CN111599875A - 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法 - Google Patents

一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法 Download PDF

Info

Publication number
CN111599875A
CN111599875A CN202010468221.7A CN202010468221A CN111599875A CN 111599875 A CN111599875 A CN 111599875A CN 202010468221 A CN202010468221 A CN 202010468221A CN 111599875 A CN111599875 A CN 111599875A
Authority
CN
China
Prior art keywords
zno
reaction
anode
sensitized
based photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010468221.7A
Other languages
English (en)
Inventor
韩建华
刘志锋
宋庆功
严慧羽
康建海
郭艳蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN202010468221.7A priority Critical patent/CN111599875A/zh
Publication of CN111599875A publication Critical patent/CN111599875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

一种Ag2S‑Sb2S3共敏化ZnO基光阳极的制备方法。该方法首先在ITO导电玻璃上生成ZnO纳米结构,再基于连续离子层吸附反应法将生成有ZnO纳米结构的玻璃分别在Na2S水溶液、AgNO3水溶液、Na2S水溶液、SbCl3乙醇溶液中反应(每一步反应均清洗后用氮气吹干再进行下一步),重复上述过程若干次后在鼓风干燥箱中烘干,最终在ITO导电玻璃表面制成一层Ag2S‑Sb2S3共敏化ZnO基光阳极。基于本发明方法制备的Ag2S‑Sb2S3共敏化ZnO基光阳极的光响应范围宽、吸光强度高,且载流子抽取与传输速率快,制备方法简单易控,可推广至其它多种硫化物共敏化光阳极的制备。

