TWI595091B - 用於在經選擇基質培養微生物的方法 - Google Patents
用於在經選擇基質培養微生物的方法 Download PDFInfo
- Publication number
- TWI595091B TWI595091B TW102117886A TW102117886A TWI595091B TW I595091 B TWI595091 B TW I595091B TW 102117886 A TW102117886 A TW 102117886A TW 102117886 A TW102117886 A TW 102117886A TW I595091 B TWI595091 B TW I595091B
- Authority
- TW
- Taiwan
- Prior art keywords
- clostridium
- medium
- atcc
- syngas
- cells
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/065—Ethanol, i.e. non-beverage with microorganisms other than yeasts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N3/00—Spore forming or isolating processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/145—Clostridium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本申請案主張申請日皆為2012年5月22日之美國臨時專利申請案第61/650,098、61/650,093、61/650,077與61/650,084號的權益,各申請案全文皆係爰引於此並融入本說明書的揭示。
提供一種有效用於允許細菌在經選擇基質內培養的方法。更特別地,使細菌於經選擇基質和培養基存在下芽孢化以及接而發芽。
乙酸生成性微生物可經由氣態基質的發酵而從一氧化碳(CO)來生產乙醇。使用得自梭菌屬(Clostridium)的厭氧微生物之發酵可生產乙醇及其它有用的產品。舉例而言,美國專利案第5,173,429號描述一種從合成氣生產乙醇及乙酸鹽的厭氧微生物,俊達氏梭菌(Clostridium ljungdahlii)ATCC編號49587。美國專利案第5,807,722號描述一種使用俊達氏梭菌ATCC編號55380將廢氣轉化成有機酸類及醇類之方法及裝置。美國專利案第6,136,577號描述一
種使用俊達氏梭菌ATCC編號55988及55989將廢氣轉化成乙醇之方法及裝置。
許多乙酸生成性微生物非常不適合工業規模的生物加工且因此未展現出用於此目的的商業存活性。此等微生物具有緩慢的倍增時間和低的總生產力。此外,許多基因操縱技術(剔除、經由整合或游離基因體質體繁殖(episomic plasmid propagation)使轉殖基因(transgenes)過度表現)是無效率的、耗時的、費力的,或是不存在的。
乙酸生成性微生物可以生長以從一氧化碳生產乙醇。生長過程可以涉及以隨著時間漸增量的CO來培養乙酸生成性微生物。對於更快速發展微生物及其等之使用方法以利用合成氣或其他氣態碳源用於生產所欲的化學品和燃料存在有需求。
一種用於在經選擇基質培養細菌的方法包括減少第一基質的量以轉化該細菌的至少一部份成為芽孢。該方法進一步包括添加該經選擇基質至該等芽孢以及使該等芽孢的至少一部份在經選擇基質內發芽。
於另一態樣中,一種用於培養細菌以生長於生產培養基上的方法包括用該生產培養基來替換第一培養基的至少一部份以轉化該細菌的至少一部份成為芽孢。該方法進一步包括使該等芽孢的至少一部份在該生產培養基內發芽。
於另一態樣中,一種用於在合成氣培養細菌的方
法包括用該合成氣來替換第一基質的至少一部份及用生產培養基來替換第一培養基的至少一部份以轉化該細菌的至少一部份成為芽孢。該方法進一步包括使該等芽孢在有該合成氣的該生產培養基內發芽。
該方法的幾個態樣之上述和其他態樣、特徵及優點從下列圖示會更顯而易見。
圖1闡明嗜甲醇丁酸桿菌(Butyribacterium methylotrophicum)在培養於甲醇和降低pH之後、在合成氣經由芽孢形成和發芽之生長。
圖2闡明嗜甲醇丁酸桿菌在培養於酵母萃取物、甲醇和酸化之後、在合成氣經由芽孢形成和發芽之生長。
圖3闡明嗜甲醇丁酸桿菌在培養於酵母萃取物和酸化之後、在合成氣之生長。
圖4闡明事先使嗜甲醇丁酸桿菌在合成氣生長之後,嗜甲醇丁酸桿菌於合成氣之生長。
圖5闡明自行乙醇生成梭菌(Clostridium autoethanogenum)在培養於酵母萃取物和降低pH之後、在合成氣之生長。
圖6闡明俊達氏梭菌(Clostridium ljungdahlii)在培養於酵母萃取物和降低pH之後、在合成氣之生長。
圖7闡明合成氣發酵的俊達氏梭菌在果糖之生長。
下列說明並非解譯為限制性意義,而是僅僅為了描述例示性具體例之一般性原理的目的。本發明之範圍須參考申請專利範圍決定。
此處所述之方法可有效用以提供一種伴隨高位準的乙醇生產力之發酵。於此態樣中,該方法可有效用於提供至少大約為1的比STY(比時空產率表達為克乙醇/(升.日.克細胞),於另一態樣中,大約1至大約10,於另一態樣中,大約2至大約8,於另一態樣中,大約3至大約7,及於另一態樣中,大約4至大約6。
除非另行定義,否則於本案全文說明書中使用於本文揭示之下列術語定義如後以及包括如下定義之單數型或複數型:修飾任何數量之術語「大約」係指於實際狀況下,例如,於實驗室中、於試驗工廠中、或生產設施中所遭遇的數量變異。舉例而言,於混合物中採用之各成分或測量值的數量或數量由「大約」修飾時包括於測量製造廠或實驗室中之實驗條件所典型採用的變異程度及審慎程度。舉例而言,當用「大約」修飾產品組分的量時包括於工廠或實驗室之多個實驗中各批次間的變異及分析方法所特有的變異。無論是否用「大約」修飾,該數量包括該等量之相當量。此處所述用「大約」修飾之任何數量也可以如同未用「大約」修飾一樣地使用於本揭示內。
「合成氣」或是「合成氣體」一詞表示給予含有
不等量之一氧化碳及氫氣之氣體混合物的合成氣體的名稱。製造方法之實例包括天然氣或烴類之蒸汽重組以製造氫氣、煤炭的氣化及某些類型的垃圾資源回收氣化設施。該名稱係來自於其等可用作為產生合成天然氣(SNG)的中間產物及用於製造氨或甲醇。合成氣為可燃性且常常使用作為燃料來源或是使用作為其它化學品製造上的中間產物。
「發酵」、「發酵方法」或是「發酵反應」等詞意圖涵蓋該方法之生長時期及產物生物合成時期。於一個態樣中,發酵係指一氧化碳轉化成醇類。
「細胞密度」一詞係指每單位體積發酵肉湯的微生物細胞之質量,舉例而言,克/升。
「細胞回收」一詞係指微生物細胞從發酵肉湯中分離及回送部分或全部該等分離的微生物細胞返回發酵器。一般而言,使用過濾裝置來達成分離。
於一態樣中,該方法包括培養或繁殖細菌於可包括第一基質的第一培養基內。該第一培養基可提供細菌合適的碳和能源以及其他的營養素,包括生長因子。於此態樣中,該第一培養基包括此維生素、微量元素,及胺基酸。此第一培養基可以包括含括酵母萃取物、碳水化合物、醇類、胺基酸、蛋白腖、胜肽、蛋白質、脂肪酸、脂質及其之混合物的碳源。舉例而言,由例如ATCC之菌種中心所供應的細菌可以包括推薦的培養基,其含括例如蛋白
