TWI597488B - 對位裝置及對位方法 - Google Patents

對位裝置及對位方法 Download PDF

Info

Publication number
TWI597488B
TWI597488B TW105111341A TW105111341A TWI597488B TW I597488 B TWI597488 B TW I597488B TW 105111341 A TW105111341 A TW 105111341A TW 105111341 A TW105111341 A TW 105111341A TW I597488 B TWI597488 B TW I597488B
Authority
TW
Taiwan
Prior art keywords
alignment
spot
analyte
image
light
Prior art date
Application number
TW105111341A
Other languages
English (en)
Other versions
TW201643408A (zh
Inventor
黎育騰
曲昌盛
賀培誠
何貫睿
鍾雙兆
范植訓
陳治誠
Original Assignee
臺醫光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺醫光電科技股份有限公司 filed Critical 臺醫光電科技股份有限公司
Publication of TW201643408A publication Critical patent/TW201643408A/zh
Application granted granted Critical
Publication of TWI597488B publication Critical patent/TWI597488B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • G01N2201/0683Brewster plate; polarisation controlling elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/126Microprocessor processing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

對位裝置及對位方法
本發明是關於一種對位裝置、對位方法及其應用。
生化參數的非侵入式檢測影響著現代醫療保健品質。人類極度渴望有一種精確、有效、安全的檢測。然而,光學檢測裝置若不能被良好的對位於被分析物,會導致光學檢測的不精準與不一致性。
雖然現代技術致力於達成良好的對位,但複雜的對位裝置無法適於使用者的適應性,且通常對位也無法與檢測區域達到一致。因此,本發明揭示包括了一裝置與方法用於光學對位以增進檢測的精準性與一致性。 本領域具有普通技能的人員可依據本發明和所描述的實施方式但不背離本發明的範圍,以達成良好的對位效果。通過單一光學參數去檢測一個複合被分析物,其他複合物可能干擾檢測結果並降低檢測的可靠度。雖然可以通過不同檢測儀器去應用不同模式,但動態的改變和有限的樣品數量極大地減少了實驗的一致性。因此,本發明包括一種能減少不必要的雜訊和增強檢測準度及一致性的多模式光學檢測裝置和方法。本領域具有普通技能的人員可依據本發明和所描述的實施方式但不背離本發明的範圍。
鑒於以上內容,有必要提供一種對位裝置及對位方法。
一種對位裝置,包括:一光源,發射出參考光束;一對位光發射器,用於在被分析物上產生一對位光點;一圖像分光器,用於引導該參考光束將準直光束導向被分析物,該被分析物將準直光束轉換成檢測光束;一第二分光器,引導該參考光束,以在被分析物上形成參考光點;一圖像感測器,其通過該圖像分光器獲取該被分析物的圖像;一微處理器處理要對位的圖像資訊;以及一記憶體存儲該圖像資訊和一預設對位資訊,其中,該圖像資訊包括該參考光點、該對位光點、以及該被分析物的特徵。
一對位方法,包括:在被分析物表面產生光點,其中這些光點包括一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物表面的圖像;顯示包括預設對位資訊的圖像,其中該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊。
相較習知技術,上述光學檢測模組、光學檢測裝置、以及光學檢測方法,提供了更好的光學檢測。
10‧‧‧光源
15‧‧‧準直器
21‧‧‧第一光接收模組
22‧‧‧第二光接收模組
31‧‧‧第一分光器
32‧‧‧第二分光器
12‧‧‧帶通濾波器
13‧‧‧線性偏振器
14‧‧‧四分之一波片
20‧‧‧第四光接收模組
41‧‧‧微處理器
42‧‧‧記憶體
45‧‧‧電源
34‧‧‧溫度計分光器
54‧‧‧溫度計模組
33‧‧‧圖像分光器
53‧‧‧圖像傳感器
17‧‧‧對位光發射器
56‧‧‧顯示器
80‧‧‧驅動器模組
62,63,66,70‧‧‧殼體
110‧‧‧原始光束
120‧‧‧量測光束
121‧‧‧第一檢測光束
122‧‧‧第二檢測光束
125‧‧‧回饋光束
154‧‧‧熱輻射光束
圖1A展示了本發明光學檢測模組之一實施例,其中該準直光束是平行光束;圖1B展示了本發明光學檢測模組之一實施例,其中該準直光束是聚焦光束;圖1C展示了本發明光學檢測模組之一實施例,其中該光源與該準直器之間的距離是可調整的。
圖2A展示了位於光源和準直器之間的帶通濾波器;圖2B展示了位於光源和準直器之間的線性偏振器和四分之一波片;圖2C展示了位於光源10和準直器之間的帶通濾波器、線性偏振器和四分之一波片。
圖3A展示了本發明之一實施例以及一第四光接收模組和相關光路。圖3B展示了一回饋控制的實施例的方塊圖。圖3C展示了一回饋控制過程的流程圖。
圖4展示了本發明實施例及一溫度計模組和相關光路。
圖5A展示了本發明實施例的手動對位和相關光路;圖5B為展示手動對位過程的流程圖。
圖6A展示了本發明實施例的半自動對位和相關光路;圖6B為半自動對位過程的流程圖。圖6C為預設對位資訊的更新的流程圖。
圖7A展示了本發明實施例的自動對位和相關光路;圖7B為檢測過程及自動對位過程的流程圖。圖7C為本發明實施例的自動對位和回饋控制。
圖8展示了本發明實施例的遙測計和相關光路。
圖9A展示了光學檢測裝置包括雙筒式手持殼體;圖9B展示了光學檢測裝置包括可折疊式手持殼體;圖9C展示了光學檢測裝置包括單筒式手持殼體。
圖10A展示了本發明實施例從單手握持使用者角度看的光學檢測裝置;圖10B是光學檢測裝置和單手握持用戶的頂視圖;圖10C是光學檢測裝置和雙手握持使用者的頂視圖。
圖11A展示了本發明實施例的光學檢測裝置包括一個平臺殼體的一個側視圖。圖11B是本發明實施例的光學檢測裝置包括一個平臺殼體的頂視圖。
圖12A展示了本發明實施例的手動對位和相關光路;圖12B展示了本發明實施例的半自動對位和相關光路;圖12C展示了本發明實施例的自動對位和相關光路。
圖13A展示了本發明實施例的光學檢測裝置包括雙筒式手持殼體;圖13B展示了本發明實施例的光學檢測裝置包括可折疊式手持殼體;圖13C展示了本發明實施例的光學檢測裝置包括單筒式手持殼體。
圖14A展示了本發明實施例的光學檢測裝置包括包括一平臺殼體的側視圖;圖14B展示了本發明實施例的光學檢測裝置包括包括一平臺殼體的頂視圖。
為了簡潔的闡述本發明內容,參考圖號會被適當的於不同圖式中重複使用以指明相關或類似的組成元素。此外,許多特定細節被用來提供 對各個實施例完整的瞭解。然而,可以被該領域習知技藝者理解的是,某些實施例可以不需這些特定細節也能實施。其他未被提及的示例、方法、程式、和元件等是為了不讓相關的特徵難以理解。圖式不必然與實際情形等比例,某些組件還會為了更好的闡述細節與特徵而被彰顯。在此的描述並不被限定於所揭露的實施例。
在本發明揭露中所使用的定義說明如下。
所述「光束」一詞是指光能量的指向性投射,而不限定于直接連接於兩的光學元件間的光路徑。舉例而言,一光束可以來自于光源到達光電探測器,在光源與光電探測器其中可經過或不經過分光器。一光束的方向或光學性質可能在經過一光學元件時被改變。所述「準直」一詞是指縮窄一光束的光束發散度或會聚一光束,並不限定于使光束成為平行光。
在本發明揭示中,一光學檢測模組是用於檢測一被分析物的光學特性,該光學檢測模組可以被整合在一個裝置或系統內以供進一步的應用。一光學檢測裝置是用於檢測一被分析物的光學特性,因此可以估計目標分子的存在或濃度,或化合物的成分。該被分析物可以是化合物的混合或者是一體內生物樣品(例如血液、皮膚、眼睛、或粘膜)或體外生物樣品(例如血液、活檢樣本、尿、或糞便)的一部分。一被分析物(例如葡萄糖、乳酸、或血紅蛋白)的特定生化成分的存在或濃度可以被相關的光學特性的組合來衡量。 另外,受試者的一些疾病狀況也可以進一步在體內或體外被檢測出,例如眼睛的乾性角膜結膜炎,或者組織活檢的異常增生。這此相關光學特性是吸光率、折光率、偏振性、螢光性、和非彈性散射。
一光學檢測裝置包括至少一光源、一準直器、一第一分光器、一第二分光器、一第一光接收模組、以及一第二光接收模組。此外,光源和準直器之間的特定距離可根據特定應用來設置。隨著準直光束聚集在限定區域,大部分獲取的資訊可從目的地區域提取出來。另一方面,該準直光束可被投射成平行光束,去獲取目標的指定區域的平均資訊,使得本發明可以極大地減少區域差異,特別是當目標是非均質構成或非靜態流體。具體實施例將描述如下。
光源是一發光元件或者是多種發光元件的組合。光源可以是單色光源或多色光源。光源可以是雷射二極體、發光二極體、或者有機發光二極體。 在某些實施例中,光源可以具有多個雷射二極體、發光二極體、或者有機發光二極體,並且每個發光元件可以有不同的波長和偏振。多色光源可以是白熾燈光源或者校準白色光源。在本發明中,所述光是電磁輻射,具有從紫外線,可見光,到紅外線區域的波長。光源還可以包括一光學元件用來改變發射光束的光學性質。所述光學元件可以是線性偏振器、分色濾光鏡或準直器。
準直器是一光學元件,其收窄了光束的發射角度。準直器具有一由其焦平面到其光心距離所定義的焦距(標為f)。當光源位於焦點,所發射的光束會被引導成一組平行光,根據準直器的結構這組平行光具有一個有限的橫截面積;當光源位於焦點附近,所發射的光束會被導成一組有限制發射角度的光束;當光源的位置遠離焦點,所發射的光束被會聚在離準直器某一限定距離上。準直器在實施例中可以是會聚透鏡、聚光鏡、凸透鏡、平凸透鏡、平凹透鏡、雙凸透鏡、或者雙凹透鏡。此外,光學檢測裝置可以包括一用於調節光源和準直器之間距離的機構件。
