的表面平滑性判斷成特佳。這些結果顯示於表19~表27中。
進一步地,對實施例1~222的鋼鋁複合箔進行抗蝕試驗、180度黏著彎曲試驗、CIGS成膜的缺陷數試驗、CIGS的轉換效率試驗,及溫度循環試驗。對比較例1~6的金屬箔,也可依需要進行上述各試驗。並於表28~表36中記錄抗蝕試驗、180度彎曲試驗、CIGS成膜的缺陷數試驗、CIGS的轉換效率試驗,及溫度循環試驗的結果。再者,對於僅在單側的箔面形成有Al層的鋼鋁複合箔,是以形成有Al層的箔面作為評估的對象。又,對於在兩側的箔面均形成有Al層的鋼鋁複合箔,則可用任一側的箔面作為評估的對象。
抗蝕性的評估
抗蝕性試驗是以鹽水噴霧試驗(SST)進行評估。將保持在35℃的5%NaCl水以噴霧方式噴至鋼鋁複合箔的Al層表面,並將經400個小時以上以目視未確認到腐蝕的情形作為VG(Very Good)、將經300個小時以上的作為G(Good)、將經120小時以上的作為A(Acceptable)、將經100個小時以上的作為NG(Not Good)、將低於100個小時的作為B(Bad)。並且,將VG、G、A視為合格,將NG、B視為不合格。
彈塑性變形性的評估
180度黏著彎曲試驗是藉由在鋼鋁複合箔中反複進行在內側半徑為0下將彎曲角度變成180°的180度黏著彎曲加工而實施。並且,對鋼鋁複合箔的Al層或含Al金屬層產生的剝離或龜裂的加工次數作調查。鋼鋁複合箔的Al層或含Al金屬層產生的剝離或龜裂的觀察是隨者,180度黏著變曲加工的每一次循環,以光學顯微鏡觀察鋼鋁複合箔的彎曲外周部而進行。並以用光學顯微鏡觀察到鋼鋁複合箔的Al層或含Al金屬層的剝離或龜裂的時間點的加工次數作為破壞次數。破壞次數為2次以上時則將彈塑性變形性判斷成可容許,破壞次數為3次以上時則將彈塑性變形性判斷成非常良好。
加熱到高溫並冷卻後的剝離和破損的評估
CIGS成膜後的缺陷數試驗是藉由在鋼鋁複合箔上成膜形成Mo電極及CIGS光發電層的作法而實施。再者,形成Mo電極及CIGS光發電層時,鋼鋁複合箔最高會被加熱到400℃以上,並被冷卻到室溫。並且,在以將與軋延方向呈 直交的板寬方向變成觀察面的方式沿厚度方向作平面切割而成的切割面上進行觀察,藉此,可以調查因成膜製程所施加的熱而產生的缺陷的有無。以將觀察視野在板寬方向上變成200μm以內的倍率的方式,在10個樣品上以對1個樣品進行10個視野以上的觀察而實施。將發生鋼層和含Al金屬層的剝離、含Al金屬層的破損、含Al金屬層和Al層的剝離,及Al層的破損的樣品的合計數定義成CIGS成膜後的缺陷數。CIGS成膜後的缺陷數為5個樣品以下時則判斷成可容許,CIGS成膜後的缺陷數為2個樣品以下時則判斷成非常良好。
CIGS光電轉換效率的評估
在鋼鋁複合箔上成膜形成Mo電極及CIGS光發電層以製作子模組(submodule),並調查CIGS光電轉換效率。CIGS光電轉換效率是評估成,低於7%為NG(NotGood)、7%以上且低於8%為A(Acceptable)、8%以上且低於10%為G(Good)、10以上且低於12%為VG(Very Good)、12%以上為GG(Greatly Good)。並且,將A、G、VG、GG視為合格,將NG視為不合格。
溫度循環試驗
以在鋼鋁複合箔上成膜形成Mo電極及CIGS光發電層以製作出子模組,並進行溫度循環試驗的方式進行針對溫度變化的可信賴性評估。溫度循環試驗是對作為試驗材的上述子模組,是將在-40℃下保持15分鐘然後在85℃下保持15分鐘的1次循環的環境變化,實施了200次循環。並且, 在200次循環試驗的前後測定子模組的發電效率,並調查發電效率的降低。在200次循環試驗前和試驗後,子模組的發電效率的降低是在5%以內時則判斷成G(Good)、有超過5%的降低情形則判斷成NG(NotGood)。並且,NG視為不合格。這些結果顯示於表28~表36中。
(實驗例2)
實驗2是在實驗1所製作的鋼鋁複合箔的Al層上,形成AlN層、Al2O3層、溶膠凝膠層,或層積層,並進一步於其上成膜形成Mo電極及CIGS光發電層以製作出子模組。形成Mo電極及CIGS光發電層時,鋼鋁複合箔最高會被加熱到400℃以上,並被冷卻到室溫。對這些實施例223~240,調查耐受電壓、表面粗糙度Ra,及CIGS光電轉換效率。耐受電壓為500V以上時,則將耐受電壓性能判斷成優良。表面粗糙度Ra為25nm以下時,則將表面平滑性判斷成非常優良。又,CIGS光電轉換效率是評估成,低於7%為NG(NotGood)、7%以上且低於8%為A(Acceptable)、8%以上且低於10%為G(Good)、10以上且低於12%為VG(Very Good)、12%以上為GG(Greatly Good),而進行評估。並且,NG視為不合格。將這些結果示於表37中。
再者,AlN層、是藉由利用含有氨的惰性氣體的加熱處理而製作。Al2O3層是在硫酸溶液中以直流電流進行陽極氧化而製作。
又,溶膠凝膠層的形成是使用10莫耳的甲基三乙氧矽烷和10莫耳的四乙氧矽烷的混合物作為溶膠調製的原 材料,並在這個混合物中添加20莫耳的乙醇以充分進行攪拌。之後,邊攪拌,邊滴入由2莫耳的醋酸和100莫耳的水混合而成的醋酸水溶液以進行加水分解。在如此進行而得到溶膠中添加100莫耳的乙醇以得到最後的溶膠。以浸漬塗佈法在鋼鋁複合箔的表面塗佈這種溶膠後,在空氣中進行100℃、1分鐘的乾燥。之後,在氮氣環境中以升溫速度10℃/分鐘從室溫升溫到400℃,並在400℃進行30分鐘的燒結以得到溶膠凝膠層。
又,在層積層的形成上,是以15質量%的濃度將尼龍系黏著劑溶解在甲酚(cresol)和二甲苯的質量比70:30的混合溶劑中,並將該溶解物塗佈於樹脂上後,藉由以1MPa的壓力將該樹脂熱壓接於被加熱到300℃的鋼鋁複合箔以進行熱層積。
如表1~表37所示地,實施例1~240,有良好的抗蝕性、表面平滑性,及彈塑性變形性,且即使在加熱到高溫再冷卻的情形下也可以抑制含Al金屬層和Al層的剝離和破損。
另一方面,比較例1~6,則有抗蝕性、表面平滑性,或彈塑性變形性的某一項變得不夠,或者在加熱到高溫再冷卻的情況中發生了含Al金屬層和Al層的剝離和破損的情形。
產業上之可利用性
依據本發明的上述態樣,可以提供同時滿足作為太陽能電池和有機EL照明的基材用金屬箔所要求的抗蝕性、表面平滑性,以及彈塑性變形性,同時即使在加熱到高溫再冷卻的情況中也不易產生含Al金屬層等的剝離或破損的鋼鋁複合箔。因此,產業上的可利用性高。
1‧‧‧鋼鋁複合箔
2‧‧‧芯層
3‧‧‧Al層
3a‧‧‧Al層3的表面
4‧‧‧鋼層
5‧‧‧含Al金屬層
6‧‧‧界面
7‧‧‧Fe-Al合金粒
7a‧‧‧分散於界面6上的Fe-Al合金粒
7b‧‧‧分散於含Al金屬層5中的Fe-Al合金粒

