TWI588701B - Display device, and device and method for driving the same - Google Patents

Display device, and device and method for driving the same Download PDF

Info

Publication number
TWI588701B
TWI588701B TW104139566A TW104139566A TWI588701B TW I588701 B TWI588701 B TW I588701B TW 104139566 A TW104139566 A TW 104139566A TW 104139566 A TW104139566 A TW 104139566A TW I588701 B TWI588701 B TW I588701B
Authority
TW
Taiwan
Prior art keywords
touch
time
gate
transistor
node
Prior art date
Application number
TW104139566A
Other languages
Chinese (zh)
Other versions
TW201627836A (en
Inventor
文秀煥
Original Assignee
樂金顯示科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樂金顯示科技股份有限公司 filed Critical 樂金顯示科技股份有限公司
Publication of TW201627836A publication Critical patent/TW201627836A/en
Application granted granted Critical
Publication of TWI588701B publication Critical patent/TWI588701B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

顯示裝置、該顯示裝置的驅動裝置以及驅動方法Display device, drive device of the display device, and driving method

本發明係提供一種顯示裝置、該顯示裝置的驅動裝置以及驅動方法。The present invention provides a display device, a driving device of the display device, and a driving method.

觸控螢幕為提供於一影像顯示裝置,例如一液晶顯示器、一場發射顯示器(FED)、一電漿顯示面板(PDP)、一電致發光裝置(EL)以及一電泳顯示裝置的輸入裝置,以使得一用戶在觀看影像顯示裝置時透過按壓(或觸控)包括在觸控螢幕中的一觸控感測器而輸入預定的資訊到影像顯示裝置。The touch screen is provided to an image display device, such as a liquid crystal display, a field emission display (FED), a plasma display panel (PDP), an electroluminescence device (EL), and an input device of an electrophoretic display device. The user inputs a predetermined information to the image display device by pressing (or touching) a touch sensor included in the touch screen while viewing the image display device.

一顯示裝置的驅動電路包含︰顯示影像的一畫素陣列,一資料驅動電路,用於將一資料訊號供給至畫素陣列的資料線,一閘極驅動器電路(或一掃描驅動器電路),用於將與資料訊號同步的一閘極脈波(或一掃描脈波)順次供給至畫素陣列的閘極線(或掃描線),以及控制資料驅動器電路及閘極驅動器電路的一定時控制器。The driving circuit of a display device comprises: a pixel array for displaying images, and a data driving circuit for supplying a data signal to the data line of the pixel array, a gate driver circuit (or a scan driver circuit), A gate pulse (or a scan pulse) synchronized with the data signal is sequentially supplied to the gate line (or scan line) of the pixel array, and a timing controller for controlling the data driver circuit and the gate driver circuit .

每一畫素可包括一薄膜電晶體(TFT),薄膜電晶體(TFT)響應於閘極脈波,將一資料線的電壓供給至一畫素電極。閘極脈波在一閘極高電壓(VGH)和一閘極低電壓(VGL)之間擺動。閘極高電壓(VGH)為一電晶體的接通電壓,並且設置為相比較於一n型金屬氧化物半導體場效應電晶體(MOSFET)的閥值電壓更高的一電壓。閘極高電壓(VGH)為一電晶體的關斷電壓,並且設置為相比較於一n型金屬氧化物半導體場效應電晶體(MOSFET)的閥值電壓更低的一電壓。Each pixel may include a thin film transistor (TFT) that supplies a voltage of a data line to a pixel electrode in response to a gate pulse. The gate pulse swings between a gate high voltage (VGH) and a gate low voltage (VGL). The gate high voltage (VGH) is a turn-on voltage of a transistor and is set to a voltage higher than a threshold voltage of an n-type metal oxide semiconductor field effect transistor (MOSFET). The gate high voltage (VGH) is the turn-off voltage of a transistor and is set to a voltage lower than the threshold voltage of an n-type metal oxide semiconductor field effect transistor (MOSFET).

如今,已經應用在一顯示面板中一起容納閘驅動電路與畫素陣列的技術。在下文中,一GIP(Gate In Panel)為容納於顯示面板中的一閘極驅動器電路。此閘極驅動器電路包含一移位暫存器。移位暫存器包括級聯連接的複數個級。這些級響應於一起始脈波產生一輸出,並且根據一移位時脈移位此輸出。Nowadays, a technique of accommodating a gate driving circuit and a pixel array together in a display panel has been applied. In the following, a GIP (Gate In Panel) is a gate driver circuit housed in a display panel. This gate driver circuit includes a shift register. The shift register includes a plurality of stages of cascade connections. These stages produce an output in response to a starting pulse and shift the output according to a shift clock.

移位暫存器的級包含對閘極線充電的一Q節點,放電閘極線的一QB節點,以及連接到Q節點及QB節點的一開關電路。這個開關電路響應於一起始脈波或前一級的輸出透過充電Q節點提升閘極線的電壓,並且響應於下一級的輸出或一復位脈波來放電QB節點。開關電路可使用一金屬氧化物半導體場效應電晶體(MOSFET)結構的薄膜電晶體(TFT)來實現。The stage of the shift register includes a Q node for charging the gate line, a QB node for discharging the gate line, and a switching circuit connected to the Q node and the QB node. The switching circuit boosts the voltage of the gate line through the charging Q node in response to a starting pulse or the output of the previous stage, and discharges the QB node in response to the output of the next stage or a reset pulse. The switching circuit can be implemented using a thin film transistor (TFT) of a metal oxide semiconductor field effect transistor (MOSFET) structure.

觸控螢幕根據其結構可分類為附加式(add-on)、外嵌式(on-cell)、以及內嵌式(in-cell)觸控螢幕。附加式(add-on)觸控螢幕按照顯示裝置和觸控螢幕獨立製造且然後觸控螢幕附加至顯示裝置之頂基板的方式設置。外嵌式(on-cell)觸控螢幕按照組成一觸控螢幕的元件直接形成於一顯示裝置的頂玻璃基板之表面上方式構建。內嵌式(in-cell)觸控螢幕可透過將一觸控螢幕嵌入於顯示裝置中獲得一薄型顯示裝置且提高耐久性。然而,附加式(add-on)觸控螢幕具有觸控螢幕安裝於顯示裝置上而增加了顯示裝置的厚度,並降低了顯示裝置的亮度,由此減少可見度的問題。相對於附加式(add-on)觸控螢幕,外嵌式(on-cell)觸控螢幕由於單獨的觸控螢幕形成在顯示裝置的表面上,因此可減小顯示裝置的厚度,但由於組成觸控螢幕的驅動電極和感測電極以及用於絕緣驅動電極和感測電極的絕緣層,仍然具有顯示裝置的厚度和製程數目增加,由此製造成本增加的問題。Touch screens can be classified into add-on, on-cell, and in-cell touch screens according to their structure. An add-on touch screen is independently manufactured in accordance with the display device and the touch screen and then the touch screen is attached to the top substrate of the display device. An on-cell touch screen is constructed by forming components of a touch screen directly on the surface of a top glass substrate of a display device. An in-cell touch screen can achieve a thin display device and improve durability by embedding a touch screen in a display device. However, an add-on touch screen having a touch screen mounted on the display device increases the thickness of the display device and reduces the brightness of the display device, thereby reducing the visibility problem. Compared with an add-on touch screen, an on-cell touch screen is formed on the surface of the display device by a separate touch screen, thereby reducing the thickness of the display device, but due to the composition The driving electrodes and sensing electrodes of the touch screen and the insulating layer for insulating the driving electrodes and the sensing electrodes still have a problem that the thickness of the display device and the number of processes are increased, thereby increasing the manufacturing cost.

內嵌式(in-cell)觸控螢幕由於耐久性可以得到改善且其厚度可以減少,因此可以解決附加式(add-on)及外嵌式(on-cell)觸控螢幕的問題。內嵌式(in-cell)觸控螢幕可分類為一光學觸控螢幕以及一電容式觸控螢幕。The in-cell touch screen can be improved in durability and its thickness can be reduced, so that the problems of add-on and on-cell touch screens can be solved. The in-cell touch screen can be classified into an optical touch screen and a capacitive touch screen.

光學觸控螢幕具有形成於顯示裝置的一薄膜電晶體陣列上的一光感測層,以使得通過對應一觸控點的物體所反射的光線透過使用一背光單元的光線或紅外光而識別。然而,儘管光學觸控螢幕在一黑暗環境中顯示出相對穩定的驅動性能,但是在一明亮環境中,相比較於由觸控所反射之光線更強烈的光線會作為噪聲。這是因為由觸控所反射的光線強度非常低,且因此甚至當周圍環境稍微明亮時可產生識別錯誤。特別地,當周圍環境暴露在陽光下時,由於光顯著的高強度,光學觸控螢幕具有觸控可能無法識別的問題。The optical touch screen has a light sensing layer formed on a thin film transistor array of the display device such that light reflected by an object corresponding to a touch point is recognized by light or infrared light using a backlight unit. However, although the optical touch screen exhibits relatively stable driving performance in a dark environment, in a bright environment, light that is more intense than light reflected by the touch is used as noise. This is because the intensity of the light reflected by the touch is very low, and thus an identification error can be generated even when the surrounding environment is slightly bright. In particular, when the surrounding environment is exposed to sunlight, the optical touch screen has a problem that the touch may not be recognized due to the significant high intensity of the light.

電容式觸控螢幕可分類為一自電容型以及一互電容型。互電容型觸控螢幕的設置方式為︰一共同電極劃分為驅動電極和感測電極,以使得在驅動電極和感測電極之間產生互電容,以便當作用於此一觸控時透過測量產生的互電容識別觸控。然而,因為在觸控識別過程中所產生的互電容很小,而構成具有觸控螢幕的顯示裝置的閘極線和資料線的寄生電容非常大,因此互電容型觸控螢幕不能夠正確識別一觸控點。另外,因為用於觸控操作的複數個觸控驅動線和用於觸控感測的複數個觸控感測線需要形成於共同電極上,因此互電容型觸控螢幕需要一非常複雜的互連結構。為了解決這個問題,已經提出一獨立的顯示和觸控驅動方法,透過這種方法,形成為與面板的顯示區域中複數個畫素電極相重疊的複數個電極在顯示時間連同在畫素分別形成的畫素電極用作驅動液晶的共同電極,在一觸控時間,根據從一觸控驅動電路供給的一觸控掃描訊號作為用於感測觸控點的觸控電極。Capacitive touch screens can be classified into a self-capacitance type and a mutual capacitance type. The mutual capacitance type touch screen is arranged in such a manner that a common electrode is divided into a driving electrode and a sensing electrode, so that mutual capacitance is generated between the driving electrode and the sensing electrode, so as to be used as a transmission measurement for the touch. Mutual capacitance recognition touch. However, since the mutual capacitance generated during the touch recognition process is small, and the parasitic capacitance of the gate line and the data line constituting the display device having the touch screen is very large, the mutual capacitance type touch screen cannot be correctly recognized. A touch point. In addition, since a plurality of touch driving lines for touch operation and a plurality of touch sensing lines for touch sensing need to be formed on a common electrode, the mutual capacitance type touch screen requires a very complicated interconnection. structure. In order to solve this problem, an independent display and touch driving method has been proposed. In this way, a plurality of electrodes formed to overlap a plurality of pixel electrodes in a display area of the panel are formed at the display time together with the pixels. The pixel electrode is used as a common electrode for driving the liquid crystal. At a touch time, a touch scan signal supplied from a touch driving circuit is used as a touch electrode for sensing a touch point.

在這種獨立的顯示和觸控驅動方法中,構成一閘極驅動器電路的移位暫存器的多個級中包含一級,此級具有在觸控時間保持於備用狀態的一Q節點。此級的Q節點在觸控時間為一浮置狀態,其中沒有供給電源由此出現由於洩漏電流引起的電壓降。這樣的問題會導致輸出到閘極線的異常訊號,產生對應於此閘極線的顯示面板上例如一水平線顯示暗淡的缺陷。此外,在備用狀態級的Q節點的電壓降增加了觸控時間。In such a separate display and touch driving method, the plurality of stages of the shift register constituting a gate driver circuit includes one stage, and the stage has a Q node that remains in the standby state during the touch time. The Q node of this stage is in a floating state during the touch time, in which no power is supplied, thereby causing a voltage drop due to leakage current. Such a problem may result in an abnormal signal output to the gate line, resulting in a defect such as a horizontal line on the display panel corresponding to the gate line. In addition, the voltage drop at the Q node in the standby state level increases the touch time.

本發明在於提供一種顯示裝置、該顯示裝置的驅動裝置以及驅動方法,用以在觸控操作期間最小化在備用狀態下的一級的洩漏電流,以便保持此級的一Q節點的一電壓。The present invention provides a display device, a driving device for the display device, and a driving method for minimizing a leakage current of a first stage in a standby state during a touch operation to maintain a voltage of a Q node of the stage.

本發明的另一目的在於提供一種顯示裝置、該顯示裝置的驅動裝置以及驅動方法,本發明透過減少一顯示時間和一觸控時間之間的一餘量時間能夠保證在高解析度下的一時脈時間。Another object of the present invention is to provide a display device, a driving device for the display device, and a driving method. The present invention can ensure a high resolution at a time by reducing a margin between a display time and a touch time. Pulse time.

本發明的另一目的在於提供一種顯示裝置、該顯示裝置的驅動裝置以及驅動方法,本發明根據一備用級保持的穩定Q節點電壓而增加一觸控時間。Another object of the present invention is to provide a display device, a driving device for the display device, and a driving method. The present invention increases a touch time according to a stable Q node voltage maintained by a standby stage.

為了完成本發明之目的,提供了一種閘極驅動器電路,此閘極驅動器電路將一個圖框時間劃分為一顯示時間和一觸控時間,並且其中一觸控使能訊號具有一第一電平或一第二電平,此閘極驅動器電路包括一第N級,第N級包括︰一第一電晶體,由一前一級的一輸出訊號控制且將具有第一電平的觸控使能訊號供給至一Q節點;一第二電晶體,由一下一級的一輸出訊號控制且將具有第二電平的觸控使能訊號供給至Q節點;以及一上拉電晶體,由Q節點的一電壓控制以將提供於此的一第一時脈訊號輸出至一第N輸出端,其中當第一電晶體、第二電晶體、以及上拉電晶體為N型電晶體時,第一電平為一高電平且第二電平係為一低電平,以及當第一電晶體、第二電晶體、以及上拉電晶體為P型電晶體時,第一電平為一低電平且第二電平為一高電平。因此,透過將對應於高電平電源電壓的高電平觸控使能訊號(VTEN)供給至一源極-汲極路徑Q節點相對的一源極或汲極端,Q節點的電壓在自我啟動期間能夠不減少而保持且甚至增加,其中此源極-汲極路徑為Q節點的電荷可通過其洩漏的路徑。In order to accomplish the object of the present invention, a gate driver circuit is provided. The gate driver circuit divides a frame time into a display time and a touch time, and one of the touch enable signals has a first level. Or a second level, the gate driver circuit includes an Nth stage, and the Nth stage includes: a first transistor controlled by an output signal of a previous stage and having a first level of touch enable The signal is supplied to a Q node; a second transistor is controlled by an output signal of the next stage and supplies a touch enable signal having a second level to the Q node; and a pull-up transistor, by the Q node a voltage control to output a first clock signal provided thereto to an Nth output terminal, wherein when the first transistor, the second transistor, and the pull-up transistor are N-type transistors, the first battery Level is a high level and the second level is a low level, and when the first transistor, the second transistor, and the pull-up transistor are P-type transistors, the first level is a low level The second level is a high level. Therefore, by supplying a high-level touch enable signal (VTEN) corresponding to a high-level power supply voltage to a source or a drain terminal opposite to a source-drain path Q node, the voltage of the Q node is self-starting. The period can be maintained and even increased without decreasing, wherein this source-drain path is the path through which the charge of the Q node can leak.

本發明提供了一種閘極驅動器電路以及具有該閘極驅動器電路的觸控螢幕積體顯示裝置,這種閘極驅動器電路能夠最小化觸控操作期間在一備用狀態下的一級的洩漏電流,以便保持此級的一Q節點的一電壓,透過減少一顯示時間與一觸控時間之間的餘量時間能夠保證高解析度下的一時脈時間,以及根據一備用級保持的穩定Q節點電壓增加觸控時間。The present invention provides a gate driver circuit and a touch screen integrated display device having the gate driver circuit, which can minimize a leakage current of a first stage in a standby state during a touch operation, so that Maintaining a voltage of a Q node of this level can ensure a clock time at a high resolution and a stable Q node voltage increase according to a standby level by reducing the margin time between a display time and a touch time. Touch time.

以下將參考附圖給出本發明之實施例的一閘極驅動器電路以及具有該閘極驅動器電路的一觸控螢幕積體顯示裝置的描述。本發明的上述和其他方面將通過較佳實施例進行詳細描述,以使得本發明能夠由本領域的技術人員容易地理解和實現。較佳實施例的修改對於本領域的技術人員將是顯而易見的,並且這裡闡述的本發明可應用到其他實施例和應用中,而不脫離本發明的精神和範圍以及所附之專利申請範圍。在附圖中,一裝置的尺寸和厚度為了清晰可以誇大。圖式的描述中相同的數字指代相同的元件。Hereinafter, a description will be given of a gate driver circuit and a touch screen integrated body display device having the gate driver circuit according to an embodiment of the present invention with reference to the accompanying drawings. The above and other aspects of the present invention will be described in detail by the preferred embodiments thereof so that the present invention can be easily understood and implemented by those skilled in the art. The modifications of the preferred embodiment will be apparent to those skilled in the art, and the invention as described herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention and the scope of the appended claims. In the drawings, the size and thickness of a device may be exaggerated for clarity. The same numbers in the description of the drawings refer to the same elements.

本發明的特徵和優點及其完成方法將在以下的附圖和詳細描述中顯而易見。然而,這些實施例可以實現為許多不同的形式且不應解釋為限於這裡所闡述的實施例;相反,這些實施例可提供為以使得本發明將是徹底和完整的,並且將本領域技術人員充分地傳達這些概念。在圖式的描述中,相同的數字指代相同的元件。在附圖中,為了清楚和方便描述,層和區域的尺寸及相對尺寸可能誇大。The features and advantages of the present invention and the method of accomplishing the same are apparent from the accompanying drawings. However, the embodiments may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments may be provided so that the invention will be thorough and complete, and Fully convey these concepts. In the description of the drawings, the same numerals refer to the same elements. The size and relative sizes of layers and regions may be exaggerated in the drawings for clarity and convenience.

應該理解的是,當一元件稱為位於另一元件「上」時,它可以直接位於另一元件上或可以在其間存在一中間元件。相反,當一元件稱為「直接位於」另一元件上時,則不存在中間元件。It will also be understood that when an element is referred to as being "on" another element, it can be < In contrast, when an element is referred to as being "directly on" another element, there is no intermediate element.

此外,相對用語,例如「底」或「底部」以及「頂」或「頂部」,在本文中可用於描述在圖式中一個元件相對於另一元件的關係。應該理解的是,相對用語意在除了包括圖式中描述的取向之外,還包含裝置的不同方位。舉例而言,如果裝置在一個附圖中翻轉,則描述為在其他元件之「底」側的元件將定向於其他元件的「頂」側。示例性用語「底」因此可以包括「底」及「頂」兩種方位,這取決於圖式的特定取向。 In addition, relative terms such as "bottom" or "bottom" and "top" or "top" are used herein to describe the relationship of one element to another in the drawings. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientations described in the drawings. For example, if the device is turned over in one of the figures, the elements described as "bottom" on the other elements will be directed to the "top" side of the other elements. The exemplary term "bottom" can thus include both "bottom" and "top" orientations, depending on the particular orientation of the schema.

在這裡本發明的描述中使用的用語僅用於描述具體實施例的目的,並非意在限制本發明。使用於本發明和所附的專利申請範圍的描述中,單數形式的「一」以及「該」旨在也包括複數形式,除非上下文另外明確指出。將進一步理解的是,當用語「包括」與/或「包含」,或者「具有」使用於本說明書中時,指定所述的特徵、區域、整體、步驟、操作、元件、與/或部件的存在,但不排除存在或添加一個或多個其他的特徵、區域、整體、步驟、操作、元件、部件、與/或其組合。 The terms used in the description of the present invention are used for the purpose of describing the specific embodiments and are not intended to limit the invention. The use of the singular forms "a", " It will be further understood that the terms "comprising" and / or "comprising" or "having" are used in the specification to refer to the described features, regions, integers, steps, operations, components, and/or components. The existence or addition of one or more other features, regions, integers, steps, operations, components, components, and/or combinations thereof.