分光器能根據光學特性,例如波長、偏振、或中性劃分一定比例,把光束分成兩個方向。分光器的結構可以是棱鏡、透鏡、或者鏡子。分光器也能將一部分的光束經由穿透或反射導引至一特定方向。一個分光器可以棱鏡、透鏡或鏡面製作而成。例如,一個中性分光器可以分解光束而無需改變光譜分割;一個分色濾光鏡可以依光譜分離光束。分光器也可以是偏振光束分光器,把光分離成不同偏振的光束,例如沃拉斯頓棱鏡。
光接收模組是用於偵測具有特殊光學特性的光束,其包括至少一光電探測器。該光電探測器可以是單一光電二極體、光電電晶體、光敏電阻器、光電放大器、或者金屬氧化物半導體(MOS)。光接收模組也可以包括以一維陣列或二維陣列排布的上述光電探測器,或者以一維陣列或二維陣列排布的電荷耦合裝置(CCD)或者互補金屬氧化物半導體(CMOS)。該光接收模組也可以是一圖像感測器或相機。根據不同實施例,光接收模組可以進一步包括一光學元件,用於隔絕出或調整成具有特殊光學特性的光束,使得光電探測器能夠把光束轉換成電訊號。光接收模組中的光學元件可以是篩檢程 式、偏光器、或者散光元件,也可以是透鏡、鏡子、棱鏡、或者光柵。一光接收模組可以進一步包括一機械旋轉器或法拉第旋轉器用以量測旋亮度。可預期地,光接收模組可以進一步包括放大器和/或類比數位轉換器用於訊號處理。在本發明揭示中,所述第一光接收模組與第二光接收模組的位置可互相調換,原因是第二分光器的穿透與反射是功能等效的。
一從光源所發射出的原始光束被準直器會聚成準直光束。所述準直光束可以根據光源與準直器間的距離而是一平行光束或聚焦光束。
一光學檢測模組可以包括一光源、一準直器、一第一分光器、一第二分光器、一第一光接收模組、以及一第二光接收模組。其中光源和準直器之間的特定距離(標為d)根據準直器的焦距(標為f)參考來確定。位於焦距上,並且準直光束是一平行光束(圖1A)。一從該光源所發射出來的原始光束經由準直器會聚成準直光束。該準直光束可以根據光源和準直器之間的距離而成為平行光束或聚焦光束。
如圖1A所示,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、以及一第二光接收模組22。其中,光源10和準直器15之間的距離(標為d)為準直器的焦距(標為f)而使準直光束為一平行光束。
通常,一光束是光能量沿指定光路傳播的一個定向投影。為了清楚描述,光束的定義是根據相應元件之間的定向光路來描述的。原始光束110是從光源10射向準直器15的光束,它可以是具有某些特性,例如窄波長、光譜波長、同調性、偏振、或者是具有混合特性的光束。原始光束110在穿過準直器15後變成了準直光束115。該準直光束115從該準直器15發出,經過該第一分光器31到達被分析物99。一量測光束120是與被分析物99相互作用後保留在該光路的光束,其中該相互的作用可以是折射、反射、漫射、吸收、螢光發射、旋光、彈性散射、和/或非彈性散射。從該被分析物99發出的量測光束120的一部分,從第一分光器31傳到第二分光器32,被第二分光器32分成第一檢測光束121和第二檢測光束122。從第二分光器32出來的第一檢測光束121被第一光接收模組21偵測到,從第二分光器32出來的第二檢測光束122被第二光接收模組22偵測到。
在一實施例中,第一光接收模組21用於檢測光束的偏光面的軸線, 或者被分析物99的旋光度。一種材料的旋光度或者光性指得是旋轉線偏振光的能力。光源10發出一偏振光,光源10可以是線偏振光源或者是一具有偏光器的非偏振光源。該第一光接收模組21還包括一偏光器,並且旋光度可根據馬呂斯定律通過光電探測器探測到的功率強度和旋光及偏光器之間的軸向角估算出來。在本實施例中,第二光接收模組22可用於檢測被分析物99的其他光學特性,例如折光率、吸光率、螢光性、或非彈性散射。首先,該第二光接收模組22可用來檢測被分析物99的折光率。如果在該第二光接收模組22中的是單一光電探測器,分析物99的折光率可以從該光電探測器測出的功率強度根據菲涅耳方程式計算出來,或者從由光路改變引起的功率強度變化計算出來。如果是陣列式的光電探測器,被分析物99的折光率可以根據斯涅爾定律或棱鏡方程式從由這陣列式的光電探測器偵測到的光路改變計算出來。根據被分析物99的偏振和折光率資訊,葡萄糖或乳酸的存在或濃度可以被估算出來。第二,該第二光接收模組22可用來檢測被分析物99的吸光率。如果在該第二光接收模組22中的是單一光電探測器,被分析物99的特定光波的吸光率可以從該光電探測器測出的功率強度根據比爾-朗伯定律計算出來。如果是陣列式的光電探測器和分光元件,再加上校準光譜光源10,被分析物99的折光率可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的旋光度和吸光率資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。第三,該第二光接收模組22可用來檢測被分析物99的螢光性。如果該第二光接收模組22中用的是單一光電探測器和長通濾波器(或陷波濾波器)以及一個適當窄波長光源10,被分析物99的螢光強度可以從該光電探測器測出的功率強度計算出來。如果該第二光接收模組22中用的是陣列式的光電探測器和適當窄波長的光源10,被分析物99的螢光發射光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。 根據被分析物99的旋光度和螢光資訊,葡萄糖或者乳酸存在或濃度可以被估算出來。第四,該第二光接收模組22可用來檢測被分析物99的非彈性散射。如果用陣列式的光電探測器和分光元件以及適當窄波長的光源10,被分析物99的拉曼光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的旋光度和非彈性散射資訊,葡萄糖或者乳 酸存在或濃度可以被估算出來。
在一個實施例中,第一光接收模組21用於檢測被分析物99的折光率。光源10在此可以是窄頻寬的光源。如果在該第一光接收模組21中的是單一光電探測器,被分析物99的折光率可以從該光電探測器測出的功率強度根據菲涅耳方程式計算出來。如果是陣列式的光電探測器,被分析物99的折光率可以根據斯涅爾定律或棱鏡方程式從由這陣列式的光電探測器偵測到的光路改變計算出來。在同一實施例中,該第二光接收模組22可用來檢測被分析物99的其他光學特性,例如吸光率、螢光性、或者非彈性散射。 首先,該第二光接收模組22可以被用來檢測被分析物99的吸光率。如果在該第二光接收模組22中的是單一光電探測器,被分析物99的特定光波的吸光率可以從該光電探測器測出的功率強度根據比爾-朗伯定律計算出來。如果是陣列式的光電探測器和分光元件,再加上校準光譜光源10,被分析物99的折光率可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的折光率和吸光率資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。第二,該第二光接收模組22可用來檢測被分析物99的螢光性。如果該第二光接收模組22是用單一光電探測器和濾波器以及一個適當窄波長光源10,被分析物99的螢光強度可以從該光電探測器檢測出的功率強度計算出來。如果該第二光接收模組22中用的是陣列式的光電探測器和適當窄波長的光源10,被分析物99的螢光發射光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的折光率和螢光資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。第三,該第二光接收模組22可用來檢測被分析物99的非彈性散射。 如果用陣列式的光電探測器和分光元件以及適當窄波長的光源10,被分析物99的拉曼光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的折光率和非彈性散射資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。
在一個實施例中,第一光接收模組21用於檢測被分析物99的吸光率。光源10在此可以是窄頻寬的光源或者是校準光譜的光源。如果在該第 一光接收模組21中的是單一光電探測器,被分析物99的吸光率可以從該光電探測器測出的功率強度根據比爾-朗伯定律計算出來。如果第一光接收模組21具有陣列式的光電探測器與散光元件,被分析物99的吸收光譜可由這陣列式的光電探測器計算出來。在同一實施例中,該第二光接收模組22可用來檢測被分析物99的其他光學特性,例如螢光性、或者非彈性散射。首先,該第二光接收模組22可以被用來檢測被分析物99的螢光性。如果該第二光接收模組22是用單一光電探測器和一個適當窄波長光源10,被分析物99的螢光強度可以從該光電探測器測出的功率強度計算出來。如果該第二光接收模組22中用的是陣列式的光電探測器和分光元件,以及一適當窄波長的光源10,被分析物99的螢光發射光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的吸光率和螢光資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。此外,該第二光接收模組22可用來檢測被分析物99的非彈性散射。如果用陣列式的光電探測器和分光元件,以及一適當窄波長的光源10,被分析物99的拉曼光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的吸光率和非彈性散射資訊,葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞的存在或濃度可以被估算出來。
在一個實施例中,第一光接收模組21用於檢測被分析物99的螢光性。光源10在此可以是窄頻寬的光源。如果在該第一光接收模組21中的是單一光電探測器和一適當窄波長光源10,被分析物99的螢光強度可以從該光電探測器測出的功率強度計算出來。如果是陣列式的光電探測器和散光元件,以及一適當窄波長的光源10,被分析物99的螢光發射光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。該第二光接收模組22可用來檢測被分析物99的非彈性散射。如果用陣列式的光電探測器和分光元件,以及一適當窄波長的光源10,被分析物99的拉曼光譜可以根據這陣列式的光電探測器偵測到的功率強度分佈計算出來。根據被分析物99的螢光性和非彈性散射資訊,葡萄糖或乳酸的存在或濃度可以被估算出來。
