TWI568993B - 流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法 - Google Patents

流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法 Download PDF

Info

Publication number
TWI568993B
TWI568993B TW096123624A TW96123624A TWI568993B TW I568993 B TWI568993 B TW I568993B TW 096123624 A TW096123624 A TW 096123624A TW 96123624 A TW96123624 A TW 96123624A TW I568993 B TWI568993 B TW I568993B
Authority
TW
Taiwan
Prior art keywords
flow
fluid
pressure
nozzle
chamber
Prior art date
Application number
TW096123624A
Other languages
English (en)
Other versions
TW200819712A (en
Inventor
丁軍華
冉凱文
施安里
施丹尼
Original Assignee
Mks公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mks公司 filed Critical Mks公司
Publication of TW200819712A publication Critical patent/TW200819712A/zh
Application granted granted Critical
Publication of TWI568993B publication Critical patent/TWI568993B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/17Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using calibrated reservoirs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Flow Control (AREA)

Description

流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法
本案係2005年3月25日申請的美國專利申請序號第11/090,120(以下簡稱為「120申請案」),代理人標籤號MKS-155號,案名「外部體積不敏感流量檢驗」之部分接續案。該申請案之內容在此整個併入作為參考。
例如質流控制器(MFC)與質流比例控制器(FRC)的高精密度流體輸送系統,在半導體晶圓製造等應用情形中是很重要的。在許多情形中,必須要檢驗這些流體輸送系統的精確度。
上升率(ROR)流量檢驗器可用來檢驗諸如MFC或FRC的測量系統之精確性。典型的ROR流量檢驗器可以包括一容室、一壓力轉換器、一溫度感測器,及兩個隔離閥(一個位於上游而另一個位於下游)。這些閥在閒置期間可以關閉,而且,當開始運轉時則可以打開,以允許流體從例如MFC或FRC等的待測試裝置流經此流量檢驗器。一旦流體的流量已經穩定之後,則可以關閉下游閥,因此,壓力在容室內會上升,而且可以測量出此壓力上升以及氣體溫度的上升。這些測量結果可被用來計算流量,藉此檢驗DUT的性能。
ROR檢驗器的容室中之上升壓力,可能對於檢驗過程來說是一個主要的干擾。雖然DUT可以調整其閥體位置,以補償下游壓力(容室壓力)干擾,以維持目標流設定點,可能會產生流量波動,而損壞流量檢驗過程。質流檢驗系統與方法必須要能夠避免對DUT產生干擾。
DUT與ROR流量檢驗器之間的連接流動路徑體積被稱之為外部體積。為了藉由ROR流量檢驗器計算出流量,所以,必須要決定出外部體積。然而,假如有許多DUT連接到ROR檢驗器,而使得對於每個DUT來說導致不同的外部體積,則用於決定外部體積的設定校準過程相當耗時。而且,當外部體積增加時,ROR所產生的流量檢驗之正確性會減少。這一點是因為沿著流動路徑的壓力下降(亦即,藉由壓力變換器所測量之ROR容室內的壓力變化)係不同於沿著流動路徑的壓力變化。流動路徑越長,則流量檢驗的正確性越低。為了解決外部體積對ROR檢驗器所產生的問題,所以,需要質流檢驗系統與方法。
