TWI577039B - 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法 - Google Patents

量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法 Download PDF

Info

Publication number
TWI577039B
TWI577039B TW105111797A TW105111797A TWI577039B TW I577039 B TWI577039 B TW I577039B TW 105111797 A TW105111797 A TW 105111797A TW 105111797 A TW105111797 A TW 105111797A TW I577039 B TWI577039 B TW I577039B
Authority
TW
Taiwan
Prior art keywords
acid
quantum dot
mercapto
solar cell
sensitized solar
Prior art date
Application number
TW105111797A
Other languages
English (en)
Other versions
TW201737506A (zh
Inventor
張家耀
李振暉
江雅涵
Original Assignee
張家耀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 張家耀 filed Critical 張家耀
Priority to TW105111797A priority Critical patent/TWI577039B/zh
Priority to US15/432,787 priority patent/US20170301481A1/en
Application granted granted Critical
Publication of TWI577039B publication Critical patent/TWI577039B/zh
Publication of TW201737506A publication Critical patent/TW201737506A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2054Light-sensitive devices comprising a semiconductor electrode comprising AII-BVI compounds, e.g. CdTe, CdSe, ZnTe, ZnSe, with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法
本發明係關於一種量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法,其中使用雙功能分子作為共吸附劑,與水相量子點混合而成量子點敏化劑,以提高太陽能電池的光電轉換效率。
作為一種替代能源,太陽能具有分佈普遍、易於取得等特性,其利用係透過太陽能電池將光能轉換成電流輸出,轉換過程中不會造成環境污染,是極具發展潛力的可再生能源。
太陽能電池依發展先後順序有下列三種類型:矽晶太陽能電池、薄膜太陽能電池以及染料敏化太陽能電池(DSSC,dye sensitized solar cell)。其中,屬於第三代的染料敏化太陽能電池係透過感光染料捕獲入射光,將光子能量轉為電流輸出,其具備材料多樣化特性,且無須在無塵室中製備,製程相較於其他太陽能電池簡單,具有降低生產成本之優勢。然而,高效率的染料敏化太陽能電池大多使 用釕有機錯合物作為染料,其製備成本昂貴且無法於環境中分解,因此近年來產學界積極尋找可替代的敏化劑例如量子點(quantum dots),來取代釕有機錯合物。
另一方面,染料敏化太陽能電池的光電轉換效率取決於光捕獲效率、電子注入效率和電子收集效率等,其中,可利用共吸附劑抑制染料聚集在半導體表面而提高電子注入效率,進而提高光電轉換效率。例如,中國專利CN 103295795 B提出以有機材料乙醯丙酮及其衍生物作為共吸附劑,其在一定程度上對染料敏化太陽能電池的光電轉換效率有所提高。