Claims (17)

  1. 一種鋼鋁複合箔,其特徵在於具備有:芯層,其具有鋼層及形成在前述鋼層上的含Al金屬層;以及Al層,其積層於前述芯層的前述含Al金屬層上;當以厚度方向與切割方向呈平行的截面觀看時,前述含Al金屬層中含有離開前述鋼層而分散的Fe-Al合金粒。
  2. 如請求項1所述的鋼鋁複合箔,其以前述截面觀看時,相對於前述截面中所含有的Fe-Al合金粒,前述含Al金屬層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的面積分率,在7.5面積%以上且低於50面積%的範圍。
  3. 如請求項1所述的鋼鋁複合箔,其中前述含Al金屬層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,在0.1~5μm的範圍。
  4. 如請求項2所述的鋼鋁複合箔,其中前述含Al金屬層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,在0.1~5μm的範圍。
  5. 如請求項1至4中任一項所述的鋼鋁複合箔,其以前述截面觀看時,前述Al層中含有離開前述鋼層而分散的Fe-Al合金粒。
  6. 如請求項5所述的鋼鋁複合箔,其以前述截面觀看時, 相對於前述截面中所含有的Fe-Al合金粒,前述Al層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的面積分率,在7.5面積%以上且低於40面積%的範圍。
  7. 如請求項5所述的鋼鋁複合箔,其中前述Al層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,在0.1~5μm的範圍。
  8. 如請求項6所述的鋼鋁複合箔,其中前述Al層中所含有之離開前述鋼層而分散的前述Fe-Al合金粒的粒徑,在0.1~5μm的範圍。
  9. 如請求項1至4的任一項所述的鋼鋁複合箔,其於令以前述厚度方向為法線之前述鋼層的2個外面為鋼層面時,前述含Al金屬層係配置在前述各個鋼層面上。
  10. 如請求項9所述的鋼鋁複合箔,其於令以前述厚度方向為法線之前述含Al金屬層的2個外面為含Al金屬層面時,前述Al層係配置在前述各個含Al金屬層面上。
  11. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述截面中所含有的空隙以圓當量徑計為小於1μm。
  12. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述含Al金屬層的化學成分含有1~15質量%的Si,且剩餘部分由Al及不純物所構成。
  13. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述Fe-Al合金粒含有選自FeAl3、Fe2Al8Si、FeAl5Si之至少1種金屬間化合物。
  14. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述Al 層的化學成分是由99.0質量%以上的Al及不純物所構成。
  15. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述Al層表面的表面粗糙度Ra為10~25nm。
  16. 如請求項1至4中任一項所述的鋼鋁複合箔,其中前述Al層表面更設有選自AlN層及Al2O3層之至少1者。
  17. 如請求項1至4的任一項所述的鋼鋁複合箔,其中前述Al層表面更設有選自溶膠凝膠層及層積層之至少1者。
TW103106845A 2013-02-28 2014-02-27 鋼鋁複合箔 TWI601635B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039706 2013-02-28