揭示一種用於檢驗流體輸送裝置的測量之ROR檢驗器。此流量檢驗器包括:一容室,其係建構為容納來自該裝置的流體流動;一溫度感測器,其係建構為測量氣體溫度,以及一壓力感測器,其係建構為測量容室內的流體壓力。流量檢驗器包括一臨界流噴嘴,係沿著從該測試中的裝置(DUT)到該容室的流體之流動路徑而位於該容室的入口。臨界流噴嘴係被構成用以在臨界流時間週期tcf期間將通過噴嘴的流體流量以及噴嘴的上游壓力(DUT的下游壓力)維持成大致固定,而且,大致上不會受到容室內的壓力變化之影響。
一種用以減少在檢驗過程期間ROR檢驗器對DUT的干擾之方法,包括在流體輸送裝置與質流量檢驗器之間設置一臨界流噴嘴,以便維持住橫跨噴嘴的流體流動,致使,通過噴嘴的 流量不會受到容室內的壓力變化之影響,只要噴嘴的下游壓力與噴嘴的上游壓力之比例小於臨界流參數αpc即可。
一種用於解決外部體積問題的ROR流量檢驗方法,包括在ROR檢驗器的容室入口處放置一臨界流噴嘴,致使,流量檢驗過程不受外部體積的影響,且關於外部體積的資訊是與ROR檢驗器的流量檢驗計算無關。
圖1是依據本發明實施例的基於臨界流之質流檢驗器(MFV)100的方塊圖。在所示的實施例中,MFV100是一種上升率(ROR)形式的MFV,其中,流入一封閉容室內的流體壓力之上升速率,經測量後被用來檢驗進入容室內的流量。MFV100是一個基於臨界流的MFV,其包括一個可以為臨界流噴嘴140的流量限制器140。雖然在以下所述的實施例中臨界流噴嘴140被描述為一會聚形噴嘴,但是本案的其他實施例也可以使用其他種類的臨界流噴嘴,例如會聚-擴張形臨界流噴嘴,而且,可以使用任何種類的臨界流限制部,例如臨界流孔洞。
如以下所述,臨界流噴嘴140將通過噴嘴140的流量維持成固定,致使,藉由MFV100的質流測試大致上不會受到容室內的上升壓力所影響。因此,臨界流噴嘴140可大幅減少對測試中裝置(DUT)的下游壓力干擾,致使,在流檢驗過程期間,DUT具有最小的流量波動。臨界流噴嘴140亦使得MFV100所執行的流量檢驗大致上不會受到臨界流噴嘴140與DUT之間的任何外部體積之影響。
MFV100包括一封閉體積或容室130,其結構可用以容納來自DUT110的流體流動。DUT110典型地為一質流控制器(MFC)或質流比例控制器(FRC),係用以傳送流體的流量。下游出口閥150打開與關閉來自容室130內的流動流體,上游入口閥120開啟與關閉從DUT110進入容室130內的流體之流動。MFV100另外包括一個用以測量容室130內的流體壓力之壓力感測器170,以及一個用於測量130內的流體溫度之溫度感測器180。典型地,其質流量率受到檢驗的流體是氣體,然而,也可以藉由MFV100而檢驗其他種類流體的流量。
ROR MFV的基本原理是在容室130上方的質量平衡。使用質量平衡方程式,且運用理想氣體定律到容室內的氣體,則可以藉由測量MFV的容室內之氣體壓力與氣體溫度,根據以下的方程式,可以獲得入口氣體流量。
其中,k0是一轉換常數,SCCM(每分鐘的標準立方公分)為6x107單位,且SLM(每分鐘的標準公升)為6x104單位;Pstp為標準壓力(1atm),Tstp是標準溫度(273.15K),其中,P是容室氣體壓力,Vc是容室體積,且T是氣體溫度。
MFV100包括一個控制器160,用以接收壓力感測器170與溫度感測器180的輸出信號,且控制上游閥120與下游閥150的操作。在下游閥關閉之後,控制器160測量容室內的流 體壓力之上升率,而且,使用壓力對時間與溫度所測量到的上升率,以便根據方程式(1)而計算出流體從DUT到容室內的流量,藉此,檢驗DUT的測量。
典型的質流檢驗過程敘述如下:1.打開上游閥120與下游閥150;2.對DUT提供一流量設定點;3.等待直到容室壓力處於穩定狀態;4.開始記錄容室氣體壓力與容室氣體溫度,以用於流體計算;5.關閉下游閥150,致使容室壓力會上升;6.等待一段用於流體檢驗的時間;7.打開下游閥150;8.停止記錄容室氣體壓力與容室氣體溫度;9.根據方程式(1)而計算並記錄此檢驗過的流量。
臨界流噴嘴140係用以將流體的流動維持成一個臨界流或扼流。當氣體通過一限制部時,其密度減少而速度增加。質通量(每單位面積的質流)處於最大值的區域為一臨界區域。在此區域中,速度為音速,而且,進一步減少下游壓力將不會增加質流,如此被稱之為臨界流或扼流。