在本發明的一閘極驅動器電路中,開關元件可實現為一n型或p型金屬氧化物半導體場效應電晶體(MOSFET)結構的電晶體。在以下的實施例中,表示一n型電晶體,但本發明不限於此。此電晶體為包括一閘極、一源極以及一汲極的三電極元件。源汲為對電晶體供給載子的一電極。載子從電晶體中的源極開始流動。汲極為其中載子釋放至電晶體外部的一電極。也就是說,在一金屬氧化物半導體場效應電晶體(MOSFET)中,載子從源極流動至汲極。在一n型金屬氧化物半導體場效應電晶體(MOSFET)(NMOS)中,因為載子為電子,因此為了使得電子從源極流動至汲極,因此一源極電壓小於一汲極電壓。在此n型金屬氧化物半導體場效應電晶體(MOSFET)中,因為電子從源極朝向汲極流動,因此一電流從汲極朝向源極流動。在p型金屬氧化物半導體場效應電晶體(MOSFET)(PMOS)中,因為載子為電洞,為了使得電洞從源極流動到汲極,因此一源極電壓大於一汲極電壓。在p型金屬氧化物半導體場效應電晶體(MOSFET)中,因為電洞從源極朝向汲極流動,因此一電流從源極朝向汲極流動。應當指出的是,金屬氧化物半導體場效應電晶體(MOSFET)的源極和汲極是不固定的。舉例而言,金屬氧化物半導體場效應電晶體(MOSFET)的源極和汲極可以根據一施加的電壓改變。在以下的實施例中,由於電晶體的一源極和汲極,因此本發明並不限定。 In a gate driver circuit of the present invention, the switching element can be implemented as an n-type or p-type metal oxide semiconductor field effect transistor (MOSFET) structure transistor. In the following embodiments, an n-type transistor is shown, but the invention is not limited thereto. The transistor is a three-electrode element comprising a gate, a source and a drain. The source is an electrode that supplies a carrier to the transistor. The carrier begins to flow from the source in the transistor. The crucible is an electrode in which the carrier is released to the outside of the transistor. That is, in a metal oxide semiconductor field effect transistor (MOSFET), carriers flow from the source to the drain. In an n-type metal oxide semiconductor field effect transistor (MOSFET) (NMOS), since the carrier is an electron, a source voltage is less than a drain voltage in order to cause electrons to flow from the source to the drain. In this n-type metal oxide semiconductor field effect transistor (MOSFET), since electrons flow from the source toward the drain, a current flows from the drain to the source. In a p-type metal oxide semiconductor field effect transistor (MOSFET) (PMOS), since the carrier is a hole, a source voltage is greater than a drain voltage in order to cause a hole to flow from the source to the drain. In a p-type metal oxide semiconductor field effect transistor (MOSFET), since a hole flows from the source toward the drain, a current flows from the source toward the drain. It should be noted that the source and drain of a metal oxide semiconductor field effect transistor (MOSFET) are not fixed. For example, the source and drain of a metal oxide semiconductor field effect transistor (MOSFET) can vary depending on an applied voltage. In the following embodiments, the present invention is not limited due to a source and a drain of the transistor.

本發明將一圖框週期時間劃分為至少一個觸控時間以及至少一個顯示時間來驅動畫素和觸控感測器。顯示時間與介於其間的一觸控時間分隔開。閘極驅動器電路的一移位暫存器在一觸控時間期間不應產生一輸出且應從下一個顯示時間重新開始時產生下一輸出。然而,移位暫存器的一Q節點電壓在觸控時間期間放電,並且當下一顯示時間重新開始時,一閘極脈波的電壓降低,並且因此,可產生其中與同一閘極線相連接的畫素的電荷量降低的一線形式的噪聲。The present invention divides a frame cycle time into at least one touch time and at least one display time to drive the pixels and the touch sensor. The display time is separated from a touch time in between. A shift register of the gate driver circuit should not generate an output during a touch time and should generate a next output when restarting from the next display time. However, a Q-node voltage of the shift register is discharged during the touch time, and when the next display time is restarted, the voltage of one gate pulse is lowered, and thus, the same gate line can be generated. The pixel's charge decreases in the form of a line of noise.

當電晶體的一閘極和一源極之間的電壓Vgs相比較於閥值電壓Vth更低時,電晶體截止且因此一汲極電流Id不流動,但是電晶體的一關閉狀態或亞閥值區,可能會發生洩漏。實際上,當Vgs小於Vth時(Vgs<Vth),在電晶體的一關閉狀態或亞閥值區,如圖1所示,產生一亞閥值電流。隨著電晶體的一汲極和一源極之間的電壓Vds與一閘極和一源極之間的電壓Vgs的增加,如圖1及圖2所示,洩漏或亞閥值電流增加。這樣的洩漏不大,但是隨著洩漏的流動時間的延長,洩漏量增加至對電路動作和耗能產生不良影響。此外,隨著操作溫度的升高,電晶體的洩漏增加,並且當電晶體的一半導體通道暴露時,洩漏量的增大與光線強度成正比。When the voltage Vgs between a gate and a source of the transistor is lower than the threshold voltage Vth, the transistor is turned off and thus a drain current Id does not flow, but a closed state or sub-valve of the transistor In the value area, a leak may occur. In fact, when Vgs is less than Vth (Vgs < Vth), a sub-threshold current is generated in a closed state or sub-threshold region of the transistor, as shown in FIG. As the voltage Vds between a drain and a source of the transistor increases with a voltage Vgs between a gate and a source, as shown in FIGS. 1 and 2, the leakage or sub-threshold current increases. Such leakage is not large, but as the flow time of the leak increases, the amount of leakage increases to adversely affect circuit operation and energy consumption. Furthermore, as the operating temperature increases, the leakage of the transistor increases, and when a semiconductor channel of the transistor is exposed, the increase in the amount of leakage is proportional to the intensity of the light.

在本發明中,為了對於觸控時間最小化與一Q節點的一放電路徑相連接的電晶體的洩漏,透過減少電晶體的關斷狀態(Vgs<Vth)下的Vds,可以防止Q節點的放電。In the present invention, in order to minimize the touch time to minimize the leakage of the transistor connected to a discharge path of a Q node, the Q node can be prevented by reducing the Vds in the off state of the transistor (Vgs < Vth). Discharge.

圖3及圖4表示其中Q節點可在一閘極驅動器電路中放電的一實例的圖式。圖3及圖4表示透過在一閘極驅動器電路的一雙向移位暫存器中的向前方向模式下作業,產生第n個輸出Vout的一第n級。圖3及圖4的閘極驅動器電路表示出其中可出現Q節點之放電的情況,並且應當注意到圖3及圖4的閘極驅動器電路並非本發明之前的習知技術所知悉。圖3及圖4的電晶體為n型金屬氧化物半導體場效應電晶體(MOSFET),但本發明不限於此。3 and 4 show an example of an example in which a Q node can be discharged in a gate driver circuit. 3 and 4 show an nth stage of the nth output Vout generated by operation in the forward direction mode in a bidirectional shift register of a gate driver circuit. The gate driver circuit of Figures 3 and 4 illustrates the occurrence of a discharge of the Q node therein, and it should be noted that the gate driver circuit of Figures 3 and 4 is not known in the prior art of the present invention. The transistor of FIGS. 3 and 4 is an n-type metal oxide semiconductor field effect transistor (MOSFET), but the present invention is not limited thereto.

請參照圖3及圖4,閘極驅動器電路的一移位暫存器包括級聯連接的多個級。這些級分別包括其控制一上拉電晶體Tup的一Q節點,連接至Q節點的一充電/放電單元21,一Q節點穩定器22,以及控制一下拉電晶體Tdown的一QB節點。Referring to FIG. 3 and FIG. 4, a shift register of the gate driver circuit includes a plurality of stages connected in cascade. These stages include a Q node that controls a pull-up transistor Tup, a charge/discharge unit 21 connected to the Q node, a Q-node stabilizer 22, and a QB node that controls the pull-down transistor Tdown.

充電/放電單元21包括第一及第二電晶體T1及T2。第一及第二電晶體T1及T2充電/放電一Q節點。當一雙向移位暫存器在一向前方向模式中作業時,第一電晶體T1響應於一第(n-1)級的一輸出(Gn-1)對一Q節點充電,並且第二電晶體T2響應於一第(n+1)級的一輸出G(n+1)對一Q節點放電。第一電晶體T1的汲極連接至一正向電源終端且其源極連接至一Q節點。第一電晶體T1的閘極連接至一第一閘極終端。在一正向模式下,一閘極高電壓(VGH)提供給正向電源終端。在一反向模式下,一閘極低電壓(VGL)提供給此正向電源終端。一在前的時脈或一第(n-1)級的輸出G(n-1)輸入到第一閘極終端。此在前的時脈為具有相比較於施加到上拉電晶體Tup的一第n個時脈CLK的相位更早相位的時脈。一閘極高電壓(VGH)設定為相比較於第一、第二、以及第三電晶體T1、T2、以及T3的閥值電壓Vth更高的一電壓。一閘極低電壓(VGL)設定為相比較於第一、第二、以及第三電晶體T1、T2、以及T3的閥值電壓Vth更低的一電壓。The charging/discharging unit 21 includes first and second transistors T1 and T2. The first and second transistors T1 and T2 charge/discharge a Q node. When a bidirectional shift register operates in a forward direction mode, the first transistor T1 charges a Q node in response to an output (Gn-1) of an (n-1)th stage, and the second transistor The crystal T2 discharges a Q node in response to an output G(n+1) of an (n+1)th stage. The drain of the first transistor T1 is connected to a forward power supply terminal and its source is connected to a Q node. The gate of the first transistor T1 is connected to a first gate terminal. In a forward mode, a gate high voltage (VGH) is provided to the forward power supply terminal. In a reverse mode, a gate low voltage (VGL) is provided to the forward power supply terminal. A preceding clock or an output (n-1) of the (n-1)th stage is input to the first gate terminal. This preceding clock is a clock having a phase earlier than the phase of an nth clock CLK applied to the upper pull transistor Tup. A gate high voltage (VGH) is set to a voltage higher than the threshold voltages Vth of the first, second, and third transistors T1, T2, and T3. A gate low voltage (VGL) is set to a voltage lower than the threshold voltages Vth of the first, second, and third transistors T1, T2, and T3.

第二電晶體T2的汲極連接至Q節點且其源極連接至一反向電源終端。第二電晶體T2的閘極連接至一第二閘極終端。在一正向模式下,一閘極低電壓(VGL)提供給一反向電源終端。在一反向模式下,閘極高電壓(VGH)提供給一反向電源端子。一下一時脈或第(n+1)級的一輸出G(n+1)輸入至第二閘極終端。此下一時脈為具有相比較於第n時脈CLK之相位更晚的一相位的時脈。The drain of the second transistor T2 is connected to the Q node and its source is connected to a reverse power supply terminal. The gate of the second transistor T2 is connected to a second gate terminal. In a forward mode, a gate low voltage (VGL) is provided to a reverse power supply terminal. In a reverse mode, the gate high voltage (VGH) is supplied to a reverse power supply terminal. An output of the next clock or the (n+1)th stage, G(n+1), is input to the second gate terminal. This next clock is a clock having a phase that is later than the phase of the nth clock CLK.

Q節點使用來自充電/放電單元21的一閘極高電壓(VGH)預充電,並且當一第n時脈CLK提供給上拉電晶體Tup時,其一電位由於引導而接通上拉電晶體Tup升高至2倍閘極高電壓(VGH)。在提供閘極高電壓(VGH)的一第n時脈CLK時,上拉電晶體Tup根據一Q節點電壓而導通,以將一輸出Vout電壓提升至閘極高電壓(VGH)電位。上拉電晶體Tup的閘極連接至Q節點。上拉電晶體Tup的汲極連接至一時脈終端。上拉電晶體Tup的源極連接至一輸出終端。一第n時脈CLK輸入到此時脈終端。The Q node is precharged using a gate high voltage (VGH) from the charge/discharge unit 21, and when an nth clock CLK is supplied to the pull-up transistor Tup, a potential thereof is turned on by pulling on the pull-up transistor. Tup rises to 2 times the gate high voltage (VGH). When an nth clock CLK of the gate high voltage (VGH) is supplied, the pull-up transistor Tup is turned on according to a Q-node voltage to boost an output Vout voltage to a gate high voltage (VGH) potential. The gate of the pull-up transistor Tup is connected to the Q node. The drain of the pull-up transistor Tup is connected to a clock terminal. The source of the pull-up transistor Tup is connected to an output terminal. An nth clock CLK is input to the pulse terminal.

Q節點穩定器22包括一第三電晶體T3。第三電晶體T3響應於一QB節點對Q節點放電。一QB控制訊號基於一第n時脈CLK和提供給第一閘極終端的一時脈或者不與一在前輸出的時脈(Gn-1)重疊的時脈而輸入到QB節點。透過同時接通第三電晶體T3和一下拉電晶體Tdown,QB控制訊號在對Q節點放電時拉低輸出電壓Vout。第三電晶體T3的閘極連接至QB節點。第三電晶體T3的汲極連接至Q節點。第三電晶體T3的源極連接至一低電位電源終端。一閘極低電壓(VGL)供給至低電位電源終端。The Q node stabilizer 22 includes a third transistor T3. The third transistor T3 discharges the Q node in response to a QB node. A QB control signal is input to the QB node based on an nth clock CLK and a clock supplied to the first gate terminal or a clock that does not overlap with a previously output clock (Gn-1). By simultaneously turning on the third transistor T3 and the lower pull transistor Tdown, the QB control signal pulls down the output voltage Vout while discharging the Q node. The gate of the third transistor T3 is connected to the QB node. The drain of the third transistor T3 is connected to the Q node. The source of the third transistor T3 is connected to a low potential power supply terminal. A gate low voltage (VGL) is supplied to the low potential power supply terminal.

透過響應於一QB控制訊號對一輸出終端放電,下拉電晶體Tdown將輸出Vout電壓降低至一閘極低電壓(VGL)。下拉電晶體Tdown的閘極連接至QB節點。下拉電晶體Tdown的汲極連接至輸出終端。下拉電晶體Tdown的源極連接至低電位電源終端。By discharging an output terminal in response to a QB control signal, the pull-down transistor Tdown reduces the output Vout voltage to a gate low voltage (VGL). The gate of the pull-down transistor Tdown is connected to the QB node. The drain of the pull-down transistor Tdown is connected to the output terminal. The source of the pull-down transistor Tdown is connected to the low potential power supply terminal.

觸控時間相比較於顯示時間的1個水平時間更長。在觸控時間,一閘極低電壓(VGL)提供至第二及第三電晶體T2及T3的閘極。因此,對於一觸控時間,因為第二及第三電晶體T2及T3的Vgs為0,因此一汲極和一源極之間的電流理想應該不存在,但是由於洩漏電流,電流存在且由此Q節點的一電壓釋放。對於一觸控時間,因為第二及第三電晶體T2及T3的一汲極和一源極之間的電壓Vds,透過閘極高電壓(VGH)和閘極低電壓(VGL)之間的差值電壓(Vds = Vq-VGL≒VGH-VGL)為高,因此在電晶體的關斷狀態下發生洩漏電流。當Q節點的放電時間延長時,一Q節點電壓Vq降低,並且從而閘極驅動器電路不產生正常輸出。The touch time is longer than one horizontal time of the display time. At the touch time, a gate low voltage (VGL) is supplied to the gates of the second and third transistors T2 and T3. Therefore, for a touch time, since the Vgs of the second and third transistors T2 and T3 are 0, the current between a drain and a source should ideally not exist, but due to leakage current, current exists and A voltage of this Q node is released. For a touch time, because the voltage Vds between a drain and a source of the second and third transistors T2 and T3 is transmitted between the gate high voltage (VGH) and the gate low voltage (VGL) The difference voltage (Vds = Vq - VGL ≒ VGH - VGL) is high, so a leakage current occurs in the off state of the transistor. When the discharge time of the Q node is extended, a Q-node voltage Vq is lowered, and thus the gate driver circuit does not produce a normal output.

在圖4中,CLKB為一第n時脈CLK的反相的時脈。Vqb為QB節點的一電壓。In FIG. 4, CLKB is an inverted clock of an nth clock CLK. Vqb is a voltage of the QB node.

在本發明中,為了防止在Q節點的這種洩漏,在觸控時間位於Q節點的一放電路徑上的第二及第三電晶體T2及T3的一關斷狀態(Vgs<Vth)下,Vds控制在最小值(Vds=0),如圖5至圖8所示。In the present invention, in order to prevent such leakage at the Q node, in a turn-off state (Vgs<Vth) of the second and third transistors T2 and T3 on a discharge path of the Q node at the touch time, Vds is controlled at the minimum value (Vds = 0), as shown in Figures 5-8.

圖5至圖8為表示根據本發明一實施例防止一Q節點之放電的圖式。5 through 8 are diagrams showing the prevention of discharge of a Q node in accordance with an embodiment of the present invention.

請參照圖5及圖6,本發明使用一AC訊號,即一觸控使能訊號(VTEN),防止在一觸控時間在Q節點的放電。觸控使能訊號(VTEN)為一AC訊號,即在一顯示時間保持一低電平電壓(=VGL),並且在一觸控時間保持一高電平電壓(=VGH)。Referring to FIG. 5 and FIG. 6, the present invention uses an AC signal, that is, a touch enable signal (VTEN), to prevent discharge at the Q node during a touch time. The touch enable signal (VTEN) is an AC signal, that is, a low level voltage (=VGL) is maintained for one display time, and a high level voltage (=VGH) is maintained for one touch time.

對於一觸控時間,一閘極低電壓(VGL)提供至第一、第二、以及第三電晶體T1、T2、以及T3的閘極以保持關斷狀態。用於觸控時間,觸控使能訊號(VTEN)的閘極高電壓(VGH)提供給第一、第二、以及第三電晶體T1、T2、以及T3的源極。第一電晶體T1在一觸控時間使用閘極高電壓(VGH)充電一Q節點。然而,第二及第三電晶體T2及T3連接至Q節點的一放電路徑以抑制觸控時間的Q節點的放電。在這種情況下,第二及第三電晶體T2及T3的源極可認為是一汲極。因此,因為第一、第二、以及第三電晶體T1、T2、以及T3之每一個的Vds變為最小值(Vds=0,基本為零),因此通過電晶體不存在洩漏且由此Q節點不放電。For a touch time, a gate low voltage (VGL) is supplied to the gates of the first, second, and third transistors T1, T2, and T3 to maintain an off state. For touch time, the gate high voltage (VGH) of the touch enable signal (VTEN) is supplied to the sources of the first, second, and third transistors T1, T2, and T3. The first transistor T1 charges a Q node using a gate high voltage (VGH) at a touch time. However, the second and third transistors T2 and T3 are connected to a discharge path of the Q node to suppress discharge of the Q node of the touch time. In this case, the sources of the second and third transistors T2 and T3 can be considered to be one drain. Therefore, since the Vds of each of the first, second, and third transistors T1, T2, and T3 becomes the minimum value (Vds = 0, substantially zero), there is no leakage through the transistor and thus Q The node does not discharge.

當一時脈CLK輸入時,Q節點的一電壓升高到2倍閘極高電壓(VGH)。在這種情況下,為了最小化電晶體的Vds,觸控使能訊號(VTEN)的一電壓可與時脈CLK同步以上升至2倍閘極高電壓(VGH)。When a clock CLK is input, a voltage at the Q node rises to 2 times the gate high voltage (VGH). In this case, in order to minimize the Vds of the transistor, a voltage of the touch enable signal (VTEN) can be synchronized with the clock CLK to rise to 2 times the gate high voltage (VGH).

對於一觸控時間,在每一電晶體T1、T2、以及T3,因為Vds=Vq-VGH≒VGH-VGH=0,因此洩漏不存在。因此,在本發明中,Q節點的一電壓Vq可以在一觸控時間幾乎不變地保持。For a touch time, at each of the transistors T1, T2, and T3, since Vds = Vq - VGH ≒ VGH - VGH = 0, the leakage does not exist. Therefore, in the present invention, a voltage Vq of the Q node can be maintained almost constant at a touch time.

將觸控使能訊號(VTEN)提供至第一電晶體T1的原因是為了將一掃描方向改變為一時脈訊號變化。圖5及圖7的一虛擬級電路可只應用於移位暫存器的全部級中其中觸控時間開始和終止的位置的級。其他級應該使用一現有的級電路。The reason why the touch enable signal (VTEN) is supplied to the first transistor T1 is to change a scan direction to a clock signal change. A virtual stage circuit of Figures 5 and 7 can be applied only to the stages of all stages of the shift register where the touch time begins and ends. Other stages should use an existing stage circuit.