鑒於習知技術中使用釕有機錯合物作為敏化劑之製備成本昂貴,且使用無機材料作為敏化劑之染料敏化太陽能電池光電性能偏低,因此,本發明提出一種量子點敏化太陽能電池,其中使用量子點作為敏化劑,並利用共吸附劑提升太陽能電池的光電性能。
根據本發明之一態樣,提供一種量子點敏化太陽能電池,包括:一光電極,形成於一第一基板上,該光電極上吸附有量子點敏化劑;一背電極,形成於一第二基板上;及一多硫化物電解液,注入於該光電極和該背電極之間;其中,吸附有量子點敏化劑之該光電極係經以一共吸附劑修飾,且該共吸附劑具有HS-R-COOH或HS-R-OH之結構,其中R表示經取代或未經取代之具有1至10個碳原子之有機碳鏈。
根據本發明之另一態樣,提供一種利用共吸附劑提升量 子點敏化太陽能電池之光電性能的方法,其特徵在於:將光電極浸泡於共吸附劑和量子點敏化劑之混合溶液中,藉由提高量子點敏化劑於光電極上的覆蓋率以提升量子點敏化太陽能電池之光電轉換效率,其中,該共吸附劑具有HS-R-COOH或HS-R-OH之結構,其中R表示經取代或未經取代之具有1至10個碳原子之有機碳鏈。
太陽能電池之基板必須具備良好之透光性,一般作為太陽能電池之基板的透明導電玻璃有兩種,其一為在氧化錫(Tin Oxide,SnO2)摻雜氟的透明薄膜導電玻璃(SnO2:F),簡稱FTO(Fluorine-doped tin oxide),另一為在氧化銦(Indium Oxide,In2O3)摻雜SnO2,簡稱ITO(Indium Tin Oxide)。本發明中之第一、第二基板可使用上述任一種透明導電玻璃,較佳係使用FTO。
光電極主要由氧化物半導體構成,一般常見的氧化物半導體有TiO2、SnO2、ZnO、SrTiO3等。使用不同的氧化物半導體作為吸附敏化劑的載體會造成不同的開環電壓(Voltage Open Circuit,Voc)值。由於TiO2價格便宜、取得容易且穩定性佳、使用效果好,而為較佳之選項,但本發明不限於使用TiO2,亦可使用前述SnO2、ZnO、SrTiO3等氧化物半導體。
為了能更有效的吸收太陽光能量以激發電子,氧化物半導體會吸附能隙較小的敏化劑來擴大吸光範圍,以利激發電子。敏化劑可分為兩大類,一種是有機金屬染料敏化劑,最具代表性的是釕的聯吡啶錯合物(Polypyridyl Complex of Ruthenium),另一種即量子點敏化劑。本發明中所使用之量子點敏化劑,其材料可選自由CdS、CdSe、CdTe、PbS、PbSe、Ag2S、Ag2Se、AgSxSe1-x、CuS、Sb2S3、Sb2Se3、CdSxSe1-x、CdSexTe1-x、InP、PbSxSe1-x、PbSexTe1-x、AgInSxSe1-x、AgInS2、 AgInSe2、AgInTe2、CuInSxSe1-x、CuInSxTe1-x、CuInS2、CuInSe2、CuInTe2及CuIn2S3所組成之群組中任一種半導體材料,較佳係使用CuInS2
習知染料敏化太陽能電池中大多使用I-/I3 -的電解液,藉由氧化還原作用,將染料氧化態進行還原,將電荷由背電極傳導至染料。本發明之量子點敏化太陽能電池中的電解液係使用多硫化物(S2-/Sn2-)。多硫化物的氧化還原反應不僅有助於轉移吸光激發後的硫化物半導體上的電洞,它也允許有較高的光電流。然而,多硫化物電解液也引發多硫化物會毒化常用於染料敏化太陽能電池之鉑背電極問題,因此本發明之量子點敏化太陽能電池與習知染料敏化太陽能電池之間的差異不僅是敏化劑不同,在電解液與背電極間的材料選擇也為了配合敏化劑而改變。
作為背電極,石墨烯、奈米碳管、金屬硫化物(例如PbS、NiS、FeS2、CoS、CuS、Cu2-xS與Cu2S)、金屬硒化物(例如PbSe、NiSe、FeSe2、CoSe、CuSe、Cu2-xSe與Cu2Se)等材料對於多硫化物水溶液皆有較好的電荷轉移能力,即良好的氧化還原作用。本發明中使用金屬硫化物作為量子點敏化太陽能電池的背電極,較佳係使用選自PbS、NiS、CoS、CuS及Cu2S中任一種金屬硫化物,並搭配多硫化物電解液,可明顯提升太陽能電池的光電轉換效率。