為了能夠滿足臨界流條件,臨界壓力比αpc被定義成噴嘴的最大可允許下游壓力Pdmax對噴嘴的上游壓力Pμ之間的比例: 臨界流條件要求: 其中,Pd是噴嘴的下游壓力,臨界壓力比例αpc是流體限制器(亦即,臨界流噴嘴140)的特性。臨界壓力比例僅與臨界流噴嘴與固有的氣體特性有關。對於不具有擴散器與厚正方形邊緣孔洞的ASME長半徑噴嘴來說,臨界壓力比例αpc可以根據穩定等熵(isentropic)流的假設而推衍成: 其中,γ是氣體比熱的比例,係被定義成: 其中,Cp是在固定壓力下的氣體比熱,且Cv是在固定體積下的氣體比熱。
在臨界流條件下,臨界流量可以由下列方程式獲得: 其中,k0是上述的轉換常數,T是氣體溫度,Pμ是上游壓力,A是孔洞或噴嘴咽喉區域的剖面積,C’是排放係數,M是氣體的分子重量,R是通用氣體定律常數。
排放係數C’說明了當高速氣體流通過孔洞之後繼續減少直徑時的減少剖面積。C’的值係介於0.7到1.0之間。
以下的氣體函數可以被定義成:
使用此氣體函數的定義,則方程式(6)可以被簡化成:
只要維持方程式(3)的臨界流條件,則下游壓力將不會影響橫跨限制部的質量流量,而且,唯一能夠增加流量的方式就是根據方程式(8)而增加上游壓力。
基於臨界流的MFV(以下稱之為「cMFV」)在ROR檢驗器的 容室入口處具有一個例如臨界流噴嘴或孔洞的流量限制器,如圖1所示。假如cMFV100的上游閥120與下游閥150兩者均打開,且DUT的流量處於穩定狀態,而臨界噴嘴的尺寸很正確時,則限制部的下游壓力(容室壓力)與限制部的上游壓力之間的壓力比例係小於臨界壓力比極限(αpc)。因此,橫跨流量限制部的流動是一臨界流,且根據方程式(8)來說與容室壓力無關。在此穩定狀態的時刻,通過限制部的流量等於DUT所輸送的流量,且限制部的上游壓力(DUT的下游壓力)是固定的。當下游閥150關掉以進行流量檢驗時,則容室壓力會上升。
只要容室壓力與限制部的上游壓力之間的壓力比例小於此臨界壓力比(αpc),則橫跨限制部的流動仍是臨界流,且與升高的容室壓力無關。因此,通過限制部的流量不會改變,限制部的上游壓力不會改變,而且,即使當容室壓力增加時,也不會對DUT的下游壓力產生干擾。假如持續增加的容室壓力超過此臨界壓力比(αpc),則通過限制部的流動不是臨界流,且與限制部的上游壓力與下游壓力有關。因此,通過限制部的流量不等於DUT所輸送的流量,限制部的上游壓力會改變,因此,會對DUT產生下游壓力干擾。
cMFV的臨界流週期被定義成當下游閥完全關閉的時刻以及當上升的容室壓力超過臨界壓力比極限(αpc)的時刻之間的週期。在此臨界流週期期間,通過限制部的流動是一固定的臨界流,且與容室壓力無關,而且,不會對DUT造成下游壓力干擾。可以藉由將方程式(8)的兩邊與方程式(1)與(3)整合起來,從時間t=0到臨界流週期tcf,而獲得臨界流週期: 其中,(αp0)是容室壓力與限制部的上游壓力之間在t=0(在下游閥被關掉之前,入口流很穩定的時刻)時的起初壓力比。
從方程式(9)可以看出,臨界流週期僅與氣體特性、氣體溫度,以及包括臨界流噴嘴的cMFV之幾何形狀有關。換句話說,臨界流週期是與流量無關。假如cMFV的檢驗時間在臨界流週期內的話,則橫跨噴嘴的流動是一固定的臨界流,且上升的容室壓力並不會干擾DUT的下游壓力。如此大幅地減少對於DUT的下游干擾。臨界流週期亦與容室體積Vc成正比,因此,增加臨界壓力比αpc或降低臨界流面積A能增加臨界流週期。對於特定的臨界流噴嘴與容室體積,已經發現例如SF6與WF6等大分子重量的氣體具有比He與H2等小分子氣體更大的臨界流週期。在所有半導體製程氣體中,氫氣具有最小的臨界流週期。
只要能保持方程式(3)的臨界流條件,例如臨界流噴嘴或孔洞的流量限制部,能夠將ROR檢驗器的容室與DUT的外部配管分隔開來。假如流量檢驗週期在臨界週期內的話,則通限制部的臨界流會等於DUT的流量。明顯地,臨界流噴嘴與DUT之間的外部體積係與方程式(1)的流量計算無關。不需要設定校準過程來決定流量限制部與DUT之間的外部體積,以作為流量檢驗計算之用。
圖2是顯示臨界流週期以及基於臨界流的MFV100之反應的圖形。圖形210代表容室內的流體壓力,當下游閥關閉時此壓力 會上升。圖形220代表流體的流量。cMFV的臨界流量在圖2中係以元件符號230表示。如圖2所示,在臨界流週期期間,通過噴嘴的入口流是一臨界流或扼流,上升的容室壓力不會影響入口流量及噴嘴的上游壓力(此亦為DUT的下游壓力)。在臨界流週期(在此週期期間,DUT的下游壓力是固定的)流逝之後,流量會下降,且DUT的下游壓力會改變。