觸控使能訊號(VTEN)可具有相比較於圖6的一觸控時間更寬的一高電平的時間,以對應於移位暫存器的一掃描方向改變。當觸控使能訊號(VTEN)和QB節點的一電壓同時上升到一高電平(=VGH)時,即使第一電晶體T1不導通,Q節點也通過第三電晶體T3進行充電,並且因此一輸出Vout可能在不希望的定時上升到高電平(=VGH)。考慮到這一點,當觸控使能訊號(VTEN)相比較於一觸控時間持續更寬時,觸控使能訊號(VTEN)按照如下限定。觸控使能訊號(VTEN)不應該在相比較於觸控時間開始更早1個時脈脈波寬度上升到高電平(=VGH),或不應該相比較於觸控時間終止之後更遲1個時脈脈波寬度而落至一低電平(=VGL)。1個時脈脈波寬度為提供至移位暫存器的一閘極移位時脈(CLK)的1個脈波寬度。換句話而言,當觸控使能訊號(VTEN)的持續相比較於觸控時間更大時,觸控使能訊號(VTEN)應該從相比較於觸控時間開始更遲1個時脈脈波寬度之內的時間提升至一閘極高電壓(VGH)電平,並且應該在緊接觸控時間結束之後的1個時脈脈波寬度之內的時間下降至閘極低電壓(VGL)電平。The touch enable signal (VTEN) may have a higher level of time than a touch time of FIG. 6 to change in a scan direction corresponding to the shift register. When the touch enable signal (VTEN) and a voltage of the QB node simultaneously rise to a high level (=VGH), even if the first transistor T1 is not turned on, the Q node is charged through the third transistor T3, and Therefore an output Vout may rise to a high level (=VGH) at an undesired timing. With this in mind, when the touch enable signal (VTEN) continues to be wider than a touch time, the touch enable signal (VTEN) is defined as follows. The touch enable signal (VTEN) should not rise to a high level (=VGH) one pulse pulse earlier than the start of the touch time, or should not be later than the end of the touch time. 1 clock pulse width falls to a low level (= VGL). One clock pulse width is one pulse width supplied to a gate shift clock (CLK) of the shift register. In other words, when the touch enable signal (VTEN) continues to be larger than the touch time, the touch enable signal (VTEN) should be one clock later than the touch time. The time within the pulse width is raised to a gate high voltage (VGH) level and should fall to the gate low voltage (VGL) for a time within one pulse pulse width after the end of the close contact time Level.

請參照圖7至圖8B,一閘極高電壓(VGH)可提供至第一電晶體T1的汲極。本實施例可將移位暫存器的全部級的一電路應用於圖7的一電路,或可只應用於一特定的級。Referring to FIGS. 7-8B, a gate high voltage (VGH) may be supplied to the drain of the first transistor T1. This embodiment can apply a circuit of all stages of the shift register to a circuit of FIG. 7, or can be applied to only a specific stage.

觸控使能訊號(VTEN)的一高電平時間可與一觸控時間同步。觸控使能訊號(VTEN)在觸控時間開始的同時提升至閘極高電壓(VGH)電平並在觸控時間終止的同時降低至閘極低電壓(VGL)電平。A high time of the touch enable signal (VTEN) can be synchronized with a touch time. The touch enable signal (VTEN) is raised to the gate high voltage (VGH) level at the beginning of the touch time and is lowered to the gate low voltage (VGL) level while the touch time is terminated.

圖8A為在一個觸控時間終止之後下一顯示時間開始之前第一次使得一時脈訊號(CLK)到達高電平的一實例。FIG. 8A is an example of first causing a clock signal (CLK) to reach a high level before the start of the next display time after the end of one touch time.

圖8B為在一個觸控時間終止之後下一顯示時間開始之前第一次使得一CLKB到達高電平的一實例。對其提供觸控使能訊號(VTEN)的一閘極驅動器電路的級的數目需要多達1個圖框週期之內觸控時間組的數目。在這些級之中,從一個觸控時間的角度來看,應保持Q節點的電壓的級為一個,並且在對其提供觸控使能訊號(VTEN)的其餘狀態中,一Q節點和一QB節點可浮置。在這種情況下,在其中由於一外部影響而注入Q節點的電荷的一狀態中,當一時脈訊號(CLK)立即使能時,可能出現一不期望的輸出。因此,在時脈訊號(CLK)使能之前啟用CLKB,並且,在Q節點初始化為一閘極低電壓(VGL)且QB節點初始化為一閘極高電壓(VGH)之後開始一顯示時間作業。結果,電路作業的穩定性得以提高。FIG. 8B is an example of first causing a CLKB to reach a high level before the start of the next display time after the end of one touch time. The number of stages of a gate driver circuit to which the touch enable signal (VTEN) is provided requires up to one number of touch time groups within a frame period. Among these levels, from the perspective of a touch time, the voltage of the Q node should be maintained at one level, and in the remaining states in which the touch enable signal (VTEN) is provided, a Q node and a The QB node can be floated. In this case, in a state in which the charge of the Q node is injected due to an external influence, when a clock signal (CLK) is immediately enabled, an undesired output may occur. Therefore, CLKB is enabled before the clock signal (CLK) is enabled, and a display time job is started after the Q node is initialized to a gate low voltage (VGL) and the QB node is initialized to a gate high voltage (VGH). As a result, the stability of the circuit operation is improved.

本發明的一驅動裝置可使用與圖9至圖11的相同形式的一積體電路(IC)封裝實現。A driving device of the present invention can be implemented using an integrated circuit (IC) package of the same form as that of Figs.

請參考圖9,此驅動裝置包括一驅動積體電路(DIC)以及一觸控積體電路(TIC)。Referring to FIG. 9, the driving device includes a driving integrated circuit (DIC) and a touch integrated circuit (TIC).

驅動積體電路(DIC)包括一觸控感測器通道單元10、一Vcom緩衝器11、一開關陣列12、一第一定時控制訊號發生器13、一多工器(MUX)14、以及一DTX補償單元15。The driving integrated circuit (DIC) includes a touch sensor channel unit 10, a Vcom buffer 11, a switch array 12, a first timing control signal generator 13, a multiplexer (MUX) 14, and a DTX compensation unit 15.

觸控感測器通道單元10通過一感測線(SL)連接至觸控感測器的一圖案電極120且通過開關陣列12連接至Vcom緩衝器11以及多工器14。多工器14將感測線(SL)連接至觸控積體電路(TIC)。在一1:3的多工器中,多工器14將觸控積體電路(TIC)的一個通道時分連接至三個感測線SL,由此減少了觸控積體電路(TIC)的通道數目。多工器14響應於MUX控制訊號(MUX C1-C3)選擇感測線連接至觸控積體電路(TIC)的一通道。多工器14通過觸控線連接至觸控積體電路(TIC)的通道。The touch sensor channel unit 10 is connected to a pattern electrode 120 of the touch sensor through a sensing line (SL) and is connected to the Vcom buffer 11 and the multiplexer 14 through the switch array 12. The multiplexer 14 connects the sensing line (SL) to the touch integrated circuit (TIC). In a 1:3 multiplexer, the multiplexer 14 connects one channel time division of the touch integrated circuit (TIC) to the three sensing lines SL, thereby reducing the touch integrated circuit (TIC). The number of channels. The multiplexer 14 selects a sensing line connected to a channel of the touch integrated circuit (TIC) in response to the MUX control signal (MUX C1-C3). The multiplexer 14 is connected to the channel of the touch integrated circuit (TIC) through a touch line.

Vcom緩衝器11輸出一畫素的一共同電壓Vcom。在定時控制訊號發生器13的控制下,開關陣列12在一顯示時間將共同電壓Vcom從Vcom緩衝器11供給至觸控感測器通道單元10。在定時控制訊號發生器13的控制下,開關陣列12在一觸控時間將感測線(SL)連接至觸控積體電路(TIC)。The Vcom buffer 11 outputs a common voltage Vcom of one pixel. Under the control of the timing control signal generator 13, the switch array 12 supplies the common voltage Vcom from the Vcom buffer 11 to the touch sensor channel unit 10 at a display time. Under the control of the timing control signal generator 13, the switch array 12 connects the sensing line (SL) to the touch integrated circuit (TIC) at a touch time.

第一定時控制訊號發生器13產生用於控制顯示驅動器電路及觸控積體電路(TIC)的作業定時的定時控制訊號。顯示驅動器電路包括用於將一輸入影像的資料寫入至一畫素中的一資料驅動器電路以及一閘極驅動器電路。資料驅動器電路產生資料電壓,以將資料電壓供給至顯示面板的資料線。資料驅動器電路可整合於驅動積體電路(DIC)中。閘極驅動器將與一資料電壓同步的閘極脈波(或掃描脈波)順次供給至顯示面板的閘極線。閘極驅動器電路可以與畫素一起設置在顯示面板的基板上,如圖12及圖15所示。The first timing control signal generator 13 generates a timing control signal for controlling the operation timing of the display driver circuit and the touch integrated circuit (TIC). The display driver circuit includes a data driver circuit for writing data of an input image into a pixel and a gate driver circuit. The data driver circuit generates a data voltage to supply the data voltage to the data line of the display panel. The data driver circuit can be integrated into the driver integrated circuit (DIC). The gate driver sequentially supplies a gate pulse wave (or a scanning pulse wave) synchronized with a data voltage to the gate line of the display panel. The gate driver circuit can be disposed on the substrate of the display panel together with the pixels, as shown in FIGS. 12 and 15.

第一定時控制訊號發生器13與圖12的一定時控制器400的一定時控制訊號發生器大致上相同。第一定時控制訊號發生器13在顯示時間驅動一顯示驅動器電路且在觸控時間驅動一觸控積體電路(TIC)。The first timing control signal generator 13 is substantially identical to the timing control signal generator of the timing controller 400 of FIG. The first timing control signal generator 13 drives a display driver circuit during display time and drives a touch integrated circuit (TIC) during touch time.

第一定時控制訊號發生器13產生一觸控使能訊號(Touch EN),觸控使能訊號(Touch EN)定義一顯示時間以及一觸控時間以同步顯示驅動器電路和一觸控積體電路(TIC)。顯示驅動器電路在觸控使能訊號(Touch EN)的一第一電平週期將資料寫入至畫素中。觸控積體電路(TIC)響應於觸控使能訊號(Touch EN)的一第二電平驅動觸控感測器且感測一觸控輸入。觸控使能訊號(Touch EN)的一第一電平可以是低電平,並且其一第二電平可以是高電平,但是觸控使能訊號(Touch EN)的第一電平和第二電平可設定為相反。The first timing control signal generator 13 generates a touch enable signal (Touch EN), and the touch enable signal (Touch EN) defines a display time and a touch time to synchronize the display driver circuit and a touch integrated circuit. (TIC). The display driver circuit writes data into the pixels at a first level of the touch enable signal (Touch EN). The touch integrated circuit (TIC) drives the touch sensor in response to a second level of the touch enable signal (Touch EN) and senses a touch input. A first level of the touch enable signal (Touch EN) may be a low level, and a second level thereof may be a high level, but the first level and the first of the touch enable signal (Touch EN) The two levels can be set to the opposite.

抑制閘極驅動器電路的Q節點之放電的觸控使能訊號(VTEN)基於由第一定時控制訊號發生器13產生的一數位邏輯電平的一觸控使能訊號(Touch EN)產生。透過在觸控使能訊號(Touch EN)的一第二電平時間的前面及後面進一步延續1個時脈脈波寬度之內的寬度,定時控制訊號發生器13調製一觸控使能訊號(Touch EN),以使用觸控使能訊號(Touch EN)定義圖6的觸控使能訊號(VTEN)的定時或定義圖8的觸控使能訊號(VTEN)的定時。因為一電平移位器(圖未示)不能夠使用從定時控制訊號發生器13輸出的一數位邏輯電平的觸控使能訊號(Touch EN)控制一閘極驅動器電路的金屬氧化物半導體場效應電晶體(MOSFET),因此電平移位器移位觸控使能訊號(Touch EN)的一電平,以產生在閘極高電壓(VGH)和閘極低電壓(VGL)之間擺動的一觸控使能訊號(VTEN)。電平移位器將從定時控制訊號發生器13輸出的一數位邏輯電平的閘極起始脈波VST和一閘極移位時脈CLK的電平移位至一閘極高電壓(VGH)和閘極低電壓(VGL)。來自電平移位器的觸控使能訊號(VTEN)、閘極起始脈波VST、以及閘極移位時脈CLK提供給閘極驅動器電路的移位暫存器。The touch enable signal (VTEN) that suppresses the discharge of the Q node of the gate driver circuit is generated based on a touch enable signal (Touch EN) of a digital logic level generated by the first timing control signal generator 13. The timing control signal generator 13 modulates a touch enable signal by further extending the width within one pulse pulse width before and after a second level time of the touch enable signal (Touch EN). Touch EN) defines the timing of the touch enable signal (VTEN) of FIG. 6 or the timing of the touch enable signal (VTEN) of FIG. 8 by using a touch enable signal (Touch EN). Because a level shifter (not shown) cannot control the metal oxide semiconductor field of a gate driver circuit using a touch enable signal (Touch EN) of a digital logic level output from the timing control signal generator 13 Effecting transistor (MOSFET), so the level shifter shifts a level of the touch enable signal (Touch EN) to produce a swing between the gate high voltage (VGH) and the gate low voltage (VGL) A touch enable signal (VTEN). The level shifter shifts the level of the gate start pulse wave VST and the gate shift clock CLK output from the timing control signal generator 13 to a gate high voltage (VGH) and Gate low voltage (VGL). The touch enable signal (VTEN) from the level shifter, the gate start pulse VST, and the gate shift clock CLK are supplied to the shift register of the gate driver circuit.

噪聲可根據輸入影像資料的變化在觸控感測器訊號中增加。DTX補償單元15根據一輸入影像的灰度變化分析輸入的影像資料且從觸控原始資料(TDATA)中去除噪聲成分,並且將觸控原始資料(TDATA)發送到觸控積體電路(TIC)。DTX表示顯示和觸控串擾。在觸控感測器的噪聲不根據一輸入影像資料的變化而敏感變化的系統中,因為一DTX補償單元15是不必要的,所以DTX補償單元15可省去。在圖9中,DTX DATA為DTX補償單元15的輸出資料。The noise can be added to the touch sensor signal according to the change of the input image data. The DTX compensation unit 15 analyzes the input image data according to the gradation change of an input image and removes the noise component from the touch original data (TDATA), and transmits the touch original data (TDATA) to the touch integrated circuit (TIC). . DTX stands for display and touch crosstalk. In a system in which the noise of the touch sensor is not sensitively changed according to changes in an input image data, since a DTX compensation unit 15 is unnecessary, the DTX compensation unit 15 can be omitted. In Fig. 9, DTX DATA is the output data of the DTX compensation unit 15.

透過響應於來自定時控制訊號發生器13的一觸控使能訊號(Touch EN)在觸控時間來驅動多工器14,觸控積體電路(TIC)通過多工器14和感測線SL接收一觸控感測器的電荷。在圖9中,MUX C1-C3為用於選擇多工器的一通道的訊號。The touch integrated circuit (TIC) is received through the multiplexer 14 and the sensing line SL by responsive to a touch enable signal (Touch EN) from the timing control signal generator 13 to drive the multiplexer 14 at the touch time. The charge of a touch sensor. In Fig. 9, MUX C1-C3 are signals for selecting one channel of the multiplexer.

觸控積體電路(TIC)從觸控感測器的一接收訊號檢測一觸控輸入之前和之後的電荷變化量,將電荷變化量與一預定閥值相比較,並且對觸控輸入區確定具有閥值或更多電荷變化量的觸控感測器的位置。觸控積體電路(TIC)計算每一觸控輸入的坐標且將具有觸控輸入坐標資訊的觸控資料發送至一外部主機系統。觸控積體電路(TIC)包含放大觸控感測器之電荷的一放大器,累積從觸控感測器接收之電荷的一積分器,將積分器的一電壓轉換為數位資料的一類比至數位轉換器(ADC),以及一操作邏輯單元。操作邏輯單元執行觸控識別算法,以將從類比至數位轉換器(ADC)輸出的觸控原始資料(TDATA)與一閥值相比較,並且根據其比較結果確定一觸控輸入且計算坐標。The touch integrated circuit (TIC) detects the amount of charge change before and after a touch input from a received signal of the touch sensor, compares the amount of charge change with a predetermined threshold, and determines the touch input area. The position of the touch sensor with a threshold or more charge change. The touch integrated circuit (TIC) calculates the coordinates of each touch input and transmits touch data having touch input coordinate information to an external host system. The touch integrated circuit (TIC) includes an amplifier that amplifies the charge of the touch sensor, accumulates an integrator of the charge received from the touch sensor, and converts a voltage of the integrator into a analog of the digital data to A digital converter (ADC), and an operational logic unit. The operation logic unit executes a touch recognition algorithm to compare the touch raw material (TDATA) output from the analog to digital converter (ADC) with a threshold value, and determines a touch input and calculates coordinates according to the comparison result.

驅動積體電路(DIC)和觸控積體電路(TIC)可通過一串列週邊介面(SPI)發射並接收訊號。The driver integrated circuit (DIC) and the touch integrated circuit (TIC) can transmit and receive signals through a series of peripheral interfaces (SPI).

一主機系統係指可應用本發明之顯示裝置的一電子裝置的主體。主機系統可以是一電話系統、一電視(TV)系統、一機上盒、一導航系統、一數位光碟(DVD)播放器、一Blueray播放器、一個人電腦(PC)、以及一家庭影院系統中的任何一種。主機系統將一輸入影像的資料發送至驅動積體電路(DIC)並從觸控積體電路(TIC)接收觸控輸入資料以執行與一觸控點相關的應用。A host system refers to a body of an electronic device to which the display device of the present invention can be applied. The host system can be a telephone system, a television (TV) system, a set-top box, a navigation system, a digital compact disc (DVD) player, a Blueray player, a personal computer (PC), and a home theater system. Any of them. The host system sends an input image data to a driver integrated circuit (DIC) and receives touch input data from a touch integrated circuit (TIC) to perform an application related to a touch point.

請參考圖10,一驅動裝置包括一驅動積體電路(DIC)以及一微控制器單元(MCU)。Referring to FIG. 10, a driving device includes a driving integrated circuit (DIC) and a microcontroller unit (MCU).

驅動積體電路(DIC)包括一觸控感測器通道單元10、一Vcom緩衝器11、一開關陣列12、一第一定時控制訊號發生器13、一多工器14、一DTX補償單元15、一感測單元16、一第二定時控制訊號發生器17、以及一記憶體18。相比較於圖9的前述實施例,本實施例具有的差別在於感測單元16和第二定時控制發生器17整合於驅動積體電路(DIC)中。第一定時控制發生器17與圖9的大致相同。因此,第二定時控制發生器17產生用於控制一顯示驅動器電路和一觸控積體電路(TIC)之作業定時的定時控制訊號。The driving integrated circuit (DIC) includes a touch sensor channel unit 10, a Vcom buffer 11, a switch array 12, a first timing control signal generator 13, a multiplexer 14, and a DTX compensation unit 15. a sensing unit 16, a second timing control signal generator 17, and a memory 18. Compared to the foregoing embodiment of FIG. 9, the present embodiment has a difference in that the sensing unit 16 and the second timing control generator 17 are integrated in the driving integrated circuit (DIC). The first timing control generator 17 is substantially the same as that of FIG. Therefore, the second timing control generator 17 generates timing control signals for controlling the operation timing of a display driver circuit and a touch integrated circuit (TIC).

感測單元16包含放大一觸控感測器之電荷的一放大器,累積從觸控感測器接收之電荷的一積分器,以及將積分器的一電壓轉換為數位資料的一類比至數位轉換器(ADC)。從類比至數位轉換器(ADC)輸出的觸控原始資料(TDATA)發送到微控制器單元(MCU)。第二定時控制發生器17產生一定時控制訊號以及用於控制多工器14和感測單元16之作業定時的一時脈。DTX補償單元15可以在驅動積體電路(DIC)中省去。記憶體18在第二定時控制發生器17的控制下暫時地儲存觸控原始資料(TDATA)。The sensing unit 16 includes an amplifier that amplifies the charge of a touch sensor, an integrator that accumulates the charge received from the touch sensor, and an analog-to-digital conversion that converts a voltage of the integrator into digital data. (ADC). The touch raw material (TDATA) output from the analog to digital converter (ADC) is sent to the microcontroller unit (MCU). The second timing control generator 17 generates a timing control signal and a clock for controlling the operation timing of the multiplexer 14 and the sensing unit 16. The DTX compensation unit 15 can be omitted in the drive integrated circuit (DIC). The memory 18 temporarily stores touch raw material (TDATA) under the control of the second timing control generator 17.