將量子點敏化到電極上主要有兩種方法,分別是:(i)在光電極薄膜表面製備量子點的原位法(in situ),以及(ii)在電極表面附著膠體量子點(Colloidal Quantum Dots,CQDs)的非原位法(ex situ),又稱預先合成法(pre-synthesized method)。其中,原位法又包括化學浴沉積、連續離子吸附與反應(Successive Ionic Layer Adsorption and Reaction,SILAR)、及電化學沉積。
此外,由於液態電解液、寬能隙半導體以及量子點之接觸界面會產生漏電流,使轉換效率下降,為了避免造成嚴重漏電流,須在吸附於寬能隙半導體之量子點上沉積能隙較量子點寬的鈍化層。
本發明中將量子點敏化劑附著到光電極上不限於使用上述任一方法,只要能夠將量子點敏化劑吸附到光電極上之方法皆可,亦可使用上述方法之組合,分別吸附量子點敏化劑和鈍化層。
本發明中所使用之共吸附劑具有HS-R-COOH或HS-R-OH之結構,其中R表示經取代或未經取代之具有1至10個碳原子之有機碳鏈。具體而言,具有HS-R-COOH之結構的共吸附劑包括,但不限於,硫乙醇酸(thioglycolic acid,TGA)、L-胱胺酸(L-Cystine)、D-胱胺酸、DL-胱胺酸、L-半胱胺酸(L-Cysteine,Cys)、D-半胱胺酸、DL-半胱胺酸、L-高半胱胺酸(L-homocysteine)、N-異丁醯基-L-半胱胺酸(N-isobutyryl-L-cysteine)、N-胺甲醯基-L-半胱胺酸(N-carbamoyl-L-cysteine)、麩胱甘肽(Glutathione,GSH)、2-巰基丙酸(2-Mercaptopropionic acid,2-MPA)、3-巰基丙酸(3-MPA)、4-巰基丁酸(4-Mercaptobutyric acid)、6-巰基己酸(6-Mercaptohexanoic acid)、8-巰基辛酸(8-Mercaptooctanoic acid)、巰基琥珀酸(Mercaptosuccinic acid)、內消旋-2,3-二巰基琥珀酸(meso-2,3-Mercaptosuccinic acid)、2-甲基-3-氫硫基丙酸(2-methyl-3-sulfanylpropanoic acid)、二氫類脂酸(dihydrolipoic acid)、硫代乳酸(thiolactic acid)、巰基乙酸甲酯(methyl thioglycolate)、巰基乙酸乙酯(ethyl thioglycolate)、3-巰基丙酸甲酯(methyl 3-mercaptopropionate)、新戊四醇四(2-巰基乙酸酯)(pentaerythritol tetrakis(2-mercaptoacetate));具有HS-R-OH之結構的共吸附劑包括,但不限於,1,4-二硫蘇糖醇(1,4-Dithiothreitol,DTT)、 L-(-)-二硫蘇糖醇、反-4,5-二羥基-1,2-二硫環己烷(trans-4,5-dihydroxy-1,2-dithiane)、1-巰基-2-丙醇(1-Mercapto-2-propanol)、2-巰基乙醇(2-Mercaptoethanol,ME)、4-巰基-1-丁醇(4-Mercapto-1-butanol)、3-巰基-1-丙醇(3-Mercapto-1-propanol)、6-巰基-1-己醇(6-Mercapto-1-hexanol)、8-巰基-1-辛醇(8-Mercapto-1-octanol)。該等具有HS-R-COOH或HS-R-OH之結構的共吸附劑可使量子點表面的雙功能分子穩定於量子點表面,而不形成雙硫鍵,藉此提高量子點在光電極上的覆蓋率。部分該等雙功能分子之化學結構如下所示:
根據本發明,先透過微波輔助方式合成所需的水相量子點,經由純化乾燥等步驟,製得所需的量子點敏化劑,再將光電極浸泡於敏化劑與共吸附劑所配製之溶液一段時間後,沉積一層鈍化層,而獲得吸附有量子點敏化劑的光電極,接著與背電極進行組裝,獲得本發明之量子點敏化太陽能電池。
以下將參照實施例進一步描述本發明,但本發明並不限 於此,應理解實施例僅係用以說明本發明之較佳實施態樣,而非用以限制本發明。
圖1(a)為水相CuInS2量子點之TEM圖,圖1(b)為水相CuInS2量子點之XRD圖,及圖1(c)為水相CuInS2量子點之EDS圖。
圖2顯示電池元件組裝簡圖。
(水相量子點敏化劑CuInS2合成)