假如在流量檢驗期間容室壓力總是能夠被保持在小於臨界壓力比的話,則通過噴嘴的流動將總是處於臨界流條件,且改變容室壓力將不會干擾DUT的下游壓力,如此一來,大致上將DUT的真正流量之波動情形降至最小。
圖3顯示圖1所示的基於臨界流之質流檢驗器的連續脈衝半即時(CPSR)操作。圖形310代表容室內的流體壓力,當下游閥關閉時壓力上升,而當下游閥開啟時壓力會下降。圖形320代表流體的流量。已經對cMFV發展出CPSR操作,以便在整個多次執行流量檢驗週期期間繼續符合臨界流條件。在此CPSR操作中,下游閥關閉與開啟之間的週期是位於臨界流週期內,致使,上升的容室壓力絕不會超過臨界壓力比例極限。如圖3所示,每次流量檢測的執行均位於臨界流週期內,致使,橫跨噴嘴的流動是臨界流。因此,改變容室壓力不會對噴嘴的上游壓力有任何影響,因此,能夠減少對DUT的下游壓力干擾。因此,對整個多次流量檢驗週期期間來說,DUT的真正流量波動已經降至最小。
可以在其中橫跨噴嘴的入口流是固定的或處於臨界流條件之多次執行當中,將檢測的輸出結果予以平均,如同CPSR操作所保證的一樣。以此方式,可以將測量干擾所引起的變化降至最小。 前一段所描述的CPSR操作是一種達成多次執行流量檢驗的簡單快速方式,而不會干擾到DUT的下游壓力。
臨界流噴嘴很容易被模組化、計算、設計、製造與測試。臨界流噴嘴對ROR MFV來說可以是一個增添的部位。圖4概略地顯示用於ROR MFV的增添式臨界流噴嘴。可以根據流量範圍與DUT的最大下游壓力要求,而選擇臨界流噴嘴的不同孔洞尺寸,以便對質流檢驗達到極佳的正確性、可重複性以及外部體積不敏感性。
在一實施例中,MFV100可以另外包括一個位於流量噴嘴上游處的第二壓力變換器190(顯示於圖1與圖4中),以作為流量穩定性偵測器。壓力變換器190其係建構為測量流量噴嘴140的上游壓力。一旦噴嘴的上游壓力被穩定下來時,通過噴嘴而進入容室內的流量也會穩定下來,而且,cMFV可以立刻開始流量檢驗過程。藉由壓力變換器190,cMFV可以免除必須在執行流量檢驗過程之前等候一段使流量穩定下來的固定週期。而且,噴嘴的上游壓力可以被用來根據方程式(6)而計算通過噴嘴的流量,以作為第二流量檢驗機制。此第二流量檢驗機制可以被用來診斷cMFV,或者作為對cMFV的第二流量檢驗法。
簡言之,呈現出一種基於臨界流之MFV,其中,臨界流噴嘴係被放置在容室體積的入口處。此臨界流噴嘴對ROR MFV來說,可以是一個添加性的部位。只要容室壓力與噴嘴的上游壓力之間的比例小於臨界流壓力比,上升的容室壓力將不會影響DUT的下游壓力,且橫跨噴嘴的流量是固定的。因此,不需要一種用於決定DUT與cMFV之間的外部體積之設定結構,以進行流量檢驗。 以此方式,就正確性、可重複性以及外部體積不敏感性來說,可大幅地提升質流檢驗的性能。
雖然已經藉由一些實施例來說明本發明的系統與方法,但是要知道的是在這些實施例中的觀念也可以被用於其他實施例。所以,本發明的保護範圍應由以下的申請專利範圍界定才是。
在申請專利範圍中,除非另行敘述,否則,提到單數形式的一元件並非意指「一個且唯一」,反而可以是「一個或更多」。對於熟知此項技術者來說,可以明白或稍後了解到上述說明中的各種實施例之元件的結構與功能上之等效置換,所以,這些等效置換在此明確地併入作為參考,且均打算被申請專利範圍所涵蓋。
100‧‧‧質流檢驗器(MFV)
110‧‧‧測試中裝置(DUT)
120‧‧‧上游入口閥
130‧‧‧容室
140‧‧‧流量限制器
150‧‧‧下游出口閥
160‧‧‧控制器
170‧‧‧壓力感測器
180‧‧‧溫度感測器
190‧‧‧壓力變換器
圖1是依據本發明實施例基於臨界流之質流檢驗器的方塊圖。
圖2是用以說明圖1所示的基於臨界流之質流檢驗器之反應的示意圖。
圖3是用以說明圖1所示的基於臨界流之質流檢驗器之連續脈衝半即時操作。
圖4是概略地說明用於質流檢驗器的附加臨界流噴嘴。
100‧‧‧質流檢驗器(MFV)
110‧‧‧測試中裝置(DUT)
120‧‧‧上游入口閥
130‧‧‧容室
140‧‧‧流量限制器
150‧‧‧下游出口閥
160‧‧‧控制器
170‧‧‧壓力感測器
180‧‧‧溫度感測器
190‧‧‧壓力變換器