腖、葡萄糖、果糖、酵母萃取物、胺基酸、維生素和微量元素之組分。第一培養基可提供允許快速增加細胞密度之組分。於此態樣中,第一培養基可具有大約5.7至大約7.0的pH。可以使用的第一培養基之一些實例包括ATCC培養基1754(http://www.atcc.org/Attachments/2940.pdf)、ATCC培養基1136(帶有酵母萃取物0.1%、乙酸鈉50mM和甲醇100mM,http://www.atcc.org/Attachments/2408.pdf)、ATCC培養基1019(http://www.atcc.org/Attachments/3112.pdf)以及ATCC培養基1016(http://www.atcc.org/Attachments/2299.pdf)。
於另一態樣中,該第一培養基和基質係有效用以維持大約0.005g/L或以上的細胞密度,於另一態樣中,大約0.02g/L或以上,於另一態樣中,大約0.03g/L或以上,於另一態樣中,大約0.04g/L或以上,於另一態樣中,大約0.05g/L或以上,於另一態樣中,大約0.1g/L或以上,於另一態樣中,大約0.3g/L或以上,於另一態樣中,大約0.5g/L或以上,於另一態樣中,大約0.75g/L或以上,以及於另一態樣中,大約1.0g/L或以上。
於一態樣中,使用的微生物包括乙酸生成性細菌。有用的乙酸生成性細菌包括梭菌(Clostridium)屬的乙酸生成性細菌,諸如俊達氏梭菌(Clostridium ljungdahlii)菌株,包括WO 2000/68407、EP 117309、美國專利案5,173,429、5,593,886及6,368,819、WO 1998/00558以及WO 2002/08438內所述者;自行乙醇生成梭菌(Clostridium autoethanogenum)(德國,DSMZ之DSM 10061及DSM 19630)菌株,包括WO 2007/117157及WO 2009/151342內所述者;以及拉格拉式梭菌(Clostridium ragsdalei)(P11,ATCC BAA-622)及巴奇產鹼(Alkalibaculum bacchi)(CP11,ATCC BAA-1772)菌株,包括分別述於美國專利案第7,704,723號及「得自生質產生的合成氣體之生物燃料及生物製品」,Hasan Atiyeh,於阿拉巴馬州EPSCoR年度州會議,2010年4月29日所提出者;以及於美國專利申請案第2007/0276447號內所述之羧基梭菌(Clostridium carboxidivorans)(ATCC PTA-7827)。其它適合的微生物包括莫雷拉氏菌(Moorella)屬的微生物,包括莫雷拉氏菌種HUC22-1,以及羧基嗜熱菌(Carboxydothermus)屬的微生物。此等參考文獻各自係併入本文以作為參考。可以使用二種或是更多種微生物之混合培養物。
有用的細菌之若干實例包括凱伍產醋菌(Acetogenium kivui)、潮濕厭氧醋菌(Acetoanaerobium noterae)、伍迪厭氧醋菌(Acetoanaerobium woodii)、巴奇產鹼菌(Alkalibaculum bacchi)CP11(ATCC BAA-1772)、產生性布洛堤菌(Blautia producta)、嗜甲醇丁酸桿菌(Butyribacterium methylotrophicum)、地下厭氧卡拉菌(Caldanaerobacter subterraneous)、太平洋地下厭氧卡拉菌(Caldanaerobacter subterraneous pacificus)、產氫羧基嗜熱菌(Carboxydothermus hydrogenoformans)、醋酸梭菌(Clostridium aceticum)、乙醯丁酸梭菌(Clostridium acetobutylicum)、乙醯丁酸梭菌P262(德國DSMZ之DSM 19630)、自行乙醇生成梭菌(Clostridium autoethanogenum)(德國DSMZ之DSM 19630)、自行乙醇生成梭菌(德國DSMZ之DSM 10061)、自行乙醇生成梭菌(德國DSMZ之DSM 23693)、自行乙醇生成梭菌(德國DSMZ之DSM 24138)、羧基梭菌(Clostridium carboxidivorans)P7(ATCC PTA-7827)、克氏梭菌(Clostridium coskati)(ATCC PTA-10522)、德可氏梭菌(Clostridium drakei)、俊達氏梭菌(Clostridium ljungdahlii)PETC(ATCC 49587)、俊達氏梭菌ERI2(ATCC 55380)、俊達氏梭菌C-01(ATCC 55988)、俊達氏梭菌O-52(ATCC 55889)、美格氏梭菌(Clostridium magnum)、巴斯德氏梭菌(Clostridium pasteurianum)(德國DSMZ之DSM 525)、拉格拉氏梭菌(Clostridium ragsdali)P11(ATCC BAA-622)、煎盤梭菌(Clostridium scatologenes)、熱醋梭菌(Clostridium thermoaceticum)、雅爾氏梭菌(Clostridium ultunense)、庫茲氏脫硫菌(Desulfotomaculum kuznetsovii)、黏液真桿菌(Eubacterium limosum)、硫還原地桿菌(Geobacter sulfurreducens)、乙酸甲烷八疊球菌(Methanosarcina acetivorans)、巴氏甲烷八疊球菌(Methanosarcina barkeri)、熱醋莫雷拉氏菌(Morrella thermoacetica)、自嗜熱莫雷拉氏菌(Morrella thermoautotrophica)、芬尼氧菌(Oxobacter pfennigii)、產生性腖鏈球菌(Peptostreptococcus productus)、產生性魯米諾球菌(Ruminococcus productus)、凱伍厭氧嗜熱菌
(Thermoanaerobacter kivui),及其之混合物。
當於第一培養基和第一基質內建立細菌時,減少第一基質的量。第一培養基內的組分濃度亦可以和第一基質一起減少。於此態樣中,第一培養基可以用生產培養基來替換。於其他的態樣中,第一基質和經選擇基質可以為相同的或是可以為不同的。
於一態樣中,第一培養基和第一基質可以高達等於用來供應生產培養基的泵之最大速率的最大速率來替換。於另一態樣中,細菌可以由第一培養基濃縮,例如舉例而言以小丸的形式,以及直接轉移至生產培養基之內。
於另一態樣中,在芽孢形成之前,可添加碳源以維持大約0.005g/L或以上的細胞密度,於另一態樣中,大約0.02g/L或以上,於另一態樣中,大約0.03g/L或以上,於另一態樣中,大約0.04g/L或以上,於另一態樣中,大約0.05g/L或以上,於另一態樣中,大約0.1g/L或以上,於另一態樣中,大約0.3g/L或以上,於另一態樣中,大約0.5g/L或以上,於另一態樣中,大約0.75g/L或以上,以及於另一態樣中,大約1.0g/L或以上。可以添加的碳源之一些實例包括酵母萃取物、醇類、碳水化合物、胺基酸、蛋白腖、胜肽、蛋白質、脂肪酸、脂質以及其之混合物。
減少第一基質的輸入對於使至少一部份細菌芽孢化是有效的。芽孢係藉由位於母細胞細胞質內的細胞內