Description

一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法
技术领域
本发明属于光电功能材料制备技术领域,具体涉及一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法。
背景技术
传统化石能源的使用往往伴随着环境与资源存量的问题,新型清洁能源的开发与应用变得越来越迫切。太阳能的有效利用对于能源问题的解决有着超乎寻常的意义,包括将太阳能转化为化学能或电能等。在太阳能电池或光电催化器件中,光阳极都是非常重要的组成部分,而高质量的光阳极便是获得高性能器件的关键。比较常见的无机金属氧化物半导体是光阳极中最为常见的材料,如ZnO、TiO2、SnO2等。ZnO因其易制备、形貌丰富(如:纳米棒、纳米片、纳米线等)、电子迁移率高、能带结构合适等优势已被广泛用作太阳能电池和光电催化的光阳极材料。但金属氧化物(如ZnO、TiO2、SnO2等)普遍存在禁带宽度较宽而导致的光响应范围较窄的不足,而通过将窄禁带的半导体负载在金属氧化物表面来拓宽其光响应范围是一种非常有效的技术手段。
材料的禁带宽度决定了材料的吸光范围,禁带宽度为3.2eV的ZnO光响应范围被限制在紫外光区,而拓宽ZnO的光响应范围就需要选择窄禁带宽度的半导体来对其进行修饰。Ag2S的禁带宽度为0.92eV,Sb2S3的禁带宽度为1.70eV,这两种材料的叠加便可以覆盖整个可见光区和部分近红外区,且Ag2S和Sb2S3均具有较高的吸光系数,适宜作为吸光材料来优化ZnO。此外,硫化物(如Ag2S、Sb2S3等)的制备过程普遍较为温和,简单易控。
目前基于连续离子层吸附反应法在ZnO纳米结构表面负载Ag2S和Sb2S3,从而组装Ag2S-Sb2S3共敏化的ZnO基光阳极还未见报道,而基于一种简单的方法实现光阳极光响应范围的显著拓宽及吸光强度的大幅增强在光电功能材料领域具有非常重要的研究意义和现实意义。
发明内容
为了解决上述问题,本发明的目的在于提供一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法。
为了达到上述目的,本发明提供的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法是首先在ITO(氧化铟锡)导电玻璃表面生成ZnO纳米结构阵列,然后基于连续离子层吸附反应法将上述生成有ZnO纳米结构的ITO玻璃依次在Na2S水溶液、AgNO3水溶液、Na2S水溶液和SbCl3乙醇溶液中分多步进行反应,每一步反应后均需要将ITO导电玻璃进行清洗并用氮气吹干后再进行下一步反应,重复上述反应过程若干次后在鼓风干燥箱中进行烘干,最终在ITO导电玻璃表面制成一层Ag2S-Sb2S3共敏化ZnO基光阳极。
所述的ZnO纳米结构包括纳米棒、纳米线和纳米片;Na2S水溶液的浓度为0.02-0.1M,反应温度为25-35℃,反应时间为5-20min;AgNO3水溶液的浓度为0.01-0.05M,反应温度为25-35℃,反应时间为2-10min;Na2S水溶液的浓度为0.02-0.1M,反应温度为25-35℃,反应时间为5-20min;SbCl3乙醇溶液浓度为0.013-0.067M,反应温度为25-35℃,反应时间为10-40min;每一步反应后的清洗是在相应的纯溶剂中进行,包括去离子水或乙醇,清洗过程均在室温下进行,清洗时间为20-120s;反应次数为3-10次,具体次数由所需要的Ag2S-Sb2S3共敏化ZnO基光阳极的敏化层厚度而定,敏化层厚度范围在10-60nm之间。
本发明提供的Ag2S-Sb2S3共敏化ZnO基光阳极制备方法具有如下特色及优势:结合ZnO与Ag2S和Sb2S3各自的优势,通过不同光响应范围的叠加、与ZnO之间异质结的构筑以及ZnO的高电子抽取/传输速率,使得基于Ag2S-Sb2S3共敏化ZnO基光阳极的光电器件光响应范围覆盖整个可见光区和部分近红外区(光响应范围可至1300nm)以及高效的载流子分离与传输水平。此外,制备方法简单易控,应用范围广。
附图说明
图1为实施例1制备的Ag2S-Sb2S3共敏化ZnO基纳米层的透射电子显微镜照片。
具体实施方式
下面结合具体实施例对本发明做详细说明:
实施例一:
本实施例提供的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法是首先在ITO导电玻璃表面生成ZnO纳米棒阵列,然后基于连续离子层吸附反应法将上述生成有ZnO纳米棒的ITO玻璃在0.1M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.05M的AgNO3水溶液中于30℃下反应5min,然后在去离子水中清洗30s后用氮气吹干;再在0.1M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.067M的SbCl3乙醇溶液中于30℃下反应20min,然后在乙醇中清洗30s后用氮气吹干;重复上述反应过程5次后在鼓风干燥箱中于60℃下烘干30min;最终在ITO导电玻璃表面制成一层敏化层为30nm厚的Ag2S-Sb2S3共敏化ZnO基光阳极。经测试光响应范围拓宽至1300nm。
实施例二:
本实施例提供的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法是首先在ITO导电玻璃表面生成ZnO纳米线阵列,然后基于连续离子层吸附反应法将上述生成有ZnO纳米线的ITO玻璃在0.05M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.025M的AgNO3水溶液中于30℃下反应5min,然后在去离子水中清洗30s后用氮气吹干;再在0.05M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.033M的SbCl3乙醇溶液中于30℃下反应20min,然后在乙醇中清洗30s后用氮气吹干;重复上述反应过程5次后在鼓风干燥箱中于60℃下烘干30min;最终在ITO导电玻璃表面制成一层敏化层为10nm厚的Ag2S-Sb2S3共敏化ZnO基光阳极。经测试光响应范围拓宽至1300nm。
实施例三:
本实施例提供的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法是首先在ITO导电玻璃表面生成ZnO纳米片阵列,然后基于连续离子层吸附反应法将上述生成有ZnO纳米片的ITO玻璃在0.05M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.025M的AgNO3水溶液中于30℃下反应5min,然后在去离子水中清洗30s后用氮气吹干;再在0.05M的Na2S水溶液中于30℃下反应10min,然后在去离子水中清洗30s后用氮气吹干;之后在0.033M的SbCl3乙醇溶液中于30℃下反应20min,然后在乙醇中清洗30s后用氮气吹干;重复上述反应过程10次后在鼓风干燥箱中于60℃下烘干30min;最终在ITO导电玻璃表面制成一层敏化层为20nm厚的Ag2S-Sb2S3共敏化ZnO基光阳极。经测试光响应范围拓宽至1300nm。
为了验证本发明的效果,本发明人将上述实施例1制备的Ag2S-Sb2S3共敏化ZnO基光阳极进行了扫描电子显微镜观察,扫描电子显微镜照片如图1所示。
本发明人给出了上述实施例1制备的Ag2S-Sb2S3共敏化ZnO基纳米结构的透射电子显微镜照片,如图1所示。
本发明人通过透射电子显微镜观察到在ZnO纳米棒的表面包覆了一层敏化层以及敏化层的厚度,证明了Ag2S-Sb2S3共敏化ZnO基纳米结构的成功制备。本发明人通过紫外—可见分光光度计证明了共敏化后吸光范围的明显拓宽及吸光能力的增强。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (4)