Publications (2)

Publication Number Publication Date
TW201437010A TW201437010A (zh) 2014-10-01
TWI601635B true TWI601635B (zh) 2017-10-11

Family

ID=51428334

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103106845A TWI601635B (zh) 2013-02-28 2014-02-27 鋼鋁複合箔

Country Status (3)

Country Link
JP (1) JP5932132B2 (zh)
TW (1) TWI601635B (zh)
WO (1) WO2014133075A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402650B2 (ja) * 2015-02-27 2018-10-10 新日鐵住金株式会社 アルミニウムクラッド鋼帯およびその製造方法
JP2018125522A (ja) * 2017-01-27 2018-08-09 積水化学工業株式会社 フレキシブル太陽電池
CN107138527B (zh) * 2017-05-25 2018-10-30 哈尔滨工业大学 CNTs/Ti仿生微纳米叠层复合材料的制备方法
KR102043522B1 (ko) * 2017-12-22 2019-11-12 주식회사 포스코 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판
TWI771066B (zh) * 2021-06-18 2022-07-11 中國鋼鐵股份有限公司 離岸水下基礎用高強度鋼板銲接層裂之模擬試驗方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732357A (en) * 1980-08-04 1982-02-22 Nisshin Steel Co Ltd Aluminum clad steel plate
WO2012067143A1 (ja) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 基材用金属箔及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883457U (ja) * 1981-12-02 1983-06-06 日新製鋼株式会社
JPH0230526A (ja) * 1988-07-20 1990-01-31 Nippon Steel Corp 缶用及び缶蓋用鋼板と、缶体及び缶蓋

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732357A (en) * 1980-08-04 1982-02-22 Nisshin Steel Co Ltd Aluminum clad steel plate
WO2012067143A1 (ja) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 基材用金属箔及びその製造方法

Also Published As

Publication number Publication date
JPWO2014133075A1 (ja) 2017-02-02
JP5932132B2 (ja) 2016-06-08
WO2014133075A1 (ja) 2014-09-04
TW201437010A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
TWI601635B (zh) 鋼鋁複合箔
JP6529553B2 (ja) ポリイミド層含有フレキシブル基板、ポリイミド層含有フレキシブル太陽電池用基板、フレキシブル太陽電池およびそれらの製造方法
US9296180B2 (en) Metal foil for base material
US20130333864A1 (en) Heat-Dissipation Unit Coated with Oxidation-Resistant Nano Thin Film and Method of Depositing the Oxidation-Resistant Nano Thin Film Thereof
US20200180272A1 (en) Alloy-coated steel sheet and manufacturing method therefor
US9902134B2 (en) Metal foil for base material and producing method thereof
CA2918863C (en) Al-coated steel sheet having excellent total reflection characteristics and corrosion resistance, and method for manufacturing same
JP6208869B2 (ja) 電子デバイス作製用金属基板及びパネル
KR101568710B1 (ko) 구리층을 갖는 철계부스바 및 상기 철계부스바 제조방법
JP5916425B2 (ja) Cis太陽電池およびその製造方法
CN110592515B (zh) 一种热浸镀锡铜材及其制造方法
Tang et al. Fabrication and microstructures of sequentially electroplated Au-rich, eutectic Au/Sn alloy solder
KR102612746B1 (ko) 블랙 버스바 및 그 제조방법
JP5892851B2 (ja) 太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
EP4261901A1 (en) Coated steel plate suitable for inline thin-film photovoltaic module and manufacturing method therefor
US20210213710A1 (en) Alloy-coated steel sheet and manufacturing method therefor
Gudgel et al. High performance dielectric and barrier coatings for photovoltaic systems
KR20030071418A (ko) 회전식 플라즈마 용사법에 의한 직접회로 패키지용히트싱크 제조방법