Claims (16)

  1. 一種用於檢驗流體輸送裝置的測量之流量檢驗器,該流量檢驗器包括:一容室,其係建構為容納來自該裝置的流體流;一壓力感測器,其係建構為測量容室內的流體壓力;一溫度感測器,其係建構為測量容室內的流體溫度;以及一臨界流噴嘴,係沿著從該裝置到該容室的流體之流動路徑而位於該容室的上游;其中,該臨界流噴嘴係被構成用以在臨界流時間週期tcf期間將通過該噴嘴的流體流量(flow rate)維持成大致固定,而且,大致上不容易受到容室內的壓力變化之影響;其中,該臨界流時間週期tcf,被定義成介於下游閥關閉的時間點到Pd與Pμ的比例超過臨界壓力比例極限αpc的時間點之間的時段,係藉由以下方程式所提供: 其中,Vc是容室體積,ap0是噴嘴上游與下游之間在t=0時的起初壓力比,C’是噴嘴的排放係數,A是噴嘴咽喉部的剖面積, 其中,M是流體的分子重量,R是通用氣體常數,T是氣體溫度,且γ是流體的比熱Cp與Cv之比例,Cp是在固定壓力下的流體比熱,而Cv是在固定體積下的流體比熱;其中,該臨界流噴嘴係建構為允許流經該噴嘴的流體能夠在臨界流時間週期tcf期間滿足一臨界流條件,且其中,該臨界流條件是藉由以下的數學方式而提供: 其中,Pd是容室內及臨界流體噴嘴下游的流體壓力;Pμ是臨界流噴嘴上游的流體壓力;γ是由γ=Cp/Cv所提供,且是該流體的比熱Cp與Cv之比例,其中Cp是在固定壓力下的流體比熱,而Cv則是在固定體積下的流體比熱;以及,αpc是一臨界壓力比,係代表Pd與Pμ之間的最大可允許比例,藉此,橫跨噴嘴的流體流量將大致上保持固定,且大致上不易受到容室的任何壓力變化之影響。
  2. 如申請專利範圍第1項之流量檢驗器,另外包含:一上游閥,其係建構為開啟與關閉從該裝置進入該容室的入口之流體流動,以及 一下游閥,其係建構為開啟與關閉來自該容室的出口之流體流動。
  3. 如申請專利範圍第2項之流量檢驗器,另外包含:一控制器,其係建構為控制該下游閥與上游閥以及壓力與溫度感應器,該控制器另外可用以測量在該下游閥關閉之後容室內的流體壓力之上升率(ROR),且使用所測量出來的上升率,計算出流體從該裝置進入容室內的流量,藉此檢驗流體輸送裝置的測量。
  4. 如申請專利範圍第3項之流量檢驗器,其中,該壓力感測器與溫度感測器係建構為在臨界時間週期tcf內實施測量,致使流量檢驗過程大致上與改變容室壓力以及檢驗器與測試中裝置(DUT)之間的外部體積無關。
  5. 如申請專利範圍第1項之流量檢驗器,其中,在該臨界流週期tcf期間流體的流量是由以下方程式所提供: 其中,T是流體溫度,A是噴嘴孔洞的剖面積,C’是排放係數,M是流體的分子重量,R是通用氣體定律常數,且Pd、Pμ與γ係如申請專利範圍第1項中所定義的一樣。
  6. 如申請專利範圍第3項之流量檢驗器,其中,該控制器係建 構為檢驗流體輸送裝置的測量,係藉由以下步驟:a)打開該上游閥與該下游閥;b)對該裝置提供一流量設定點;c)等待直到容室內壓力達到一穩定狀態且穩定下來;d)開始記錄容室氣體壓力與容室氣體溫度,以用於流量計算;e)關閉下游閥,致使容室內的壓力上升;f)等待一段小於臨界流時間週期tcf的時間,以用於流量檢驗;g)在下游閥關閉時所測量到的臨界時間週期內,打開下游閥;以及h)使用以下的方程式而計算流入容室內的流體流量: 其中,Vc是容室體積,Tstp是大約273.15K,Pstp是大約1.01325e5Pa,K0是大約6x107單位的SCCM及6x104單位的SLM,P是壓力感測器/變換器所測量到的容室壓力(Pa),T是溫度感測器所測量到的氣體溫度(K)。
  7. 如申請專利範圍第6項之流量檢驗器,其中,該臨界噴嘴將 ROR檢驗器的容室體積與測試中裝置(DUT)的外部配管分開,致使外部體積資訊係與ROR質流檢驗器的流量計算無關,且不需要設定校準來決定出流量檢驗器與測試中裝置(DUT)之間的外部體積。
  8. 如申請專利範圍第7項之流量檢驗器,其中,該流量檢驗器可以在一連續脈衝半即時(CPSR)操作模式中進行操作,在此模式中,控制器能夠在各個多數檢驗時間週期內使壓力與溫度的測量係由壓力感測器與溫度感測器所產生,當下游閥關閉時便開始各檢驗時間週期,而當下游閥打開且從下游閥關閉的時後開始經過了臨界流時間週期tcf之前便結束各檢驗時間週期,致使橫跨噴嘴的流動總是處於臨界流條件,且改變容室壓力大致上對於流量與測試中裝置(DUT)的下游壓力沒有影響。
  9. 如申請專利範圍第8項之流量檢驗器,其中,對於連續脈衝半即時(CPSR)模式中的多次執行,控制器所計算出來的流量(flow rate)為一平均流量,致使在壓力感測器與溫度感測器內的測量干擾所導致的被計算出來的流量變化可降至最小。
  10. 如申請專利範圍第1項之流量檢驗器,其中該臨界流噴嘴係建構為將通過噴嘴的流體流動限制成一臨界流。