驅動積體電路(DIC)和微控制器單元(MCU)可以通過一串列週邊介面(SPI)發送和接收訊號。微控制器單元(MCU)執行觸控識別算法,此算法將觸控原始資料(TDATA)與一閥值相比較且根據其比較結果確定一觸控輸入並且計算一坐標。The Drive Integrated Circuit (DIC) and Microcontroller Unit (MCU) can transmit and receive signals through a serial peripheral interface (SPI). The microcontroller unit (MCU) executes a touch recognition algorithm that compares the touch raw material (TDATA) with a threshold and determines a touch input based on the comparison result and calculates a coordinate.

請參考圖11,驅動裝置包括一驅動積體電路(DIC)以及一記憶體(MEM)。Referring to FIG. 11, the driving device includes a driving integrated circuit (DIC) and a memory (MEM).

驅動積體電路(DIC)包括一觸控感測器通道單元10、一Vcom緩衝器11、一開關陣列12、一第一定時控制訊號發生器13、一多工器14、一DTX補償單元15、一感測單元16、一第二定時控制訊號發生器17、一記憶體18、以及一微控制器單元(MCU)19。相比較於圖10的前述實施例,本實施例具有的差別在於微控制器單元(MCU)19整合於驅動積體電路(DIC)中。微控制器單元(MCU)19執行觸控識別算法,此算法將觸控原始資料(TDATA)與一閥值相比較且根據其比較結果確定一觸控輸入並且計算一坐標。The driving integrated circuit (DIC) includes a touch sensor channel unit 10, a Vcom buffer 11, a switch array 12, a first timing control signal generator 13, a multiplexer 14, and a DTX compensation unit 15. A sensing unit 16, a second timing control signal generator 17, a memory 18, and a microcontroller unit (MCU) 19. In contrast to the previous embodiment of FIG. 10, this embodiment has the difference that the microcontroller unit (MCU) 19 is integrated in the drive integrated circuit (DIC). The microcontroller unit (MCU) 19 executes a touch recognition algorithm that compares the touch raw material (TDATA) with a threshold and determines a touch input based on the comparison result and calculates a coordinate.

記憶體MEM儲存與顯示驅動器電路和感測單元16之作業所必需的定時資訊相關的一暫存器設定值。當顯示裝置的電源接通時,一暫存器設定值從記憶體MEM裝載至第一定時控制訊號發生器13和第二定時控制訊號發生器17。第一定時控制訊號發生器13和第二定時控制訊號發生器17基於從記憶體讀出的此暫存器設定值產生用於控制顯示驅動器電路和感測單元16的定時控制訊號。透過改變記憶體MEM的一暫存器設定值而無需驅動裝置的結構變化,驅動裝置可對應於一模式改變。The memory MEM stores a register setting associated with the timing information necessary for the display driver circuit and the operation of the sensing unit 16. When the power of the display device is turned on, a register setting value is loaded from the memory MEM to the first timing control signal generator 13 and the second timing control signal generator 17. The first timing control signal generator 13 and the second timing control signal generator 17 generate timing control signals for controlling the display driver circuit and the sensing unit 16 based on the register setting values read from the memory. By changing the register setting of the memory MEM without the structural change of the driving device, the driving device can correspond to a mode change.

圖12為表示根據本發明一實施例的一觸控螢幕積體顯示裝置的圖式,此觸控螢幕積體顯示裝置包括一單一的閘極驅動器電路及其一驅動單元,圖13為表示一顯示面板的複數個畫素和相對應的圖案電極的圖式,以及圖14為表示圖案電極和感測線之連接的圖式。圖15為表示根據本發明一實施例的一觸控螢幕積體顯示裝置的圖式,此觸控螢幕積體顯示裝置包括兩個閘極驅動器電路以及其一驅動單元15。FIG. 12 is a diagram showing a touch screen integrated display device including a single gate driver circuit and a driving unit thereof, and FIG. 13 is a view showing a touch screen integrated display device according to an embodiment of the invention. FIG. A pattern of a plurality of pixels of the display panel and corresponding pattern electrodes, and FIG. 14 is a diagram showing a connection of the pattern electrodes and the sensing lines. FIG. 15 is a diagram showing a touch screen integrated display device including two gate driver circuits and a driving unit 15 thereof according to an embodiment of the invention.

如圖所示,本發明的顯示裝置包括用於顯示影像的一顯示面板100,用於從主機系統接收定時訊號並產生各種控制訊號的一定時控制器400,用於響應於這些控制訊號來控制顯示面板100的一閘極驅動器電路200和一資料驅動器電路300,以及用於觸控操作的一觸控驅動器電路500。As shown, the display device of the present invention includes a display panel 100 for displaying images, and a timing controller 400 for receiving timing signals from the host system and generating various control signals for controlling in response to the control signals. A gate driver circuit 200 and a data driver circuit 300 of the display panel 100, and a touch driver circuit 500 for touch operation.

顯示面板100包括以交叉方式在一玻璃基板上形成為矩陣形式的K個(K為一正整數)閘極線和複數個資料線DL1至DLm,以及形成於閘極線和資料線之交叉處的複數個畫素110。每一畫素110包括一薄膜電晶體(TFT)、一液晶電容以及一儲存電容器。所有畫素110形成一顯示區域A/A。其中不存在畫素110的一區域定義為一非顯示區域N。The display panel 100 includes K (K is a positive integer) gate lines and a plurality of data lines DL1 to DLm formed in a matrix form on a glass substrate in an intersecting manner, and is formed at the intersection of the gate lines and the data lines. The plurality of pixels 110. Each pixel 110 includes a thin film transistor (TFT), a liquid crystal capacitor, and a storage capacitor. All pixels 110 form a display area A/A. An area in which the pixel 110 is absent is defined as a non-display area N.

此外,顯示面板100包括嵌入其中的一觸控螢幕。觸控螢幕感測一用戶的觸控點。特別地,根據本發明的顯示面板可包括一自電容內嵌式觸控螢幕。此外,顯示面板100的畫素110可分組為複數個畫素組,並且如圖13所示,顯示面板100可進一步包括與這些畫素組一對一相對應的複數個圖案電極120。如圖14所示,圖案電極120可通過感測SL與觸控驅動器電路500相連接。In addition, the display panel 100 includes a touch screen embedded therein. The touch screen senses a user's touch point. In particular, the display panel according to the present invention may include a self-capacitance in-cell touch screen. Further, the pixels 110 of the display panel 100 may be grouped into a plurality of pixel groups, and as shown in FIG. 13, the display panel 100 may further include a plurality of pattern electrodes 120 corresponding to one-to-one of the pixel groups. As shown in FIG. 14, the pattern electrode 120 can be connected to the touch driver circuit 500 through the sensing SL.

圖案電極120可提供有用於驅動顯示面板100之顯示的一個共同電壓,以便作為與畫素電極一起驅動液晶的共同電極。此外,圖案電極120可提供有用於感測觸控的一觸控掃描訊號,以作為用於感測觸控點的觸控電極。舉例而言,根據本發明一實施例的觸控螢幕積體顯示裝置在一個圖框中按照一時分方式執行顯示作業和觸控操作。也就是說,當顯示面板100為一顯示模式時,圖案電極120透過提供有一共同電壓用作與畫素電極一起驅動顯示器的共同電極,並且當顯示面板100為一觸控模式時,圖案電極120透過提供有來自觸控驅動器電路500的一觸控螢幕訊號用作感測觸控點的一觸控電極。在此,共同電壓可以由觸控驅動器電路500提供或可直接由顯示裝置中包含的一另外的共同電壓發生器供給至顯示面板100,而不通過觸控驅動器電路500。The pattern electrode 120 may be provided with a common voltage for driving the display of the display panel 100 to serve as a common electrode for driving the liquid crystal together with the pixel electrode. In addition, the pattern electrode 120 can be provided with a touch scan signal for sensing touch as a touch electrode for sensing a touch point. For example, the touch screen integrated display device according to an embodiment of the present invention performs a display job and a touch operation in a time frame manner in a frame. That is, when the display panel 100 is in a display mode, the pattern electrode 120 is provided with a common voltage for driving the common electrode of the display together with the pixel electrode, and when the display panel 100 is in a touch mode, the pattern electrode 120 A touch screen is provided for sensing touch points by providing a touch screen signal from the touch driver circuit 500. Here, the common voltage may be provided by the touch driver circuit 500 or may be directly supplied to the display panel 100 by an additional common voltage generator included in the display device without passing through the touch driver circuit 500.

觸控驅動器電路500可包括︰一觸控掃描訊號發生器,用於產生觸控掃描訊號;一觸控感測器,用於使用接收到的觸控感測訊號之間的差異感測觸控;以及一開關,共同電壓或觸控掃描訊號通過此開關提供至多個電極。觸控驅動器電路500根據顯示面板100的驅動模式通過感測線SL將共同電壓或觸控掃描訊號提供至圖案電極120,從圖案電極120接收根據觸控掃描訊號產生的觸控感測訊號,並且使用接收到的觸控感測訊號之間的差異感測觸控的存在或不存在。The touch driver circuit 500 can include: a touch scan signal generator for generating a touch scan signal; and a touch sensor for sensing the touch using the difference between the received touch sense signals And a switch, the common voltage or touch scan signal is provided to the plurality of electrodes through the switch. The touch driver circuit 500 provides a common voltage or touch scan signal to the pattern electrode 120 through the sensing line SL according to the driving mode of the display panel 100, and receives the touch sensing signal generated according to the touch scanning signal from the pattern electrode 120, and uses The difference between the received touch sensing signals senses the presence or absence of the touch.

圖案電極120可以分組且以組為基礎對一個圖框順次操作。每一組的圖案電極120的數目可基於一觸控時間和一顯示時間而改變。The pattern electrodes 120 can be grouped and sequentially operated on a group basis for one frame. The number of pattern electrodes 120 of each group may vary based on a touch time and a display time.

定時控制器400將從一主機系統接收的一輸入視訊訊號(RGB)發送至資料驅動器電路200。定時控制器400產生一定時控制訊號,定時控制訊號用於使用定時訊號例如一時脈訊號(DCLK)、一水平同步訊號(Hsync)、一垂直同步訊號(Vsync)、以及與視訊訊號(RGB)一起接收的一資料使能訊號(DE)來控制閘極驅動器電路200以及資料驅動器電路300。The timing controller 400 transmits an input video signal (RGB) received from a host system to the data driver circuit 200. The timing controller 400 generates a timing control signal for using a timing signal such as a clock signal (DCLK), a horizontal synchronization signal (Hsync), a vertical synchronization signal (Vsync), and together with the video signal (RGB). A data enable signal (DE) is received to control the gate driver circuit 200 and the data driver circuit 300.

在此,水平同步訊號(Hsync)為表示顯示一畫面的一個水平線所使用時間的訊號,垂直同步訊號(Vsync)為表示顯示對應於一個圖框顯示一影像所使用時間的訊號,並且資料使能訊號(DE)為表示其中一資料電壓提供給顯示面板100之畫素的一週期的訊號。Here, the horizontal synchronization signal (Hsync) is a signal indicating the time used to display a horizontal line of a picture, and the vertical synchronization signal (Vsync) is a signal indicating that the time corresponding to displaying an image is displayed corresponding to one frame, and the data is enabled. The signal (DE) is a signal indicating a period in which one of the data voltages is supplied to the pixels of the display panel 100.

此外,定時控制器400與輸入於此的定時訊號同步產生閘極驅動器電路200的一控制訊號GCS以及資料驅動器電路300的一控制訊號DCS。In addition, the timing controller 400 generates a control signal GCS of the gate driver circuit 200 and a control signal DCS of the data driver circuit 300 in synchronization with the timing signal input thereto.

此外,定時控制器400產生用於確定閘極驅動器電路200之每一級的驅動定時的複數個時脈訊號,並且將驅動定時提供至閘極驅動器電路200。定時控制器400將輸入於此的視訊資料RGB排列並調製成可以由資料驅動器電路300處理的一形式並輸出此調製的視訊資料。所排列的視訊資料可以具有對其應用一顏色坐標校正算法的形式。Further, the timing controller 400 generates a plurality of clock signals for determining the driving timing of each stage of the gate driver circuit 200, and supplies the driving timing to the gate driver circuit 200. The timing controller 400 arranges and modulates the video material RGB input thereto into a form that can be processed by the data driver circuit 300 and outputs the modulated video material. The arranged video material may have the form in which a color coordinate correction algorithm is applied.

定時控制器400產生用於觸控操作的一觸控使能訊號(Touch EN)。觸控使能訊號(Touch EN)提供到觸控驅動器電路500。觸控使能訊號(Touch EN)通過一電平移位器402提供給閘極驅動器電路200。在供給一高電平的觸控使能訊號(Touch EN)以感測一觸控輸入時,驅動觸控驅動器電路500。The timing controller 400 generates a touch enable signal (Touch EN) for a touch operation. A touch enable signal (Touch EN) is provided to the touch driver circuit 500. A touch enable signal (Touch EN) is supplied to the gate driver circuit 200 through a level shifter 402. The touch driver circuit 500 is driven when a high level touch enable signal (Touch EN) is supplied to sense a touch input.

資料驅動器電路300透過根據一源極移位時脈(SSC)訊號移位從定時控制器400供給的一源極起始脈波(SSP)訊號而產生一採樣訊號。此外,資料驅動器電路300根據採樣訊號,閂鎖響應於源極移位時脈(SSC)訊號輸入於此的視訊資料,以便將視訊資料轉換成資料訊號,然後響應於一源極輸出使能(SOE)訊號以一水平線為基礎將資料訊號提供給資料線DL。為此,資料驅動器電路300可包括一資料採樣單元、一鎖存單元、一數位至類比轉換器、一輸出緩衝器等。The data driver circuit 300 generates a sample signal by shifting a source start pulse (SSP) signal supplied from the timing controller 400 according to a source shift clock (SSC) signal shift. In addition, the data driver circuit 300 latches the video data input to the source shift clock (SSC) signal according to the sampling signal to convert the video data into a data signal, and then responds to a source output enable ( The SOE) signal provides the data signal to the data line DL on a horizontal line basis. To this end, the data driver circuit 300 can include a data sampling unit, a latch unit, a digital to analog converter, an output buffer, and the like.

閘極驅動器電路200根據一閘極移位時脈(GSC)移位從定時控制器400發送出的一閘極起始脈波(GSP),並且將一閘極高電壓(VGH)電平的閘極脈波訊號順次供給至閘極線GL1至GLn。閘極驅動器電路200在其中沒有供給閘極脈波訊號的時段將一閘極低電壓VGL供給到閘極線GL1至GLn。The gate driver circuit 200 shifts a gate start pulse wave (GSP) transmitted from the timing controller 400 according to a gate shift clock (GSC), and sets a gate high voltage (VGH) level. The gate pulse signals are sequentially supplied to the gate lines GL1 to GLn. The gate driver circuit 200 supplies a gate low voltage VGL to the gate lines GL1 to GLn during a period in which no gate pulse signal is supplied.

雖然應用於本發明的閘極驅動器電路200可配置獨立的面板,並以各種方式電連接至面板,但是閘極驅動器電路200可以在顯示面板100的基板的製造期間通過GIP方法設置為非顯示區域N中的一薄膜圖案形式。在此種情況下,用於驅動移位暫存器的一第一操作級的一時脈訊號CLK和一起始訊號VST可為用於控制閘驅動器電路200的閘極控制訊號。Although the gate driver circuit 200 applied to the present invention can be configured as a separate panel and electrically connected to the panel in various ways, the gate driver circuit 200 can be set as a non-display area by the GIP method during manufacture of the substrate of the display panel 100. A film pattern in N. In this case, a clock signal CLK and a start signal VST for driving a first operational stage of the shift register may be gate control signals for controlling the gate driver circuit 200.

請參考圖15,兩個閘極驅動器電路200a及200b可在顯示面板100的兩側設置於非顯示區域N上,第一及第二閘極驅動器電路200a及200b由構成一移位暫存器的複數個級組成。第一及第二閘極驅動器電路200a及200b響應於從定時控制器400供給的閘極控制訊號GCS,可交替地通過顯示面板100中形成的閘極線GL1至GLn輸出閘極脈波。這裡,輸出的閘極脈波可以在預充電閘極線GL1至GLn的一預定水平時段相重疊,以便當提供一資料電壓時使得更穩定的畫素充電。Referring to FIG. 15, two gate driver circuits 200a and 200b may be disposed on the non-display area N on both sides of the display panel 100, and the first and second gate driver circuits 200a and 200b constitute a shift register. The composition of multiple levels. The first and second gate driver circuits 200a and 200b alternately output gate pulse waves through the gate lines GL1 to GLn formed in the display panel 100 in response to the gate control signal GCS supplied from the timing controller 400. Here, the output gate pulse waves may overlap at a predetermined horizontal period of the precharge gate lines GL1 to GLn to charge a more stable pixel when a data voltage is supplied.

圖16A、圖16B、圖17A、以及圖17B表示構成根據本發明不同實施例的移位暫存器的複數個級的連接。圖18A表示構成圖16A及圖17A所示的移位暫存器的這些級中正向和反向閘極掃描,以及圖18B表示構成圖16B及圖17B所示的移位暫存器的這些級中正向和反向閘極掃描。圖19為表示時間劃分顯示和觸控驅動操作的時間流程圖。16A, 16B, 17A, and 17B show connections of a plurality of stages constituting a shift register in accordance with various embodiments of the present invention. Fig. 18A shows the forward and reverse gate scans of the stages constituting the shift register shown in Figs. 16A and 17A, and Fig. 18B shows the stages constituting the shift register shown in Figs. 16B and 17B. Medium forward and reverse gate scans. Fig. 19 is a timing chart showing time division display and touch drive operation.

如圖18A所示,在正向驅動操作期間這些級按照B、C(虛擬級)以及A的順序驅動,在反向驅動操作期間按照A、C(虛擬級)以及B的順序驅動。在正向驅動操作中,B為在觸控操作之前輸出最後的閘極脈波的一級,C為在觸控時間期間保持其Q節點的充電狀態的一虛擬級,以及A為在觸控操作完成之後輸出第一閘極脈波的一級。在反向驅動操作中,A為在觸控操作之前輸出最後的閘極脈波的一級,C為在觸控時間期間保持其Q節點的充電狀態的一虛擬級,以及B為在觸控操作完成之後輸出第一閘極脈波的一級。As shown in FIG. 18A, these stages are driven in the order of B, C (virtual stage) and A during the forward drive operation, and are driven in the order of A, C (virtual stage) and B during the reverse drive operation. In the forward driving operation, B is a level that outputs the last gate pulse before the touch operation, C is a virtual level that maintains the charging state of its Q node during the touch time, and A is in the touch operation. The first step of the first gate pulse is output after completion. In the reverse driving operation, A is a level that outputs the last gate pulse before the touch operation, C is a virtual level that maintains the charging state of its Q node during the touch time, and B is in the touch operation. The first step of the first gate pulse is output after completion.

如圖18B所示,在正向驅動操作期間這些級按照B以及A的順序驅動,在反向驅動操作期間按照A以及B的順序驅動。在正向驅動操作中,B為在觸控操作之前輸出最後的閘極脈波的一級,以及A為在觸控時間期間保持其Q節點的充電狀態且在觸控操作完成之後輸出第一閘極脈波的一級。在反向驅動操作中,A為在觸控操作之前輸出最後的閘極脈波的一級,以及B為在觸控操作期間保持其Q節點的充電狀態且在觸控操作完成之後輸出第一閘極脈波的一級。As shown in Fig. 18B, these stages are driven in the order of B and A during the forward drive operation, and are driven in the order of A and B during the reverse drive operation. In the forward driving operation, B is a level at which the last gate pulse is output before the touch operation, and A is to maintain the state of charge of the Q node during the touch time and output the first gate after the touch operation is completed. The first level of the pulse wave. In the reverse driving operation, A is a level at which the last gate pulse is output before the touch operation, and B is a state in which the Q node is maintained during the touch operation and the first gate is output after the touch operation is completed. The first level of the pulse wave.

圖18C表示在一單一方向上沒有虛擬級存在的一實例。A為在觸控驅動期間一Q節點保持充電狀態且在觸控驅動完成之後輸出一第一閘極脈波的一級。Figure 18C shows an example where no virtual level exists in a single direction. A is a level at which a Q node remains charged during touch driving and outputs a first gate pulse after the touch drive is completed.

圖18D表示其中一閘極在兩個方向上(正向方向,反向方向)驅動時加入一虛擬級C的實例。Fig. 18D shows an example in which a dummy level C is added when a gate is driven in two directions (forward direction, reverse direction).