如圖1B所示,一光學檢測裝置也可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、以及一第二光 接收模組22,其中該光源10位於遠離焦距以外,並且準直光束是一聚焦光束。
如圖1C所示,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、以及一可調動機械模組。準直器15和光源10之間的距離可以調節成焦距以投射出平行光束或者調節。該可調動機械模組是用於準直器15和光源10之間的距離,該距離可以調節成焦距以投射出平行光束或者調節成大於焦距以投射出聚焦光束。
一光學檢測模組可以進一步包括一光學元件。該光學元件置於光源10和準直器15之間,去確定原始光束110的光學特性,例如強度、頻寬、和/或偏振,精準度和一致性可以因此而提高。在一實施例如圖2A所示,該光學元件可以是一個置於該光源10和準直器15之間的帶通濾波器。該光源10的頻寬由於檢測的一些特別目的例如螢光性,可以不足夠寬。通過一個帶通濾波器,射出的光在半峰值(FWHM)的全寬被進一步收窄為接近於單色光。
如圖2B所示,一光學檢測模組可以包括一四分之一波片14。通常,該準直器15不可避免會反射部分原始光束110,而干擾原始光束110,因此該雜訊回饋極大降低了檢測結果的訊號雜訊比。為了解決這個問題,一四分之一波片被置於該偏光片和準直器15之間把原始光束110圓偏振化。如此使得圓偏振化光束的反射部分不能影響該原始光束110,因此減少了光源10的輸出雜訊。因此,輸出的準直光束便會是一個偏振光。此外,由於檢測的多樣性,原始光束110的限制要求很關鍵,需要控制半峰值和偏振度來滿足精準和一致性要求。例如,該光源可以發出單色偏振光。
如圖2C所示,該光學元件也可以是線偏振片。該線偏振片可以增加偏振度(DOP),使旋光檢測的訊號雜訊比大幅提升。線偏振片13被置於該光源10和準直器15之間,四分之一波片被置於線偏振片和準直器15之間,帶通濾波器可以置於光源10和線偏振片之間或者四分之一波片和準直器15之間。因此,輸出的準直光束便會是一個單色偏振光。
一光學檢測裝置可以包括一光學檢測模組、一記憶體、一微處理器、一電源、和一殼體。微處理器41是一種積體電路,用於接收、處理、和傳 輸電子訊號從/到其他電子元件,例如光源、光電探測器、記憶體、圖像感測器、顯示器、空間感測器、或驅動器模組,等等。記憶體用於存儲經微處理器41或預設程式處理的資料,它可以是非永久性記憶體例如隨機記憶體(RAM),或者是非易失性記憶體例如快閃記憶體。在本發明的年代,為了成本效益與功能性,微處理器和記憶體可以整合成一系統級封裝(system in package,SiP);同樣,一微處理器可以進一步包括一放大器和/或一類比數位轉換器(ADC)。一電源用於給所有電子元件提供充足電能,它可以是鋰電池或者是電源插座輸出和轉換交流電的電源供應器。一殼體則是被設置用於容納光學檢測裝置中的元件以得到更好的整合與應用。
如圖3A所示,一光學檢測裝置可以進一步包括一第四光接收模組20。該第四光接收模組20是用於檢測回饋光束125的功率強度,並且進一步估算從于光源10發出的準直光束115。在雷射二極體作為光源10的實施例中,雷射功率控制是防止被分析物99損壞的重要安全問題。因此,光學檢測模組、微處理器41(參見圖3B)和光源10之間的連接需要緊密配合。
原始光束110經由準直器15會聚成準直光束115。該準直光束115從該準直器15發出,穿過該第一分光器31到達被分析物99。該準直光束115的一部分經第一分光器31引導成為一回饋光束125,其從第一分光器31發送到第四光接收模組20。回饋光束125從而被第四光接收模組20轉換成電訊號。量測光束的一部分也從被分析物99經過該第一分光器31傳送到該第二分光器32,然後被第二分光器32分成第一檢測光束121和第二檢測光束122。從第二分光器32出來的第一檢測光束被第一光接收模組21偵測到,從第二分光器32出來的第二檢測光束被第二光接收模組22偵測到。
如圖3A和圖3B所示,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、以及一第四光接收模組20。例如一具有回饋控制的光學檢測裝置中的光源10可以是一雷射模組。第四光接收模組20可以是一光電探測器用來檢測由光源所發出並且經第一分光器31引導之回饋光束125。在一實施例中,該雷射模組發出一雷射光束,該雷射光束被光電二極體偵測並轉換成光電流。該光電流被放大器放大,光強度的類比訊號被類比輸入端傳入微處理器。該微處理器可以從 記憶體獲得一預設的回饋控制功能,去根據類比訊號確定回饋控制訊號,並且控制該雷射模組的雷射功率。在一實施例中,被放大的光電流可以被類比數位轉換器轉換成數位光功率,並且傳送到該微處理器。該微處理器可以從記憶體獲得一預設的回饋控制功能,以根據類比訊號確定回饋控制訊號,並且控制該雷射模組的雷射功率。此外,該雷射模組還可以把雷射電流傳送回微處理器用於作為回饋控制功能的一個決定因素。在一實施例中,該微處理器、放大器、數模轉換器、記憶體可以全部集成在一個緊湊型單一晶片中。
如圖3C所示,流程圖顯示了光學檢測裝置的回饋控制過程。結合圖3A和圖3B,一雷射驅動器從微處理器41接收控制訊號以觸發一雷射二極體發出原始光束。原始光束110經由準直器15變成準直光束115,一部分準直光束115經第一分光器31引導成為一回饋光束125,其從第一分光器31被發送至第四光接收模組20。然後,通過該回饋光束125被第四光接收模組20接收,雷射功率強度被送至微處理器41,回饋控制功能因此能夠決定該雷射功率是否足以檢測該被分析物99。如果雷射功率太低,控制訊號會控制雷射功率逐步提高。如果偵測到足夠的雷射功率,該第四光接收模組會被啟動把回饋光束125轉換成電訊號。該雷射驅動器和雷射二極體亦可被整合成一雷射模組,用作該光學檢測裝置的光源10。
一光學檢測模組可以進一步包括一第三分光器、以及一第三光接收模組。所述第三分光器將量測光束的第二部分導引至所述第三光接收模組。其中所述第三光接收模組可以是一個溫度計、遙測計或一圖像感測器。
如圖4所示,一光學檢測模組可以包括一溫度計分光器34、以及一溫度計模組54。被分析物99的溫度影響所測得的光學性能,例如旋光度。因此,溫度是光學性能計算的一個重要參數。溫度計模組54用於檢測目標物件的溫度。人們能藉由包括所述光學檢測模組的光學檢測裝置所測得的溫度就是被測區域的溫度。溫度計模組54可以包括一光電探測器以及一光學元件。所述光電探測器是一個光電二極體、兩個光電二極體、或一光電二極體陣列,用於檢測一個特定波長、兩個不同波長,或特定區域的光譜。在每個實施例中,光學元件分別是聚焦透鏡、分色濾光鏡、或者散光元件。
熱輻射光束154是從被分析物99自發發出的光束。該熱輻射光束154從被分析物99經過溫度計分光器傳送到溫度計模組54。原始光束110 在穿過準直器15後變成了準直光束115。該準直光束115從該準直器15發出,穿過該第一分光器31到達被分析物99。量測光束的一部分從被分析物99發出,經由溫度計分光器34到第二分光器32,然後被第二分光器32分成一第一檢測光束和一第二檢測光束。第一檢測光束被第一光接收模組21所偵測,第二檢測光束被第二光接收模組22所偵測。
在一實施例中,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、以及一溫度計模組54。 該溫度計模組54接收從被分析物99發出的熱輻射光束154,並且把熱輻射光束154轉換成電訊號。然後,微處理器41可以根據所接收到的熱輻射計算溫度,而且微處理器41還可以根據測出的溫度修正第一光接收模組21和第二光接收模組22的檢測值。可以預見,溫度的估算可用斯忒藩-玻耳茲曼定律就單一波長、雙波長、或熱輻射光譜分別得出。
如圖5A所示,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、以及一顯示器56。 對位光發射器17用於把對位光束的投射到被分析物99上從而產生一對位光點117。對位光發射器17可以是LED或雷射二極體。圖像感測器53用於獲取圖像,圖像感測器53可包括圖像感測器陣列,例如電荷耦合裝置(CCD)或者互補金屬氧化物半導體(CMOS),圖像可以是即時圖像或者時間序列圖像。圖像感測器53可以進一步包括光學元件用以適當的對焦或成像。顯示器56用於接收和顯示從微處理器而來的圖像資訊,顯示器56可包括光發射元件面板,例如液晶顯示幕(LCD)、發光二極體(LED)、或者有機發光二極體(OLED)。圖像分光器33用於把從分析物表面而來的光束引導到圖像感測器53,而不會改變量測光束的光學特性。準直光束的投射產生一參考光點116;根據出廠設置,無論光學檢測裝置和被分析物99之間的相對位置如何,該參考光點116總是在圖像的同一區域被圖像感測器53獲取。 對位光點117是由對位光發射器17發出的光的投射產生,並且被圖像感測器53獲取;對位光點117與參考光點116之間的距離和位置可變。可以預 見,為了更好地對位,可以有多個對位光發射器17產生多個對位光點117。 人們能藉由光學檢測裝置可以在被分析物與檢測區域相同的區域上精準地對位。
一種光學檢測方法,包括:由光源發射一原始光束到準直器;經由該準直器將該原始光束聚集到第一分光器;將準直光束經由該第一分光器導向一被分析物;將由該被分析物反射回來的量測光束重新導向一第二分光器;將該檢測光束分割成一第一檢測光束和一第二檢測光束;由一第一光接收模組接收該第一檢測光束;以及由一第二光接收模組接收該第二檢測光束。檢測方法可進一步包括多個對位方法中的步驟。
在圖5B中,對位方法可包括:在被分析物表面產生光點,其中這些光點包括一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物表面的圖像;顯示包括預設對位資訊的圖像,其中該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊。預設的對準資訊被存儲於記憶體中,包括地標、參考點和對準點。該對位方法可由一對位裝置所執行。該對位裝置,包括:一光源,發射出參考光束;一對位光發射器,用於在被分析物上產生一對位光點;一圖像分光器,用於引導該參考光束將準直光束導向被分析物,該被分析物將準直光束轉換成量測光束;第二分光器,引導該參考光束,以在被分析物上形成參考光點;一圖像感測器,其通過該圖像分光器獲取該被分析物的圖像;一微處理器處理要對位的圖像資訊;以及一記憶體存儲該圖像資訊和一預設對位資訊,其中,該圖像資訊包括該參考光點、該對位光點、以及該被分析物的特徵,其中,該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊。在部分實施例中,該對位裝置可以進一步包括一準直器使得該參考光束為一準直光束。