  11. 一種用於檢驗流體輸送裝置的測量之方法,包含以下步驟:在沿著質流檢驗器與測試中裝置(DUT)之間的流體之流動路徑上設置一臨界流噴嘴,以便維持流體的流量,致使在臨界流時間週期期間,橫跨噴嘴的流體流量以及該噴嘴上游的流體壓力仍維持成大致固定,且大致上不會受到容室內的壓力上升之影響;使該流體從該裝置沿著一流動路徑而流入一容室內,同時 該容室的入口與出口閥係被保持成開啟;允許進入容室內的流體流量(flow rate)以及容室內的流體壓力達到一穩定狀態;關閉容室下游的一閥,致使流體的壓力在該容室內開始上升;以及在臨界流時間週期tcf內實施流體壓力與流體溫度的測量,以測量容室內的流體壓力之上升率,且使用所測量到的壓力上升率,伴隨流體溫度的測量而計算出流體的流量(flow rate);其中,臨界流噴嘴係建構為限制橫跨噴嘴的流體流量,致使,在臨界流時間週期期間能滿足臨界流條件,其中,該臨界流時間週期tcf被定義成介於下游閥關閉的時間點到Pd與Pμ的比例超過臨界壓力比例極限αpc的時間點之間的時段,係藉由以下方程式所提供: 其中,Vc是容室體積,ap0是噴嘴上游與下游之間在t=0時的起初壓力比,C’是噴嘴的排放係數,A是噴嘴咽喉部的剖面積, 其中,M是流體的分子重量, R是通用氣體常數,T是氣體溫度,且γ是流體的比熱Cp與Cv之比例,Cp是在固定壓力下的流體比熱,而Cv是在固定體積下的流體比熱;且其中臨界流條件係藉由以下數學方式而提供: 其中,Pd是容室內及臨界流體噴嘴下游的流體壓力;Pμ是臨界流噴嘴上游的流體壓力;γ是由γ=Cp/Cv所提供,且是該流體的比熱Cp與Cv之比例,其中Cp是在固定壓力下的流體比熱,而Cv則是在固定體積下的流體比熱;以及αpc是一臨界流參數,係代表Pd與Pμ之間的最大可允許比例,藉此,橫跨噴嘴的流體流量將大致上保持固定,且大致上不會受到容室的任何壓力變化之影響。
  12. 如申請專利範圍第11項之方法,其中,該流體的流量(flow rate)係使用以下的方程式而計算: 其中,P與T係在位於臨界流時間週期內的檢驗週期期間由壓力 感測器與溫度感測器所測量出來之結果,致使改變容室壓力並不會對測試中裝置(DUT)的下游壓力產生影響。
  13. 如申請專利範圍第12項之方法,其中在各個多數檢驗時間週期期間產生壓力與溫度測量,當下游閥關閉時則開始各個檢驗時間週期,而當下游閥打開且從下游閥關閉後開始經過了臨界流時間週期tcf之前便結束各檢驗時間週期;且其中,在連續脈衝半即時(CPSR)模式內的多次執行期間,計算出來的流量(flow rate)為一平均流量,因而將測量干擾降至最小。
  14. 一種用以減少質流檢驗器所計算出來的流體流量(flow rate)變化之方法,該質流檢驗器係用以檢驗一流體測量裝置對流體流量的測量,該質流檢驗器包括:一容室,其係建構為容納來自該流量測量裝置的流體流動;一壓力感測器,其係建構為測量容室內的流體壓力;以及一溫度感測器,其係建構為測量該容室內的流體溫度,該方法包含以下步驟:在該流量測量裝置與該容室之間設置一臨界流噴嘴,以便限制橫跨該噴嘴的流體流量,致使通過該噴嘴的流體流量大致上不會受到容室內的壓力變化之影響,只要噴嘴的下游壓力與噴嘴的上游壓力之比例小於一臨界壓力比αpc即可,其中αpc是一臨界流參數,係代表噴嘴的下游壓力Pdmax與噴嘴的上游壓力Pμ之間的最大可允許比例,藉此,橫跨噴嘴的流體流量將大致上保持固定,且大致上不會受到容室的任何壓力變化之影響,其中: 以及使用一第二壓力變換器,其係位於流量噴嘴的上游,以便測量該流量噴嘴的上游壓力,其中該第二壓力變換器所測得的流量噴嘴之上游壓力可被用來檢查在執行流量檢驗之前通過噴嘴的流量是否已經穩定下來。
  15. 如申請專利範圍第14項之方法,另外包含:根據想要的流量範圍以及流體測量裝置的最大下游壓力需求,而選擇一個最佳的孔洞尺寸,以用於臨界流噴嘴。
  16. 如申請專利範圍第14項之方法,其中,該第二壓力變換器所測得的流量噴嘴之上游壓力可以被用來藉由申請專利範圍第5項中的方程式而計算出通過噴嘴的流量,以作為對於基於臨界流的質流檢驗器(cMFV)的第二流量檢驗方法。
TW096123624A 2006-06-30 2007-06-29 流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法 TWI568993B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/479,092 US7474968B2 (en) 2005-03-25 2006-06-30 Critical flow based mass flow verifier