為了方便起見,下面的描述基於這些級中一第N(N為一正整數)級的連接,並且將一閘極高電壓(VGH)電平的閘極脈波訊號從第N級輸出到一相應的閘極線。For the sake of convenience, the following description is based on a Nth (N is a positive integer) level connection in these stages, and outputs a gate high pulse (VGH) level gate pulse signal from the Nth stage to the Nth stage. A corresponding gate line.

<第一及第三移位暫存器><First and Third Shift Registers>

請參考圖16A及圖16B,根據第一及第二實施例的一移位暫存器210為如圖1所示根據第一實施例的閘極驅動器電路200中包含的一移位暫存器。請參考圖17A及圖17B,根據第三及第四實施例的一移位暫存器210為如圖15所示根據第二實施例的閘極驅動器電路200a及200b中包含的一移位暫存器。Referring to FIG. 16A and FIG. 16B, a shift register 210 according to the first and second embodiments is a shift register included in the gate driver circuit 200 according to the first embodiment as shown in FIG. 1. . Referring to FIGS. 17A and 17B, a shift register 210 according to the third and fourth embodiments is a shift temporarily included in the gate driver circuits 200a and 200b according to the second embodiment as shown in FIG. Save.

圖16A及圖17A表示第N、第(N+1)以及第(N+2)級和一虛擬級作為構成根據第一及第三實施例的移位暫存器的複數個級。第N、第(N+1)以及第(N+2)級的每一個級可通過一時脈訊號CLK線(在根據第二實施例的閘極驅動器電路200a及200b中包含的移位暫存器的情況下為第一及第二時脈訊號CLK1及CLK2線)提供有至少兩個時脈訊號,接收相鄰級的輸出訊號的一個作為一啟動訊號,並且接收相鄰級的另一輸出訊號作為復位訊號。圖16A至圖17B中的OUT為移位暫存器的此級的一輸出端。16A and 17A show the Nth, (N+1)th, and (N+2)th stages and a virtual stage as a plurality of stages constituting the shift register according to the first and third embodiments. Each of the Nth, (N+1)th, and (N+2)th stages may pass a clock signal CLK line (shift temporary storage included in the gate driver circuits 200a and 200b according to the second embodiment) In the case of the first and second clock signals CLK1 and CLK2 lines, at least two clock signals are provided, one of the output signals of the adjacent stages is received as an activation signal, and another output of the adjacent stage is received. The signal is used as a reset signal. OUT in Figures 16A-17B is an output of this stage of the shift register.

虛擬級可以從時脈訊號CLK線接收至少兩個時脈訊號,從一觸控使能訊號線接收一觸控使能訊號Touch EN(VTEN、VTEN1、VTEN2),接收相鄰級的輸出訊號的一個作為一啟動訊號VST且接收相鄰級的另一輸出訊號作為一復位訊號RST。The virtual stage can receive at least two clock signals from the clock signal CLK line, receive a touch enable signal Touch EN (VTEN, VTEN1, VTEN2) from a touch enable signal line, and receive output signals of adjacent stages. One of the other output signals, which is a start signal VST and receives the adjacent stage, is used as a reset signal RST.

這些級可在接收到啟動訊號VST時執行用於供給一閘極脈波訊號的操作,並且在接收到復位訊號RST時執行用於放電閘極線的操作。These stages can perform an operation for supplying a gate pulse signal upon receiving the start signal VST, and perform an operation for discharging the gate line upon receiving the reset signal RST.

特別地,第N級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第(N-1)級的一輸出端G(n-1)輸出的一閘極脈波,並且通過復位訊號RST輸入端接收從虛擬級的一輸出端G(n+1/2)輸出的一進位訊號Vc,其中第(N-1)級為前一級,虛擬級為下一級。In particular, the Nth stage includes an enable signal VST input terminal and a reset signal RST input terminal, and receives a gate outputted from an output terminal G(n-1) of the (N-1)th stage through the start signal VST input terminal. a pulse wave, and receiving a carry signal Vc outputted from an output terminal G(n+1/2) of the virtual stage through the reset signal RST input terminal, wherein the (N-1)th stage is the previous stage and the virtual stage is the lower stage Level one.

虛擬級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第N級的一輸出端G(n)輸出的閘極脈波,並且通過復位訊號RST輸入端接收從第(N+1)級的一輸出端G(n+1)輸出的一掃描訊號,其中第N級為前一級,第(N+1)級為下一級。The virtual stage includes an activation signal VST input terminal and a reset signal RST input terminal, and receives a gate pulse wave outputted from an output terminal G(n) of the Nth stage through the start signal VST input terminal, and passes the reset signal RST input terminal. Receiving a scan signal outputted from an output terminal G(n+1) of the (N+1)th stage, wherein the Nth stage is the previous stage and the (N+1)th stage is the next stage.

特別地,虛擬級可以在一觸控時間期間使用一閘極高電壓(VGH)電平的觸控使能訊號(TEN)保持充電於Q節點的一電壓,同時防止洩漏電流,並且在這個觸控時間結束時響應於提供至此的一閘極高電壓(VGH)電平的時脈訊號通過輸出端G(n+1/2)輸出進位訊號Vc至下一級、第(N+1)級。In particular, the virtual stage can use a gate high voltage (VGH) level touch enable signal (TEN) to maintain a voltage charged at the Q node during a touch time while preventing leakage current, and in this touch At the end of the control time, the clock signal in response to the gate high voltage (VGH) level supplied thereto is outputted to the next stage, the (N+1)th stage through the output terminal G(n+1/2).

第(N+1)級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從虛擬級的輸出端G(n+1/2)輸出的進位訊號Vc,並且通過復位訊號RST輸入端接收從第(N+2)級的一輸出端G(n+2)輸出的一掃描訊號,其中虛擬級為前一級,第(N+2)級為下一級。The (N+1)th stage includes an enable signal VST input terminal and a reset signal RST input terminal, and receives a carry signal Vc outputted from the output terminal G(n+1/2) of the virtual stage through the start signal VST input terminal, and A scan signal outputted from an output terminal G(n+2) of the (N+2)th stage is received through the reset signal RST input terminal, wherein the virtual level is the previous stage and the (N+2)th stage is the next stage.

第(N +2)級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第(N+1)級的輸出端G(n+1)輸出的閘極脈波,並且通過復位訊號RST輸入端接收從第(N+3)級的一輸出端G(n+3)輸出的一掃描訊號,其中第(N+1)級為前一級,第(N+3)級為下一級。The (N + 2)th stage includes an enable signal VST input terminal and a reset signal RST input terminal, and receives the gate output from the (N+1)th output terminal G(n+1) through the start signal VST input terminal. a pulse wave, and receiving, by the reset signal RST input terminal, a scan signal outputted from an output terminal G(n+3) of the (N+3)th stage, wherein the (N+1)th stage is the previous stage, the (Nth) +3) The level is the next level.

如上所述,根據本發明之實施例的移位暫存器可包括複數個虛擬級。舉例而言,如圖18A所示,移位暫存器可包括設置於第一至第六十四級與第六十五至第一百二十八級之間的一單個虛擬級,其中第一至第六十四級用於將閘極脈波順次供給至第一至第六十四閘極線GL1至GL64,並且第六十五至一百二十八級用於將閘極脈波順次供給至第六十五至一百二十八閘極線GL65至GL128。雖然每一組閘極線的數目為64,但本發明不限於此,並且在一個圖框之中的複數個顯示時間P1及P3中,對應於一個顯示時間而激活的閘極線的級可以分組,並且一虛擬級可設置於這些組之間,如圖19所示。As described above, the shift register according to an embodiment of the present invention may include a plurality of virtual stages. For example, as shown in FIG. 18A, the shift register may include a single virtual level disposed between the first to the sixty-fourth and the sixty-fifth to the twenty-eighth, wherein One to sixty-fourth stages are used to sequentially supply the gate pulse waves to the first to sixty-fourth gate lines GL1 to GL64, and the sixty-fifth to one hundred and twenty-eighth stages are used for the gate pulse wave It is sequentially supplied to the 65th to 128th gate lines GL65 to GL128. Although the number of gate lines per group is 64, the present invention is not limited thereto, and among the plurality of display times P1 and P3 in one frame, the level of the gate line activated corresponding to one display time may be Grouped, and a virtual level can be placed between these groups, as shown in FIG.

雖然上述說明基於從第一級至最後一級執行的正向操作進行描述,但本發明不限於此,並且適用於從最後一級至第一級執行的反向操作,例如,其中第(N+1)級的閘極脈波輸出之後是虛擬級的操作,然後是第N級的操作的情況。Although the above description has been described based on the forward operation performed from the first stage to the last stage, the present invention is not limited thereto and is applicable to the reverse operation performed from the last stage to the first stage, for example, where (N+1) The gate pulse output of the stage is followed by the operation of the virtual stage, followed by the operation of the Nth stage.

這些級中的每一級可與一個時脈訊號CLK同步,將一閘極脈波訊號輸出至複數個閘極線GL1至GLn的一個閘極線。Each of these stages can be synchronized with a clock signal CLK to output a gate pulse signal to a gate line of the plurality of gate lines GL1 to GLn.

另外,所有的級可以供給有來自一高電壓源的一高電源電壓(VDD),來自一低電壓源的一閘極低電壓(VGL),一正向電壓FWD以及一反向電壓REV,並且所有虛擬級分別可提供有一觸控使能訊號。正向電壓FWD在一正向掃描模式下產生為一閘極高電壓(VGH)電平,並且在一反向掃描模式下產生為一閘極低電壓(VGL)電平。與此相反,反向電壓REV在一反向掃描模式下產生為一閘極高電壓(VGH)電平,並且在一正向掃描模式下產生為一閘極低電壓(VGL)電平。In addition, all stages can be supplied with a high supply voltage (VDD) from a high voltage source, a gate low voltage (VGL) from a low voltage source, a forward voltage FWD and a reverse voltage REV, and A touch enable signal can be provided for all virtual levels. The forward voltage FWD is generated as a gate high voltage (VGH) level in a forward scan mode and as a gate low voltage (VGL) level in a reverse scan mode. In contrast, the reverse voltage REV is generated as a gate high voltage (VGH) level in a reverse scan mode and as a gate low voltage (VGL) level in a forward scan mode.

<第二及第四移位暫存器><second and fourth shift register>

圖16B及圖17B表示第N、第(N+1)、第(N+2)、以及第(N+3)級作為構成根據第二及第四實施例的移位暫存器的複數個級。16B and 17B show the Nth, (N+1)th, (N+2)th, and (N+3)th stages as a plurality of shift registers constituting the second and fourth embodiments. level.

在第N、第(N+1)、第(N+2)、以及第(N+3)級可通過時脈訊號CLK線(在根據具有閘極驅動器電路200a及200b的第二實施例的情況下為第一及第二時脈訊號CLK1及CLK2線)提供有至少兩個時脈訊號。第一和第二時脈訊號可具有相反的邏輯電平。每一級可接收相鄰級的輸出訊號的一個作為一啟動訊號VST,並且接收相鄰級的另一輸出訊號作為復位訊號RST。The Nth, (N+1)th, (N+2)th, and (N+3)th stages may pass the clock signal CLK line (in accordance with the second embodiment having the gate driver circuits 200a and 200b) In the case of the first and second clock signals CLK1 and CLK2 lines, at least two clock signals are provided. The first and second clock signals can have opposite logic levels. Each stage can receive one of the output signals of the adjacent stage as an activation signal VST, and receive another output signal of the adjacent stage as the reset signal RST.

這些級的一部分級功能上作為在觸控時間需要保持一Q節點電壓的備用級。這種備用級可通過時脈訊號線CLK接收至少兩個時脈訊號,通過觸控使能訊號線接收觸控使能訊號Touch EN(VTEN、VTEN1、VTEN2),接收相鄰級的輸出訊號的一個作為一啟動訊號VST,並且接收相鄰級的另一輸出訊號作為復位訊號RST。A portion of these stages functions as a standby stage that maintains a Q node voltage during touch time. The standby stage can receive at least two clock signals through the clock signal line CLK, and receive the touch enable signals Touch EN (VTEN, VTEN1, VTEN2) through the touch enable signal line, and receive the output signals of the adjacent stages. One acts as a start signal VST and receives another output signal of the adjacent stage as the reset signal RST.

這些級可在接收到啟動訊號VST時執行用於供給閘極脈波訊號的操作,並且在接收到復位訊號RST時執行用於放電相應閘極線的操作。These stages can perform an operation for supplying a gate pulse signal upon receiving the start signal VST, and an operation for discharging the corresponding gate line upon receiving the reset signal RST.

特別地,第N級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第(N-1)級的一輸出端G(n-1)輸出的一閘極掃描脈波訊號,並且通過復位訊號RST輸入端接收從第(N+1)級的一輸出端G(n+1)輸出的一閘極脈波訊號,其中第(N-1)級為前一級,第(N+1)級為下一級。In particular, the Nth stage includes an enable signal VST input terminal and a reset signal RST input terminal, and receives a gate outputted from an output terminal G(n-1) of the (N-1)th stage through the start signal VST input terminal. The pole scans the pulse wave signal, and receives a gate pulse signal outputted from an output terminal G(n+1) of the (N+1)th stage through the reset signal RST input terminal, wherein the (N-1)th stage is The first level, the (N+1) level is the next level.

第(N+1)級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第N級的一輸出端G(n)輸出的一閘極脈波訊號,並且通過復位訊號RST輸入端接收從第(N+2)級的一輸出端G(n+2)輸出的一掃描訊號,其中第N級為前一級,第(N+2)級為下一級。The (N+1)th stage includes an activation signal VST input terminal and a reset signal RST input terminal, and receives a gate pulse wave signal outputted from an output terminal G(n) of the Nth stage through the start signal VST input terminal. And receiving, by the reset signal RST input, a scan signal outputted from an output terminal G(n+2) of the (N+2)th stage, wherein the Nth stage is the previous stage, and the (N+2)th stage is the next stage. .

第(N+2)級包括一啟動訊號VST輸入端以及一復位訊號RST輸入端,通過啟動訊號VST輸入端接收從第(N+1)級的一輸出端G(n+1)輸出的一閘極脈波訊號,並且通過復位訊號RST輸入端接收從第(N+3)級的一輸出端G(n+3)輸出的一掃描訊號,其中第(N+1)級為前一級,第(N+3)級為下一級。The (N+2)th stage includes an activation signal VST input terminal and a reset signal RST input terminal, and receives an output from an output terminal G(n+1) of the (N+1)th stage through the start signal VST input terminal. a gate pulse signal, and receiving, by the reset signal RST input, a scan signal outputted from an output terminal G(n+3) of the (N+3)th stage, wherein the (N+1)th stage is the previous stage, The (N+3)th level is the next level.

特別地,這些級中設置為一備用級的第(N+1)級可以在觸控時間期間使用一閘極高電壓(VGH)電平的觸控使能訊號(VTEN)保持其Q節點的一電壓,同時防止洩漏電流,並且在這個觸控時間結束時響應於提供至此的一閘極高電壓(VGH)電平的時脈訊號,通過輸出端G(n+1)將閘極掃描訊號輸出至下一級、第(N+2)級。In particular, the (N+1)th stage of these stages set to a standby stage can maintain its Q node using a gate high voltage (VGH) level touch enable signal (VTEN) during touch time. a voltage while preventing leakage current, and at the end of the touch time, in response to a clock signal of a gate high voltage (VGH) level supplied thereto, the gate scan signal is output through the output terminal G(n+1) Output to the next level, the (N + 2) level.

如上所述,根據本發明之實施例的移位暫存器210可包括複數個備用級。舉例而言,如圖18B所示,移位暫存器可在從第一至第六十四級至第六十五至第一百二十八級中具有第六十五級作為一備用級,其中第一至第六十四級用於將一閘極脈波訊號順次供給至第一至第六十四閘極線GL1至GL64,並且第六十五至一百二十八級用於將閘極脈波訊號順次供給至第六十五至一百二十八閘極線GL65至GL128。雖然每一組閘極線的數目為64,但本發明不限於此,並且每一組的閘極線的數目可基於一觸控時間和一驅動時段進行不同的設置。As described above, the shift register 210 according to an embodiment of the present invention may include a plurality of spare stages. For example, as shown in FIG. 18B, the shift register may have a sixty-fifth level as a backup level from the first to the sixty-fourth to the sixty-fifth to the twenty-eighth. The first to the sixty-fourth stages are for sequentially supplying a gate pulse signal to the first to sixty-fourth gate lines GL1 to GL64, and the sixty-fifth to one hundred and twenty-eighth stages are used for The gate pulse signals are sequentially supplied to the 65th to 128th gate lines GL65 to GL128. Although the number of gate lines per group is 64, the present invention is not limited thereto, and the number of gate lines of each group may be differently set based on one touch time and one driving period.

上述這些級中的每一級可與一個時脈訊號CLK同步,將一閘極脈波訊號輸出至閘極線GL1至GLn的一個閘極線。Each of the above stages can be synchronized with a clock signal CLK to output a gate pulse signal to a gate line of the gate lines GL1 to GLn.

另外,這些級分別可以供給有來自一高電壓源的一高電源電壓(VDD),來自一低電壓源的一閘極低電壓(VGL),一正向電壓FWD以及一反向電壓REV,並且所有虛擬級分別可提供有觸控使能訊號。In addition, the stages may be supplied with a high supply voltage (VDD) from a high voltage source, a gate low voltage (VGL) from a low voltage source, a forward voltage FWD and a reverse voltage REV, and All virtual levels can be provided with touch enable signals.

<第n級的電路圖><Circuit diagram of the nth stage>

圖20為構成根據本發明一實施例的移位暫存器的第N級的電路圖。Figure 20 is a circuit diagram of an Nth stage constituting a shift register in accordance with an embodiment of the present invention.

請參考圖20,第N級不是一備用級或一虛擬級以及在顯示時間與一輸入時脈訊號同步充電Q節點和順次輸出閘極脈波訊號的級。第N級可包括一上拉電晶體Tup、一下拉電晶體Tdown、一第一電容器CQ以及一第二電容器CQB且另外包括一充電/放電單元211以及一Q節點穩定器212。Referring to FIG. 20, the Nth stage is not a standby stage or a virtual stage, and the stage of charging the Q node and sequentially outputting the gate pulse signal in synchronization with an input clock signal at the display time. The Nth stage may include a pull-up transistor Tup, a pull-down transistor Tdown, a first capacitor CQ, and a second capacitor CQB and additionally include a charge/discharge unit 211 and a Q-node stabilizer 212.

第N級的上述元件耦接如下。上拉電晶體Tup具有耦接至一Q節點的一閘極端,耦接至一第一時脈訊號CLK1供給端的一汲極端,以及耦接至第N級的輸出端G(n)的一源極端。用於在放電時間期間穩定地放電輸出端的下拉電晶體具有耦接至一QB節點的一閘極端,耦接至第N級的輸出端G(n)的一閘極端,以及耦接至閘極低電壓(VGL)的輸入端的一源極端。第一電容器CQ可耦接至QB節點和閘極低電壓(VGL)的輸入端。第二電容器CQB可耦接至Q節點和閘極低電壓(VGL)的輸入端。The above elements of the Nth stage are coupled as follows. The pull-up transistor Tup has a gate terminal coupled to a Q node, a terminal connected to a supply terminal of the first clock signal CLK1, and a source coupled to the output terminal G(n) of the Nth stage. extreme. A pull-down transistor for stably discharging the output during the discharge time has a gate terminal coupled to a QB node, a gate terminal coupled to the output terminal G(n) of the Nth stage, and coupled to the gate A source terminal of the input of the low voltage (VGL). The first capacitor CQ can be coupled to the input of the QB node and the gate low voltage (VGL). The second capacitor CQB can be coupled to the input of the Q node and the gate low voltage (VGL).

充電/放電單元211可充電或放電Q節點。充電/放電單元211可包括第一及第二電晶體T1及T2。第一電晶體T1具有耦接至第(N-1)級的輸出端G(n-1)的一閘極端,耦接至正向電壓FWD的一輸入端的一汲極端,以及耦接至Q節點的一源極端。第二電晶體T2具有耦接至第(N+1)級的輸出端G(n+1)的一閘極端,耦接至反向電壓REV的一輸入端的一汲極端,以及耦接至Q節點的一源極端。The charging/discharging unit 211 can charge or discharge the Q node. The charging/discharging unit 211 may include first and second transistors T1 and T2. The first transistor T1 has a gate terminal coupled to the output terminal G(n-1) of the (N-1)th stage, coupled to a terminal of an input terminal of the forward voltage FWD, and coupled to the Q A source extreme of a node. The second transistor T2 has a gate terminal coupled to the output terminal G(n+1) of the (N+1)th stage, coupled to a terminal of an input terminal of the reverse voltage REV, and coupled to the Q A source extreme of a node.