在一實施例中,使用者可以在把光學檢測裝置置於被分析物時開始一手動對準步驟。預設的對準資訊被存儲於記憶體42中,包括地標、參考點和對準點。在步驟501中,光學檢測裝置產生該光點,包括在分析物表面上的參考光點和對位光點。準直光束投射了參考光點116,對準光發射器17投射了對位光點117。步驟502中,圖像感測器53獲取了包括分析物表面,參考光點和對位光點的圖像,並且把獲取的圖像以電訊號形式傳輸到微處理器41。步驟503中,該顯示器56顯示獲取的圖像和從微處理器41傳送來的 預設對準資訊。最後步驟504中,使用者可以通過輸入確認訊號來確定該對準步驟。該預設的對準資訊可以是存儲在記憶體中的預設值或者是在對準過程中的更新值。
如圖6A所示的半自動對位實施例中,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、和一顯示器56。該對位步驟的原理是比對獲取的對位資訊和預設的對位資訊是否一致。對位資訊包括地標、參考點和對位點。通過微處理器進行的圖像識別,從獲取的圖像可以提取對位資訊。特別地,地標可以從分析物表面、參考光點116的參考點、及對位光點117的對位點的圖像提取出來。特別地,地標可以是,例如,瞳孔的中心、角膜的輪廓、或者虹膜的條紋。該獲取的對位資訊是在對位的過程中獲取的。該預設的對位資訊可以是存儲於記憶體的預設值或者是在對位過程中的更新值。
如圖6B所示的實施例中,使用者可以開啟一半自動對位步驟。首先,使用者把裝置對位被分析物。然後在步驟601中,準直光束投射參考光點116,對位光發射器17投射對位光點117。步驟602中,圖像感測器53獲取了包括分析物表面,參考光點116和對位光點117的圖像,並且把獲取的圖像以電訊號形式傳輸到微處理器41。步驟603中,該微處理器41根據獲取的圖像去識別對位資訊。然後,該顯示器56顯示獲取的圖像和從微處理器41傳送來的預設對位資訊。步驟604中,微處理器判斷獲取的對位資訊與預設的對位資訊之間的差異,並決定獲取的對位資訊與預設的對位資訊是否一致。否則轉到步驟605,微處理器在螢幕上通過指示燈118去告知使用者,對位步驟需要重來。可以預見,微處理器可以計算正確對位的方向並且通過指示燈118協助對位過程。在步驟611中,準直光束投射了參考光點116,對準光發射器17投射了對準光點117。在步驟612中,圖像感測器53獲取了包括分析物表面,參考光點116和對位光點117的圖像,並且把獲取的圖像以電訊號形式傳輸到微處理器41。在步驟613中,該微處理器41根據獲取的圖像去識別對位資訊。然後,該顯示器56顯示獲取的圖像和從微處理器41傳送來的預設對位資訊。獲取的對位資訊可以存儲於記憶體中(步 驟614)而且預設的對位資訊可以被更新(步驟615)(圖6C)。如圖7A所示的自動對位實施例中,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45(參見圖7C)、一記憶體42(參見圖7C)、一對位光發射器17、一圖像分光器33、一圖像感測器53、和一驅動器模組80。
如圖7B所示的實施例中,使用者可以開啟一自動對位步驟。首先,使用者把裝置對著被分析物。在步驟701中,準直光束投射參考光點116,對位光發射器17投射一對位光點117。下一步驟702中,圖像感測器53獲取了包括分析物表面,參考光點116和對位光點117的圖像,並且把獲取的圖像以電訊號形式傳輸到微處理器41。然後步驟703中,該微處理器41根據獲取的圖像去識別對位資訊。結果步驟704中,微處理器判斷獲取的對位資訊與預設的對位資訊之間的差異,並決定獲取的對位資訊與預設的對位資訊是否一致。否則轉到步驟705,微處理器計算正確對位的方向並且驅動該驅動模組80重複該對位步驟。另外,根據使用者的指令或者對位步驟的完成(圖6C),獲取的對位資訊可以存儲於記憶體中(步驟614)而且預設的對位資訊可以被更新(步驟615)。
一光學檢測裝置同時具有對位和回饋控制功能。一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第四光接收模組20、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、一對位光發射器17、一圖像分光器33、一圖像感測器53、一顯示器56,以及一驅動模組80。如圖7C所示,前面描述的元件可以是商業產品,例如把MCU作為帶記憶體42的微處理器41,把帶雷射驅動器的雷射器作為光源,把帶LED驅動器的LED作為對位光發射器17。可以預見,為了用戶友好的環境和微妙的訊號處理,光學檢測裝置還可以包括一人機界面(例如,LCD,鍵盤,觸控式螢幕,或揚聲器),一多工器(MUX),放大器,和類比數位轉換器。
一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、和一空間感測器。空間感測器是用於 偵測裝置的相對空間位置、移動、和傾斜,協助檢測裝置更好的對位以達成精準和一致的檢測。該空間感測器可以是一偵測加速度或傾斜度的慣性感測器52,一光學檢測裝置和被分析物之間的距離的遙測計55,或者其組合用於收集更多空間資訊。此處,該慣性感測器52可以是加速計或陀螺儀。
實際上,光束的功率強度會沿著傳輸距離損耗。在一些實施例中,檢測的距離不僅影響對位的一致性,也影響了被測功率強度的基線基準點。 因此,功率強度修正的基線對於精準檢測來說很有必要。人們希望光學檢測裝置可從與被分析物相同的檢測區域測得距離。如圖8所示,光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41(參見圖3B)、一電源45(參見圖3B)、一記憶體42(參見圖3B)、和一遙測計55,遙測計55是用於檢測被分析物99與其他元件之間的距離,以在檢測一致性方面協助光學檢測裝置更好地檢測。在此,遙測計55可以是裝設於微處理器41的快速反應光電探測器,用於根據光源10和遙測計55之間的飛行時間來計算距離,也可以是通過干涉來獲得距離的干涉計。
在此實施例中,一原始光束110在穿過準直器15後變成一準直光束115。該準直光束115從該準直器15發出,穿過該第一分光器31到達被分析物99。從該被分析物99發出的量測光束120的第一部分,經由遙測分光器35到遙測計55;量測光束120的第二部分從該被分析物99經由遙測分光器35到第二分光器32,然後被第二分光器32分成第一檢測光束和第二檢測光束。從第二分光器32出來的第一檢測光束被第一光接收模組21偵測到,從第二分光器32出來的第二檢測光束被第二光接收模組22偵測到。
一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、和一慣性感測器52。慣性感測器是用於偵測元件的相對空間位置、移動、和傾斜,協助檢測裝置更好的對位以達成檢測的一致性。在此,該慣性感測器52可以是一偵測光學檢測裝置的加速度或傾斜度的加速計或陀螺儀。
遙測計55和慣性感測器52都可以提供額外的空間資訊以協助光學檢測裝置的對位。在手動對位的實施例中,空間資訊可以顯示在顯示器56 上,並且指示使用者去獲得想要的對位。在半自動對位的實施例中,該光學檢測裝置可以根據空間資訊和對位資訊計算該光學檢測裝置與被分析物99之間的相對位置,以致於可以用一指示燈118協助使用者正確對位該光學檢測裝置。此外,自動對位可以根據空間資訊和對位資訊通過控制驅動器模組80完成。
如圖9A-C所示,一光學檢測裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、一顯示器56,和一手持殼體。該光學檢測裝置可以應用於眼科學,去檢測眼球中的被分析物99,例如葡萄糖、乳酸、血紅蛋白、氧合血紅蛋白、尿素、酒精、或癌細胞。 但是,眼科學的精準和一致性應該基於良好的對位和實際操作。特別地,該手持殼體是用於方便對位步驟以及整合所有的元件。
在雙筒式光學檢測裝置這一實施例中,光學檢測裝置還包括一雙筒式手持殼體62(圖9A)。雙筒式手持殼體62是用於容納光學檢測裝置的所有元件。該雙筒式手持殼體包括一檢測視窗和一觀察視窗。該檢測視窗是讓準直光束115和量測光束的光路通過。該圖像感測器53可以通過圖像分光器33獲取眼睛和對位光點117的影像。該觀察視窗是用於讓另一隻眼睛觀察該顯示器56,該顯示器56顯示由微處理器處理的圖像資訊。
在可折疊式光學檢測裝置這一實施例中,光學檢測裝置還包括一可折疊手持殼體63(圖9B)。可折疊手持殼體63包括一可折疊框架和一目鏡筒。可折疊框架用於安置該顯示幕56,目鏡筒用於安置光學檢測裝置的其他元件。該目鏡筒包括一檢測視窗用於讓準直光束115和量測光束的光路通過。而且,圖像感測器53可以通過圖像分光器33獲取眼睛和對位光點117的圖像。該可折疊框架用於安置該顯示幕56並讓另一隻眼睛觀察該顯示器56,該顯示器56顯示由微處理器處理的圖像資訊。
在單筒式光學檢測裝置這一實施例中,該光學對位裝置還包括一單筒式手持殼體和一顯示分光器(圖9C)。單筒式手持殼體66是用於容納光學檢測裝置的所有元件,方便自己檢測和對位單眼。該單筒式手持殼體還包括一檢測窗口,讓準直光束115和量測光束的光路通過。該圖像感測器53 可以通過圖像分光器33獲取眼睛和對位光點117的影像。同一只眼睛可以觀察該顯示器56上顯示的投射在分光器36上的圖像資訊。
如圖10A-C所示,一光學檢測裝置包括該光學檢測裝置和一感應器模組57。感應器模組57用於在使用者使用光學檢測裝置的時候提供額外的生理資訊。該感應器模組57可以是一反射脈搏血氧計用於檢測血氧的飽和度,或者是一雙感應器模組用於通過一簡單的觸碰檢測多個生理參數。這些感應器模組57也可以安裝於手持殼體的兩側(圖10A)。通過單手握持,每一獨立的感應器模組57可以檢測多個生理參數(圖10B)。在雙手握持的實施例中,感應器模組57能通過檢測雙手的電位差從而獲得一個心電圖(ECG)。而且,血壓可以通過從血氧飽和度和ECG得出的脈搏傳導時間來估算出來。
在本發明的時代,一些電學、光電學、光力學、以及光學的模組可以設計成緊湊尺寸,上述光學檢測裝置因此可以整合成一個可移動裝置(例如,光檢測手錶)或者一個智慧裝置的附件(例如,智慧手錶、智慧手機、平板電腦、超極本)。該光學檢測裝置可以整合成智慧裝置的一部分並且共用電腦資源(例如,MCU、存儲介質、通信模組),以及人機界面(例如,手持機殼、觸控式螢幕面板、虛擬實境目鏡、HUD頭盔)。可預見地,該光學檢測裝置也可以是智慧配件,一種通過應用程式連接到智慧裝置的配件。而且,為了大資料和統計應用,檢測的資料可以傳送到雲伺服器。