分裂而形成。形成芽孢之細菌對諸如營養限制之類不利的環境變化作回應,,而開始芽孢化。在形成之後,從母細胞釋放成熟芽孢(關於額外的細節見Brun等人,eds.Prokaryotic Development.Endospore-forming bacteria:an overview,ed.A.L.Sonenshein.2000,American Society for Microbiology:Washington,D.C.133-150;Cutting,S.,ed.Molecular Biology Methods for Bacillus.Sporulation,germination and outgrowth,ed.W.L.Nicholson and P.Setlow.1990,John Wiley and Sons:Sussex,England.391-450,其等係併入本文以作為參考)。芽孢一般而言形狀為卵形或是球形以及比植物的細菌細胞更寬的。其他有特色的芽孢形式包括紡錘形狀的、棍棒形狀的形式,以及網球拍形狀的結構。
於此態樣中,第一基質減少的量係有效地提供至少大約0.05的芽孢數目對細胞數目比率,於另一態樣中至少大約0.1的芽孢數目對細胞數目比率,以及於另一態樣中至少大約0.5的芽孢數目對細胞數目比率。可以使用已知的方法來定量芽孢,例如舉例而言,目視檢查以及使用血球計來計數。
依據該方法,生產培養基內的經選擇基質係添加至細菌芽孢。添加經選擇基質係有效於引起芽孢的發芽。隨著芽孢通過發芽而往細胞分裂繼續進行,有各種的階段,包括(1)芽孢活化;(2)第I階段發芽,其間水部分再
水化芽孢核;(3)第II階段發芽,其間發生皮層水解及恢復新陳代謝;以及(4)過度生長,其間發生細胞分裂(關於額外的細節見Setlow,P.,Spore germination.Curr Opin Microbiol,2003.6:p.550-556;Foster,S.J.等人,Pulling the trigger:the mechanism of bacterial sporegermination.Mol Microbiol,1990.4:p.137-141;以及Moir等人,Spore germination.Cell Mol Life Sci,2002.59:p.403-409,此等參考文獻各自併入本文以作為參考)。
依據該方法,發芽係有效用於提供至少大約0.04的芽孢對細胞數目比率,於另一態樣中至少大約0.01的芽孢對細胞數目比率,以及於另一態樣中至少大約0.001的芽孢對細胞數目比率。於經選擇基質為CO的態樣之中,該方法係有效用於提供至少大約0.25毫莫耳/min/克細胞之比CO攝入(specific CO uptake),於另一態樣中,至少大約0.50毫莫耳/min/克細胞,於另一態樣中,至少大約0.75毫莫耳/min/克細胞,以及於另一態樣中,至少大約1.0毫莫耳/min/克細胞。
生產培養基為含有較低濃度的生長營養素之培養基。生產培養基可以包括供細菌生長的碳源,各種的鹽類,鹽類可以在細菌物種和生長條件之中變化;此等一般而言提供例如鎂、氮、磷和硫之必需元素以允許細菌合成蛋白質和核酸。生產培養基可以具有大約5至大約4.1的pH。於一態樣中,生產培養基提供之唯一的碳係由合成氣來提供。生產培養基的一實例如下列:
於一個態樣中,該培養基包括氮源、磷源及鉀源中之一者或多者。培養基可包括該三者中之任一者、該三者中之任一項組合,及於一重要態樣中,包括全部三者。氮源可包括選自於由氯化銨、磷酸銨、硫酸銨、硝酸銨、及其混合物所組成之群組中之一氮源。磷源可包括選自於由磷酸、磷酸銨、磷酸鉀、及其混合物所組成之群組中之一磷源。鉀源可包括選自於由氯化鉀、磷酸鉀、硝酸鉀、硫酸鉀、及其混合物所組成之群組中之一鉀源。
於一個態樣中,培養基包括鐵、鎢、鎳、鈷、鎂、硫以及噻胺中之一者或多者。培養基可以包括此等組分中之任一者、任一種組合,及於一個重要態樣中,包括此等組分之全體。鐵源可以包括選自於由氯化亞鐵、硫酸亞鐵、及其混合物所組成之群組中之一鐵源。鎢源可以包
括選自於由鎢酸鈉、鎢酸鈣、鎢酸鉀、及其混合物所組成之群組中之一鎢源。鎳源可以包括選自於由氯化鎳、硫酸鎳、硝酸鎳、及其混合物所組成之群組中之一鎳源。鈷源可以包括選自於由氯化鈷、氟化鈷、溴化鈷、碘化鈷、及其混合物所組成之群組中之一鈷源。鎂源可以包括選自於由氯化鎂、硫酸鎂、磷酸鎂、硝酸鎂、及其混合物所組成之群組中之一鎂源。硫源可以包括半胱胺酸、硫化鈉、以及其混合物。
於一個態樣中,生產培養基會包括僅由經選擇基質所提供的碳源,例如舉例而言CO。於此態樣中,生產培養基可以具有除了由經選擇基質所提供的碳為低於大約0.01g/L的碳源。其他添加的碳可以包括酵母萃取物、醇類、胜肽、蛋白質、脂肪酸、脂質以及其之混合物。
合成氣可以從任何已知的來源提供。於一個態樣中,合成氣可源自於含碳材料的氣化。氣化涉及於氧氣限制供應情況下的生質之部分燃燒。所得的氣體主要包括一氧化碳(CO)及氫氣(H2)。於本態樣中,合成氣將含有至少大約10莫耳% CO,於一個態樣中,至少大約20莫耳%,於一個態樣中,大約10至大約100莫耳%,於另一個態樣中,大約20至大約100莫耳% CO,於另一個態樣中,大約30至大約90莫耳% CO,於另一個態樣中,大約40至大約80莫耳% CO,以及於另一個態樣中,大約50至大約70莫耳% CO。合成氣將具有至少大約0.75之
CO/CO2比。適當的氣化方法及裝置之若干實例係提供於美國專利申請案13/427,144、13/427,193及13/427,247之內,各案皆係於2011年4月6日提出申請,以及此等之全體均併入本文以作為參考。
於另一個態樣中,利用來繁殖乙酸生成性細菌的合成氣可實質為CO。如同此處所使用的,「實質為CO」表示至少大約50莫耳% CO,於另一個態樣中,至少大約60莫耳% CO,於另一個態樣中,至少大約70莫耳% CO,於另一個態樣中,至少大約80莫耳% CO,以及於另一個態樣中,至少大約90莫耳% CO。
依據一個態樣,發酵方法始於添加培養基至反應器容器內。培養基經滅菌以去除非期望的微生物以及反應器內接種期望的微生物。
當接種時,建立可有效供應微生物的初始族群之起始的進料氣體供應速率。分析流出物氣體來決定流出物氣體之含量。氣體分析的結果用來控制進料氣體速率。當達到期望的位準時,從反應器中撤出液相及細胞物質以及補充培養基。
實施例1:嗜甲醇丁酸桿菌在培養於甲醇和降低pH之後、在合成氣之生長。
接種體製備:嗜甲醇丁酸桿菌生長於血清瓶(各個有25ml的13個瓶子)中、於BM培養基內。BM培養基有
下列組分:
瓦福氏礦物質溶液可得自於ATCC(微量礦物質補充物,目錄編號MD-TMS)。
瓦福氏維生素溶液可得自於ATCC(維生素補充物,目錄編號MD-VS)。
混合計畫書:
混合#1直至#8,高壓蒸氣滅菌器,於N2下冷卻
轉移至厭氧室,添加#9至#11(厭氧及無菌)
調整至pH 7.2
生物反應器操作:以如上所述而生長的325ml的嗜甲醇丁酸桿菌接種生物反應器。一開始時將甲醇添加至生物反應器(92.5mL/L)以增加培養物原始的細胞密度(0.049g/L)。用如上所述之生產培養基(帶有合成氣為唯一
的碳源之低pH基本培養基)逐步地替換生長培養基。
培養基更換事件
往反應器的生長培養基流動速率的變更
生產培養基(其之製備係描述於美國專利案第7,285,402號,其係併入本文以作為參考)
組分 每公升的量
如上所示,生物反應器內的甲醇減少50%二次以及接而於15天的期間完全移除。在由培養基移除甲醇的二天之後添加MPFN(其含有Ni)。