將預先製備好之CuCl2溶液0.213毫升、InCl3溶液0.553毫升與檸檬酸三鈉鹽(Sodium Citrate,SC)溶液0.25毫升加入微波反應瓶G30,隨後攪拌使溶液顏色呈現藍色,再加入1000毫升之L-半胱胺酸(Cys)前驅物母液,溶液顏色由藍色轉變為澄清透明,隨後加入17.48毫升去離子水,最後快速加入Na2S並攪拌之,溶液顏色由透明轉變黃色,其中Cu:In:SC:Cys:S為1:4:16:7.2:6.5。
將上述溶液置於微波輔助器Microwave 300中進行微波反應,參數設定為標準模式,溫度180℃,持續時間15分鐘,冷卻溫度55℃,反應過程中的壓力約10.5~11Bar,溶液顏色由未反應的黃色轉變為深棕色。將反應後的溶液以2-丙醇混合後離心收集沉澱物,並將沉澱物置於烘箱40℃下16~18小時,深棕色乾燥物即為合成之CuInS2水相量子點。
圖1(a)係以高解析穿透電子顯微鏡進行影像分析,顯示CuInS2水相量子點的晶格結構。圖1(b)顯示CuInS2水相量子點的X射線繞射分析(X-ray Diffraction,XRD)訊號,以CuInS2的四方晶系黃 銅礦結構(JCPDS-15-0681)作為XRD資料庫分析比對,其在2θ為28.2°、46.8°與55.3°的三個主峰分別是(112)、(220)以及(312),而水相CuInS2量子點所測量的XRD訊號與資料庫的CuInS2四方晶系黃銅礦結構比對相當吻合,證明合成之結構確實為CuInS2量子點。圖1(c)為CuInS2水相量子點的能量散佈能譜儀(Energy Dispersive Spectrometer,EDS)圖,其顯示出具有銅銦硫以及金之元素訊號。由於樣品是將水相CuInS2量子點溶解後,滴於金網試片上,因此EDS之元素分析上會出現金元素的訊號。
(水相量子點敏化劑CuInS2吸附)
先將乾燥過後的CuInS2水相量子點加水完全溶解後,再加入不同濃度、種類的共吸附劑,最終分別配製成含有以下實施例所述之共吸附劑濃度和種類的CuInS2水相量子點水溶液。接著,於40℃下將在FTO導電玻璃上形成有TiO2薄膜的光電極浸泡至前述CuInS2水相量子點水溶液24小時,之後取出光電極,並以甲醇潤洗、吹乾,接著使用SILAR方法沉積ZnS鈍化層,即完成TiO2吸附CuInS2量子點的光電極元件。
之後,將前述製備得之依附有CuInS2量子點的TiO2光電極與以旋轉塗佈法製備的Cu2S背電極、預先配製好之多硫化物電解液進行組裝。多硫化物電解液之配製如下:取4.3232克的Na2S、0.1491克的KCl、0.6401克的S粉末,先加入7毫升水將固態溶質溶解後,再加入3毫升甲醇。取5毫升前述混合液,加入29.5毫克的GuSCN,即配置好所需的多硫化物電解液。太陽能電池之組裝則如圖2所示。
表1為以不同濃度之DTT作為共吸附劑所製得之量子點敏化太陽能電池的光電性能分析結果。其中,Jsc為短路電流 (Short-circuit density),定義為當施加偏壓為零時所測得之電流密度,短路電流即為照光時所產生的電流;Voc為開路電壓(Open-circuit voltage),定義為所測得的電流密度為零時所施加之偏壓;FF定義為實際的最大輸出功率除以理想目標的輸出功率(Jsc×Voc),是一個無因次群的數值,FF值越接近1表示越接近理想電池,可作為實際電池與理想電池之差距指標;η為太陽能電池之光電轉換效率,定義為最大輸出功率與入射光功率的比值。
由比較例1、2可知,將水相CuInS2量子點溶於純水和低濃度0.1M DTT環境中時,η分別僅為0.038%和0.036%。當DTT濃度進一步提升至0.5M時,元件整體數據均大幅上升,顯示出當置身於高濃度還原雙硫鍵試劑下,能穩定水相CuInS2量子點表面雙功能分子,使其表面的雙功能分子中的羧酸基與TiO2順利鍵結,大幅提高覆蓋率,提供更多激發電子,使Jsc上升。Voc取決於TiO2的費米能階與電解液中氧化還原對的電位差。當水相CuInS2量子點覆蓋率提高時,意味著更多電子注入TiO2,使TiO2的費米能階向負電位移動,提高與電解液之氧化還原對的電位差,提升Voc。實施例2進一步將DTT濃度提高至4.0M,其Jsc大幅增加至7.207mA/cm2,Voc提高至592mV,FF上升至60.6%,η更從0.533%上升至2.587%,顯示在高濃度 還原作用下,能夠提供與寬能隙氧化半導體高附載水相CuInS2量子點的環境。