如圖11A和11B所示,一光檢測系統可以包括上述的光學檢測裝置以及一平臺殼體70。該平臺殼體70可以包括一連接模組、一支撐座、以及一殼體。該連接模組可以提供該光學檢測裝置與平臺殼體70之間的機械連接和/或電連接。通過機械連接,該光學檢測裝置穩固地安裝於該連接模組上,使得空間位置與傾斜度能被預設成初始狀態。該連接模組可以通過電連接提供電源和電訊號給該光學檢測裝置。而且,該平臺殼體70可以進一步包括一驅動模組80用於協助對位。在這些實施例中,使用者可以控制該驅動模組去對位光學檢測裝置或者可以根據顯示在顯示幕56(參見圖6A)上的指示燈118(參見圖6A)去控制該驅動模組80。另外,該驅動模組80可以根據微處理器41(參見圖6A)發出的電訊號去達成自動調節對位。
在眼科檢測技術中,對於檢測的準確性和一致性,對位是非常重要 的。現代技術允許操作者達成檢測裝置與患者眼睛之間的可以接受的對位。 可是,隨著個人保健的日益增長的需要,不用額外協助的自我對位仍然未能實現。本發明提供了一種自我對位的解決方案,並且可以合理地整合到其他眼科檢測裝置中,以協助個人保健和可移動合用。
一對位裝置可以包括一光源,發射出參考光束;一對位光發射器,用於在被分析物上產生一對位光點;一圖像分光器,用於將該參考光束導向被分析物;圖像分光器,引導該參考光束,以在被分析物上形成參考光點;一圖像感測器,其通過該獲取該被分析物的圖像;一微處理器處理要對位的圖像資訊;以及一記憶體存儲該圖像資訊和一預設對位資訊,其中,該圖像資訊包括該參考光點、該對位光點、以及該被分析物的特徵,其中,該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊。而且,該光學檢測裝置可預留一光路給第一光接收模組25。在這些實施例中,該第一光接收模組25可應用於對位裝置,來根據其檢測目的獲取一些特別的光資訊。 因此,該光學檢測裝置可以在與檢測區域相同的被分析物的區域實現精確對位。這些實施例被舉例如下,不偏離本發明描述的範圍。
如圖12A所示,一對位裝置可以包括一光源10、一準直器15、一第一分光器31、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、以及一顯示器56。一對位光發射器17用於通過投射一對位光束在在被分析物99上產生一對位光點117,其中該對位光發射器17可以是LED或者雷射二極體。該圖像感測器53用於獲取圖像,其中該圖像感測器53可以包括圖像感測器陣列,例如電荷耦合裝置(CCD)或者互補金屬氧化物半導體(CMOS),圖像可以是即時圖像或者時間序列圖像。顯示器56用於接收和顯示從微處理器而來的圖像資訊,顯示器56可以包括光發射元件面板,例如液晶顯示幕(LCD)、發光二極體(LED)、或者有機發光二極體(OLED)。圖像分光器33用於把從被分析物表面而來的光束引導到圖像感測器53,而不會改變檢量測光束的光學特性。準直光束的投射產生一參考光點116;根據出廠設置,無論光學對位裝置和被分析物99之間的相對位置如何,該參考光點116總是在圖像的同一區域被圖像感測器53獲取。對位光點117是由對位光發射器17發出的光的投射產生,並且被圖像感測器53獲取;對位光點 117與參考光點116之間的距離和位置可變。可以預見,為了更好地對位,可以有多個對位光發射器17產生多個對位光點117。
在如圖12B所示的半自動對位的實施例中,一光學對位裝置可以包括一光源10、一準直器15、一第一分光器31、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、以及一顯示器56。該對位步驟的原理是比對獲取的對位資訊和預設的對位資訊是否一致。對位資訊包括地標、參考點和對位點。通過微處理器進行的圖像識別,從獲取的圖像可以提取對位資訊。特別地,地標可以從分析物表面、參考光點116的參考點、及對位光點117的對位點的圖像提取出來。特別地,地標可以是,例如,瞳孔的中心、角膜的輪廓、或者虹膜的條紋。該獲取的對位資訊是在對位的過程中獲取的。該預設的對位資訊可以是存儲於記憶體的預設值或者是在對位過程中的更新值。
在如圖12C所示,一光學對位裝置可以包括一光源10、一準直器15、一第一分光器31、一第一光接收模組25、一微處理器41、一電源45(參見圖3B)、一記憶體42(參見圖3B)、一對位光發射器17、一圖像分光器33、一圖像感測器53、以及一驅動模組80。空間感測器是用於偵測元件的相對空間位置、移動、和傾斜,協助檢測裝置更好的對位以達成精準和一致的檢測。該空間感測器可以是一偵測加速度或傾斜度的慣性感測器52、一偵測光學系統和目標之間的距離的遙測計55、或者其組合用於收集更多空間資訊。此處,該慣性感測器52可以是加速計或陀螺儀。
一光學對位裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、以及一空間感測器。
實際上,光束的功率強度會沿著傳輸距離損耗。在一些實施例中,檢測的距離不僅影響對位的一致性,也影響了被測功率強度的基線基準點。因此,功率強度修正的基線對於精準檢測來說很有必要。人們希望光學檢測裝置可從與被分析物相同的檢測區域測得距離。對位裝置可以包括一光源10、一準直器15、一第一分光器31、一微處理器41、一電源45、一記憶體42、和一遙測計55,遙測計55是用於檢測被分析物99與其他元件之間的距離,以在檢測一致性方面協助光學檢測裝置更好地檢測。在此,遙測計55 可以是裝設於微處理器41的快速反應光電探測器,用於根據光源10和遙測計55之間的飛行時間來計算距離,也可以是通過干涉來獲得距離的干涉計。
在此實施例中,一原始光束110在穿過準直器15後變成一準直光束115。該準直光束115從該準直器15發出,穿過該第一分光器31到達被分析物99。從該被分析物99發出的量測光束120的第一部分,經由遙測分光器35到遙測計55;量測光束120的第二部分從該被分析物99經由遙測分光器35到第二分光器32,然後被第二分光器32分成第一檢測光束和第二檢測光束。從第二分光器32出來的第一檢測光束被第一光接收模組21偵測到,從第二分光器32出來的第二檢測光束被第二光接收模組22偵測到。
一對位裝置可以包括一光源10、一準直器15、一第一分光器31、一第二分光器32、一第一光接收模組21、一第二光接收模組22、一微處理器41、一電源45、一記憶體42、和一慣性感測器52。慣性感測器52用於偵測元件的相對空間位置、移動、和傾斜,協助檢測裝置更好的對位以達成檢測的一致性。在此,該慣性感測器52可以是一偵測光學檢測裝置的加速度或傾斜度的加速計或陀螺儀。
遙測計55和慣性感測器52都可以提供額外的空間資訊以協助光學對位裝置的對位。在手動對位的實施例中,空間資訊可以顯示在顯示器56上,並且指示使用者去獲得想要的對位。在半自動對位的實施例中,該光學對位裝置可以根據空間資訊和對位資訊計算該光學對位裝置與被分析物99之間的相對位置,以致於可以用一指示燈118協助使用者正確對位該對位裝置。此外,自動對位可以根據空間資訊和對位資訊通過控制驅動器模組80完成。
一對位裝置可以進一步包括一殼體。該殼體是用於方便對位步驟以及整合所有的元件。
如圖13A所示,該殼體是雙筒式殼體。雙筒式手持殼體62是用於容納光學對位裝置的所有元件。該雙筒式手持殼體包括一檢測視窗和一觀察視窗。該檢測視窗是讓準直光束115和量測光束的光路通過。該圖像感測器53可以通過圖像分光器33獲取眼睛和對位光點117的影像。該觀察視窗是用於讓另一隻眼睛觀察該顯示器56,該顯示器56顯示由微處理器處理的圖 像資訊。
如圖13B所示,該殼體是可折疊殼體63。可折疊手持殼體63包括一可折疊框架和一目鏡筒。可折疊框架用於安置該顯示幕56,目鏡筒用於安置對位裝置的其他元件。該目鏡筒包括一檢測視窗用於讓準直光束115和量測光束的光路通過。而且,圖像感測器53可以通過圖像分光器33獲取眼睛和對位光點117的圖像。該可折疊框架用於安置該顯示幕56並讓另一隻眼睛觀察該顯示器56,該顯示器56顯示由微處理器41處理的圖像資訊。
如圖13C所示,在包括單筒式殼體66的對位裝置這一實施例中,該對位裝置還包括一顯示分光器。單筒式手持殼體66是用於容納對位裝置的所有元件,使自己用單眼檢測和對位變得方便。該單筒式手持殼體還包括一檢測窗口,讓準直光束115和量測光束的光路通過。該圖像感測器53可以通過圖像分光器33獲取眼睛和對位光點117的影像。同一只眼睛可以觀察該顯示器56上顯示的投射在分光器36上的圖像資訊。
在本發明的時代,一些電學、光電學、光力學、以及光學的模組可以被實現在緊湊尺寸上,上述對位裝置因此可以整合成一個可移動裝置(例如,光檢測手錶)或者一個智慧裝置的附件(例如,智慧手錶、智慧手機、平板電腦、超極本)。該光學對位裝置可以整合成智慧裝置的一部分並且共用電腦資源(例如,MCU、存儲介質、通信模組),以及人機界面(例如,手持機殼、觸控式螢幕面板、虛擬實境目鏡,HUD頭盔)。可預見地,該光學對位裝置也可以是智慧配件,一種通過應用程式連接到智慧裝置的配件。 而且,為了大資料和統計應用,檢測的資料可以傳送到雲伺服器。
如圖14A和14B所示,一對位裝置可以包括一平臺殼體70。該平臺殼體70可以包括一連接模組、以及一支撐座。該連接模組可以提供該光學對位裝置與平臺殼體70之間的機械連接和/或電連接。通過機械連接,該對位裝置穩固地安裝於該連接模組上,使得空間位置與傾斜度能被預設成初始狀態。該連接模組可以通過電連接提供電源和電訊號給該對位裝置。而且,該平臺殼體70可以進一步包括一驅動模組80用於協助對位。在這些實施例中,使用者可以控制該驅動模組去對位裝置或者可以根據顯示在顯示幕56上的指示燈118去控制該驅動模組80。另外,該驅動模組80可以根據微處理器41發出的電訊號去達成自動調節對位。
如上面所顯示和描述的實施例僅為舉例。許多細節例如其他特徵常在本技術領域找到。因此,許多這些特徵就不再顯示和描述了。儘管本技術的許多特徵和優點以及本發明的結構和功能的細節已在前面的描述中被闡述,本公開僅僅是說明性的,並且可以改變細節,包括形狀和元件排列,在本公開的原理範圍內,並且包括通過在權利要求中使用的術語的廣義含義建立的全部範圍。因此,可以理解,上述實施例可以在權利要求書的範圍內進行修改。
10‧‧‧光源
15‧‧‧準直器
25‧‧‧第一光接收模組
31‧‧‧第一分光器
41‧‧‧微處理器
33‧‧‧圖像分光器
53‧‧‧圖像傳感器
17‧‧‧對位光發射器
56‧‧‧顯示器
116‧‧‧參考光點
117‧‧‧對位光點
99‧‧‧被分析物