Q節點穩定器212放電Q節點,並且可包括一第三電晶體T3。第三電晶體T3具有耦接至QB節點的一閘極端,耦接至Q節點的一汲極端,以及耦接至閘極低電壓(VGL)的輸入端的一源極端。如圖所示,QB節點可提供有一第二時脈訊號CLK2或可耦接至一終端,此終端用於和下一級的輸出訊號或Q節點放電時間同步供給有用於導通第三電晶體T3的一電壓。第二時脈訊號可以是具有電平和定時的一時脈訊號,用於當第一電晶體T1導通時控制第三電晶體T3關閉從而充電Q節點,並且根據Q節點的自我啟動當Q節點在閘極脈波訊號輸出至相應的輸出端之後立即放電時,控制第三電晶體T3導通。The Q node stabilizer 212 discharges the Q node and may include a third transistor T3. The third transistor T3 has a gate terminal coupled to the QB node, a terminal connected to the Q node, and a source terminal coupled to the input terminal of the gate low voltage (VGL). As shown in the figure, the QB node can be provided with a second clock signal CLK2 or can be coupled to a terminal for supplying the output signal or the Q node discharge time of the next stage in synchronization with the third transistor T3. A voltage. The second clock signal may be a clock signal having a level and a timing for controlling the third transistor T3 to be turned off when the first transistor T1 is turned on to charge the Q node, and according to the Q node self-starting when the Q node is in the gate When the pole pulse signal is discharged to the corresponding output terminal and discharged immediately, the third transistor T3 is controlled to be turned on.

圖21為一備用級的電路圖。Figure 21 is a circuit diagram of a standby stage.

<備用級><standby level>

請參考圖21,備用級(係為提供於圖16B或圖17B中所示的移位暫存器之備用級的備用級)在一觸控時間保持一充電的Q節點電壓,並且當此觸控時間終止時與一輸入時脈訊號同步通過其輸出端輸出一閘極脈波訊號。備用級可包括一上拉電晶體Tup、一下拉電晶體Tdown、一第一電容器CQ、以及一第二電容器CQB且另外包括一充電/放電單元211以及一Q節點穩定器212。Referring to FIG. 21, the standby stage (which is the standby stage of the standby stage provided in the shift register shown in FIG. 16B or FIG. 17B) maintains a charged Q node voltage at a touch time, and when this touches When the control time is terminated, a gate pulse signal is output through its output terminal in synchronization with an input clock signal. The standby stage may include a pull-up transistor Tup, a pull-down transistor Tdown, a first capacitor CQ, and a second capacitor CQB and additionally include a charge/discharge unit 211 and a Q-node stabilizer 212.

作為備用級的第N級的元件耦接如下。上拉電晶體Tup具有耦接至一Q節點的一閘極端,耦接至一第一時脈訊號CLK1供給端的一汲極端,以及耦接至第N級的輸出端G(n)的一源極端。下拉電晶體具有耦接至一QB節點的一閘極端,耦接至第N級的輸出端G(n)的一汲極端,以及耦接至一閘極低電壓(VGL)的一輸入端的一源極端。第一電容器CQ可耦接至QB節點和閘極低電壓(VGL)的輸入端。第二電容器CQB可耦接至Q節點和閘極低電壓(VGL)的輸入端。The components of the Nth stage as the standby stage are coupled as follows. The pull-up transistor Tup has a gate terminal coupled to a Q node, a terminal connected to a supply terminal of the first clock signal CLK1, and a source coupled to the output terminal G(n) of the Nth stage. extreme. The pull-down transistor has a gate terminal coupled to a QB node, a terminal connected to the output terminal G(n) of the Nth stage, and a terminal coupled to an input of a gate low voltage (VGL) The source is extreme. The first capacitor CQ can be coupled to the input of the QB node and the gate low voltage (VGL). The second capacitor CQB can be coupled to the input of the Q node and the gate low voltage (VGL).

充電/放電單元211可充電或放電Q節點。充電/放電單元211可包括第一及第二電晶體T1及T2。第一電晶體T1具有耦接至第(N-1)級的輸出端G(n-1)的一閘極端,耦接至觸控使能訊號(VTEN)的輸入端或一正向電壓FWD的一汲極端,以及耦接至Q節點的一源極端。第二電晶體T2具有耦接至第(N+1)級的輸出端G(n+1)的一閘極端,耦接至觸控使能訊號(VTEN)的輸入端的一汲極端,以及耦接至Q節點的一源極端。The charging/discharging unit 211 can charge or discharge the Q node. The charging/discharging unit 211 may include first and second transistors T1 and T2. The first transistor T1 has a gate terminal coupled to the output terminal G(n-1) of the (N-1)th stage, coupled to the input of the touch enable signal (VTEN) or a forward voltage FWD. An extreme, and a source extreme coupled to the Q node. The second transistor T2 has a gate terminal coupled to the output terminal G(n+1) of the (N+1)th stage, coupled to a terminal of the input end of the touch enable signal (VTEN), and coupled Connect to a source terminal of the Q node.

Q節點穩定器212放電Q節點且可包括一第三電晶體T3。第三電晶體T3具有耦接至一第二時脈訊號CLK2供給端的一閘極端,耦接至Q節點的一汲極端,以及耦接至觸控使能訊號(VTEN)的輸入端的一源極端。The Q node stabilizer 212 discharges the Q node and may include a third transistor T3. The third transistor T3 has a gate terminal coupled to the supply end of the second clock signal CLK2, a terminal connected to the Q node, and a source terminal coupled to the input end of the touch enable signal (VTEN). .

圖22為一虛擬級的電路圖。Figure 22 is a circuit diagram of a virtual stage.

<虛擬級><virtual level>

請參考圖22,虛擬級提供於圖16A或圖17A的移位暫存器的一級,並且設置於第N級和第(N+1)級之間。虛擬級可包括一上拉電晶體Tup、一下拉電晶體Tdown、一第一電容器CQ、以及一第二電容器CQB且另外包括一充電/放電單元211以及一Q節點穩定器212。Referring to FIG. 22, the virtual stage is provided at the level of the shift register of FIG. 16A or FIG. 17A, and is disposed between the Nth stage and the (N+1)th stage. The dummy stage may include a pull-up transistor Tup, a pull-down transistor Tdown, a first capacitor CQ, and a second capacitor CQB and additionally include a charge/discharge unit 211 and a Q-node stabilizer 212.

虛擬級的元件耦接如下。上拉電晶體Tup具有連接至一Q節點的一閘極端,連接至一第一時脈訊號CLK1供給端的一汲極端,以及連接至此虛擬級的輸出端G(n+1/2)的一源極端。下拉電晶體具有耦接至一QB節點的一閘極端,耦接至此虛擬級的輸出端G(n+1/2)的一汲極端,以及耦接至閘極低電壓(VGL)的一輸入端的一源極端。第一電容器CQ可耦接至QB節點和閘極低電壓(VGL)的輸入端。第二電容器CQB可耦接至Q節點和閘極低電壓(VGL)的輸入端。The components of the virtual stage are coupled as follows. The pull-up transistor Tup has a gate terminal connected to a Q node, a terminal connected to a supply terminal of the first clock signal CLK1, and a source connected to the output terminal G(n+1/2) of the virtual stage. extreme. The pull-down transistor has a gate terminal coupled to a QB node, a terminal connected to the output terminal G(n+1/2) of the dummy stage, and an input coupled to the gate low voltage (VGL) One source extreme of the end. The first capacitor CQ can be coupled to the input of the QB node and the gate low voltage (VGL). The second capacitor CQB can be coupled to the input of the Q node and the gate low voltage (VGL).

充電/放電單元211可充電或放電Q節點。充電/放電單元211可包括第一及第二電晶體T1及T2。第一電晶體T1具有耦接至第N級的輸出端G(n)的一閘極端,耦接至觸控使能訊號(VTEN)的一輸入端的一汲極端,以及耦接至Q節點的一源極端。第二電晶體T2具有耦接至第(N+1)級的輸出端G(n+1)的一閘極端,耦接至觸控使能訊號(VTEN)的輸入端的一汲極端,以及耦接至Q節點的一源極端。The charging/discharging unit 211 can charge or discharge the Q node. The charging/discharging unit 211 may include first and second transistors T1 and T2. The first transistor T1 has a gate terminal coupled to the output terminal G(n) of the Nth stage, coupled to a terminal of an input end of the touch enable signal (VTEN), and coupled to the Q node. One source is extreme. The second transistor T2 has a gate terminal coupled to the output terminal G(n+1) of the (N+1)th stage, coupled to a terminal of the input end of the touch enable signal (VTEN), and coupled Connect to a source terminal of the Q node.

Q節點穩定器212放電Q節點且可包括一第三電晶體T3。第三電晶體T3具有耦接至一第二時脈訊號CLK2供給端的一閘極端,耦接至Q節點的一汲極端,以及耦接至觸控使能訊號(VTEN)的輸入端的一源極端。The Q node stabilizer 212 discharges the Q node and may include a third transistor T3. The third transistor T3 has a gate terminal coupled to the supply end of the second clock signal CLK2, a terminal connected to the Q node, and a source terminal coupled to the input end of the touch enable signal (VTEN). .

<級的正向和反向驅動方法><level forward and reverse drive method>

圖23為表示在正向驅動操作中第N級的Q節點充電和閘極脈波輸出操作的圖式。圖24為表示在正向驅動操作中第N級的Q節點放電和QB節點充電的圖式。Figure 23 is a diagram showing the operation of the Q-node charging and the gate pulse output of the Nth stage in the forward driving operation. Figure 24 is a diagram showing the Q-node discharge and QB node charging of the Nth stage in the forward drive operation.

<顯示驅動時段:正向驅動><display drive period: forward drive>

對於一顯示時間P1的一第一時段,第一電晶體T1可由第(N-1)級的輸出訊號導通,以使得正向電壓FWD供給至Q節點,並且上拉電晶體Tup可以根據響應於第一時脈訊號CLK1的一閘極低電壓(VGL)電平的自我啟動而接通,並且從而閘極高電壓(VGH)電平的閘極脈波輸出至第N級的輸出端G(n)。For a first period of display time P1, the first transistor T1 can be turned on by the output signal of the (N-1)th stage, so that the forward voltage FWD is supplied to the Q node, and the pull-up transistor Tup can be responsive according to The gate low voltage (VGL) level of the first clock signal CLK1 is turned on by self-activation, and thus the gate pulse wave of the gate high voltage (VGH) level is output to the output terminal G of the Nth stage ( n).

對於顯示時間P1中第一時段之後的一第二時段,第二電晶體T2由第(N+1)級的輸出訊號導通,以使得反向電壓REV提供給Q節點以便放電Q節點,並且在QB節點由一閘極高電壓(VGH)電平的第二時脈訊號CLK2充電,以打開第三電晶體T3和下拉電晶體Tdown,以使得第N級的Q節點的輸出端G(n)分別可由閘極低電壓(VGL)放電。For a second period after the first period in the display time P1, the second transistor T2 is turned on by the output signal of the (N+1)th stage, so that the reverse voltage REV is supplied to the Q node to discharge the Q node, and The QB node is charged by a second clock signal CLK2 of a gate high voltage (VGH) level to turn on the third transistor T3 and the pull-down transistor Tdown, so that the output terminal G(n) of the Q node of the Nth stage They can be discharged by the gate low voltage (VGL).

圖25為表示在反向驅動操作中第N級的Q節點充電和閘極脈波輸出操作的圖式,圖26為表示第N級的Q節點放電和QB節點充電的圖式。Figure 25 is a diagram showing the Q-node charging and gate pulse wave output operation of the Nth stage in the reverse driving operation, and Figure 26 is a diagram showing the Q-node discharge and QB node charging of the Nth stage.

<顯示驅動時段:反向驅動><display drive period: reverse drive>

對於顯示時間P1的第一時段,第二電晶體T2可由第(N+1)級的輸出訊號導通,以使得反向電壓REV提供給Q節點且上拉電晶體Tup可以根據響應於第一時脈訊號CLK1的閘極低電壓(VGL)電平的自我啟動而導通,並且從而閘極高電壓(VGH)電平的閘極脈波輸出至第N級的輸出端G(n)。For the first time period of the display time P1, the second transistor T2 may be turned on by the output signal of the (N+1)th stage, so that the reverse voltage REV is supplied to the Q node and the pull-up transistor Tup may be responsive to the first time. The gate low voltage (VGL) level of the pulse signal CLK1 is turned on by itself, and thus the gate pulse wave of the gate high voltage (VGH) level is output to the output terminal G(n) of the Nth stage.

對於顯示時間P1中第一時段之後的第二時段,第一電晶體T1由第(N-1)級的輸出訊號導通,以使得正向電壓FWD提供給Q節點以便放電Q節點,並且QB節點由一閘極高電壓(VGH)電平的一第二時脈訊號CLK2充電,以便打開第三電晶體T3和下拉電晶體Tdown,以使得第N級的Q節點和輸出端G(n)分別可由閘極低電壓(VGL)放電。For the second period after the first period in the display time P1, the first transistor T1 is turned on by the output signal of the (N-1)th stage, so that the forward voltage FWD is supplied to the Q node to discharge the Q node, and the QB node Charging by a second clock signal CLK2 of a gate high voltage (VGH) level to turn on the third transistor T3 and the pull-down transistor Tdown, so that the Q node and the output terminal G(n) of the Nth stage are respectively It can be discharged by the gate low voltage (VGL).

第一及第二電晶體T1及T2的僅有一個可以在閘極驅動器電路200的正向或反向操作中運行,以對Q節點提供正向電壓FWD或反向電壓REV。正向電壓FWD可以在正向驅動操作期間相比較於反向電壓REV更高且在反向驅動操作期間可相比較於反向電壓REV更低。Only one of the first and second transistors T1 and T2 can operate in forward or reverse operation of the gate driver circuit 200 to provide a forward voltage FWD or a reverse voltage REV to the Q node. The forward voltage FWD may be higher than the reverse voltage REV during the forward drive operation and may be lower than the reverse voltage REV during the reverse drive operation.

<備用級的正向驅動方法><Forward-level forward drive method>

圖27為表示在正向驅動操作中作為一備用級的第N級的Q節點充電的圖式,圖28為表示其中Q節點電壓保持的保持時間的圖式,以及圖29為表示閘極脈波輸出操作的圖式。圖30為表示Q節點和輸出端放電操作的圖式,以及圖31為表示用於驅動此備用級的波形圖。Figure 27 is a diagram showing the charging of the Q-th node of the Nth stage as a standby stage in the forward driving operation, Figure 28 is a diagram showing the holding time in which the Q-node voltage is held, and Figure 29 is a diagram showing the gate pulse. A diagram of the wave output operation. Fig. 30 is a diagram showing the discharge operation of the Q node and the output terminal, and Fig. 31 is a waveform diagram showing the standby stage for driving.

- Q節點充電時間- Q node charging time

請參考圖27及圖31,在緊接觸控時間P2(或P4)之前的顯示時間P1(或P3),閘極脈波訊號可以從第(N-1)級輸出且觸控使能訊號(VTEN)可過渡到一閘極低電壓(VGL)電平。這裡,第一電晶體T1由第(N-1)級的輸出訊號導通,並且從而過渡到一閘極高電壓(VGH)電平的觸控使能訊號(VTEN)提供給Q節點以便充電Q節點。Referring to FIG. 27 and FIG. 31, at the display time P1 (or P3) before the contact control time P2 (or P4), the gate pulse signal can be output from the (N-1)th stage and the touch enable signal ( VTEN) can transition to a gate low voltage (VGL) level. Here, the first transistor T1 is turned on by the output signal of the (N-1)th stage, and thus the touch enable signal (VTEN) that transitions to a gate high voltage (VGH) level is supplied to the Q node for charging Q. node.

- Q-節點電壓保持時間(=觸控時間)- Q-node voltage hold time (= touch time)

請參考圖28及圖31,觸控時間P2(或P4)開始且在Q節點充電的電壓在觸控時間P2(或P4)保持。這裡,觸控使能訊號(VTEN)保持閘極低電壓(VGL)電平,並且因此閘極低電壓(VGL)電平的電壓提供給第一電晶體T1的源極端、第二電晶體T2的汲極端、以及第三電晶體T3的源極端。以這種方式,第一、第二以及第三電晶體T1、T2以及T3的源極-汲極路徑可透過將高電平電壓供給至其源極或汲極端而去除,其中第一、第二以及第三電晶體T1、T2以及T3的此源極-汲極路徑為洩漏電流可以通過其流動的路徑。Referring to FIG. 28 and FIG. 31, the touch time P2 (or P4) starts and the voltage charged at the Q node is maintained at the touch time P2 (or P4). Here, the touch enable signal (VTEN) maintains a gate low voltage (VGL) level, and thus a gate low voltage (VGL) level voltage is supplied to the source terminal of the first transistor T1, and the second transistor T2 The 汲 extreme, and the source terminal of the third transistor T3. In this manner, the source-drain paths of the first, second, and third transistors T1, T2, and T3 can be removed by supplying a high-level voltage to their source or drain terminal, where the first, This source-drain path of the second and third transistors T1, T2, and T3 is the path through which leakage current can flow.

- 輸出時間- Output time

請參考圖29及圖31,對於觸控時間P2之後的顯示時間P3,上拉電晶體Tup響應於第一時脈訊號CLK1的閘極低電壓(VGL)電平根據自我啟動而導通,並且因此閘極高電壓(VGH)電平的閘極脈波可通過第N級的輸出端G(n)穩定地輸出。Referring to FIG. 29 and FIG. 31, for the display time P3 after the touch time P2, the pull-up transistor Tup is turned on according to the self-activation of the gate low voltage (VGL) level of the first clock signal CLK1, and thus The gate pulse of the gate high voltage (VGH) level can be stably outputted through the output terminal G(n) of the Nth stage.

- 放電時間- Discharge time

請參考圖30及圖31,對於輸出時間之後的放電時間,第二電晶體T2由第(N+1)級的輸出訊號導通,以使得閘極低電壓(VGL)電平的觸控使能訊號(VTEN)供給至Q節點以便放電Q節點,以及在高電平的第二時脈訊號CLK2充電QB節點以接通第三電晶體T3和下拉電晶體Tdown,並且因此第N級的Q節點和輸出端G(n)可由閘極低電壓(VGL)而放電。Referring to FIG. 30 and FIG. 31, for the discharge time after the output time, the second transistor T2 is turned on by the (N+1)th output signal, so that the gate low voltage (VGL) level touch enable is enabled. A signal (VTEN) is supplied to the Q node to discharge the Q node, and a second clock signal CLK2 at a high level charges the QB node to turn on the third transistor T3 and the pull-down transistor Tdown, and thus the Q node of the Nth stage And the output terminal G(n) can be discharged by the gate low voltage (VGL).

<虛擬級的正向驅動方法><Virtual level forward drive method>

圖32為表示在正向驅動操作中一虛擬級的Q節點充電的圖式,圖33為表示其中一Q節點電壓保持的圖式,以及圖34表示閘極脈波輸出操作的圖式。圖35為表示Q節點和輸出端放電操作的圖式,以及圖36為表示虛擬級的驅動波形圖。32 is a diagram showing charging of a virtual node Q node in a forward driving operation, FIG. 33 is a diagram showing a Q node voltage holding, and FIG. 34 is a diagram showing a gate pulse output operation. Fig. 35 is a view showing a discharge operation of the Q node and the output terminal, and Fig. 36 is a view showing a drive waveform of the virtual stage.

- Q節點充電時間- Q node charging time

請參考圖32及圖36,對於觸控時間P2之前緊鄰的顯示時間P1的一第一時段,閘極脈波訊號可從第N級輸出且觸控使能訊號(VTEN)可過渡到一閘極高電壓(VGH)電平。這裡,第一電晶體T1由第N級的輸出訊號導通,並且從而閘極高電壓(VGH)電平的觸控使能訊號(VTEN)供給到Q節點,以便充電Q節點。Referring to FIG. 32 and FIG. 36, for a first time period of the display time P1 immediately before the touch time P2, the gate pulse signal can be output from the Nth stage and the touch enable signal (VTEN) can be transitioned to a gate. Very high voltage (VGH) level. Here, the first transistor T1 is turned on by the output signal of the Nth stage, and thus the gate enable signal (VTEN) of the gate high voltage (VGH) level is supplied to the Q node to charge the Q node.