1.一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法,其特征在于:所述的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法是首先在ITO导电玻璃表面生成ZnO纳米结构阵列,然后基于连续离子层吸附反应法将上述生成有ZnO纳米结构的ITO玻璃依次在Na2S水溶液、AgNO3水溶液、Na2S水溶液和SbCl3乙醇溶液中分多步进行反应,每一步反应后均需要将ITO导电玻璃进行清洗并用氮气吹干后再进行下一步反应,重复上述反应过程若干次后在鼓风干燥箱中进行烘干,最终在ITO导电玻璃表面制成一层Ag2S-Sb2S3共敏化ZnO基光阳极。
2.根据权利要求1所述的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法,其特征在于:所述的ZnO纳米结构包括纳米棒、纳米线和纳米片。
3.根据权利要求1所述的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法,其特征在于:所述的Na2S水溶液的浓度为0.02-0.1M,反应温度为25-35℃,反应时间为5-20min;AgNO3水溶液的浓度为0.01-0.05M,反应温度为25-35℃,反应时间为2-10min;Na2S水溶液的浓度为0.02-0.1M,反应温度为25-35℃,反应时间为5-20min;SbCl3乙醇溶液浓度为0.013-0.067M,反应温度为25-35℃,反应时间为10-40min;每一步反应后的清洗是在相应的纯溶剂中进行,包括去离子水或乙醇,清洗过程均在室温下进行,清洗时间为20-120s。
4.根据权利要求1所述的Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法,其特征在于:所述的反应次数为3-10次,Ag2S-Sb2S3共敏化ZnO基光阳极的敏化层厚度范围在10-60nm之间。
CN202010468221.7A 2020-05-28 2020-05-28 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法 Pending CN111599875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010468221.7A CN111599875A (zh) 2020-05-28 2020-05-28 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010468221.7A CN111599875A (zh) 2020-05-28 2020-05-28 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法

Publications (1)

Publication Number Publication Date
CN111599875A true CN111599875A (zh) 2020-08-28

Family

ID=72192362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010468221.7A Pending CN111599875A (zh) 2020-05-28 2020-05-28 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法

Country Status (1)