Claims (17)

  1. 一種對位裝置,包括:一光源,發射出參考光束;一對位光發射器,用於在被分析物上產生一對位光點;一圖像分光器,引導該參考光束,以在被分析物上形成參考光點;一圖像感測器,其通過該圖像分光器獲取該被分析物的圖像;一微處理器處理要對位的圖像資訊;以及一記憶體存儲該圖像資訊和一預設對位資訊,其中,該圖像資訊包括該參考光點、該對位光點、以及該被分析物的特徵;一第一分光器和一第一光接收模組,其中該第一分光器把從該被分析物上反射出來的光束的一部分引導至該第一光接收模組,以同時進行該被分析物的光學檢測。
  2. 根據申請專利範圍第1項之對位裝置,其中,進一步包括一殼體,以容納該光源、該對位光發射器、該圖像感測器、該圖像分光器、該微處理器,以及該記憶體。
  3. 根據申請專利範圍第2項之對位裝置,其中,該殼體選自雙筒式殼體、可折疊式殼體、單筒式殼體、以及一平臺式殼體中的一種。
  4. 根據申請專利範圍第1項之對位裝置,其中,進一步包括一遙感分光器和一遙測器,其中該遙測器通過該遙感分光器接收該參考光束。
  5. 根據申請專利範圍第1項之對位裝置,其中,進一步包括:一顯示器,連接於該微處理器。
  6. 根據申請專利範圍第5項之對位裝置,其中,進一步包括:一顯示分光器,用於引導該微處理器上顯示的圖像。
  7. 根據申請專利範圍第1項之對位裝置,其中,進一步包括: 一驅動器模組,用於根據該微處理器調節該對位裝置的位置。
  8. 根據申請專利範圍第1項之對位裝置,其中,進一步包括:一準直器,用於把參考光束轉換成準直光束。
  9. 根據申請專利範圍第1項之對位裝置,其中,進一步包括:一慣性感測器。
  10. 一對位方法,包括:在被分析物表面產生光點,其中這些光點包括一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物表面的圖像;顯示包括預設對位資訊的圖像,其中該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊;同時進行該被分析物的光學檢測。
  11. 根據申請專利範圍第10項之對位方法,其中,該預設對位資訊通過以下步驟進行更新,這些步驟包括:在一被分析物表面產生光點,其中這些光點包括:一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物表面的圖像;顯示包括預設對位資訊的圖像,其中該預設對位資訊包括一參考光點、一對位光點、以及一地標的資訊;從使用者處接收一確認訊號。
  12. 一對位方法,包括:在被分析物表面產生光點,其中這些光點包括一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物表面的圖像;識別獲取的對位資訊,包括一參考光點、一對位光點、以及一地標的資訊;確定獲取的對位資訊與預設的對位資訊之間的差異;同時進行該被分析物的光學檢測。
  13. 根據申請專利範圍第12項之對位方法,其中,該預設對位資訊通過以下步驟進行更新,這些步驟包括:產生光點,其中這些光點包括:一對位光點和一參考光點;獲取該參考光點、該對位光點、和該被分析物的圖像;識別獲取的對位資訊,包括一參考光點、一對位光點、以及一地標的資訊;存儲獲取的對位資訊並更新至預設的對位資訊,其中該預設的對位資訊包括一參考光點、一對位光點、以及一地標的資訊。
  14. 根據申請專利範圍第12項之對位方法,其中,進一步包括:根據獲取的對位資訊與預設的對位資訊之間的差異,顯示一指示器。
  15. 根據申請專利範圍第12項之對位方法,其中,進一步包括:根據獲取的對位資訊和預設的對位資訊的不同,控制一驅動模組。
  16. 根據申請專利範圍第12項之對位方法,其中,進一步包括:收集由慣性感測器或遙測器偵測到的空間資訊。
  17. 根據申請專利範圍第16項之對位方法,其中,進一步包括:控制一驅動模組。
TW105111341A 2015-04-12 2016-04-12 對位裝置及對位方法 TWI597488B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562146381P 2015-04-12 2015-04-12