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入(specific H2 uptake)之培養參數。如圖1所闡明的,比CO攝入與比H2在大約450小時時開始增加。
實施例2:用事先在合成氣生長之經冷凍的嗜甲醇丁酸桿菌之反應器起動。
由實施例1收獲的六百毫升之經冷凍的嗜甲醇丁酸桿菌接種至1400ml的生產培養基之內。開始的細胞密
度為0.39g/L。監控CO消耗量以及於第一個24小時之內為超過0.4毫莫耳/min/g。
實施例3:嗜甲醇丁酸桿菌在培養於酵母萃取物、甲醇和酸化之後、在合成氣之生長。
接種體製備:嗜甲醇丁酸桿菌生長於血清瓶中、於含括酵母萃取物且具有7.2-7.4的pH之培養基內。該培養基係描述於Heiskanen等人(2007)Enzyme and Microbial Technology,Vol.41,第3期,第362-367頁,其係併入本文以作為參考。
生物反應器操作:以如上所述而生長的100ml的嗜甲醇丁酸桿菌來接種含有如上所述之一公升培養基的生物反應器。開始的細胞密度為0.04g/L。
依據下列計畫書來添加酵母萃取物至生物反應器以增加細胞密度:
酵母萃取物之組成:20%配於DI水
添加醋酸溶液至生物反應器以降低pH。醋酸溶液和添加計畫書係如下:
醋酸溶液
醋酸溶液添加計畫書
在253.8小時時添加甲醇(26.92ml的10%溶液)以增加細胞密度。用如上所述之生產培養基(帶有合成氣為唯一的碳源之低pH基本培養基)逐步地替換生長培養基。
往反應器的生長培養基流動速率的變更
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入之培養參數。如圖2所闡明的,比CO攝入與比H2在大約450小時時開始增加。
實施例4:嗜甲醇丁酸桿菌在培養於酵母萃取物和酸化之後、在合成氣之生長。
接種體製備:嗜甲醇丁酸桿菌生長於血清瓶中、於如實施例3所述之培養基內。
生物反應器操作:以如上所述而生長的350ml的嗜甲醇丁酸桿菌來接種生物反應器。將以上的350ml嗜甲醇丁酸桿菌接種體轉移至含有酵母萃取物之1250ml的生長培養基。反應器內起始的生長培養基之組成如下:
起始的生長培養基
礦物質鹽類溶液:(80g/L NaCl,100g/L NH4Cl,10g/L KCl,10g/L KH2PO4,20g/L MgSO4‧7H2O,4g/L CaCl2‧H2O)
在接種之後培養物沒有可測得的合成氣消耗量。於以下指示的時間點將酵母萃取物添加至反應器內作
為增加培養物的細胞密度的方法。反應器的pH係藉由如同以下表中指示的一樣來添加醋酸溶液(如上述)而逐步改變至4.7。並且反應器內的培養基如同以下表中指示的一樣逐步地交換成所欲的生產培養基(如上述)。
添加酵母萃取物以增加反應器內起始的細胞塊:
酵母萃取物之組成:20%配於DI水。
添加醋酸溶液以降低反應器內的pH:
用低pH、不帶有酵母萃取物的生產培養基來更換反應器內的培養基:
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入之培養參數。如圖3所闡明的,比CO攝入與比H2在大約600小時時開始增加。
實施例5:用事先在合成氣生長之嗜甲醇丁酸桿菌來接種含有低pH生產培養基之生物反應器。
來自實施例4的細菌維持於血清瓶中、於MES培養基(無酵母萃取物或果糖)內歷時28天。定期檢查此等血清瓶頂隙的氣體組成以及當需要時再裝滿合成氣。
用210ml生長於以上的血清瓶內之嗜甲醇丁酸桿菌來接種生物反應器。將210ml之嗜甲醇丁酸桿菌轉移至不含酵母萃取物或任何有機碳基質之1公升的生產培養基(如本文所述)內。在接種後培養物起始的細胞密度及pH分別為0.03g/L以及4.7。
往反應器的生產培養基流動速率
時間(小時) 往反應器的基本培養基流動速率的變更
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入之培養參數以及顯示於圖4內。
實施例6:自行乙醇生成梭菌經由芽孢形成和發芽以使用低pH培養基(無酵母萃取物)內的合成氣之適應性
接種體製備:自行乙醇生成梭菌的接種體製備如下:
接種體生長培養基
礦物質鹽類溶液:(80g/L NaCl,100g/L NH4Cl,10g/L KCl,10g/L KH2PO4,20g/L MgSO4‧7H2O,4g/L CaCl2‧H2O)
生物反應器(Bioreator)操作:以如上所述含有酵母萃取物與果糖的培養基內生長的自行乙醇生成梭菌來接種生物反應器。反應器內培養物起始的pH為4.7以及細胞密度為0.03g/L。在接種之後,培養物沒有可測得的合成氣消耗量。
在接種之後第一個20小時之內細胞密度沒有增加。如同以下指示來添加果糖與酵母萃取物以做出較小不利的條件以及亦作為增加培養物起始的細胞密度的方法。此外反應器係如同以下指示的以三倍以上的細菌予以接種。進行以上額外的接種以進一步增加反應器之起始的細胞密度。如同以下指示的整個實驗中,反應器內的培養基逐步地交換成生產培養基(如本文所述)。於此方法期間,反應器內的細菌芽孢化和發芽成為能利用無酵母萃取物和果糖之低pH基本培養基(無酵母萃取物)內的合成氣之培養物。反應器內的培養物之氧化還原係藉由添加以下所述之二種還原劑之一者而維持在-140mv以下。
添加酵母萃取物以增加反應器內起始的細胞塊:
酵母萃取物之組成:20%配於DI水
添加果糖以增加反應器內起始的細胞塊:
果糖之組成:25%配於DI水
用生長於滋養培養基(rich medium)之自行乙醇生成梭菌來額外接種反應器:
實驗中使用的還原劑組成:9g/L NaOH,40g/L L-半胱胺酸,40g/L Na2S,H2O,TiCl3(Sigma Aldrich 14010)。
將反應器內的培養基由起始的生長培養基交換成生產培養基:
方法時間(小時) 往反應器的基本培養基流動速率的變更,每公升添加的體積和培養基類型
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入之培養參數以及闡示於圖5內。
實施例7:俊達氏梭菌PETC經由芽孢形成和發芽以使用低pH培養基(無酵母萃取物)內的合成氣之適應性
接種體製備:俊達氏梭菌PETC的接種體首先生長於如以下所述之含有(0.1%)酵母萃取物與(1%)果糖之pH 5.7的培養基內。以上的接種體培養物內之酵母萃取物與果糖係藉由將該等培養物(160ml)轉移至相同的無酵母萃取物與果糖之生長培養基(1000ml)內而予以稀釋。在37 C孵育此培養物歷時5天之後,將930ml的此培養物轉移至含有1200ml如以下所述之基本培養基的種菌反應器(seed reactor)。在孵育16天之後,將此200ml的種菌培養轉移至含有1200ml以上同樣的基本培養基之另一個反應器。反應
器內培養物起始的pH為5.4以及起始的細胞密度為0.05g/L。
使用來生長接種體細菌的培養基:
礦物質鹽類儲備溶液:(80g/L NaCl,100g/L NH4Cl,10g/L KCl,10g/L KH2PO4,20g/L MgSO4‧7H2O,4g/L CaCl2‧H2O)
還原劑組成:9g/L NaOH,40g/L L-半胱胺酸,40g/L Na2S,1L H2O。