Publications (2)

Publication Number Publication Date
TW200819712A TW200819712A (en) 2008-05-01
TWI568993B true TWI568993B (zh) 2017-02-01

Family

ID=38922739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096123624A TWI568993B (zh) 2006-06-30 2007-06-29 流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法

Country Status (7)

Country Link
US (1) US7474968B2 (zh)
JP (2) JP5090448B2 (zh)
KR (1) KR101198202B1 (zh)
DE (1) DE112007001375B4 (zh)
GB (1) GB2452467B (zh)
TW (1) TWI568993B (zh)
WO (1) WO2008014076A2 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628860B2 (en) * 2004-04-12 2009-12-08 Mks Instruments, Inc. Pulsed mass flow delivery system and method
US7628861B2 (en) * 2004-12-17 2009-12-08 Mks Instruments, Inc. Pulsed mass flow delivery system and method
US7757554B2 (en) * 2005-03-25 2010-07-20 Mks Instruments, Inc. High accuracy mass flow verifier with multiple inlets
US7461549B1 (en) * 2007-06-27 2008-12-09 Mks Instruments, Inc. Mass flow verifiers capable of providing different volumes, and related methods
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
EP2334234A4 (en) 2008-09-19 2013-03-20 Tandem Diabetes Care Inc DEVICE FOR MEASURING THE CONCENTRATION OF A SOLVED SUBSTANCE AND CORRESPONDING METHOD
US7891228B2 (en) * 2008-11-18 2011-02-22 Mks Instruments, Inc. Dual-mode mass flow verification and mass flow delivery system and method
JP5346628B2 (ja) * 2009-03-11 2013-11-20 株式会社堀場エステック マスフローコントローラの検定システム、検定方法、検定用プログラム
US8758323B2 (en) 2009-07-30 2014-06-24 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9127361B2 (en) * 2009-12-07 2015-09-08 Mks Instruments, Inc. Methods of and apparatus for controlling pressure in multiple zones of a process tool
US9348339B2 (en) 2010-09-29 2016-05-24 Mks Instruments, Inc. Method and apparatus for multiple-channel pulse gas delivery system
US8997686B2 (en) * 2010-09-29 2015-04-07 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10126760B2 (en) 2011-02-25 2018-11-13 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10353408B2 (en) 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US10031531B2 (en) 2011-02-25 2018-07-24 Mks Instruments, Inc. System for and method of multiple channel fast pulse gas delivery
GB201108854D0 (en) * 2011-05-26 2011-07-06 Spp Process Technology Systems Uk Ltd Mass flow controller monitoring
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9846074B2 (en) 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9471066B2 (en) 2012-01-20 2016-10-18 Mks Instruments, Inc. System for and method of providing pressure insensitive self verifying mass flow controller
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9372104B2 (en) * 2012-03-07 2016-06-21 Deka Products Limited Partnership Volumetric measurement device, system and method
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
KR102329911B1 (ko) * 2013-08-23 2021-11-24 누베라 퓨엘 셀스, 엘엘씨 가스 저장시 사용하기 위한 압력 방출 검출
KR101710105B1 (ko) * 2015-07-08 2017-02-24 주식회사 유진테크 기판 처리 장치 및 기판 처리 방법
WO2017040100A1 (en) * 2015-08-31 2017-03-09 Mks Instruments, Inc. Method and apparatus for pressure-based flow measurement in non-critical flow conditions
KR102031574B1 (ko) 2016-01-15 2019-10-14 가부시키가이샤 후지킨 유량 측정 가능한 가스 공급 장치, 유량계, 및 유량 측정 방법
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
GB2553002B (en) * 2016-08-19 2020-12-30 Cameron Tech Ltd Assembly for control and/or measurement of fluid flow
CN106352931B (zh) * 2016-10-09 2018-02-13 无锡洋湃科技有限公司 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法
US10031004B2 (en) * 2016-12-15 2018-07-24 Mks Instruments, Inc. Methods and apparatus for wide range mass flow verification
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
JP6913498B2 (ja) * 2017-04-18 2021-08-04 東京エレクトロン株式会社 流量制御器の出力流量を求める方法及び被処理体を処理する方法
US10866135B2 (en) 2018-03-26 2020-12-15 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on rate of pressure decay
US11327510B2 (en) 2018-05-23 2022-05-10 Hitachi Metals, Ltd. Multi-chamber rate-of-change system for gas flow verification
US11404290B2 (en) * 2019-04-05 2022-08-02 Mks Instruments, Inc. Method and apparatus for pulse gas delivery
US11585272B2 (en) 2020-06-25 2023-02-21 Pratt & Whitney Canada Corp. System and method for detection of excessive flow in a fluid system
KR20230150309A (ko) 2021-03-03 2023-10-30 아이커 시스템즈, 인크. 매니폴드 조립체를 포함하는 유체 유동 제어 시스템
CN113295221B (zh) * 2021-06-30 2022-10-18 中国航发贵州黎阳航空动力有限公司 一种滑油喷嘴方向流量和总流量的测量装置
US20230304837A1 (en) * 2022-03-23 2023-09-28 Mks Instruments, Inc. Method and Apparatus for Mass Flow Verification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684245A (en) * 1995-11-17 1997-11-04 Mks Instruments, Inc. Apparatus for mass flow measurement of a gas
US6955072B2 (en) * 2003-06-25 2005-10-18 Mks Instruments, Inc. System and method for in-situ flow verification and calibration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615857C1 (de) 1996-04-20 1997-10-02 Alois Ehrler Vorrichtung zur Erzeugung eines definierten Luftmengenstroms
US5944048A (en) 1996-10-04 1999-08-31 Emerson Electric Co. Method and apparatus for detecting and controlling mass flow
DE10242377B4 (de) 2002-09-12 2007-03-08 Siemens Ag Vorrichtung und Verfahren zum Kalibrieren eines Massenstromsensors
JP4784338B2 (ja) * 2004-06-21 2011-10-05 日立金属株式会社 質量流量制御装置
EP1797489A4 (en) * 2004-07-09 2008-07-30 Celerity Inc METHOD AND SYSTEM FOR FLOW MEASUREMENT AND VALIDATION OF A MASS FLOW CONTROL
US7412986B2 (en) 2004-07-09 2008-08-19 Celerity, Inc. Method and system for flow measurement and validation of a mass flow controller
US7150201B2 (en) 2004-12-15 2006-12-19 Celerity, Inc. System and method for measuring flow
US7174263B2 (en) 2005-03-25 2007-02-06 Mks Instruments, Inc. External volume insensitive flow verification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684245A (en) * 1995-11-17 1997-11-04 Mks Instruments, Inc. Apparatus for mass flow measurement of a gas
US6955072B2 (en) * 2003-06-25 2005-10-18 Mks Instruments, Inc. System and method for in-situ flow verification and calibration