Country Link
CN (1) CN111599875A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024573A (zh) * 2010-12-18 2011-04-20 西南交通大学 一种PbS量子点敏化ZnO纳米片光阳极的制备方法
CN102412318A (zh) * 2011-12-15 2012-04-11 湖北大学 一种ZnO/CdTe/CdS纳米电缆阵列电极及其制备方法
CN106044706A (zh) * 2016-08-16 2016-10-26 曹健 一种CdSe /CdS纳米颗粒共敏化ZnO光电极的制备方法
TWI577039B (zh) * 2016-04-15 2017-04-01 張家耀 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024573A (zh) * 2010-12-18 2011-04-20 西南交通大学 一种PbS量子点敏化ZnO纳米片光阳极的制备方法
CN102412318A (zh) * 2011-12-15 2012-04-11 湖北大学 一种ZnO/CdTe/CdS纳米电缆阵列电极及其制备方法
TWI577039B (zh) * 2016-04-15 2017-04-01 張家耀 量子點敏化太陽能電池及利用共吸附劑提升量子點敏化太陽能電池之光電性能的方法
CN106044706A (zh) * 2016-08-16 2016-10-26 曹健 一种CdSe /CdS纳米颗粒共敏化ZnO光电极的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QINGYAO WANG等: "Anodic TiO2 nanotube arrays co-sensitized by uniform Ag2S and Sb2S3 nanoparticles as high-efficiency energy materials for solar cells and photocatalysts", 《CERAMICS INTERNATIONAL》 *
YITAN LI等: "Flexible quantum dot-sensitized solar cells with improved efficiencies based on woven titanium wires", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
ZHENXIAO PAN等: "Quantum dot-sensitized solar cells", 《CHEM SOC REV》 *
ZHONGQING LIU等: "Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Similar Documents

Publication Publication Date Title
Sharma et al. Dye sensitized solar cells: From genesis to recent drifts
Yang et al. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode
KR101208272B1 (ko) 양면 구조를 가지는 태양전지 및 이의 제조방법
Zeng et al. Growth of free-standing TiO2 nanorod arrays and its application in CdS quantum dots-sensitized solar cells
CN105576150A (zh) 一种量子点尺寸梯度变化的钙钛矿型太阳能电池及制备方法
JP2011176225A (ja) 光学変換装置及び同装置を含む電子機器
Wang et al. Wire-shaped perovskite solar cell based on TiO2 nanotubes
Nguyen et al. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO 2 electrode
Huang et al. One step spray-coated TiO2 electron-transport layers for decent perovskite solar cells on large and flexible substrates
EP4213220A1 (en) Transparent electrode, method for manufacturing transparent electrode, and electronic device
Shi et al. The enhanced photoelectrochemical performance of PbS/ZnS quantum dots co-sensitized CdSe nanorods array heterostructure
Mahalingam et al. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye‐sensitized solar cells: Recent advances and future outlook
Zhang et al. Reduced Graphene Oxide Wrapped Mesoporous Hierarchical TiO2‐CdS as a Photoanode for High‐Performance Dye‐Sensitized Solar Cells
Jiang et al. Simulated development and optimized performance of narrow-bandgap CsSnI3-based all-inorganic perovskite solar cells
US20120024369A1 (en) Photo-chemical solar cell with nanoneedle electrode and method manufacturing the same
Qirong et al. A study on numerical simulation optimization of perovskite solar cell based on CuI and C60
Bag et al. The influence of top electrode work function on the performance of methylammonium lead iodide based perovskite solar cells having various electron transport layers
CN108172640A (zh) 一种双面发电的碲化镉薄膜太阳能电池及其制备方法
KR101694803B1 (ko) 금속 나노선을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
US20130042906A1 (en) Quantum-dot sensitized solar cell
KR101538640B1 (ko) 염료감응 태양전지용 광전극, 그 제조방법 및 이를 이용한 염료감응 태양전지
TWI500176B (zh) 利用雙面塗覆的金屬基板的金屬柔性染料敏化太陽能電池及其製造方法
CN111599875A (zh) 一种Ag2S-Sb2S3共敏化ZnO基光阳极的制备方法
TWI500175B (zh) 金屬柔性染料敏化太陽能電池及其製造方法
Lin et al. Back-contact perovskite solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200828

WD01 Invention patent application deemed withdrawn after publication