- Q節點的電壓保持時間(=觸控時間)- Q node voltage hold time (= touch time)

請參考圖33及圖36,觸控時間P2開始且在Q節點充電的一電壓在觸控時間P2保持。這裡,觸控使能訊號(VTEN)保持閘極高電壓(VGH)電平,並且因此閘極高電壓(VGH)電平的電壓提供給第一電晶體T1的源極端、第二電晶體T2的汲極端、以及第三電晶體T3的源極端。以這種方式,第一、第二以及第三電晶體T1、T2以及T3的源極-汲極路徑可透過將高電平電壓供給至其源極或汲極端而去除,其中第一、第二以及第三電晶體T1、T2以及T3的此源極-汲極路徑為洩漏電流可以通過其流動的路徑。Referring to FIG. 33 and FIG. 36, a voltage at which the touch time P2 starts and is charged at the Q node is maintained at the touch time P2. Here, the touch enable signal (VTEN) maintains a gate high voltage (VGH) level, and thus a gate high voltage (VGH) level voltage is supplied to the source terminal of the first transistor T1, and the second transistor T2 The 汲 extreme, and the source terminal of the third transistor T3. In this manner, the source-drain paths of the first, second, and third transistors T1, T2, and T3 can be removed by supplying a high-level voltage to their source or drain terminal, where the first, This source-drain path of the second and third transistors T1, T2, and T3 is the path through which leakage current can flow.

- 輸出時間- Output time

請參考圖34及圖36,在觸控時間P2結束時,上拉電晶體Tup根據響應於第一時脈訊號CLK1的閘極低電壓(VGL)電平的自我啟動而導通,並且因此一閘極高電壓(VGH)電平的進位訊號Vc可通過虛擬級的輸出端G(n+1/2)穩定地輸出。Referring to FIG. 34 and FIG. 36, at the end of the touch time P2, the pull-up transistor Tup is turned on according to the self-activation of the gate low voltage (VGL) level in response to the first clock signal CLK1, and thus the gate is turned on. The carry signal Vc of the very high voltage (VGH) level can be stably outputted through the output terminal G (n + 1/2) of the virtual stage.

- 放電時間- Discharge time

請參考圖35及圖36,對於輸出時間之後的顯示時間P3,第二電晶體T2由第(N+1)級的輸出訊號導通,以使得閘極低電壓(VGL)電平的觸控使能訊號(VTEN)供給到Q節點以便放電Q節點,並且一閘極高電壓(VGH)電平的第二時脈訊號CLK2充電QB節點以導通第三電晶體T3和下拉電晶體Tdown,並且因此虛擬級的輸出端G(n+1/2)在Q節點和輸出端可透過閘極低電壓(VGL)而放電。Referring to FIG. 35 and FIG. 36, for the display time P3 after the output time, the second transistor T2 is turned on by the output signal of the (N+1)th stage, so that the gate low voltage (VGL) level touch is enabled. A power signal (VTEN) is supplied to the Q node to discharge the Q node, and a second clock signal CLK2 of a gate high voltage (VGH) level charges the QB node to turn on the third transistor T3 and the pull-down transistor Tdown, and thus The output of the virtual stage G(n+1/2) is discharged through the gate low voltage (VGL) at the Q node and the output.

在根據第二及第四實施例的移位暫存器(使用在觸控時間為保持狀態的備用級而不包含一虛擬級)的情況下,Q節點電壓保持時間對應於觸控時間,而在在根據第一及第三實施例的移位暫存器(使用在觸控時間為保持狀態的一虛擬級)的情況下,Q節點電壓保持時間和輸出時間對應於觸控時間。In the case of the shift register according to the second and fourth embodiments (using a standby stage in which the touch time is the hold state without including a dummy stage), the Q node voltage hold time corresponds to the touch time, and In the case of the shift register according to the first and third embodiments (using a dummy stage in which the touch time is the hold state), the Q node voltage hold time and the output time correspond to the touch time.

圖37為表示在一備用級或一虛擬級的操作期間一Q節點電壓的波形圖。Figure 37 is a waveform diagram showing a Q node voltage during operation of a standby stage or a dummy stage.

請參考圖37,備用級或虛擬級可保持其Q點的電壓,並且在自我啟動期間透過將對應於高電平電源電壓的閘極高電壓(VGH)電平的觸控使能訊號(VTEN)供給至一源極-汲極路徑上與Q節點相對的一源極或汲極端,可增加此電壓,其中源極-汲極路徑為可能通過其洩漏Q節點充電的路徑。因此,一閘極高電壓(VGH)電平的閘極脈波訊號輸出,從而可以消除其中出現一水平線的暗淡現象。Referring to FIG. 37, the standby or virtual stage can maintain its voltage at the Q point and pass the touch enable signal (VTEN) corresponding to the gate high voltage (VGH) level of the high level power supply voltage during self-starting. This voltage can be increased by supplying a source or drain terminal opposite the Q node to a source-drain path, where the source-drain path is the path through which the Q-node can be charged. Therefore, a gate pulse signal output of a gate high voltage (VGH) level can eliminate the dimming phenomenon in which a horizontal line appears.

如上所述,因為備用級或虛擬級的Q節點的一電壓可在一觸控時間保持,因此一個圖框的觸控時間的數目可以減少且觸控時間的持續時間可以提高。此外,在高解析度下的一時脈時間可透過顯示時間和觸控時間之間的餘量而得到保證。As described above, since a voltage of the Q node of the standby or virtual level can be maintained for one touch time, the number of touch times of one frame can be reduced and the duration of the touch time can be increased. In addition, a clock time at high resolution can be guaranteed by the margin between display time and touch time.

雖然上述的顯示面板100的各級電晶體和薄膜電晶體(TFT)為N型電晶體,但本發明並不限於此,顯示面板100的級中第一、第二以及第三電晶體T1、T2以及T3,上拉電晶體Tup以及下拉電晶體Tdown和薄膜電晶體(TFT)可以為P型電晶體。在這種情況下,上述的所有訊號的邏輯高或低電平變為邏輯低或高電平。因此,透過保持第一、第二以及第三電晶體T1、T2以及T3的源極-汲極電壓可防止電流洩漏,從而在觸控期間穩定地保持相應級的Q節點的電壓。Although the respective stages of the transistor and the thin film transistor (TFT) of the display panel 100 described above are N-type transistors, the present invention is not limited thereto, and the first, second, and third transistors T1 in the stage of the display panel 100 are not limited thereto. T2 and T3, pull-up transistor Tup and pull-down transistor Tdown and thin film transistor (TFT) may be P-type transistors. In this case, the logic high or low level of all the above signals becomes logic low or high. Therefore, current leakage can be prevented by maintaining the source-drain voltages of the first, second, and third transistors T1, T2, and T3, thereby stably maintaining the voltage of the Q node of the corresponding stage during touch.

本領域的技術人員可以理解的是,本發明可以除本文所闡述而不脫離其精神和本發明的基本特徵的其他具體方式來實施。因此,上述實施例在所有方面是說明性的而非限制性的解釋。在本發明的範圍應當由所附之專利申請範圍及其合法等同範圍,而不是由上面的描述來確定,並且旨在包含所附之專利申請範圍的意義和等效範圍內的所有改變。It will be appreciated by those skilled in the art that the present invention may be practiced otherwise than as specifically described herein without departing from the spirit and scope of the invention. The above-described embodiments are therefore to be considered in all respects illustrative illustrative The scope of the present invention is to be determined by the scope of the appended claims and the scope of the appended claims.

10‧‧‧觸控感測器通道單元
11‧‧‧Vcom緩衝器
12‧‧‧開關陣列
13‧‧‧第一定時控制訊號發生器
14‧‧‧多工器
15‧‧‧DTX補償單元
16‧‧‧感測單元
17‧‧‧第二定時控制訊號發生器
18‧‧‧記憶體
19‧‧‧微控制器單元
21‧‧‧充電/放電單元
22‧‧‧Q節點穩定器
100‧‧‧顯示面板
110‧‧‧畫素
120‧‧‧圖案電極
200、200a、200b‧‧‧閘極驅動器電路
210‧‧‧移位暫存器
211‧‧‧充電/放電單元
212‧‧‧Q節點穩定器
300‧‧‧資料驅動器電路
400‧‧‧定時控制器
402‧‧‧電平移位器
500‧‧‧觸控驅動器電路
Tup‧‧‧上拉電晶體
Tdown‧‧‧下拉電晶體
T1‧‧‧第一電晶體
T2‧‧‧第二電晶體
T3‧‧‧第三電晶體
P1、P3‧‧‧顯示時間
P2、P4‧‧‧觸控時間
VGH‧‧‧閘極高電壓
VGL‧‧‧閘極低電壓
VTEN、VTEN1、VTEN2‧‧‧觸控使能訊號
G(n)‧‧‧第N級的輸出端
G(n-1)‧‧‧第(N-1)級的輸出端
G(n+1)‧‧‧第(N+1)級的輸出端
G(n+1/2)‧‧‧虛擬級的輸出端
G(n+2)‧‧‧第(N+2)級的輸出端
G(n+3)‧‧‧第(N+3)級的輸出端
CLK‧‧‧時脈訊號
CLK1‧‧‧第一時脈訊號
CLK2‧‧‧第二時脈訊號
FWD‧‧‧正向電壓
REV‧‧‧反向電壓
CQ‧‧‧第一電容器
CQB‧‧‧第二電容器
GL1至GLn‧‧‧閘極線
DL1至DLm‧‧‧資料線
RST‧‧‧復位訊號
VST‧‧‧啟動訊號
Touch EN‧‧‧觸控使能訊號
A‧‧‧級
B‧‧‧級
C‧‧‧虛擬級
GCS‧‧‧閘極控制訊號
DCS‧‧‧控制訊號
N‧‧‧非顯示區域
RGB‧‧‧視訊資料
DE‧‧‧資料使能訊號
Hsync‧‧‧水平同步訊號
Vsync‧‧‧垂直同步訊號
DCLK‧‧‧時脈訊號
SL‧‧‧感測線
A/A‧‧‧顯示區域
MEM‧‧‧記憶體
DIC‧‧‧驅動積體電路
MCU‧‧‧微控制器單元
TIC‧‧‧觸控積體電路
MUX C1-C3‧‧‧訊號
DTX DATA‧‧‧輸出資料
Vcom‧‧‧共同電壓
Vout‧‧‧輸出
OUT‧‧‧輸出端
CLKB‧‧‧時脈
Vq‧‧‧Q節點電壓
Vqb‧‧‧電壓
Vds‧‧‧電壓
Vgs‧‧‧電壓
Vth‧‧‧閥值電壓
Id‧‧‧汲極電流
DTX DATA‧‧‧表面量測裝置
10‧‧‧Touch sensor channel unit
11‧‧‧Vcom buffer
12‧‧‧Switch array
13‧‧‧First timing control signal generator
14‧‧‧Multiplexer
15‧‧‧DTX compensation unit
16‧‧‧Sensor unit
17‧‧‧Second timing control signal generator
18‧‧‧ memory
19‧‧‧Microcontroller unit
21‧‧‧Charging/discharging unit
22‧‧‧Q node stabilizer
100‧‧‧ display panel
110‧‧‧ pixels
120‧‧‧pattern electrode
200, 200a, 200b‧‧‧ gate driver circuit
210‧‧‧Shift register
211‧‧‧Charging/discharging unit
212‧‧‧Q node stabilizer
300‧‧‧Data Drive Circuit
400‧‧‧Time Controller
402‧‧‧Level shifter
500‧‧‧Touch Driver Circuit
Tup‧‧‧ Pull-up crystal
Tdown‧‧‧ pull-down transistor
T1‧‧‧first transistor
T2‧‧‧second transistor
T3‧‧‧ third transistor
P1, P3‧‧‧ shows time
P2, P4‧‧‧ touch time
VGH‧‧‧ gate high voltage
VGL‧‧‧ gate low voltage
VTEN, VTEN1, VTEN2‧‧‧ touch enable signal
G(n)‧‧‧N-level output
Output of G(n-1)‧‧‧ (N-1)
G(n+1)‧‧‧ (N+1) output
G(n+1/2)‧‧‧ virtual stage output
Output of G(n+2)‧‧‧ (N+2)
Output of G(n+3)‧‧‧ (N+3)
CLK‧‧‧ clock signal
CLK1‧‧‧ first clock signal
CLK2‧‧‧ second clock signal
FWD‧‧‧ forward voltage
REV‧‧‧reverse voltage
CQ‧‧‧first capacitor
CQB‧‧‧second capacitor
GL1 to GLn‧‧‧ gate line
DL1 to DLm‧‧‧ data line
RST‧‧‧Reset signal
VST‧‧‧ start signal
Touch EN‧‧‧ touch enable signal
A‧‧‧
B‧‧‧
C‧‧‧Virtual level
GCS‧‧‧ gate control signal
DCS‧‧‧ control signal
N‧‧‧ non-display area
RGB‧‧‧ video data
DE‧‧‧ data enable signal
Hsync‧‧‧ horizontal sync signal
Vsync‧‧‧ vertical sync signal
DCLK‧‧‧ clock signal
SL‧‧‧Sensing line
A/A‧‧‧ display area
MEM‧‧‧ memory
DIC‧‧‧ drive integrated circuit
MCU‧‧‧Microcontroller Unit
TIC‧‧‧ touch integrated circuit
MUX C1-C3‧‧‧ signal
DTX DATA‧‧‧Output data
Vcom‧‧‧Common voltage
Vout‧‧‧ output
OUT‧‧‧ output
CLKB‧‧‧ clock
Vq‧‧‧Q node voltage
Vqb‧‧‧ voltage
Vds‧‧‧ voltage
Vgs‧‧‧ voltage
Vth‧‧‧ threshold voltage
Id‧‧‧汲polar current
DTX DATA‧‧‧Surface measuring device

圖1係為表示根據一n型金屬氧化物半導體場效應電晶體(MOSFET)的Vgs的Id的圖式。 圖2為表示根據一n型金屬氧化物半導體場效應電晶體(MOSFET)的一亞閥值區域之Vgs的Id的圖式。 圖3及圖4表示其中Q節點可在一閘極驅動器電路中放電的一實例的圖式。 圖5、圖6、圖7、圖8A、以及圖8B表示根據本發明一實施例防止一Q節點之放電的圖式。 圖9、圖10以及圖11為表示根據本發明一實施例的一驅動裝置的圖式。 圖12為表示根據本發明一實施例的一觸控螢幕積體顯示裝置的圖式,此觸控螢幕積體顯示裝置包括一單一的閘極驅動器電路及其一驅動單元。 圖13為表示一顯示面板的複數個畫素和相對應的圖案電極的圖式。 圖14為表示圖案電極和感測線之連接的圖式。 圖15為表示根據本發明一實施例的一觸控螢幕積體顯示裝置的圖式,此觸控螢幕積體顯示裝置包括兩個閘極驅動器電路以及其一驅動單元。 圖16A為表示構成根據本發明一第一實施例的移位暫存器的複數個級的連接的圖式。 圖16B為表示構成根據本發明一第二實施例的移位暫存器的複數個級的連接的圖式。 圖17A為表示構成根據本發明一第三實施例的移位暫存器的複數個級的連接的圖式。 圖17B為表示構成根據本發明一第四實施例的移位暫存器的複數個級的連接的圖式。 圖18A表示根據第一及第三實施例的移位暫存器的正向和反向閘極掃描的圖式。 圖18B表示根據第二及第四實施例的移位暫存器的正向和反向閘極掃描的圖式。 圖18C表示在一單一方向(正向方向)上沒有虛擬級存在的一實例。 圖18D為表示其中一移位暫存器在兩個方向上驅動時加入一虛擬級C的實例的圖式。 圖19為表示時間劃分顯示和觸控驅動操作的時間流程圖。 圖20為構成根據本發明一實施例的移位暫存器的第N級的電路圖。 圖21為一備用級的電路圖。 圖22為一虛擬級的電路圖。 圖23為表示在正向驅動操作中第N級的Q節點充電和閘極脈波輸出操作的圖式。 圖24為表示在正向驅動操作中第N級的Q節點放電和QB節點充電的圖式。 圖25為表示在反向驅動操作中第N級的Q節點充電和閘極脈波輸出操作的圖式。 圖26為表示在反向驅動操作中第N級的Q節點放電和QB節點充電的圖式。 圖27為表示在正向驅動操作中作為一備用級的第N級的Q節點充電的圖式。 圖28為表示其中Q節點電壓保持的保持時間的圖式。 圖29為表示閘極脈波輸出操作的圖式。 圖30為表示Q節點和輸出端放電操作的圖式。 圖31為表示用於驅動此備用級的波形圖。 圖32為表示在正向驅動操作中一虛擬級的Q節點充電的圖式。 圖33為表示其中一Q節點電壓保持的圖式。 圖34表示閘極脈波輸出操作的圖式。 圖35為表示Q節點和輸出端放電操作的圖式。 圖36為表示虛擬級的驅動波形圖。以及 圖37為表示在一備用級或一虛擬級的操作期間一Q節點電壓的波形圖。1 is a diagram showing the Id of Vgs according to an n-type metal oxide semiconductor field effect transistor (MOSFET). 2 is a diagram showing the Id of Vgs according to a sub-threshold region of an n-type metal oxide semiconductor field effect transistor (MOSFET). 3 and 4 show an example of an example in which a Q node can be discharged in a gate driver circuit. 5, 6, 7, 8A, and 8B are diagrams showing the prevention of discharge of a Q node in accordance with an embodiment of the present invention. 9, 10 and 11 are views showing a driving device according to an embodiment of the present invention. FIG. 12 is a diagram showing a touch screen integrated display device including a single gate driver circuit and a driving unit thereof according to an embodiment of the invention. Figure 13 is a diagram showing a plurality of pixels of a display panel and corresponding pattern electrodes. Fig. 14 is a view showing the connection of a pattern electrode and a sensing line. FIG. 15 is a diagram showing a touch screen integrated display device including two gate driver circuits and a driving unit thereof according to an embodiment of the invention. Figure 16A is a diagram showing the connection of a plurality of stages constituting a shift register according to a first embodiment of the present invention. Figure 16B is a diagram showing the connection of a plurality of stages constituting a shift register according to a second embodiment of the present invention. Figure 17A is a diagram showing the connection of a plurality of stages constituting a shift register according to a third embodiment of the present invention. Figure 17B is a diagram showing the connection of a plurality of stages constituting a shift register according to a fourth embodiment of the present invention. Fig. 18A shows a diagram of forward and reverse gate scanning of the shift register according to the first and third embodiments. Fig. 18B shows a diagram of forward and reverse gate scanning of the shift register according to the second and fourth embodiments. Fig. 18C shows an example in which no virtual stage exists in a single direction (forward direction). Figure 18D is a diagram showing an example in which a shift register is added to a virtual stage C when driven in two directions. Fig. 19 is a timing chart showing time division display and touch drive operation. Figure 20 is a circuit diagram of an Nth stage constituting a shift register in accordance with an embodiment of the present invention. Figure 21 is a circuit diagram of a standby stage. Figure 22 is a circuit diagram of a virtual stage. Figure 23 is a diagram showing the operation of the Q-node charging and the gate pulse output of the Nth stage in the forward driving operation. Figure 24 is a diagram showing the Q-node discharge and QB node charging of the Nth stage in the forward drive operation. Figure 25 is a diagram showing the operation of the Q-node charging and the gate pulse output of the Nth stage in the reverse driving operation. Figure 26 is a diagram showing the Q-node discharge and QB node charging of the Nth stage in the reverse drive operation. Figure 27 is a diagram showing the charging of the Nth node of the Nth stage as a standby stage in the forward drive operation. Fig. 28 is a diagram showing the hold time in which the Q node voltage is held. Fig. 29 is a view showing a gate pulse wave output operation. Figure 30 is a diagram showing the discharge operation of the Q node and the output terminal. Figure 31 is a waveform diagram showing the driving of this standby stage. Figure 32 is a diagram showing the charging of a virtual node Q node in a forward drive operation. Figure 33 is a diagram showing the retention of a Q node voltage. Fig. 34 is a view showing a gate pulse wave output operation. Figure 35 is a diagram showing the discharge operation of the Q node and the output terminal. Fig. 36 is a view showing a driving waveform of a virtual stage. And Figure 37 is a waveform diagram showing a Q node voltage during operation of a standby stage or a virtual stage.