Also Published As

Publication number Publication date
US7474968B2 (en) 2009-01-06
GB0900474D0 (en) 2009-02-11
US20060283254A1 (en) 2006-12-21
JP2009543061A (ja) 2009-12-03
GB2452467A (en) 2009-03-04
KR20090026136A (ko) 2009-03-11
KR101198202B1 (ko) 2012-11-07
JP2013037003A (ja) 2013-02-21
WO2008014076A2 (en) 2008-01-31
TW200819712A (en) 2008-05-01
GB2452467B (en) 2012-06-20
JP5090448B2 (ja) 2012-12-05
DE112007001375B4 (de) 2021-11-04
WO2008014076A3 (en) 2008-03-27
DE112007001375T5 (de) 2009-07-23

Similar Documents

Publication Publication Date Title
TWI568993B (zh) 流量檢驗器、用於檢驗流體輸送裝置的測量之方法及用以減少一用以檢驗一流體測量裝置對流體流量的測量之質流檢驗器所計算出來的流體流量變化之方法
KR101264652B1 (ko) 질량 유량 검증기, 및 질량 유량 검증기 정밀도 및 동작 유량 레인지를 증가시키는 방법
JP6926168B2 (ja) 質量流量コントローラ
JP6130825B2 (ja) 上流体積質量流量検証システムおよび方法
US7463991B2 (en) Mass flow verifier with flow restrictor
KR102303943B1 (ko) 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법
KR20150060788A (ko) 압력 기초 질량 유량 제어기의 자기 증명을 위한 방법 및 장치
KR102281930B1 (ko) 넓은 범위의 질량 유동 검증을 위한 방법 및 장치
CN117760509A (zh) 一种质量流量检验设备及检验方法