表2為以不同雙功能分子作為共吸附劑所製得之量子點敏化太陽能電池的光電性能分析結果。
從表2可知,與相同0.5M的DTT水溶液相比,實施例3至5的分別使用TGA、Cys和GSH作為共吸附劑,所得太陽能電池的光電轉換效率整體均有大幅度的提升。TGA、Cys和GSH這三種雙功能分子的分子結構中均有羧酸基,推測這是主要造成覆蓋率大幅提升的原因。三者之中,TGA作為共吸附劑之光電轉換效率最佳,GSH次之,最後是Cys。TGA的光電轉換效率最佳,推測是因其分子結構較小,立體障礙影響較小,使水相CuInS2量子點能順利吸附於TiO2表面,光電轉換效率大幅提升至4.438%。GSH的分子結構有兩個羧酸基,能與TiO2之間提供更高的鍵結能力,但該分子結構較大,立體障礙影響較大,使得光電轉換效率較TGA差,為2.455%。Cys分子結構的立體障礙介於TGA與GSH之間,但光電轉換效率卻不及兩者,推估為Cys在還原雙硫鍵能力中,並沒有GSH來的高,因此即便在立體障礙較小的情況下,仍比GSH差。
表3為以不同濃度的TGA作為共吸附劑所製得之量子 點敏化太陽能電池的光電性能分析結果。
根據表2之結果,實施例6至10使用光電轉換效率最佳的TGA作為共吸附劑,分別測試浸泡在0.1M至6.0M等不同TGA濃度下的量子點敏化太陽能電池的光電轉換效率。從表3可知,光電轉換效率會隨著TGA濃度從0.1M提高至4.0M而增加,其中最高為實施例9搭配4.0M之TGA水溶液,其光電轉換效率為4.920%。
表4為以4.0M TGA作為共吸附劑,浸泡不同時間所製得之量子點敏化太陽能電池的光電性能分析結果。
根據表3之結果,實施例11至15使用不同TGA濃度中光電轉換效率最佳的4.0M TGA作為共吸附劑,進一步測試浸泡時 間對太陽能電池之光電轉換效率的影響。從表4可知,浸泡時間從0.5小時增加至3小時,Jsc從7.634mA/cm2提升至12.133mA/cm2,光電轉換效率從2.926%提升至4.360%,而從3小時增加至24小時,Jsc從12.133mA/cm2提升至14.837mA/cm2,光電轉換效率僅從4.360%提升至4.920%。換句話說,以浸泡時間為三小時作為一個分界點,其光電轉換效率在三小時以前呈現急驟上升的現象,而三小時之後呈現平緩上升的趨勢。從所有的時間條件中也可以看出FF隨著時間的增加而降低,從0.5小時的61.2%降至24小時的52.6%,說明隨著時間增加,量子點的覆蓋率也會跟著增加,而過多量子點堆疊會造成內部阻抗不斷上升,而使FF下降,使光電轉換效率上升幅度減緩。
TiO2光電極需同時浸泡於TGA共吸附劑和水相CuInS2量子點所組成的水溶液相,才有更良好的光電轉換效率。比較例3至5進行不同添加順序的TGA共吸附劑對於水相CuInS2量子點所製得之量子點敏化太陽能電池的光電性能分析結果。
表5中,比較例3係將TiO2光電極先浸泡TGA共吸附劑24小時,再浸泡CuInS2水相量子點24小時;比較例4係將TiO2光電極先浸泡CuInS2水相量子點24小時,再浸泡TGA共吸附劑24小時;比較例5則係TiO2光電極僅單獨浸泡於TGA共吸附劑24小時,而不含任何水相量子點的存在。
由表5得知,比較例3和4的光電轉換效率都遠低於實施例3。另一方面,只將TiO2光電極單獨浸泡於TGA共吸附劑24小時,而不含任何水相量子點存在的比較例5,其光電轉換效率更是僅有0.077%。足以說明TGA共吸附劑必須搭配水相CuInS2量子點所組成的混合水溶液才會產生較好的光電轉換效率。
表6為水相CdSe、CdSexTe1-x、AgInSe2與AgInS2量子點所製得之量子點敏化太陽能電池的光電性能分析結果。
由表6可知,使用CdSexTe1-x和AgInSe2水相量子點並添加TGA共吸附劑的太陽能電池,光電轉換效率同樣有顯著上升。另外,AgInS2與CdSe量子點敏化太陽能電池的光電轉換效率也分別從0.018%與0.046%上升至1.594%與1.413%,兩者的改進幅度雖無CuInS2明顯,仍足以證明以TGA共吸附劑均可以適合各種水相量子點以改善覆蓋率不佳的因素。
表7另提供將TiO2光電極分別浸泡於不同濃度之GSH、3-MPA及Cys等共吸附劑24小時的電池效率分析數據,可以看到不同種類的共吸附劑皆因提高濃度而增加電池效率。