100‧‧‧顯示面板 100‧‧‧ display panel

200‧‧‧閘極驅動器電路 200‧‧ ‧ gate driver circuit

300‧‧‧資料驅動器電路 300‧‧‧Data Drive Circuit

400‧‧‧定時控制器 400‧‧‧Time Controller

402‧‧‧電平移位器 402‧‧‧Level shifter

500‧‧‧觸控驅動器電路 500‧‧‧Touch Driver Circuit

N‧‧‧非顯示區域 N‧‧‧ non-display area

RGB‧‧‧視訊資料 RGB‧‧‧ video data

DE‧‧‧資料使能訊號 DE‧‧‧ data enable signal

Hsync‧‧‧水平同步訊號 Hsync‧‧‧ horizontal sync signal

Vsync‧‧‧垂直同步訊號 Vsync‧‧‧ vertical sync signal

DCLK‧‧‧時脈訊號 DCLK‧‧‧ clock signal

GCS‧‧‧閘極控制訊號 GCS‧‧‧ gate control signal

DCS‧‧‧控制訊號 DCS‧‧‧ control signal

A/A‧‧‧顯示區域 A/A‧‧‧ display area

GL1至GLn‧‧‧閘極線 GL1 to GLn‧‧‧ gate line

DL1至DLm‧‧‧資料線 DL1 to DLm‧‧‧ data line

Claims (20)

一種顯示裝置,包括:一顯示面板,其中複數個資料線和複數個閘極線相交叉且複數個畫素設置為一矩陣形式,該顯示面板包括複數個觸控感測器;一觸控驅動器電路,驅動該些觸控感測器;一資料驅動器電路,將一資料訊號供給至該些資料線;一閘極驅動器電路,使用一移位暫存器將複數個閘極脈波供給至該些閘極線;以及一定時控制器,將一輸入影像的資料供給至該資料驅動器電路且控制該資料驅動器電路和該閘極驅動器電路的操作,其中,該定時控制器產生定義一顯示時間和一觸控時間的一觸控使能訊號,以及該移位暫存器包括其中輸入該觸控使能訊號的一級,其中該級包括:一Q節點,控制一上拉電晶體;以及一電晶體,包括連接至該Q節點的一汲極和一源極,在該觸控時間期間該觸控使能訊號的一高電平電壓提供至該源極。 A display device includes: a display panel, wherein a plurality of data lines and a plurality of gate lines intersect and a plurality of pixels are arranged in a matrix form, the display panel includes a plurality of touch sensors; and a touch driver a circuit for driving the touch sensors; a data driver circuit for supplying a data signal to the data lines; and a gate driver circuit for supplying a plurality of gate pulses to the gate using a shift register And a timing controller that supplies data of an input image to the data driver circuit and controls operation of the data driver circuit and the gate driver circuit, wherein the timing controller generates a display time and a touch enable signal of a touch time, and the shift register includes a first stage in which the touch enable signal is input, wherein the stage includes: a Q node, controlling a pull-up transistor; and an electric The crystal includes a drain and a source connected to the Q node, and a high level voltage of the touch enable signal is supplied to the source during the touch time. 如請求項1所述之顯示裝置,其中在該觸控時間期間該電晶體的一閘極和一源極之間的一電壓相比較於該電晶體的一閥值電壓更低,以及在該觸控時間期間該電晶體的該汲極和該源極之間的電壓為零。 The display device of claim 1, wherein a voltage between a gate and a source of the transistor during the touch time is lower than a threshold voltage of the transistor, and The voltage between the drain and the source of the transistor is zero during the touch time. 如請求項2所述之顯示裝置,其中該觸控使能訊號包括相比較於該觸控時間進一步擴大的一高電平時間,在該高電平時間該觸控使能訊號從相 比較於該觸控時間的開始更遲1個時脈脈波寬度之內的時間提升至該高電平電壓,並且在緊接該觸控時間結束之後的1個時脈脈波寬度之內的時間下降至一低電平,以及除了該高電平時間之外,該觸控使能訊號的一低電時間係為該顯示時間。 The display device of claim 2, wherein the touch enable signal comprises a high level time that is further expanded compared to the touch time, and the touch enable signal is phased at the high level Compared with the start of the touch time, the time within one pulse pulse width is raised to the high level voltage, and within one pulse pulse width immediately after the end of the touch time The time drops to a low level, and in addition to the high level time, a low power time of the touch enable signal is the display time. 如請求項2所述之顯示裝置,其中該觸控使能訊號包括一高電平時間,在該高電平時間該觸控使能訊號當該觸控時間開始時上升到該高電平電壓,並且當該觸控時間終止時下降到一較低的電平,以具有與該觸控時間相同的時間。 The display device of claim 2, wherein the touch enable signal comprises a high level time, and the touch enable signal rises to the high level voltage when the touch time starts at the high level And when the touch time is terminated, it drops to a lower level to have the same time as the touch time. 一種顯示裝置的驅動裝置,該顯示裝置包含一閘極驅動器電路,該閘極驅動器電路將一個圖框時間劃分為一顯示時間以及一觸控時間且將閘極脈波供給至該顯示裝置的一閘極線,該驅動裝置包括:一定時控制電路,產生定義該顯示時間和該觸控時間的一觸控使能訊號,其中在該觸控時間期間,該觸控使能訊號的一高電平電壓供給至該閘極驅動器電路,以及該閘極驅動器電路包括一電晶體,該電晶體包含連接至Q節點的一汲極以及一源極,在該觸控時間期間該觸控使能訊號的一高電平電壓提供至該源極。 A driving device for a display device, the display device comprising a gate driver circuit, the gate driver circuit dividing a frame time into a display time and a touch time and supplying a gate pulse wave to the display device The driving device includes: a timing control circuit for generating a touch enable signal for defining the display time and the touch time, wherein during the touch time, the touch enable signal is high The gate voltage is supplied to the gate driver circuit, and the gate driver circuit includes a transistor, the transistor includes a drain connected to the Q node and a source, and the touch enable signal during the touch time A high level voltage is supplied to the source. 如請求項5所述之驅動裝置,其中在該觸控時間該電晶體的一閘極與一源極之間的一電壓相比較於該電晶體的一閥值電壓更低,以及該電晶體的該閘極與該源極之間的一電壓為最小值。 The driving device of claim 5, wherein a voltage between a gate and a source of the transistor is lower than a threshold voltage of the transistor during the touch time, and the transistor A voltage between the gate and the source is at a minimum. 如請求項6所述之驅動裝置,其中該觸控使能訊號從相比較於該觸控時間的開始更遲1個時脈脈波寬度之內的時間提升至該高電平電壓,並且在緊接該觸控時間結束之後的1個時脈脈波寬度之內的時間下降至一低電平。 The driving device of claim 6, wherein the touch enable signal is raised to a high level voltage from a time shorter than one pulse pulse width later than the start of the touch time, and The time within one pulse pulse width immediately after the end of the touch time drops to a low level. 如請求項7所述之驅動裝置,其中該觸控使能訊號當該觸控時間開始時上升到該高電平電壓,並且當該觸控時間終止時下降到一較低的電平。 The driving device of claim 7, wherein the touch enable signal rises to the high level voltage when the touch time starts, and drops to a lower level when the touch time is terminated. 一種顯示裝置的驅動方法,該顯示裝置將一個圖框劃分為時分驅動的一顯示時間和一觸控時間,該顯示裝置的驅動方法包括:產生定義該顯示時間和該觸控時間的一觸控使能訊號;以及透過根據一Q節點的一電壓在該觸控時間期間將該觸控使能訊號的一高電平電壓供給至一閘極驅動器電路,而減少連接至該Q節點的放電路徑的一電晶體的一汲極和一源極之間的一電壓,其中該閘極驅動器電路用於將閘極脈波供給至該顯示裝置的一閘極線。 A driving method of a display device, the display device divides a frame into a display time and a touch time driven by a time division, and the driving method of the display device includes: generating a touch that defines the display time and the touch time Controlling the enable signal; and reducing a discharge connected to the Q node by supplying a high level voltage of the touch enable signal to the gate driver circuit during the touch time according to a voltage of a Q node a voltage between a drain and a source of a transistor of the path, wherein the gate driver circuit is configured to supply a gate pulse wave to a gate line of the display device. 如請求項9所述之顯示裝置的驅動方法,其中該電晶體的一閘極與一源極之間的一電壓在該觸控時間相比較於該電晶體的一閥值電壓更低,以及該電晶體的該閘極與該源極之間的電壓為零。 The driving method of the display device of claim 9, wherein a voltage between a gate and a source of the transistor is lower than a threshold voltage of the transistor during the touch time, and The voltage between the gate and the source of the transistor is zero. 一種閘極驅動器電路,將一個圖框時間劃分為一顯示時間和一觸控時間,並且其中一觸控使能訊號在該觸控時間期間變為一第一電平或一第二電平,該閘極驅動器電路包括:一移位暫存器,其中該移位暫存器的一第N(N為一正整數)級包括:一第一電晶體,由一前一級的一輸出訊號控制以將具有該第一電平的該觸控使能訊號供給至一Q節點;一第二電晶體,由一下一級的一輸出訊號控制以將具有該第二電平的該觸控使能訊號供給至該Q節點;以及一上拉電晶體,由該Q節點的一電壓控制以將提供於此的一第一時脈訊號輸出至一第N輸出端,其中當該第一電晶體、該第二電晶體、以及該上拉電晶體係為N型電晶體時,該第一電平係為一高電平且該第二電平係為一低電平,以及當該第一電晶體、該第二電晶體、以及該上拉電晶體係為P型電晶體時,該第一電平係為一低電平且該第二電平係為一高電平。A gate driver circuit divides a frame time into a display time and a touch time, and a touch enable signal becomes a first level or a second level during the touch time. The gate driver circuit includes: a shift register, wherein an Nth (N is a positive integer) level of the shift register comprises: a first transistor controlled by an output signal of a previous stage The touch enable signal having the first level is supplied to a Q node; a second transistor is controlled by an output signal of the next stage to enable the touch enable signal having the second level Supplying to the Q node; and a pull-up transistor controlled by a voltage of the Q node to output a first clock signal provided thereto to an Nth output terminal, wherein when the first transistor, the first transistor When the second transistor and the pull-up transistor system are N-type transistors, the first level is a high level and the second level is a low level, and when the first transistor When the second transistor and the pull-up transistor system are P-type transistors, the first level is A low level and the second level is a high level. 如請求項11所述之閘極驅動器電路,其中該第N級係為一虛擬級,並且該顯示時間包括在該觸控時間之前的一第一顯示時間以及該觸控時間之後的一第二顯示時間,其中該Q節點在該第一顯示時間期間充電,一進位訊號在該觸控時間期間通過該第N輸出端輸出,以及該Q節點在第二顯示時間期間放電。The gate driver circuit of claim 11, wherein the Nth stage is a virtual level, and the display time includes a first display time before the touch time and a second time after the touch time. Displaying time, wherein the Q node is charged during the first display time, a carry signal is output through the Nth output during the touch time, and the Q node is discharged during the second display time. 如請求項11所述之閘極驅動器電路,其中該顯示時間包括在該觸控時間之前的一第一顯示時間以及該觸控時間之後的一第二顯示時間,其中該Q節點在該第一顯示時間期間充電,以及閘極脈波在第二顯示時間期間輸出至該第N輸出端。The gate driver circuit of claim 11, wherein the display time includes a first display time before the touch time and a second display time after the touch time, wherein the Q node is at the first Charging during the display time, and the gate pulse is output to the Nth output during the second display time. 如請求項12所述之閘極驅動器電路,其中該第N級更包括一第三電晶體,該第三電晶體由該Q節點的該電壓控制以將該觸控使能訊號供給至該Q節點。The gate driver circuit of claim 12, wherein the Nth stage further comprises a third transistor, the third transistor being controlled by the voltage of the Q node to supply the touch enable signal to the Q node. 如請求項14所述之閘極驅動器電路,更包括一下拉電晶體,該下拉電晶體由一QB節點的一電壓控制以放電該第N輸出端。The gate driver circuit of claim 14, further comprising a pull-down transistor controlled by a voltage of a QB node to discharge the Nth output terminal. 一種觸控螢幕積體顯示裝置,包括:如請求項11所述之該閘極驅動器電路;顯示影像的一面板;以及一觸控驅動器電路,用於感測提供於該面板的觸控,其中該面板包含分組為複數個畫素組的複數個畫素,與該些畫素組一對一對應的複數個圖案電極,以及將該些圖案電極分別連接至該觸控驅動器電路的感測線。A touch screen integrated display device comprising: the gate driver circuit of claim 11; a panel for displaying an image; and a touch driver circuit for sensing a touch provided on the panel, wherein The panel includes a plurality of pixels grouped into a plurality of pixel groups, a plurality of pattern electrodes corresponding to the pixel groups, and the pattern electrodes are respectively connected to the sensing lines of the touch driver circuit. 如請求項16所述之觸控螢幕積體顯示裝置,其中該第N級係為一虛擬級,並且該顯示時間包括在該觸控時間之前的一第一顯示時間以及該觸控時間之後的一第二顯示時間,其中該Q節點在該第一顯示時間期間充電,一進位訊號在該觸控時間期間通過該第N輸出端輸出,以及該Q節點在該第二顯示時間期間放電。The touch screen integrated display device of claim 16, wherein the Nth level is a virtual level, and the display time includes a first display time before the touch time and after the touch time a second display time, wherein the Q node is charged during the first display time, a carry signal is output through the Nth output during the touch time, and the Q node is discharged during the second display time. 如請求項16所述之觸控螢幕積體顯示裝置,其中該顯示時間包括在該觸控時間之前的一第一顯示時間以及該觸控時間之後的一第二顯示時間,其中該Q節點在該第一顯示時間期間充電,以及閘極脈波在該第二顯示時間期間輸出至該第N輸出端。The touch screen integrated display device of claim 16, wherein the display time includes a first display time before the touch time and a second display time after the touch time, wherein the Q node is Charging during the first display time, and the gate pulse is output to the Nth output during the second display time. 如請求項17所述之觸控螢幕積體顯示裝置,其中該第N級更包括一第三電晶體,該第三電晶體由一QB節點的一電壓控制以將該觸控使能訊號供給至該Q節點。The touch screen integrated display device of claim 17, wherein the Nth stage further comprises a third transistor, wherein the third transistor is controlled by a voltage of a QB node to supply the touch enable signal To the Q node. 如請求項16所述之觸控螢幕積體顯示裝置,其中該閘極驅動器電路更包括一下拉電晶體,該下拉電晶體由該QB節點的該電壓控制以將一低電平電壓供給至該第N輸出端。The touch screen integrated display device of claim 16, wherein the gate driver circuit further comprises a pull-down transistor controlled by the voltage of the QB node to supply a low level voltage to the gate Nth output.
TW104139566A 2015-01-30 2015-11-27 Display device, and device and method for driving the same TWI588701B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150015523 2015-01-30
KR1020150123267A KR102390982B1 (en) 2015-01-30 2015-08-31 Display device, and driving device and method thereof

Publications (2)

Publication Number Publication Date
TW201627836A TW201627836A (en) 2016-08-01
TWI588701B true TWI588701B (en) 2017-06-21

Family

ID=56713417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139566A TWI588701B (en) 2015-01-30 2015-11-27 Display device, and device and method for driving the same

Country Status (2)

Country Link
KR (1) KR102390982B1 (en)
TW (1) TWI588701B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102586365B1 (en) * 2016-11-30 2023-10-06 엘지디스플레이 주식회사 Shift resister, image display device containing the same and method of driving the same
DE102017129795A1 (en) * 2017-06-30 2019-01-03 Lg Display Co., Ltd. DISPLAY DEVICE AND GATE-DRIVER CONTROL CIRCUIT THEREOF, CONTROL METHOD AND VIRTUAL-REALITY DEVICE
TWI623926B (en) * 2017-08-15 2018-05-11 友達光電股份有限公司 Gate driving circuit
KR102435943B1 (en) 2017-11-08 2022-08-23 엘지디스플레이 주식회사 Gate driving circuit and display device comprising the same
TWI660336B (en) * 2018-07-06 2019-05-21 友達光電股份有限公司 Display device and gate driver circuit
TWI682379B (en) * 2018-12-25 2020-01-11 友達光電股份有限公司 Gate driving circuit and display panel thereof
KR102570347B1 (en) * 2019-06-11 2023-08-24 엘지디스플레이 주식회사 Driving circuit, touch display device, and driving method thereof
TWI767740B (en) * 2021-06-04 2022-06-11 凌巨科技股份有限公司 Circuit for gate drivers on arrays with dummy output signals
TWI813295B (en) * 2022-05-19 2023-08-21 元太科技工業股份有限公司 Circuit driving substrate, display panel and display driving method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200622971A (en) * 2004-12-28 2006-07-01 Lg Philips Lcd Co Ltd Driving circuit including shift register and flat panel display device using the same
TW200643860A (en) * 2005-06-15 2006-12-16 Lg Philips Lcd Co Ltd Apparatus and method for driving liquid crystal display device
TW200802264A (en) * 2006-06-21 2008-01-01 Lg Philips Lcd Co Ltd Liquid crystal display device and method for driving the same
TW200929131A (en) * 2007-12-27 2009-07-01 Chi Mei Optoelectronics Corp Flat display and driving method thereof
TW200951937A (en) * 2008-06-06 2009-12-16 Au Optronics Corp Shift register and shift register unit for diminishing clock coupling effect
CN101752004A (en) * 2008-12-19 2010-06-23 乐金显示有限公司 Shift register
TW201214450A (en) * 2010-06-23 2012-04-01 Hitachi Displays Ltd Bidirectional shift register and image display device using the same
US20120105338A1 (en) * 2010-10-27 2012-05-03 Au Optronics Corp. Shift register and touch device
TW201349071A (en) * 2012-05-21 2013-12-01 Lg Display Co Ltd Display device
TW201405396A (en) * 2012-07-18 2014-02-01 Au Optronics Corp Shift register for photo sensing touch panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479988B1 (en) * 2002-07-24 2005-03-30 미래산업 주식회사 Method for compensating temperature in semiconductor test handler
KR102020935B1 (en) * 2012-12-12 2019-09-11 엘지디스플레이 주식회사 Display device having touch sensors and control method of gate driving circuit thereof
CN104021769B (en) * 2014-05-30 2016-06-15 京东方科技集团股份有限公司 A kind of shift register, grid line integrated drive electronics and display screen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200622971A (en) * 2004-12-28 2006-07-01 Lg Philips Lcd Co Ltd Driving circuit including shift register and flat panel display device using the same
TW200643860A (en) * 2005-06-15 2006-12-16 Lg Philips Lcd Co Ltd Apparatus and method for driving liquid crystal display device
TW200802264A (en) * 2006-06-21 2008-01-01 Lg Philips Lcd Co Ltd Liquid crystal display device and method for driving the same
TW200929131A (en) * 2007-12-27 2009-07-01 Chi Mei Optoelectronics Corp Flat display and driving method thereof
TW200951937A (en) * 2008-06-06 2009-12-16 Au Optronics Corp Shift register and shift register unit for diminishing clock coupling effect
CN101752004A (en) * 2008-12-19 2010-06-23 乐金显示有限公司 Shift register
TW201214450A (en) * 2010-06-23 2012-04-01 Hitachi Displays Ltd Bidirectional shift register and image display device using the same
US20120105338A1 (en) * 2010-10-27 2012-05-03 Au Optronics Corp. Shift register and touch device
TW201349071A (en) * 2012-05-21 2013-12-01 Lg Display Co Ltd Display device
TW201405396A (en) * 2012-07-18 2014-02-01 Au Optronics Corp Shift register for photo sensing touch panel

Also Published As

Publication number Publication date
KR20160094835A (en) 2016-08-10
TW201627836A (en) 2016-08-01
KR102390982B1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
CN110262696B (en) Gate driver circuit and touch screen integrated type display device
TWI588701B (en) Display device, and device and method for driving the same
US10497334B2 (en) Display device and gate driver circuit
JP6748682B2 (en) Gate drive circuit and display device including the same
US10534477B2 (en) Gate driver and display device having in-cell touch sensor using the same
WO2019184339A1 (en) Shift register unit, gate driving circuit, display device, and driving method
TWI567608B (en) Display device, method and driving device for driving the same
US11024245B2 (en) Gate driver and display device using the same
US20190155433A1 (en) Display apparatus
US10324561B2 (en) Display device including touch screen and driving circuit for driving display device
US20210335301A1 (en) Gate drive circuit, touch display device and driving method
WO2016029569A1 (en) Shift register unit and driving method therefor, gate driving circuit and display device
WO2018209937A1 (en) Shift register, drive method thereof, gate drive circuit, and display device
KR20180072041A (en) Gate driving circuit and display device using the same
CN109949758A (en) Scanning signal compensation method and device based on gate driving circuit
KR102276866B1 (en) Gata driver and touch screen integrated display device including thereof
KR102634178B1 (en) Gate driving circuit and display device using the same
KR102391616B1 (en) Gate driver and touch screen integrated display device including the same
KR102436560B1 (en) Gate driving circuit and organic light emitting display using the same
CN105845065B (en) Display device and device and method for driving the display device
KR102484184B1 (en) Gate driving circuit and display device having in-cell touch sensor using the same
KR20220093764A (en) Gate Driving Circuit and Organic Light Emitting Display using the same
KR20180077810A (en) Gate driving circuit and display dedvice using the same