生產培養基:0.15g/L KCl,0.5g/L MgCl2‧6H2O,0.2 CaCl2.2H2O,2g/L NH4Cl,0.6g(NH4)2HPO4,0.2g/L NaCl,0.45g/L半胱胺酸。10ml/L微量礦物質補充物:(100ml/L 85% H3PO4,0.3g/L MgSO4‧7H2O,0.5g/L MnSO4‧H2O,1.g/L NaCl,0.1g/L FeSO4‧7 H2O,0.1g/L Co(NO3)2‧6H2O,0.1g/L CaCl2,0.1g/L ZnSO4‧7 H2O,0.01g/L CuSO4‧5 H2O,0.02g/L AlK(SO4)2‧12 H2O,0.01g/L H3BO3,0.01g/L Na2MoO4‧2 H2O,0.001g/L Na2SeO3,0.01g/L Na2WO4‧2 H2O,0.02g/L NiCl2‧6 H2O)。10ml/L維生素(0.002g/L葉酸,0.01g/L氫氯化吡哆醇,0.005g/L核黃素,0.026g/L生物素,0.065
g/L噻胺,0.005g/L菸鹼酸,0.0353g/L泛酸鈣,0.0001g/L維生素B12,0.005g/L對胺苯甲酸,0.005硫辛酸(Thiotic acid),0.9g/L磷酸二氫鉀)。
生物反應器操作:於以下指示的時間點將果糖添加至反應器作為增加培養物的細胞密度的方法。如以下所顯示的,逐步增加(基本)培養基往反應器的流動速率以提供培養物營養素,以稀釋生長培養基內的果糖以及也降低培養物的pH至4.9(從5.4)。
添加果糖以增加反應器內起始的細胞塊:
果糖之組成:20%配於DI水
往反應器的生產培養基流動速率:
結果:目視觀察提供下列指示:
監控包括細胞塊、比CO攝入與比H2攝入之培養參數以及闡示於圖6內。
實施例8:俊達氏梭菌之反適應性(Reverse adaptation)
使俊達氏梭菌生長於含有30ml如以下所述之具有或不具有果糖及具有或不具有合成氣的生長培養基(pH調整至5.7)之血清瓶內。俊達氏梭菌培養物係於37℃搖動式(60rpm)孵養器內生長。
將生長於上述使用合成氣作為碳源和能源之生長培養基內的俊達氏梭菌轉移至含有同樣的培養基但補充1%果糖之血清瓶(標示果糖)內。此血清瓶不含合成氣。為了比較的目的,使用合成氣作為碳源和能源之俊達氏梭菌轉移至含有合成氣和生長培養基(無果糖)之血清瓶(標示合成氣)內。
如以下的表和圖7中所指示的,轉移至果糖內之合成氣發酵的俊達氏梭菌在其等開始使用果糖作為能源和碳源來成長之前,經歷了芽孢形成和發芽的週期。
目視觀察提供下列指示:
使用來生長細菌的培養基:10g/L MES,12.5ml/L礦物質鹽類儲備溶液(80g/L NaCl,100g/L NH4Cl,10g/L KCl,10g/L KH2PO4,20g/L MgSO4‧7H2O,4g/L CaCl2‧H2O),10.0ml/L ATCC微量礦物質補充物,10.0ml/L ATCC維生素補充物,10.0ml/L還原劑,0.001g/L刃天青。
礦物質鹽類儲備溶液:(80g/L NaCl,100g/L NH4Cl,10g/L KCl,10g/L KH2PO4,20g/L MgSO4‧7H2O,4g/L CaCl2‧H2O)
還原劑組成:9g/L NaOH,40g/L L-半胱胺酸,40g/L Na2S,1L H2O。
雖然此處揭示之發明已經利用特定具體例、實施例及其應用作說明,但熟習此技藝者可未悖離如申請專利範圍陳述之本發明之範圍而於其中做出多項修改及變化。
Claims (5)
- 一種用於以合成氣培養乙酸生成性細菌的方法,該方法包含:以一包括第一基質的第一培養基培養該乙酸生成性細菌以提供至少大約0.005g/L之細胞密度,其中該第一基質包括選自於以下所構成的群組之碳源:酵母萃取物、碳水化合物、醇類、胺基酸、蛋白腖、胜肽、蛋白質、脂肪酸、脂質及其之混合物;藉由用具有至少大約10莫耳%CO之合成氣來替換該第一基質的至少一部份及用一生產培養基來替換該第一培養基的至少一部份來芽孢化(sporulating)該乙酸生成性細菌,以轉化該細菌的至少一部份成為芽孢,其中該芽孢化提供大約0.05或以上的芽孢數目對細胞數目比率,其中該生產培養基具有合成氣作為碳源;以及使該等芽孢在pH為大約4.1至大約5且包含具有至少大約10莫耳%CO之合成氣的該生產培養基內發芽,以提供至少大約0.25毫莫耳/min/克細胞之比CO攝入以及大約1克或以上的乙醇/(升.日.克細胞)的時空產率(STY)。
- 如申請專利範圍第1項之方法,其中該合成氣具有至少大約0.75之CO/CO2莫耳比。
- 如申請專利範圍第1項之方法,其中該乙酸生成性細菌係選自於以下所構成的群組:凱伍產醋菌(Acetogenium kivui)、潮濕厭氧醋菌(Acetoanaerobium noterae)、伍氏醋酸桿菌(Acetobacterium woodii)、巴奇產鹼菌(Alkalibaculum bacchi)CP11(ATCC BAA-1772)、產生性布洛堤菌(Blautia producta)、嗜甲醇丁酸桿菌(Butyribacterium methylotrophicum)、地下厭氧卡拉菌(Caldanaerobacter subterraneous)、太平洋地下厭氧卡拉菌(Caldanaerobacter subterraneous pacificus)、產氫羧基嗜熱菌(Carboxydothermus hydrogenoformans)、醋酸梭菌(Clostridium aceticum)、乙醯丁酸梭菌(Clostridium acetobutylicum)、乙醯丁酸梭菌P262(德國DSMZ之DSM 19630)、自行乙醇生成梭菌(Clostridium autoethanogenum)(德國DSMZ之DSM 19630)、自行乙醇生成梭菌(德國DSMZ之DSM 10061)、自行乙醇生成梭菌(德國DSMZ之DSM 23693)、自行乙醇生成梭菌(德國DSMZ之DSM 24138)、羧基梭菌(Clostridium carboxidivorans)P7(ATCC PTA-7827)、克氏梭菌(Clostridium coskatii)(ATCC PTA-10522)、德可氏梭菌(Clostridium drakei)、俊達氏梭菌(Clostridium ljungdahlii)PETC(ATCC 49587)、俊達氏梭菌ERI2(ATCC 55380)、俊達氏梭菌C-01(ATCC 55988)、俊達氏梭菌O-52(ATCC 55889)、美格氏梭菌(Clostridium magnum)、巴斯德氏梭菌(Clostridium pasteurianum)(德國DSMZ之DSM 525)、拉格拉氏梭菌(Clostridium ragsdali)P11(ATCC BAA-622)、煎盤梭菌(Clostridium scatologenes)、熱醋梭菌(Clostridium thermoaceticum)、雅爾氏梭菌(Clostridium ultunense)、庫茲氏脫硫菌(Desulfotomaculum kuznetsovii)、黏液真桿菌(Eubacterium limosum)、硫還原地桿菌(Geobacter sulfurreducens)、乙酸甲烷八疊球菌(Methanosarcina acetivorans)、巴氏甲烷八疊球菌(Methanosarcina barkeri)、熱醋莫雷拉氏菌(Morrella thermoacetica)、自嗜熱莫雷拉氏菌(Morrella thermoautotrophica)、芬尼氧菌(Oxobacter pfennigii)、產生性腖鏈球菌(Peptostreptococcus productus)、產生性魯米諾球菌(Ruminococcus productus)、凱伍厭氧嗜熱菌(Thermoanaerobacter kivui),以及其之混合物。