Claims (11)

  1. 一種量子點敏化太陽能電池,包括:一光電極,形成於一第一基板上,該光電極上吸附有量子點敏化劑;一背電極,形成於一第二基板上;及一多硫化物電解液,注入於該光電極和該背電極之間;其中,吸附有量子點敏化劑之該光電極係經以共吸附劑修飾,且該共吸附劑具有HS-R-COOH或HS-R-OH之結構,其中R表示經取代或未經取代之具有1至10個碳原子之有機碳鏈。
  2. 如請求項1之量子點敏化太陽能電池,其中,具有HS-R-COOH之結構的共吸附劑係選自由硫乙醇酸(thioglycolic acid,TGA)、L-胱胺酸(L-Cystine)、D-胱胺酸、DL-胱胺酸、L-半胱胺酸(L-Cysteine,Cys)、D-半胱胺酸、DL-半胱胺酸、L-高半胱胺酸(L-homocysteine)、N-異丁醯基-L-半胱胺酸(N-isobutyryl-L-cysteine)、N-胺甲醯基-L-半胱胺酸(N-carbamoyl-L-cysteine)、麩胱甘肽(Glutathione,GSH)、2-巰基丙酸(2-Mercaptopropionic acid,2-MPA)、3-巰基丙酸(3-MPA)、4-巰基丁酸(4-Mercaptobutyric acid)、6-巰基己酸(6-Mercaptohexanoic acid)、8-巰基辛酸(8-Mercaptooctanoic acid)、巰基琥珀酸(Mercaptosuccinic acid)、內消旋-2,3-二巰基琥珀酸(meso-2,3-Mercaptosuccinic acid)、2-甲基-3-氫硫基丙酸(2-methyl-3-sulfanylpropanoic acid)、二氫類脂酸(dihydrolipoic acid)、硫代乳酸(thiolactic acid)、巰基乙酸甲酯(methyl thioglycolate)、巰基乙酸乙酯(ethyl thioglycolate)、3-巰基丙酸甲酯(methyl 3-mercaptopropionate)、新戊四醇四(2-巰基乙酸酯)(pentaerythritol tetrakis(2-mercaptoacetate))所組成之群組。
  3. 如請求項1之量子點敏化太陽能電池,其中,具有HS-R-OH之結 構的共吸附劑係選自由1,4-二硫蘇糖醇(1,4-Dithiothreitol,DTT)、L-(-)-二硫蘇糖醇、反-4,5-二羥基-1,2-二硫環己烷(trans-4,5-dihydroxy-1,2-dithiane)、1-巰基-2-丙醇(1-Mercapto-2-propanol)、2-巰基乙醇(2-Mercaptoethanol,ME)、4-巰基-1-丁醇(4-Mercapto-1-butanol)、3-巰基-1-丙醇(3-Mercapto-1-propanol)、6-巰基-1-己醇(6-Mercapto-1-hexanol)、8-巰基-1-辛醇(8-Mercapto-1-octanol)所組成之群組。
  4. 如請求項1至3中任一項之量子點敏化太陽能電池,其中,該第一基板及該第二基板各自可為FTO透明導電玻璃及ITO透明導電玻璃中任一種。
  5. 如請求項1至3中任一項之量子點敏化太陽能電池,其中,該光電極上具有一層選自由TiO2、SnO2、ZnO、SrTiO3組成之群組之氧化物半導體。
  6. 如請求項1至3中任一項之量子點敏化太陽能電池,其中,該量子點敏化劑係選自由CdS、CdSe、CdTe、PbS、PbSe、Ag2S、Ag2Se、AgSxSe1-x、CuS、Sb2S3、Sb2Se3、CdSxSe1-x、CdSexTe1-x、InP、PbSxSe1-x、PbSexTe1-x、AgInSxSe1-x、AgInS2、AgInSe2、AgInTe2、CuInSxSe1-x、CuInSxTe1-x、CuInS2、CuInSe2、CuInTe2及CuIn2S3所組成之群組中任一種半導體材料。
  7. 如請求項1至3中任一項之量子點敏化太陽能電池,其中,該背電極之材料係選自由PbS、NiS、CoS、CuS及Cu2S所組成之群組中任一種金屬硫化物。
  8. 一種利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法,其特徵在於:將光電極浸泡於共吸附劑和量子點敏化劑之混合溶 液中,藉由提高量子點敏化劑於光電極上的覆蓋率以提升量子點敏化太陽能電池之光電轉換效率,其中,該共吸附劑具有HS-R-COOH或HS-R-OH之結構,其中R表示經取代或未經取代之具有1至10個碳原子之有機碳鏈。