Publications (2)

Publication Number Publication Date
TW201643408A TW201643408A (zh) 2016-12-16
TWI597488B true TWI597488B (zh) 2017-09-01

Family

ID=55701866

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105111341A TWI597488B (zh) 2015-04-12 2016-04-12 對位裝置及對位方法
TW105111344A TWI662269B (zh) 2015-04-12 2016-04-12 光學檢測模組、光學檢測裝置、以及光學檢測方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105111344A TWI662269B (zh) 2015-04-12 2016-04-12 光學檢測模組、光學檢測裝置、以及光學檢測方法

Country Status (5)

Country Link
US (2) US10337983B2 (zh)
EP (2) EP3081163B1 (zh)
JP (2) JP6125070B2 (zh)
CN (2) CN106053343B (zh)
TW (2) TWI597488B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083112A1 (en) * 2016-11-01 2018-05-11 Universiteit Maastricht Device for performing measurements of the chemical composition of the anterior eye as well as an integrated optical unit for implementation therein
EP4148402A1 (en) * 2016-12-13 2023-03-15 Magic Leap, Inc. Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels
JP6983517B2 (ja) * 2017-03-02 2021-12-17 株式会社トプコン 測量機
CN108732155B (zh) * 2017-04-25 2022-11-18 武汉菲谱光电技术有限公司 拉曼探头
CN107820567B (zh) * 2017-08-03 2022-08-09 北京云端光科技术有限公司 拉曼检测方法、装置以及存储介质
DE102017121085B3 (de) * 2017-09-12 2019-01-31 Carl Zeiss Meditec Ag Augenchirurgie-Visualisierungssystem
CN109839742A (zh) * 2017-11-29 2019-06-04 深圳市掌网科技股份有限公司 一种基于视线追踪的增强现实装置
EP3511697B1 (de) * 2018-01-12 2023-07-12 Drägerwerk AG & Co. KGaA Anordnung und verfahren zur analyse eines fluids
FI129683B (en) * 2018-09-11 2022-06-30 Icare Finland Oy Alignment device for measuring instruments
CN109470448B (zh) * 2018-09-28 2023-11-03 南京华睿川电子科技有限公司 一种触摸屏成像的检测方法
CN109405971A (zh) * 2018-10-18 2019-03-01 南京邮电大学 一种显微偏振光谱分析系统及方法
CN109443253A (zh) * 2018-10-25 2019-03-08 北京国泰蓝盾科技有限公司 一种激光同轴度检测装置及其方法
CN109932162B (zh) * 2018-12-21 2020-11-06 南京理工大学 一种基于白光配准的腔模参数检测装置及检测方法
WO2020195199A1 (ja) * 2019-03-27 2020-10-01 株式会社シード コンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法
CN110296970A (zh) * 2019-08-02 2019-10-01 普乐药业有限公司 便携式血糖测量仪
US10989528B2 (en) * 2019-08-27 2021-04-27 Raytheon Company High speed beam component-resolved profile and position sensitive detector
TWI733442B (zh) * 2019-11-14 2021-07-11 財團法人工業技術研究院 光學量測系統
US11507020B2 (en) 2019-11-14 2022-11-22 Industrial Technology Research Institute Optical measurement system for obtaining and analyzing surface topography of object
TWI757982B (zh) * 2020-11-20 2022-03-11 聯策科技股份有限公司 光學辨識吸嘴系統
CN113703124B (zh) * 2021-09-03 2024-01-02 孝感华中精密仪器有限公司 一种校正双凹离轴系统同轴的方法
WO2023068715A1 (ko) * 2021-10-19 2023-04-27 주식회사 에스엠디솔루션 귀 체온계 및 이를 이용한 체온 측정방법
US11879888B2 (en) * 2021-12-30 2024-01-23 Taiwan Redeye Biomedical Inc. Glycosuria measurement device
CN114577146A (zh) * 2022-01-25 2022-06-03 东莞市三航军民融合创新研究院 多焦距激光准直扫描测量系统
US20230384204A1 (en) * 2022-05-27 2023-11-30 Becton, Dickinson And Company Linear Variable Optical Filter Systems for Flow Cytometry and Methods for Using the Same

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036568A (en) * 1958-01-20 1962-05-29 Stark Lawrence Pupillometer
US3832890A (en) * 1971-12-29 1974-09-03 American Optical Corp Non-contact tonometer corneal monitoring system
US4991584A (en) * 1986-10-25 1991-02-12 Canon Kabushiki Kaisha Ophthalmic examining apparatus and method capable of examining glaucoma
JPS63267331A (ja) * 1986-12-27 1988-11-04 Tokyo Optical Co Ltd 非接触式眼圧計
US5076274A (en) * 1987-02-18 1991-12-31 Canon Kabushiki Kaisha Non-contact tonometer
US5206672A (en) * 1990-09-05 1993-04-27 Nestle S.A. Surgical optometer
US5303709A (en) 1991-12-16 1994-04-19 Dreher Andreas W Retinal eye disease diagnostic system
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
JPH06133934A (ja) 1992-10-26 1994-05-17 Nikon Corp 眼底撮像装置
DE4243142A1 (de) 1992-12-19 1994-06-23 Boehringer Mannheim Gmbh Vorrichtung zur in-vivo-Bestimmung einer optischen Eigenschaft des Kammerwassers des Auges
JP3088993B2 (ja) 1997-10-15 2000-09-18 株式会社コーナン 眼科装置
JP3731784B2 (ja) 1997-12-25 2006-01-05 富士写真フイルム株式会社 グルコース濃度測定方法および装置
JP2000287937A (ja) 1999-04-08 2000-10-17 Konan Inc 眼底撮影装置
DE19950790A1 (de) * 1999-10-21 2001-06-21 Technolas Gmbh Spezifische Hornhautmodellierung
US6361495B1 (en) 2000-02-07 2002-03-26 Leica Microsystems Inc. Hand-held non-contact tonometer
KR100373850B1 (ko) * 2000-10-07 2003-02-26 주식회사 큐리텍 홍채를 이용한 신원 확인 시스템 및 방법과 그 방법에대한 컴퓨터 프로그램 소스를 저장한 기록매체
JP4769365B2 (ja) 2001-03-29 2011-09-07 キヤノン株式会社 眼科装置、及びそのオートアライメント方法
JP4494779B2 (ja) * 2001-08-02 2010-06-30 グルコビスタ・エルエルシー 非侵襲グルコース計測器
US7133165B2 (en) * 2001-08-06 2006-11-07 Canon Kabushiki Kaisha Image reading device, method of controlling the same, control program, storage medium and image forming apparatus provided with the image reading device
US6836337B2 (en) 2001-09-20 2004-12-28 Visual Pathways, Inc. Non-invasive blood glucose monitoring by interferometry
JP3929735B2 (ja) 2001-10-03 2007-06-13 独立行政法人科学技術振興機構 眼内照明用プローブおよび眼科手術用装置
US6666857B2 (en) * 2002-01-29 2003-12-23 Robert F. Smith Integrated wavefront-directed topography-controlled photoablation
CA2390072C (en) 2002-06-28 2018-02-27 Adrian Gh Podoleanu Optical mapping apparatus with adjustable depth resolution and multiple functionality
US6768918B2 (en) * 2002-07-10 2004-07-27 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
US7612880B2 (en) * 2003-08-06 2009-11-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Advanced polarization imaging method, apparatus, and computer program product for retinal imaging, liquid crystal testing, active remote sensing, and other applications
CA2689971C (en) * 2003-09-04 2015-03-17 The Uab Research Foundation Method and apparatus for the detection of impaired dark adaptation
GB2407378B (en) * 2003-10-24 2006-09-06 Lein Applied Diagnostics Ltd Ocular property measuring apparatus and method therefor
JP5006049B2 (ja) 2004-01-13 2012-08-22 ザ・ユニバーシティ・オブ・トレド 非侵襲複屈折補償感知旋光計
JP4566685B2 (ja) 2004-10-13 2010-10-20 株式会社トプコン 光画像計測装置及び光画像計測方法
JP3739006B1 (ja) 2004-11-04 2006-01-25 ローム株式会社 電源装置、及び携帯機器
US7167736B2 (en) * 2004-11-04 2007-01-23 Q Step Technologies, Inc. Non-invasive measurement system and method for measuring the concentration of an optically-active substance
JP4487797B2 (ja) 2005-02-23 2010-06-23 パナソニック電工株式会社 浴室へのスピーカー装置の配設構造
DE102005034332A1 (de) * 2005-07-22 2007-01-25 Carl Zeiss Meditec Ag Einrichtung und Verfahren zur Beobachtung, Dokumentation und/oder Diagnose des Augenhintergrundes
JP4850495B2 (ja) * 2005-10-12 2012-01-11 株式会社トプコン 眼底観察装置及び眼底観察プログラム
US8129105B2 (en) 2006-04-13 2012-03-06 Ralph Zuckerman Method and apparatus for the non-invasive measurement of tissue function and metabolism by determination of steady-state fluorescence anisotropy
US7621636B2 (en) 2007-01-10 2009-11-24 Clarity Medical Systems, Inc. Working distance and alignment sensor for a fundus camera
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
US7956998B2 (en) 2007-09-04 2011-06-07 James Plant Method and system for the polarmetric analysis of scattering media utilising polarization difference sensing (PDS)
US7728291B2 (en) * 2008-01-29 2010-06-01 Eic Laboratories, Inc. Detection of heavy oil using fluorescence polarization
US8694266B2 (en) 2008-06-05 2014-04-08 The Regents Of The University Of Michigan Multimodal spectroscopic systems and methods for classifying biological tissue
JP5303709B2 (ja) 2008-12-19 2013-10-02 株式会社高尾 弾球遊技機
US7896498B2 (en) 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
JP2010245764A (ja) 2009-04-03 2010-10-28 Canon Inc 撮像装置
US20110075153A1 (en) 2009-09-25 2011-03-31 Hogan Josh N Compact isolated analysis system
JP5375676B2 (ja) 2010-03-04 2013-12-25 富士通株式会社 画像処理装置、画像処理方法、および画像処理プログラム
JP5879830B2 (ja) 2011-09-02 2016-03-08 株式会社ニデック 波面補償付眼底撮影装置
JP2012183123A (ja) 2011-03-03 2012-09-27 Nidek Co Ltd 手持型眼科装置
JP5919628B2 (ja) 2011-03-10 2016-05-18 ソニー株式会社 眼底イメージング装置および眼底イメージング方法
US9743864B2 (en) 2011-04-29 2017-08-29 Taiwan Biophotonic Corporation Method for non-invasive blood glucose monitoring and method for analysing biological molecule
US9724022B2 (en) 2011-04-29 2017-08-08 Taiwan Biophotonic Corporation Apparatus for non-invasive glucose monitoring
JP2013156143A (ja) 2012-01-30 2013-08-15 Seiko Epson Corp 光学測定装置及び光学測定方法
JP2013160672A (ja) * 2012-02-07 2013-08-19 Sony Corp 蛍光検出用光学系及び微小粒子分析装置
CN102661938B (zh) 2012-05-10 2014-04-23 浙江大学 一种基于切向偏振光的受激发射损耗显微方法和装置
EP2859580B1 (de) 2012-06-06 2018-06-06 Ev Group E. Thallner GmbH Vorrichtung und verfahren zur ermittlung von ausrichtungsfehlern
CN102768015B (zh) 2012-07-05 2014-12-24 哈尔滨工业大学 荧光响应随动针孔显微共焦测量装置
US20140086533A1 (en) 2012-09-27 2014-03-27 Ezra GOLD Method for alignment between two optical components
JP6310859B2 (ja) 2012-11-30 2018-04-11 株式会社トプコン 眼底撮影装置
JP6116212B2 (ja) 2012-11-30 2017-04-19 株式会社トプコン 眼科装置
CN103908264B (zh) * 2012-12-28 2016-05-11 台医光电科技股份有限公司 非侵入式葡萄糖监测装置
CN103908263B (zh) * 2012-12-28 2016-05-11 台医光电科技股份有限公司 非侵入式葡萄糖监测装置
JP6118986B2 (ja) * 2013-01-30 2017-04-26 サンテック株式会社 眼科用光断層画像表示装置
JP6221247B2 (ja) 2013-02-06 2017-11-01 株式会社ニデック 眼科装置
CN105142499B (zh) 2013-02-27 2017-07-11 光视有限公司 成像器的自动对准
JP2016510628A (ja) 2013-03-14 2016-04-11 レイセオン カンパニー 携帯型網膜画像化装置
JP5777654B2 (ja) 2013-03-19 2015-09-09 本田技研工業株式会社 自動変速機
JP6161693B2 (ja) 2013-05-08 2017-07-12 株式会社島津製作所 蛍光測定装置及び蛍光測定方法
JP6186215B2 (ja) * 2013-09-04 2017-08-23 株式会社日立エルジーデータストレージ 光計測装置及び光断層観察方法

Also Published As

Publication number Publication date
JP2016200596A (ja) 2016-12-01
JP6472406B2 (ja) 2019-02-20
EP3081163A3 (en) 2017-03-15
TWI662269B (zh) 2019-06-11
CN106053349A (zh) 2016-10-26
CN106053343A (zh) 2016-10-26
JP2016198506A (ja) 2016-12-01
JP6125070B2 (ja) 2017-05-10
CN106053343B (zh) 2020-03-06
US10337983B2 (en) 2019-07-02
US9696254B2 (en) 2017-07-04
EP3081163A2 (en) 2016-10-19
CN106053349B (zh) 2020-08-07
EP3081163B1 (en) 2021-10-20
TW201636597A (zh) 2016-10-16
EP3081149A1 (en) 2016-10-19
US20160298956A1 (en) 2016-10-13
TW201643408A (zh) 2016-12-16
US20160299058A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
TWI597488B (zh) 對位裝置及對位方法
US10517484B2 (en) Semiconductor diodes-based physiological measurement device with improved signal-to-noise ratio
US9037206B2 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
US10078226B2 (en) Portable eye viewing device enabled for enhanced field of view
US9833175B2 (en) Apparatus for non-invasive blood glucose monitoring
US20160287147A1 (en) Apparatus for non-invasive in vivo measurement by raman spectroscopy
US9295419B2 (en) Method and system for a non-invasive measurement of optically active component concentration
US20060281982A1 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
WO2022064273A1 (en) Optical sensing module
TWI603067B (zh) 光學檢測裝置及方法
JP2008113891A (ja) 光学測定ユニット
JP2008104751A (ja) 血糖値測定装置および血糖値測定方法
US20160183789A1 (en) User initiated and feedback controlled system for detection of biomolecules through the eye
Wang et al. Extendable, large-field multi-modal optical imaging system for measuring tissue hemodynamics
TWI495864B (zh) 非侵入式血糖監測裝置與方法以及生化分子的分析方法
CN116648645A (zh) 光学感测模块
WO2019109186A9 (en) Spectroreflectometric system provided with a pointer mode for combined imaging and spectral analysis
JP2018064719A (ja) 眼球の光計測装置
KR20180016687A (ko) 다기능 내시경 장치
JP2015231446A (ja) パルスオキシメータ