- 如申請專利範圍第1項之方法,其中該發芽係有效用於提供大約0.04或更小的芽孢數目對細胞數目比率。
- 如申請專利範圍第1項之方法,其中該生產培養基包含以下之至少一者或多者:每克細胞至少大約112mg的氮,每克細胞至少大約10.5mg的磷,或是每克細胞至少大約26mg的鉀。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261650084P | 2012-05-22 | 2012-05-22 | |
US201261650077P | 2012-05-22 | 2012-05-22 | |
US201261650093P | 2012-05-22 | 2012-05-22 | |
US201261650098P | 2012-05-22 | 2012-05-22 | |
US13/892,482 US9193947B2 (en) | 2012-05-22 | 2013-05-13 | Process for culturing microorganisms on a selected substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201350574A TW201350574A (zh) | 2013-12-16 |
TWI595091B true TWI595091B (zh) | 2017-08-11 |
Family
ID=49621898
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102117886A TWI595091B (zh) | 2012-05-22 | 2013-05-21 | 用於在經選擇基質培養微生物的方法 |
TW102117888A TWI663256B (zh) | 2012-05-22 | 2013-05-21 | 發酵含有co(一氧化碳)的氣態基質之方法 |
TW102117873A TWI672377B (zh) | 2012-05-22 | 2013-05-21 | 合成氣發酵法及培養基(二) |
TW108109131A TWI729364B (zh) | 2012-05-22 | 2013-05-21 | 合成氣發酵法及培養基(二) |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102117888A TWI663256B (zh) | 2012-05-22 | 2013-05-21 | 發酵含有co(一氧化碳)的氣態基質之方法 |
TW102117873A TWI672377B (zh) | 2012-05-22 | 2013-05-21 | 合成氣發酵法及培養基(二) |
TW108109131A TWI729364B (zh) | 2012-05-22 | 2013-05-21 | 合成氣發酵法及培養基(二) |
Country Status (10)
Country | Link |
---|---|
US (2) | US9193947B2 (zh) |
EP (2) | EP2861746B1 (zh) |
CN (1) | CN104781408B (zh) |
AR (4) | AR091106A1 (zh) |
BR (1) | BR112014028957B1 (zh) |
CA (1) | CA2890689C (zh) |
IN (1) | IN2014DN10933A (zh) |
RU (1) | RU2629997C2 (zh) |
TW (4) | TWI595091B (zh) |
WO (2) | WO2013176931A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9885063B2 (en) * | 2013-06-10 | 2018-02-06 | Ineos Bio Sa | Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage |
US10760101B2 (en) * | 2013-07-22 | 2020-09-01 | Ineos Bio Sa | Process and medium for reducing selenium levels in biomass from fermentation of co-containing gaseous substrates |
FR3051800B1 (fr) * | 2016-05-31 | 2018-06-15 | IFP Energies Nouvelles | Procede de production de btx par pyrolyse catalytique a partir de biomasse sans recycle de composes oxygenes |
US20190352676A1 (en) * | 2018-05-21 | 2019-11-21 | Jupeng Bio, Inc. | Process for Obtaining Protein-Rich Nutrient Supplements from Bacterial Fermentation Process |
CA3106325A1 (en) * | 2018-08-08 | 2020-02-13 | Jupeng Bio, Inc. | Carbon dioxide bioconversion process |
EP4259808A1 (en) * | 2020-12-08 | 2023-10-18 | Jupeng Bio (HK) Limited | Process and composition for controlling ethanol production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068407A1 (en) * | 1999-05-07 | 2000-11-16 | Bioengineering Resources, Inc. | Clostridium strains which produce ethanol from substrate-containing gases |
US20110229947A1 (en) * | 2010-03-19 | 2011-09-22 | Coskata, Inc. | Novel Ethanologenic Clostridium species, Clostridium coskatii |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533211A (en) | 1983-01-31 | 1985-08-06 | International Business Machines Corporation | Frequency multiplexed optical spatial filter based upon photochemical hole burning |
US5173429A (en) | 1990-11-09 | 1992-12-22 | The Board Of Trustees Of The University Of Arkansas | Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism |
US5807722A (en) | 1992-10-30 | 1998-09-15 | Bioengineering Resources, Inc. | Biological production of acetic acid from waste gases with Clostridium ljungdahlii |
US6136577A (en) | 1992-10-30 | 2000-10-24 | Bioengineering Resources, Inc. | Biological production of ethanol from waste gases with Clostridium ljungdahlii |
US5593886A (en) | 1992-10-30 | 1997-01-14 | Gaddy; James L. | Clostridium stain which produces acetic acid from waste gases |
UA72220C2 (uk) | 1998-09-08 | 2005-02-15 | Байоенджініерінг Рісорсиз, Інк. | Незмішувана з водою суміш розчинник/співрозчинник для екстрагування оцтової кислоти, спосіб одержання оцтової кислоти (варіанти), спосіб анаеробного мікробного бродіння для одержання оцтової кислоти (варіанти), модифікований розчинник та спосіб його одержання |
US5972661A (en) | 1998-09-28 | 1999-10-26 | Penn State Research Foundation | Mixing systems |
DK1303629T3 (da) * | 2000-07-25 | 2006-10-30 | Emmaus Foundation Inc | Fremgangsmåde til forögelse af ethanolproduktion fra mikrobiel fermetering |
NZ546496A (en) | 2006-04-07 | 2008-09-26 | Lanzatech New Zealand Ltd | Gas treatment process |
US20070275447A1 (en) | 2006-05-25 | 2007-11-29 | Lewis Randy S | Indirect or direct fermentation of biomass to fuel alcohol |
US7623909B2 (en) | 2006-05-26 | 2009-11-24 | Cameron Health, Inc. | Implantable medical devices and programmers adapted for sensing vector selection |
US7704723B2 (en) | 2006-08-31 | 2010-04-27 | The Board Of Regents For Oklahoma State University | Isolation and characterization of novel clostridial species |
US8973497B2 (en) | 2007-04-24 | 2015-03-10 | Probity Engineering, Llc | Flexographic proofing tools and methods |
WO2009022925A1 (en) | 2007-08-15 | 2009-02-19 | Lanzatech New Zealand Limited | Processes of producing alcohols |
BRPI0820556B1 (pt) | 2007-11-13 | 2016-03-22 | Lanzatech New Zealand Ltd | bactéria e métodos para uso das mesmas |
NZ588464A (en) | 2008-03-10 | 2012-01-12 | Ineos Usa Llc | Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates |
US9034618B2 (en) | 2009-03-09 | 2015-05-19 | Ineos Bio Sa | Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates |
WO2009113878A1 (en) | 2008-03-12 | 2009-09-17 | Lanzatech New Zealand Limited | Microbial alcohol production process |
JP5618995B2 (ja) | 2008-06-09 | 2014-11-05 | ランザテク・ニュージーランド・リミテッド | 嫌気的微生物発酵によるブタンジオールの製造 |
BRPI0913850B1 (pt) * | 2008-06-20 | 2020-01-21 | Ineos Bio Sa | método de produção de álcool |
US20130005010A1 (en) * | 2011-06-30 | 2013-01-03 | Peter Simpson Bell | Bioreactor for syngas fermentation |
-
2013
- 2013-05-13 US US13/892,482 patent/US9193947B2/en active Active
- 2013-05-14 EP EP13727701.8A patent/EP2861746B1/en active Active
- 2013-05-14 EP EP19168216.0A patent/EP3530742A1/en active Pending
- 2013-05-14 RU RU2014151864A patent/RU2629997C2/ru not_active IP Right Cessation
- 2013-05-14 WO PCT/US2013/041029 patent/WO2013176931A1/en active Application Filing
- 2013-05-14 CA CA2890689A patent/CA2890689C/en active Active
- 2013-05-14 BR BR112014028957-3A patent/BR112014028957B1/pt active IP Right Grant
- 2013-05-14 US US13/893,569 patent/US10131872B2/en active Active
- 2013-05-15 CN CN201380027117.2A patent/CN104781408B/zh active Active
- 2013-05-15 WO PCT/US2013/041105 patent/WO2013176938A1/en active Application Filing
- 2013-05-21 TW TW102117886A patent/TWI595091B/zh active
- 2013-05-21 TW TW102117888A patent/TWI663256B/zh active
- 2013-05-21 AR ARP130101750 patent/AR091106A1/es unknown
- 2013-05-21 TW TW102117873A patent/TWI672377B/zh active
- 2013-05-21 AR ARP130101749A patent/AR092832A1/es unknown
- 2013-05-21 AR ARP130101752 patent/AR091108A1/es unknown
- 2013-05-21 TW TW108109131A patent/TWI729364B/zh active
- 2013-05-21 AR ARP130101751 patent/AR091107A1/es unknown
-
2014
- 2014-12-20 IN IN10933DEN2014 patent/IN2014DN10933A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068407A1 (en) * | 1999-05-07 | 2000-11-16 | Bioengineering Resources, Inc. | Clostridium strains which produce ethanol from substrate-containing gases |
US20110229947A1 (en) * | 2010-03-19 | 2011-09-22 | Coskata, Inc. | Novel Ethanologenic Clostridium species, Clostridium coskatii |
Non-Patent Citations (1)
Title |
---|
Cotter, Jacqueline L., Mari S. Chinn, and Amy M. Grunden. "Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells." Bioprocess and biosystems engineering 32.3 (2009): 369-380. * |
Also Published As
Publication number | Publication date |
---|---|
TWI663256B (zh) | 2019-06-21 |
WO2013176931A1 (en) | 2013-11-28 |
AR092832A1 (es) | 2015-05-06 |
AR091107A1 (es) | 2015-01-14 |
IN2014DN10933A (zh) | 2015-09-18 |
US20130316423A1 (en) | 2013-11-28 |
CA2890689A1 (en) | 2013-11-28 |
TW201400616A (zh) | 2014-01-01 |
CA2890689C (en) | 2020-01-14 |
CN104781408B (zh) | 2018-04-24 |
US20130316435A1 (en) | 2013-11-28 |
CN104781408A (zh) | 2015-07-15 |
RU2629997C2 (ru) | 2017-09-06 |
US9193947B2 (en) | 2015-11-24 |
BR112014028957B1 (pt) | 2021-08-31 |
TW201350574A (zh) | 2013-12-16 |
AR091106A1 (es) | 2015-01-14 |
EP2861746A1 (en) | 2015-04-22 |
RU2014151864A (ru) | 2016-07-20 |
BR112014028957A2 (pt) | 2017-08-08 |
WO2013176938A1 (en) | 2013-11-28 |
TWI672377B (zh) | 2019-09-21 |
AR091108A1 (es) | 2015-01-14 |
EP3530742A1 (en) | 2019-08-28 |
US10131872B2 (en) | 2018-11-20 |
TW201400611A (zh) | 2014-01-01 |
TWI729364B (zh) | 2021-06-01 |
EP2861746B1 (en) | 2019-05-01 |
TW201925459A (zh) | 2019-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI595091B (zh) | 用於在經選擇基質培養微生物的方法 | |
US9765366B2 (en) | Biotechnological method for producing butanol and butyric acid | |
TWI595094B (zh) | 操作含有一氧化碳之氣態基質發酵的方法 | |
CN105820971A (zh) | 生产高级醇的方法 | |
CN105821084A (zh) | 生产醇的好氧方法 | |
TW202012630A (zh) | 一氧化碳及二氧化碳之生物轉換方法 | |
TWI598443B (zh) | 操作含有一氧化碳及氫之氣態基質發酵的方法 | |
CN109689876A (zh) | 在需氧条件下生产醇以及使用油醇萃取产物的方法 | |
US10760101B2 (en) | Process and medium for reducing selenium levels in biomass from fermentation of co-containing gaseous substrates | |
CN107043792B (zh) | 一种高温菌和中温菌共同发酵合成气产乙醇的方法 | |
Sim et al. | Biocatalytic conversion of CO to acetic acid by Clostridium aceticum—Medium optimization using response surface methodology (RSM) | |
US20200095612A1 (en) | Control of conductivity in anaerobic fermentation | |
KR20170021100A (ko) | 배가스 내 이산화탄소를 이용하여 제조된 중탄산 버퍼를 활용한 광합성 미생물의 배양방법 | |
TWI504743B (zh) | 增強生物固碳之方法 |