  9. 如請求項8之方法,其中,具有HS-R-COOH之結構的共吸附劑係選自由硫乙醇酸(thioglycolic acid,TGA)、L-胱胺酸(L-Cystine)、D-胱胺酸、DL-胱胺酸、L-半胱胺酸(L-Cysteine,Cys)、D-半胱胺酸、DL-半胱胺酸、L-高半胱胺酸(L-homocysteine)、N-異丁醯基-L-半胱胺酸(N-isobutyryl-L-cysteine)、N-胺甲醯基-L-半胱胺酸(N-carbamoyl-L-cysteine)、麩胱甘肽(Glutathione,GSH)、2-巰基丙酸(2-Mercaptopropionic acid,2-MPA)、3-巰基丙酸(3-MPA)、4-巰基丁酸(4-Mercaptobutyric acid)、6-巰基己酸(6-Mercaptohexanoic acid)、8-巰基辛酸(8-Mercaptooctanoic acid)、巰基琥珀酸(Mercaptosuccinic acid)、內消旋-2,3-二巰基琥珀酸(meso-2,3-Mercaptosuccinic acid)、2-甲基-3-氫硫基丙酸(2-methyl-3-sulfanylpropanoic acid)、二氫類脂酸(dihydrolipoic acid)、硫代乳酸(thiolactic acid)、巰基乙酸甲酯(methyl thioglycolate)、巰基乙酸乙酯(ethyl thioglycolate)、3-巰基丙酸甲酯(methyl 3-mercaptopropionate)、新戊四醇四(2-巰基乙酸酯)(pentaerythritol tetrakis(2-mercaptoacetate))所組成之群組。
  10. 如請求項8之方法,其中,具有HS-R-OH之結構的共吸附劑係選自由1,4-二硫蘇糖醇(1,4-Dithiothreitol,DTT)、L-(-)-二硫蘇糖醇、反-4,5-二羥基-1,2-二硫環己烷(trans-4,5-dihydroxy-1,2-dithiane)、1-巰基-2-丙醇(1-Mercapto-2-propanol)、2-巰基乙醇(2-Mercaptoethanol,ME)、4-巰基-1-丁醇(4-Mercapto-1-butanol)、3-巰基-1-丙醇 (3-Mercapto-1-propanol)、6-巰基-1-己醇(6-Mercapto-1-hexanol)、8-巰基-1-辛醇(8-Mercapto-1-octanol)所組成之群組。
  11. 如請求項8至10中任一項之方法,其中,該量子點敏化劑係選自由CdS、CdSe、CdTe、PbS、PbSe、Ag2S、Ag2Se、AgSxSe1-x、CuS、Sb2S3、Sb2Se3、CdSxSe1-x、CdSexTe1-x、InP、PbSxSe1-x、PbSexTe1-x、AgInSxSe1-x、AgInS2、AgInSe2、AgInTe2、CuInSxSe1-x、CuInSxTe1-x、CuInS2、CuInSe2、CuInTe2及CuIn2S3所組成之群組中任一種半導體材料。
TW105111797A 2016-04-15 2016-04-15 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法 TWI577039B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105111797A TWI577039B (zh) 2016-04-15 2016-04-15 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法
US15/432,787 US20170301481A1 (en) 2016-04-15 2017-02-14 Quantum dots-sensitized solar cell and method of enhancing the optoelectronic performance of a quantum dots-sensitized solar cell using a co-adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105111797A TWI577039B (zh) 2016-04-15 2016-04-15 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法

Publications (2)

Publication Number Publication Date
TWI577039B true TWI577039B (zh) 2017-04-01
TW201737506A TW201737506A (zh) 2017-10-16

Family

ID=59240719

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105111797A TWI577039B (zh) 2016-04-15 2016-04-15 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法

Country Status (2)

Country Link
US (1) US20170301481A1 (zh)
TW (1) TWI577039B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599875A (zh) * 2020-05-28 2020-08-28 中国民航大学 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016642B1 (ko) * 2017-05-24 2019-08-30 주식회사 그래피니드테크놀로지 전기화학소자용 전해질 및 그 제조방법
US10629385B2 (en) * 2017-07-24 2020-04-21 The Board Of Trustees Of The University Of Arkansas Hierarchically nanostructured films and applications thereof
CN111518543A (zh) * 2019-02-01 2020-08-11 苏州星烁纳米科技有限公司 量子点分散体系、彩膜以及显示装置
CN110117489B (zh) * 2019-06-03 2022-02-15 西北师范大学 硫代甘油为配体的铜铟硫三元量子点的合成及应用
CN110105946B (zh) * 2019-06-03 2021-12-21 西北师范大学 2-巯基乙醇为配体的铜铟硫三元量子点的合成及应用
WO2021002104A1 (ja) * 2019-07-01 2021-01-07 富士フイルム株式会社 光検出素子、光検出素子の製造方法、イメージセンサ、分散液および半導体膜
CN110534648B (zh) * 2019-08-30 2021-10-08 华中科技大学 一种有机小分子卤化物改性的钙钛矿光电功能材料、其制备及应用
CN110797205B (zh) * 2019-10-29 2021-05-25 江苏大学 α-氢氧化钴/硒化钴异质结构电极材料、电极、全固态平面微型超级电容器及制备方法
CN112786715B (zh) * 2019-11-08 2022-11-22 清华大学 太阳能电池
JP7516858B2 (ja) 2020-05-21 2024-07-17 artience株式会社 光電変換素子及び光電変換層形成用組成物
CN112909122B (zh) * 2021-01-13 2022-10-21 河北大学 一种改善硒化锑界面和能带结构的方法及硒化锑太阳能电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201427049A (zh) * 2012-12-28 2014-07-01 Of Energy Ministry Of Economic Affairs Bureau 具硫化鉛相對電極之量子點敏化太陽能電池及其製造方法
WO2015123388A1 (en) * 2014-02-13 2015-08-20 BOMAX Hydrogen LLC Methods and system for photo-activated hydrogen generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201427049A (zh) * 2012-12-28 2014-07-01 Of Energy Ministry Of Economic Affairs Bureau 具硫化鉛相對電極之量子點敏化太陽能電池及其製造方法
WO2015123388A1 (en) * 2014-02-13 2015-08-20 BOMAX Hydrogen LLC Methods and system for photo-activated hydrogen generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599875A (zh) * 2020-05-28 2020-08-28 中国民航大学 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法

Also Published As

Publication number Publication date
US20170301481A1 (en) 2017-10-19
TW201737506A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
TWI577039B (zh) 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法
Balis et al. Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes
Pan et al. Quantum dot-sensitized solar cells
Kouhnavard et al. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells
Lv et al. Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells
Christians et al. Trap and transfer. Two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells
Rasal et al. Stability of quantum dot-sensitized solar cells: A review and prospects
Hod et al. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
Savariraj et al. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells
Li et al. Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell
Moridon et al. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review
Murakami et al. Development of next‐generation organic‐based solar cells: studies on dye‐sensitized and perovskite solar cells
Nattestad et al. Developments in and prospects for photocathodic and tandem dye-sensitized solar cells
Nosheen et al. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study
Sasamura et al. Photosensitization of ZnO rod electrodes with AgInS 2 nanoparticles and ZnS-AgInS 2 solid solution nanoparticles for solar cell applications
Kim et al. CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices
JP5206092B2 (ja) 光電変換素子及び太陽電池
Esparza et al. Studying the role of CdS on the TiO2 surface passivation to improve CdSeTe quantum dots sensitized solar cell
Liu et al. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells
Zhang et al. Investigation of regeneration kinetics in quantum-dots-sensitized solar cells with scanning electrochemical microscopy
Rao et al. Enhance the performance of quantum dot-sensitized solar cell by manganese-doped ZnS films as a passivation layer
Mehmood et al. Mn doped CdS passivated CuInSe 2 quantum dot sensitized solar cells with remarkably enhanced photovoltaic efficiency
Higashimoto et al. Highly qualified copper-indium sulfide colloids prepared in water under microwave irradiation and their applications to the TiO2 based quantum dot-sensitized solar cells
Zhu et al. Surface engineering boosting Al/Zn-coincorporated Cu–In–Se quantum dot-sensitized solar cell efficiency

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees