TWI554019B - Inverting apparatus and control method thereof - Google Patents
Inverting apparatus and control method thereof Download PDFInfo
- Publication number
- TWI554019B TWI554019B TW104103880A TW104103880A TWI554019B TW I554019 B TWI554019 B TW I554019B TW 104103880 A TW104103880 A TW 104103880A TW 104103880 A TW104103880 A TW 104103880A TW I554019 B TWI554019 B TW I554019B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- input
- disturbance
- power
- time point
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000001514 detection method Methods 0.000 claims description 8
- 238000013459 approach Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims 1
- 238000010248 power generation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/122—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
- H02H7/1225—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Electronic Switches (AREA)
Description
本發明是有關於一種電源轉換技術,且特別是有關於一種逆變裝置及其控制方法。 The present invention relates to a power conversion technique, and more particularly to an inverter device and a control method thereof.
為了降低石化能源的消耗率,現今的電力系統積極的發展再生能源的應用。例如以太陽能產生電源的光電模組(photovoltaic module)、以風能產生電源的風力發電模組、以水流產生電源的水力發電模組或其他類型的再生能源發電模組。然而,上述的再生能源發電模組由於皆係應用自然資源來進行發電,因此其輸出功率特性/輸出能力會顯著地受到環境的影響而有所改變。 In order to reduce the consumption rate of petrochemical energy, today's power systems are actively developing the application of renewable energy. For example, a photovoltaic module that generates electricity by solar energy, a wind power module that generates power by wind energy, a hydropower module that generates power by water flow, or other types of renewable energy power generation modules. However, since the above-mentioned regenerative power generation modules use natural resources for power generation, their output power characteristics/output capabilities are significantly affected by the environment.
舉例來說,以光電模組(例如太陽能板)發電的直流電源產生裝置為例,天候狀況、太陽能板被遮蔽的情形等其他可能的外部條件變化,皆可能會造成光電模組所產生的直流電源的功率特性/輸出能力發生變化。 For example, a DC power generating device that generates electricity from a photovoltaic module (such as a solar panel), for example, weather conditions, solar panels being shielded, and other possible external conditions may cause DC generated by the photovoltaic module. The power characteristics/output capabilities of the power supply vary.
由於此類再生能源發電模組所構成的直流電源產生裝置 大部分皆具有輸出能力不穩定的問題,因此在將此類直流電源產生裝置應用於交流電源系統時,後端的逆變裝置即需因應此一問題做出設計上的調整。否則,若後端的逆變裝置無法針對前端的直流電源產生裝置的功率特性改變及時的做出反應,例如輸入電壓與命令電壓差異過大,則常常會造成逆變裝置的輸入電壓無法追隨過大的命令電壓而導致系統故障的問題。 DC power generation device composed of such a renewable energy power generation module Most of them have the problem of unstable output capability. Therefore, when such a DC power generating device is applied to an AC power supply system, the rear-end inverter device needs to be designed to adjust to this problem. Otherwise, if the inverter device at the back end cannot respond to the power characteristic change of the DC power generating device at the front end in time, for example, if the input voltage and the command voltage are too different, the input voltage of the inverter device may not be able to follow the excessive command. Voltage causes a problem with system failure.
本發明提供一種逆變裝置及其控制方法,其可防止前端的直流電源產生裝置的輸出能力突然發生變化時,逆變裝置無法及時反應而造成系統故障的問題。 The present invention provides an inverter device and a control method thereof, which can prevent the problem that the inverter device cannot react in time to cause a system failure when the output capability of the front-end DC power source generating device suddenly changes.
本發明的逆變裝置包括逆變電路、偵測電路以及控制電路。逆變電路接收直流輸入電源,用以將直流輸入電源轉換為交流輸出電源。偵測電路用以偵測直流輸入電源的輸入電壓與輸入電流。控制電路耦接逆變電路與偵測電路,用以提供控制訊號來控制逆變電路,藉以將輸入電壓的電壓值調整至控制訊號所代表的命令電壓。控制電路計算偵測到的輸入電壓與命令電壓的電壓差值,並且判斷電壓差值是否大於預設值。當控制電路判定電壓差值大於預設值時,設定命令電壓之電壓值等於當前的輸入電壓之電壓值。 The inverter device of the present invention includes an inverter circuit, a detection circuit, and a control circuit. The inverter circuit receives a DC input power source for converting the DC input power source into an AC output power source. The detection circuit is configured to detect an input voltage and an input current of the DC input power source. The control circuit is coupled to the inverter circuit and the detection circuit for providing a control signal to control the inverter circuit, so as to adjust the voltage value of the input voltage to the command voltage represented by the control signal. The control circuit calculates the voltage difference between the detected input voltage and the command voltage, and determines whether the voltage difference is greater than a preset value. When the control circuit determines that the voltage difference is greater than the preset value, the voltage value of the set command voltage is equal to the voltage value of the current input voltage.
在本發明一實施例中,控制電路包括最大功率點追蹤運算(maximum power point tracking,MPPT)模組、加法器以及驅 動電路。最大功率點追蹤運算模組用以取樣該輸入電壓與該輸入電流,計算該電壓差值以判斷該電壓差值是否大於該預設值,並且據以產生擾動訊號。加法器耦接該最大功率點追蹤運算模組,接收擾動訊號與參考訊號並且據以產生命令電壓,其中命令電壓為擾動訊號所代表之擾動量與參考訊號所代表之前一時間點的命令電壓之電壓值的疊加。驅動電路接收命令電壓並據以產生控制訊號。 In an embodiment of the invention, the control circuit includes a maximum power point tracking (MPPT) module, an adder, and a drive Dynamic circuit. The maximum power point tracking operation module is configured to sample the input voltage and the input current, calculate the voltage difference to determine whether the voltage difference is greater than the preset value, and generate a disturbance signal accordingly. The adder is coupled to the maximum power point tracking operation module, and receives the disturbance signal and the reference signal and generates a command voltage, wherein the command voltage is the disturbance amount represented by the disturbance signal and the command voltage of the previous time point represented by the reference signal. The superposition of voltage values. The drive circuit receives the command voltage and generates a control signal accordingly.
在本發明一實施例中,當MPPT運算模組判定電壓差值小於等於預設值時,MPPT運算模組基於最大功率點追蹤運算來調整擾動訊號。 In an embodiment of the invention, when the MPPT operation module determines that the voltage difference is less than or equal to a preset value, the MPPT operation module adjusts the disturbance signal based on the maximum power point tracking operation.
在本發明一實施例中,在進行最大功率點追蹤運算時,MPPT運算模組依據輸入電壓與輸入電流計算輸入功率,當控制電路判定電壓差值小於等於預設值時,MPPT運算模組藉由比較擾動前後的輸入功率來調變擾動量,藉以產生對應的擾動訊號,以令輸入功率趨近於最大輸入功率。 In an embodiment of the present invention, when performing the maximum power point tracking operation, the MPPT operation module calculates the input power according to the input voltage and the input current, and when the control circuit determines that the voltage difference is less than or equal to the preset value, the MPPT operation module borrows The disturbance amount is modulated by comparing the input power before and after the disturbance to generate a corresponding disturbance signal to bring the input power closer to the maximum input power.
在本發明一實施例中,若當前時間點的輸入功率大於前一時間點的輸入功率,MPPT運算模組提供與前一時間點下的擾動方向相同的擾動量,以及若當前時間點的輸入功率小於等於前一時間點的輸入功率,MPPT運算模組提供與前一時間點下的擾動方向相反的擾動量。 In an embodiment of the invention, if the input power at the current time point is greater than the input power at the previous time point, the MPPT operation module provides the same disturbance amount as the disturbance direction at the previous time point, and if the current time point is input. The power is less than or equal to the input power of the previous time point, and the MPPT operation module provides the disturbance amount opposite to the disturbance direction at the previous time point.
本發明的逆變裝置的控制方法適用於追蹤逆變裝置所接收的直流輸入電源的最大輸入功率。所述控制方法包括以下步 驟:偵測直流輸入電源的輸入電壓與輸入電流;提供控制訊號來控制輸入電壓,藉以將輸入電壓的電壓值調整至控制訊號所代表的命令電壓;計算偵測到的輸入電壓與命令電壓的電壓差值;判斷電壓差值是否大於預設值;以及當電壓差值大於預設值時,設定命令電壓之電壓值等於當前的輸入電壓之電壓值。 The control method of the inverter device of the present invention is suitable for tracking the maximum input power of the DC input power received by the inverter device. The control method includes the following steps Step: detecting the input voltage and input current of the DC input power; providing a control signal to control the input voltage, thereby adjusting the voltage value of the input voltage to the command voltage represented by the control signal; calculating the detected input voltage and the command voltage a voltage difference value; determining whether the voltage difference is greater than a preset value; and when the voltage difference is greater than a preset value, setting a voltage value of the command voltage equal to a voltage value of the current input voltage.
在本發明一實施例中,提供控制訊號來控制輸入電壓,藉以將輸入電壓的電壓值調整至控制訊號所代表的命令電壓的步驟包括:提供代表擾動量的擾動訊號;疊加擾動訊號至參考訊號,據以產生命令電壓,其中命令電壓為擾動訊號所代表之擾動量與參考訊號所代表之前一時間點的命令電壓之電壓值的疊加;以及依據命令電壓產生控制訊號。 In an embodiment of the invention, the control signal is provided to control the input voltage, and the step of adjusting the voltage value of the input voltage to the command voltage represented by the control signal comprises: providing a disturbance signal representing the disturbance amount; and superimposing the disturbance signal to the reference signal And generating a command voltage, wherein the command voltage is a superposition of a disturbance amount represented by the disturbance signal and a voltage value of the command voltage represented by the reference signal at a previous time point; and generating a control signal according to the command voltage.
在本發明一實施例中,所述的逆變裝置的控制方法更包括以下步驟:當電壓差值小於等於預設值時,基於最大功率點追蹤運算來調整擾動訊號。 In an embodiment of the invention, the control method of the inverter device further includes the following steps: adjusting the disturbance signal based on the maximum power point tracking operation when the voltage difference is less than or equal to the preset value.
在本發明一實施例中,基於最大功率點追蹤運算來調整擾動訊號的步驟包括:依據輸入電壓與輸入電流計算輸入功率;比較擾動前後的輸入功率;以及依據比較結果調變擾動量,藉以產生對應的該擾動訊號,以令輸入功率趨近於最大輸入功率。 In an embodiment of the invention, the step of adjusting the disturbance signal based on the maximum power point tracking operation includes: calculating the input power according to the input voltage and the input current; comparing the input power before and after the disturbance; and adjusting the disturbance amount according to the comparison result, thereby generating Corresponding to the disturbance signal, the input power is approached to the maximum input power.
在本發明一實施例中,依據比較結果調變擾動量,藉以令輸入功率趨近於最大輸入功率的步驟包括:判斷當前時間點的輸入功率是否大於前一時間點的輸入功率;若當前時間點的輸入功率大於前一時間點的輸入功率,提供與前一時間點下的擾動方 向相同的擾動量;以及若當前時間點的輸入功率小於等於前一時間點的輸入功率,提供與前一時間點下的擾動方向相反的擾動量。 In an embodiment of the present invention, the step of adjusting the disturbance amount according to the comparison result, so that the input power approaches the maximum input power includes: determining whether the input power at the current time point is greater than the input power of the previous time point; The input power of the point is greater than the input power of the previous time point, providing the disturbance side at the previous time point. To the same amount of disturbance; and if the input power at the current time point is less than or equal to the input power at the previous point in time, the amount of disturbance opposite to the direction of the disturbance at the previous point in time is provided.
基於上述,本發明實施例提出一種逆變裝置及其控制方法,其可藉由計算輸入電壓與命令電壓的電壓差值,並且比較所述電壓差值是否超過預設值的方式來判斷直流輸入電源的功率特性是否發生偏移。其中,本案的控制方法會在判定直流輸入電源的功率特性發生偏移時,將命令電壓設定為當前的輸入電壓,再以此命令電壓的設定值為基礎進行最大功率點追蹤運算,藉以防止輸入電壓無法追隨過大的命令電壓而造成系統故障。 Based on the above, an embodiment of the present invention provides an inverter device and a control method thereof, which can determine a DC input by calculating a voltage difference between an input voltage and a command voltage, and comparing whether the voltage difference exceeds a preset value. Whether the power characteristics of the power supply are offset. Wherein, the control method of the present case sets the command voltage to the current input voltage when determining that the power characteristic of the DC input power source is shifted, and then performs the maximum power point tracking operation based on the set value of the command voltage, thereby preventing the input. The voltage cannot follow the excessive command voltage and cause a system failure.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧逆變裝置 100‧‧‧Inverter
110‧‧‧逆變電路 110‧‧‧Inverter circuit
120‧‧‧偵測電路 120‧‧‧Detection circuit
130‧‧‧控制電路 130‧‧‧Control circuit
131‧‧‧MPPT運算模組 131‧‧‧MPPT computing module
132‧‧‧加法器 132‧‧‧Adder
133‧‧‧驅動電路 133‧‧‧ drive circuit
ACout‧‧‧交流輸出電源 ACout‧‧‧AC output power supply
CV1、CV2‧‧‧特性曲線 CV1, CV2‧‧‧ characteristic curve
DCin‧‧‧直流輸入電源 DCin‧‧‧DC input power supply
DCG‧‧‧直流電源產生裝置 DCG‧‧‧DC power generation device
EG‧‧‧電網 EG‧‧‧ grid
I1、I1’、I1”、I1'''‧‧‧電流值 I1, I1', I1", I1'''‧‧‧ current value
Iout‧‧‧輸出電流 Iout‧‧‧Output current
Iin‧‧‧輸入電流 Iin‧‧‧ input current
S410~S470‧‧‧步驟 S410~S470‧‧‧Steps
Sc‧‧‧控制訊號 Sc‧‧‧ control signal
Sc’‧‧‧參考訊號 Sc’‧‧‧ reference signal
Sd‧‧‧擾動訊號 Sd‧‧‧ disturbance signal
t0、t1、t2‧‧‧時間點 T0, t1, t2‧‧‧ time points
V1、V1’、V1”、V1'''、V2、Vp‧‧‧電壓值 V1, V1', V1", V1''', V2, Vp‧‧‧ voltage values
Vcmd、Vcmd’‧‧‧命令電壓 Vcmd, Vcmd’‧‧‧ command voltage
Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage
Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage
Vth‧‧‧預設值 Vth‧‧‧ default value
△V‧‧‧擾動量 △V‧‧‧ disturbance
圖1為本發明一實施例的逆變裝置的示意圖。 FIG. 1 is a schematic diagram of an inverter device according to an embodiment of the present invention.
圖2本發明一實施例的控制電路的示意圖。 2 is a schematic diagram of a control circuit in accordance with an embodiment of the present invention.
圖3為本發明一實施例的直流輸入電源的電壓-電流關係示意圖。 3 is a schematic diagram showing a voltage-current relationship of a DC input power supply according to an embodiment of the present invention.
圖4為本發明一實施例的直流輸入電源的時間-電壓關係示意圖。 4 is a schematic diagram showing the time-voltage relationship of a DC input power supply according to an embodiment of the present invention.
圖5為本發明一實施例的逆變裝置的控制方法的步驟流程圖。 FIG. 5 is a flow chart showing the steps of a method for controlling an inverter device according to an embodiment of the present invention.
為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.
圖1為本發明一實施例的逆變裝置的示意圖。請參照圖1,本實施例的逆變裝置100適於應用在一交流電源系統中。在所述交流電源系統中,逆變裝置100可從前端的直流電源產生裝置DCG接收直流輸入電源DCin(包含有直流的輸入電壓Vin與輸入電流Iin),並且據以產生交流輸出電源ACout(包含有交流的輸出電壓Vout與輸出電流Iout)提供給後端的電網EG。於此,所述直流電源產生裝置DCG可例如為光電模組(photovoltaic module)、風力發電模組、水力發電模組或其他類型的再生能源發電模組,本發明不以此為限。 FIG. 1 is a schematic diagram of an inverter device according to an embodiment of the present invention. Referring to FIG. 1, the inverter device 100 of the present embodiment is adapted to be applied in an AC power supply system. In the AC power system, the inverter device 100 can receive a DC input power source DCin (including a DC input voltage Vin and an input current Iin) from a DC power generating device DCG at the front end, and generate an AC output power ACout (including The AC output voltage Vout and the output current Iout are supplied to the grid EG at the back end. The DC power generating device DCG can be, for example, a photovoltaic module, a wind power module, a hydropower module, or other types of renewable energy power generation modules, and the invention is not limited thereto.
在本實施例中,逆變裝置100包括逆變電路110、偵測電路120以及控制電路130。逆變電路接收直流輸入電源DCin,並且用以將直流輸入電源轉換為交流輸出電源ACout。其中,所述逆變電路110的電路組態可例如為半橋非對稱式、半橋對稱式、全橋式或其他可行的逆變電路組態,本發明不對此加以限制。 In the embodiment, the inverter device 100 includes an inverter circuit 110, a detection circuit 120, and a control circuit 130. The inverter circuit receives the DC input power source DCin and is used to convert the DC input power source into an AC output power source ACout. The circuit configuration of the inverter circuit 110 can be, for example, a half bridge asymmetric, a half bridge symmetric, a full bridge or other feasible inverter circuit configuration, which is not limited by the present invention.
偵測電路120耦接逆變電路110的輸入端以偵測直流輸入電源DCin的輸入電壓Vin與輸入電流Iin,並且將所偵測到的 輸入電壓Vin與輸入電流Iin的資訊輸出給控制電路130做為控制的依據。 The detecting circuit 120 is coupled to the input end of the inverter circuit 110 to detect the input voltage Vin of the DC input power source DCin and the input current Iin, and the detected The information of the input voltage Vin and the input current Iin is output to the control circuit 130 as a basis for control.
控制電路130耦接逆變電路110與偵側電路120。控制電路130用以控制逆變電路110的電源轉換以及直流輸入電源DCin的輸入電壓Vin大小,藉以令前端的直流電源產生裝置DCG的利用率都維持在一定的程度。舉例來說,控制電路130可產生一控制訊號Sc來控制逆變電路110的直流轉交流轉換,所述控制訊號Sc可例如為用以控制逆變電路110的切換週期的一脈寬調變訊號(PWM signal),但本發明不以此為限。另一方面,控制電路130還可提供一擾動訊號Sd來擾動輸入電壓Vin的電壓值大小,藉以實現最大功率點追蹤(maximum power point tracking,MPPT)的控制機制,使得前端的直流電源產生裝置DCG的輸出功率可趨近於規格內的最大功率。 The control circuit 130 is coupled to the inverter circuit 110 and the detection side circuit 120. The control circuit 130 is configured to control the power conversion of the inverter circuit 110 and the input voltage Vin of the DC input power source DCin, so that the utilization rate of the front-end DC power generation device DCG is maintained to a certain extent. For example, the control circuit 130 can generate a control signal Sc to control the DC-to-AC conversion of the inverter circuit 110. The control signal Sc can be, for example, a pulse width modulation signal for controlling the switching period of the inverter circuit 110. (PWM signal), but the invention is not limited thereto. On the other hand, the control circuit 130 can also provide a disturbance signal Sd to disturb the voltage value of the input voltage Vin, thereby implementing a maximum power point tracking (MPPT) control mechanism, so that the front end DC power generation device DCG The output power can approach the maximum power within the specification.
具體而言,本實施例的逆變電路110會依據所接收到的控制訊號Sc而將輸入電壓Vin的電壓值調整至控制訊號Sc所代表的命令電壓Vcmd。舉例來說,若當前的輸入電壓Vin為5V,而控制電路130判定可使前端的直流電源產生裝置DCG具有最大輸出功率的輸入電壓Vin為3V時,則此時控制電路130會提供一個對應至命令電壓Vcmd為3V的控制訊號Sc給逆變電路110,使得逆變電路110反應於控制訊號Sc而將輸入電壓Vin從5V逐漸降至3V。 Specifically, the inverter circuit 110 of the embodiment adjusts the voltage value of the input voltage Vin to the command voltage Vcmd represented by the control signal Sc according to the received control signal Sc. For example, if the current input voltage Vin is 5V, and the control circuit 130 determines that the input voltage Vin having the maximum output power of the front-end DC power generating device DCG is 3V, then the control circuit 130 provides a corresponding The control signal Sc having the command voltage Vcmd of 3V is supplied to the inverter circuit 110, so that the inverter circuit 110 reacts to the control signal Sc to gradually reduce the input voltage Vin from 5V to 3V.
在本實施例中,控制電路130基本上會依據MPPT的控 制機制來設定命令電壓Vcmd,並據以產生對應的控制訊號Sc以控制直流輸入電源DCin,藉以令前端的直流電源產生裝置DCG的輸出功率可逼近最大功率點。但在輸入電壓Vin與所設定的命令電壓Vcmd的差距過大時,控制電路130即會調整命令電壓Vcmd之設定值,藉以防止實際的輸入電壓Vin無法追隨過大的命令電壓Vcmd而造成系統失控。 In this embodiment, the control circuit 130 basically controls the MPPT. The mechanism is configured to set the command voltage Vcmd, and accordingly generate a corresponding control signal Sc to control the DC input power source DCin, so that the output power of the front-end DC power generating device DCG can approach the maximum power point. However, when the difference between the input voltage Vin and the set command voltage Vcmd is too large, the control circuit 130 adjusts the set value of the command voltage Vcmd to prevent the actual input voltage Vin from following the excessive command voltage Vcmd and causing the system to lose control.
詳細而言,前端的直流電源產生裝置DCG的功率特性/輸出能力並非是維持於固定,其隨時可能會因為一些外部條件的變化而造成功率特性的改變。舉例來說,若前端的直流電源產生裝置DCG為太陽能板所構成的光電模組,則太陽能板的功率特性/輸出能力很大程度會受到天氣的影響。若是太陽能板被遮蔽住,則會導致輸入電流Iin突然下降,且功率特性也會隨之改變。此時若控制電路130持續以前一期間的命令電壓Vcmd的設定值來產生控制訊號Sc控制逆變電路110時,即會造成逆變電路110無法持續運作。 In detail, the power characteristics/output capability of the front-end DC power generating device DCG is not maintained at a fixed value, and the power characteristics may be changed at any time due to changes in some external conditions. For example, if the front-end DC power generating device DCG is a photovoltaic module composed of solar panels, the power characteristics/output capability of the solar panel is greatly affected by the weather. If the solar panel is shielded, the input current Iin will suddenly drop and the power characteristics will change. At this time, if the control circuit 130 continues the control signal SC to control the inverter circuit 110 by continuing the set value of the command voltage Vcmd in the previous period, the inverter circuit 110 may not continue to operate.
為了解決上述問題,本實施例的控制電路130會計算偵測到的輸入電壓Vin與命令電壓Vcmd的電壓差值來作為設定命令電壓Vcmd的判斷依據。其中,控制電路130會判斷輸入電壓Vin與命令電壓Vcmd的電壓差值是否大於預設值。當控制電路130判定所計算出的電壓差值小於等於預設值時,表示前端的直流電源產生裝置DCG的功率特性沒有發生太大的偏移,因此控制電路130會基於MPPT運算來調整命令電壓Vcmd,並設定輸入電壓Vin 去追隨命令電壓Vcmd的電壓值,藉以令直流輸入電源DCin可具有最大功率。反之,當控制電路130判定電壓差值大於預設值時,表示直流電源產生裝置DCG可能因為外部條件的變化而造成功率特性曲線的偏移,故此時控制電路130會設定命令電壓Vcmd之電壓值等於當前的輸入電壓Vin之電壓值。換言之,在輸入電壓Vin與命令電壓Vcmd的電壓差值超過預設值的情況下,控制電路130會設定命令電壓Vcmd的電壓值去追隨當前的輸入電壓Vin,再以此命令電壓Vcmd設定值為基礎進行MPPT運算,藉以防止輸入電壓Vin無法追隨過大的命令電壓Vcmd而造成系統故障。 In order to solve the above problem, the control circuit 130 of the present embodiment calculates the voltage difference between the detected input voltage Vin and the command voltage Vcmd as a basis for determining the command voltage Vcmd. The control circuit 130 determines whether the voltage difference between the input voltage Vin and the command voltage Vcmd is greater than a preset value. When the control circuit 130 determines that the calculated voltage difference is less than or equal to the preset value, the power characteristic of the DC power generating device DCG indicating the front end does not shift too much, so the control circuit 130 adjusts the command voltage based on the MPPT operation. Vcmd, and set the input voltage Vin To follow the voltage value of the command voltage Vcmd, so that the DC input power DCin can have the maximum power. On the contrary, when the control circuit 130 determines that the voltage difference is greater than the preset value, it indicates that the DC power generating device DCG may shift the power characteristic curve due to the change of the external condition, so the control circuit 130 sets the voltage value of the command voltage Vcmd at this time. It is equal to the voltage value of the current input voltage Vin. In other words, in a case where the voltage difference between the input voltage Vin and the command voltage Vcmd exceeds a preset value, the control circuit 130 sets the voltage value of the command voltage Vcmd to follow the current input voltage Vin, and then sets the command voltage Vcmd. The MPPT operation is performed on the basis to prevent the input voltage Vin from failing to follow the excessive command voltage Vcmd and causing a system failure.
控制電路130的具體系統架構如圖2所示。請參照圖2,控制電路130包括MPPT運算模組131(亦即最大功率點追蹤運算模組)、加法器132以及驅動電路133。 The specific system architecture of the control circuit 130 is shown in FIG. 2. Referring to FIG. 2, the control circuit 130 includes an MPPT operation module 131 (ie, a maximum power point tracking operation module), an adder 132, and a drive circuit 133.
在本實施例中,MPPT運算模組131會取樣輸入電壓Vin與輸入電流Iin,計算輸入電壓Vin與命令電壓Vcmd的電壓差值以判斷所述電壓差值是否大於預設值,並且據以產生擾動訊號Sd。其中,當MPPT運算模組131判定所述電壓差值小於等於預設值時,MPPT運算模組131會基於MPPT運算來調整擾動訊號Sd。而當MPPT運算模組131判定所述電壓差值大於等於預設值時,MPPT模組不做MPPT運算,控制電路130會設定命令電壓Vcmd的電壓值去追隨當前的輸入電壓Vin,亦即設定該命令電壓之電壓值等於當前的該輸入電壓之電壓值。 In this embodiment, the MPPT operation module 131 samples the input voltage Vin and the input current Iin, calculates the voltage difference between the input voltage Vin and the command voltage Vcmd to determine whether the voltage difference is greater than a preset value, and generates Disturbance signal Sd. When the MPPT calculation module 131 determines that the voltage difference is less than or equal to a preset value, the MPPT operation module 131 adjusts the disturbance signal Sd based on the MPPT operation. When the MPPT operation module 131 determines that the voltage difference is greater than or equal to the preset value, the MPPT module does not perform the MPPT operation, and the control circuit 130 sets the voltage value of the command voltage Vcmd to follow the current input voltage Vin, that is, the setting. The voltage value of the command voltage is equal to the current voltage value of the input voltage.
在MPPT運算中,控制電路130的MPPT運算模組131 會依據輸入電壓Vin與輸入電流Iin計算輸入功率,並且藉由比較擾動前後的輸入功率來調變擾動量△V以產生對應的擾動訊號Sd。舉例來說,若當前時間點的輸入功率大於前一時間點的輸入功率,則MPPT運算模組131提供的擾動訊號Sd為與前一時間點下的擾動方向相同的擾動量△V(以正擾動量+△V表示之),以及若當前時間點的輸入功率小於等於前一時間點的輸入功率,則MPPT運算模組131提供的擾動訊號Sd為與前一時間點下的擾動方向相反的擾動量△V(以負擾動量-△V表示之)。 In the MPPT operation, the MPPT operation module 131 of the control circuit 130 The input power is calculated according to the input voltage Vin and the input current Iin, and the disturbance amount ΔV is modulated by comparing the input power before and after the disturbance to generate a corresponding disturbance signal Sd. For example, if the input power at the current time point is greater than the input power at the previous time point, the disturbance signal Sd provided by the MPPT calculation module 131 is the same disturbance amount ΔV as the disturbance direction at the previous time point (to The disturbance amount + ΔV indicates), and if the input power at the current time point is less than or equal to the input power of the previous time point, the disturbance signal Sd provided by the MPPT calculation module 131 is opposite to the disturbance direction at the previous time point. The disturbance amount ΔV (represented by the negative disturbance amount - ΔV).
接著,利用加法器132將擾動訊號Sd與一參考訊號Sc’進行疊加,藉以產生對應的命令電壓Vcmd提供至驅動電路133。換言之,加法器132所產生的命令電壓Vcmd為擾動訊號Sd所代表的擾動量△V與參考訊號Sc’所代表的電壓值的疊加。在本實施例中,參考訊號Sc’所代表的電壓值為前一時間點的命令電壓Vcmd’。因此,加法器132所產生的命令電壓Vcmd實際上會等於擾動量△V與前一時間點的命令電壓Vcmd’的疊加,亦即Vcmd=Vcmd’+△V或Vcmd=Vcmd’-△V。藉此,驅動電路133會基於設定的命令電壓Vcmd產生對應的控制訊號Sc來控制逆變電路110的作動。其中,本實施例之驅動電路133更包括一脈寬調變產生電路,其產生之控制訊號Sc為用以控制逆變電路110的切換週期的一脈寬調變訊號(PWM signal)。 Then, the disturbance signal Sd is superimposed with a reference signal Sc' by the adder 132, thereby generating a corresponding command voltage Vcmd to be supplied to the driving circuit 133. In other words, the command voltage Vcmd generated by the adder 132 is a superposition of the disturbance amount ΔV represented by the disturbance signal Sd and the voltage value represented by the reference signal Sc'. In the present embodiment, the voltage value represented by the reference signal Sc' is the command voltage Vcmd' at the previous point in time. Therefore, the command voltage Vcmd generated by the adder 132 is actually equal to the superposition of the disturbance amount ΔV and the command voltage Vcmd' at the previous point in time, that is, Vcmd = Vcmd' + ΔV or Vcmd = Vcmd' - ΔV. Thereby, the driving circuit 133 generates the corresponding control signal Sc based on the set command voltage Vcmd to control the operation of the inverter circuit 110. The driving circuit 133 of the embodiment further includes a pulse width modulation generating circuit, and the control signal Sc generated is a PWM signal for controlling the switching period of the inverter circuit 110.
舉例來說,搭配圖3來看,假設當前時間點的輸入電壓Vin為電壓值V1’並且前一時間點的輸入電壓Vin為電壓值V1”。 控制電路在所述時間點之間提供了負擾動方向(即,令電壓降低)的擾動量△V。此時,控制電路130會根據輸入電壓Vin與輸入電流Iin計算出當前時間點的輸入功率P1’為V1’×I1’,並且前一時間點的輸入功率P1”為V1”×I1”。其中,控制電路130會根據功率計算的結果判定當前的輸入功率P1’大於前一時間點的輸入功率P1”,因此繼續提供與前一時間點擾動方向相同的擾動量△V,亦即令V1’=V1”-△V,使得輸入電壓Vin朝向具有最大輸入功率P1的電壓值V1趨近。 For example, as seen in conjunction with FIG. 3, it is assumed that the input voltage Vin at the current time point is the voltage value V1' and the input voltage Vin at the previous time point is the voltage value V1". The control circuit provides a disturbance amount ΔV of the negative disturbance direction (i.e., the voltage is lowered) between the time points. At this time, the control circuit 130 calculates the input power P1' at the current time point as V1'×I1' according to the input voltage Vin and the input current Iin, and the input power P1" at the previous time point is V1"×I1". The control circuit 130 determines that the current input power P1' is greater than the input power P1" of the previous time point according to the result of the power calculation, and therefore continues to provide the same disturbance amount ΔV as the previous time point of the disturbance direction, that is, let V1'= V1"-?V causes the input voltage Vin to approach the voltage value V1 having the maximum input power P1.
另一方面,若當前時間點的輸入電壓Vin為電壓值V1'''並且前一時間點的輸入電壓Vin為電壓值V1。控制電路130在所述時間點之間提供了負擾動方向的擾動量△V。在此情形下,由於控制電路130會根據輸入電壓Vin與輸入電流Iin計算出當前時間點的輸入功率P1'''(等於V1'''×I1''')小於前一時間點的輸入功率P1,因此控制電路130會改為提供正擾動方向(即,令電壓提升)的擾動量△V,亦即令V1'''=V1+△V,使得輸入電壓Vin朝向具有最大輸入功率P1的電壓值V1趨近。 On the other hand, if the input voltage Vin at the current time point is the voltage value V1''' and the input voltage Vin at the previous time point is the voltage value V1. The control circuit 130 provides a disturbance amount ΔV in the negative disturbance direction between the time points. In this case, since the control circuit 130 calculates the input power P1''' (equal to V1'''×I1''') at the current time point according to the input voltage Vin and the input current Iin, the input power is less than the previous time point. P1, therefore, the control circuit 130 will instead provide the disturbance amount ΔV of the positive disturbance direction (ie, the voltage is raised), that is, let V1'''=V1+ΔV, so that the input voltage Vin is directed to the voltage value having the maximum input power P1. V1 approaches.
底下搭配圖3與圖4來說明本發明實施例的逆變裝置100的具體控制流程。其中,圖3係繪示直流電源產生裝置DCG在不同外部條件下的輸入電壓Vin與輸入電流Iin的關係。圖4則係繪示直流輸入電源DCin時間與輸入電壓Vin的關係。 The specific control flow of the inverter device 100 of the embodiment of the present invention will be described below with reference to FIG. 3 and FIG. 4. 3 is a diagram showing the relationship between the input voltage Vin and the input current Iin of the DC power generating device DCG under different external conditions. Figure 4 shows the relationship between the DC input power DCin time and the input voltage Vin.
請一併參照圖3與圖4,在本實施例中,直流電源產生裝置DCG在時間點t0至t1的期間內的功率特性可利用特性曲線 CV1表示。在此期間內,控制電路130會先設定符合特性曲線CV1之最大功率點的電壓值V1作為當前的命令電壓Vcmd的設定值。 Referring to FIG. 3 and FIG. 4 together, in the present embodiment, the power characteristic available characteristic curve of the DC power generating device DCG during the period from time t0 to time t1. CV1 indicates. During this period, the control circuit 130 first sets the voltage value V1 that meets the maximum power point of the characteristic curve CV1 as the set value of the current command voltage Vcmd.
具體而言,在期間t0至t1內,由於直流電源產生裝置DCG的功率特性尚未發生變化,因此控制電路130會判定命令電壓Vcmd與輸入電壓Vin之間的電壓差值(即,|V1-Vin|)小於預設值。控制電路130此時會執行MPPT運算,藉以基於設定的電壓值V1產生對應的控制訊號Sc來控制逆變電路110的作動。其中,控制電路130會反應於擾動訊號Sd而增加或減少一擾動量,以增加或降低輸入電壓Vin的電壓值大小,從而將輸入電壓Vin的電壓值調整至命令電壓Vcmd的電壓值V1。 Specifically, in the period t0 to t1, since the power characteristics of the DC power generating device DCG have not changed, the control circuit 130 determines the voltage difference between the command voltage Vcmd and the input voltage Vin (ie, |V1-Vin |) is less than the preset value. The control circuit 130 performs an MPPT operation at this time, thereby generating a corresponding control signal Sc based on the set voltage value V1 to control the operation of the inverter circuit 110. The control circuit 130 increases or decreases a disturbance amount in response to the disturbance signal Sd to increase or decrease the magnitude of the voltage value of the input voltage Vin, thereby adjusting the voltage value of the input voltage Vin to the voltage value V1 of the command voltage Vcmd.
以時間的觀點來看,如圖4的期間t0至t1內的輸入電壓Vin波形所示,輸入電壓Vin會在趨近於命令電壓Vcmd的電壓值V1的區間內反應於擾動量△V的變化而在電壓值V1附近來回震盪,藉以動態地穩定於電壓值V1上。 From a time point of view, as shown by the waveform of the input voltage Vin in the period t0 to t1 of FIG. 4, the input voltage Vin is reflected in the variation of the disturbance amount ΔV in the interval of the voltage value V1 approaching the command voltage Vcmd. And it oscillates back and forth around the voltage value V1, thereby dynamically stabilizing the voltage value V1.
接著,在時間點t1至t2的期間內,直流電源產生裝置DCG的功率特性反應於外部條件的變化而從特性曲線CV1變成特性曲線CV2。此時,由於輸入電壓Vin與命令電壓Vcmd的電壓差值尚未超過預設值Vth,控制電路130還無法判斷出外部條件已經發生改變,故控制電路130於期間t1至t2內仍會將命令電壓Vcmd設定為電壓值V1。因此,在此期間內,由於輸入電壓Vin小於命令電壓Vcmd,逆變電路110會停止切換。 Then, during the period from time t1 to time t2, the power characteristic of the DC power source generating device DCG changes from the characteristic curve CV1 to the characteristic curve CV2 in response to a change in external conditions. At this time, since the voltage difference between the input voltage Vin and the command voltage Vcmd has not exceeded the preset value Vth, the control circuit 130 cannot judge that the external condition has changed, so the control circuit 130 will still command the voltage during the period t1 to t2. Vcmd is set to a voltage value of V1. Therefore, during this period, since the input voltage Vin is smaller than the command voltage Vcmd, the inverter circuit 110 stops switching.
在時間點t2時,輸入電壓Vin與命令電壓Vcmd的電壓 差值達到預設值Vth,此時控制電路130會根據電壓差值判定外部條件的變化已經造成直流電源產生裝置DCG的功率特性曲線發生偏移。控制電路130會在時間點t2將命令電壓Vcmd從電壓值V1改設定為電壓值V2。因此,在此期間內,逆變電路110會反應於控制訊號Sc重新使輸入電壓Vin於電壓值V2附近來回震盪。 At time t2, the voltage of the input voltage Vin and the command voltage Vcmd The difference reaches the preset value Vth. At this time, the control circuit 130 determines that the change of the external condition has caused the power characteristic curve of the DC power generating device DCG to shift according to the voltage difference. The control circuit 130 changes the command voltage Vcmd from the voltage value V1 to the voltage value V2 at the time point t2. Therefore, during this period, the inverter circuit 110 reacts to the control signal Sc to re-oscillate the input voltage Vin to the vicinity of the voltage value V2.
其後,控制電路130會以類似於上述的MPPT控制方式來調整命令電壓Vcmd與輸入電壓Vin,使得命令電壓Vcmd與輸入電壓Vin可在一段時間後穩定於特性曲線CV2的最大功率點所對應的電壓值Vp。 Thereafter, the control circuit 130 adjusts the command voltage Vcmd and the input voltage Vin in a manner similar to the MPPT control described above, so that the command voltage Vcmd and the input voltage Vin can be stabilized at a maximum power point of the characteristic curve CV2 after a period of time. Voltage value Vp.
圖5為本發明一實施例的逆變裝置的控制方法的步驟流程圖。本實施例的逆變裝置的控制方法可應用於圖1實施例所繪示的逆變裝置100中,但本發明不僅限於此。在本實施例的控制方法中,首先,藉逆變電路(如110)接收直流輸入電源DCin(步驟S410),並且藉偵測電路(如120)偵測直流輸入電源DCin的輸入電壓Vin與輸入電流Iin(步驟S420)。接著,藉控制電路(如130)提供控制訊號Sc來控制輸入電壓Vin,藉以將輸入電壓Vin的電壓值調整至控制訊號Sc所代表的命令電壓Vcmd(步驟S430)。其後,控制電路會計算偵測到的輸入電壓Vin與命令電壓Vcmd的電壓差值(步驟S440),並且據以判斷所述電壓差值是否大於預設值(步驟S450)。 FIG. 5 is a flow chart showing the steps of a method for controlling an inverter device according to an embodiment of the present invention. The control method of the inverter device of the present embodiment can be applied to the inverter device 100 illustrated in the embodiment of FIG. 1, but the present invention is not limited thereto. In the control method of the embodiment, first, the DC input power source DCin is received by the inverter circuit (such as 110) (step S410), and the input voltage Vin and the input of the DC input power source DCin are detected by the detecting circuit (such as 120). Current Iin (step S420). Next, the control signal Sc is provided by the control circuit (eg, 130) to control the input voltage Vin, thereby adjusting the voltage value of the input voltage Vin to the command voltage Vcmd represented by the control signal Sc (step S430). Thereafter, the control circuit calculates a voltage difference between the detected input voltage Vin and the command voltage Vcmd (step S440), and determines whether the voltage difference is greater than a preset value (step S450).
若步驟S450判斷為是,則控制電路會設定命令電壓Vcmd之電壓值等於當前的輸入電壓Vin之電壓值(步驟S460)。反之, 若步驟S450判斷為否,則控制電路會基於MPPT運算來調整所產生的擾動訊號Sd(步驟S470),使得直流輸入電源DCin的輸入功率可實質上地被維持在最大功率點附近。 If the determination in step S450 is YES, the control circuit sets the voltage value of the command voltage Vcmd to be equal to the voltage value of the current input voltage Vin (step S460). on the contrary, If the determination in step S450 is no, the control circuit adjusts the generated disturbance signal Sd based on the MPPT operation (step S470), so that the input power of the direct current input power source DCin can be substantially maintained near the maximum power point.
其中,圖4實施例所述之控制方法可根據前述圖1至圖3的說明而獲得充足的支持與教示,故相似或重複之處於此不再贅述。 The control method described in the embodiment of FIG. 4 can obtain sufficient support and teaching according to the foregoing description of FIG. 1 to FIG. 3, and thus similarities or repetitions are not described herein again.
綜上所述,本發明實施例提出一種逆變裝置及其控制方法,其可藉由計算輸入電壓與命令電壓的電壓差值,並且比較所述電壓差值是否超過一預設值的方式來判斷直流輸入電源的功率特性是否發生偏移。其中,本案的控制方法會在判定直流輸入電源的功率特性發生偏移時,將命令電壓設定為當前的輸入電壓,再以此命令電壓的設定值為基礎進行最大功率點追蹤運算,藉以防止輸入電壓無法追隨過大的命令電壓而造成系統故障。 In summary, the embodiment of the present invention provides an inverter device and a control method thereof, which can calculate a voltage difference between an input voltage and a command voltage, and compare whether the voltage difference exceeds a preset value. Determine whether the power characteristics of the DC input power supply are offset. Wherein, the control method of the present case sets the command voltage to the current input voltage when determining that the power characteristic of the DC input power source is shifted, and then performs the maximum power point tracking operation based on the set value of the command voltage, thereby preventing the input. The voltage cannot follow the excessive command voltage and cause a system failure.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧逆變裝置 100‧‧‧Inverter
110‧‧‧逆變電路 110‧‧‧Inverter circuit
120‧‧‧偵測電路 120‧‧‧Detection circuit
130‧‧‧控制電路 130‧‧‧Control circuit
ACout‧‧‧交流輸出電源 ACout‧‧‧AC output power supply
DCin‧‧‧直流輸入電源 DCin‧‧‧DC input power supply
DCG‧‧‧直流電源產生裝置 DCG‧‧‧DC power generation device
EG‧‧‧電網 EG‧‧‧ grid
Iout‧‧‧輸出電流 Iout‧‧‧Output current
Iin‧‧‧輸入電流 Iin‧‧‧ input current
Sc‧‧‧控制訊號 Sc‧‧‧ control signal
Sd‧‧‧擾動訊號 Sd‧‧‧ disturbance signal
Vcmd‧‧‧命令電壓 Vcmd‧‧‧ command voltage
Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage
Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage
△V‧‧‧擾動量 △V‧‧‧ disturbance
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/631,850 US9564830B2 (en) | 2014-02-26 | 2015-02-26 | Control method of inverting apparatus for achieving MPPT and inverting apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461944587P | 2014-02-26 | 2014-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201534038A TW201534038A (en) | 2015-09-01 |
TWI554019B true TWI554019B (en) | 2016-10-11 |
Family
ID=53672198
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104102536A TWI565221B (en) | 2014-02-26 | 2015-01-26 | Inverting apparatus and photovoltaic power system using the same |
TW104103278A TWI548197B (en) | 2014-02-26 | 2015-01-30 | Inverter apparatus and control method thereof |
TW104103281A TWI548192B (en) | 2014-02-26 | 2015-01-30 | Inverter apparatus and control method thereof |
TW104103880A TWI554019B (en) | 2014-02-26 | 2015-02-05 | Inverting apparatus and control method thereof |
TW104103879A TWI539735B (en) | 2014-02-26 | 2015-02-05 | Inverting apparatus |
TW104103964A TWI554020B (en) | 2014-02-26 | 2015-02-05 | Inverter apparatus and control method thereof |
TW104104727A TWI565203B (en) | 2014-02-26 | 2015-02-12 | Inverting apparatus and control method thereof |
TW104105091A TWI535174B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and control method thereof |
TW104105096A TWI556567B (en) | 2014-02-26 | 2015-02-13 | Control circuit of switch apparatus |
TW104105088A TWI548195B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and alternating current power system using the same |
TW104105094A TWI565177B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and detection method for islanding |
TW104105099A TWI548200B (en) | 2014-02-26 | 2015-02-13 | Inverter apparatus and power conversion method thereof |
TW104202504U TWM513513U (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and AC voltage sampling circuit thereof |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104102536A TWI565221B (en) | 2014-02-26 | 2015-01-26 | Inverting apparatus and photovoltaic power system using the same |
TW104103278A TWI548197B (en) | 2014-02-26 | 2015-01-30 | Inverter apparatus and control method thereof |
TW104103281A TWI548192B (en) | 2014-02-26 | 2015-01-30 | Inverter apparatus and control method thereof |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104103879A TWI539735B (en) | 2014-02-26 | 2015-02-05 | Inverting apparatus |
TW104103964A TWI554020B (en) | 2014-02-26 | 2015-02-05 | Inverter apparatus and control method thereof |
TW104104727A TWI565203B (en) | 2014-02-26 | 2015-02-12 | Inverting apparatus and control method thereof |
TW104105091A TWI535174B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and control method thereof |
TW104105096A TWI556567B (en) | 2014-02-26 | 2015-02-13 | Control circuit of switch apparatus |
TW104105088A TWI548195B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and alternating current power system using the same |
TW104105094A TWI565177B (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and detection method for islanding |
TW104105099A TWI548200B (en) | 2014-02-26 | 2015-02-13 | Inverter apparatus and power conversion method thereof |
TW104202504U TWM513513U (en) | 2014-02-26 | 2015-02-13 | Inverting apparatus and AC voltage sampling circuit thereof |
Country Status (2)
Country | Link |
---|---|
CN (13) | CN104868764B (en) |
TW (13) | TWI565221B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6536346B2 (en) * | 2015-10-19 | 2019-07-03 | 住友電気工業株式会社 | Power converter and control method thereof |
TWI551021B (en) * | 2015-11-25 | 2016-09-21 | 財團法人金屬工業研究發展中心 | Flyback power converter and control method thereof |
CN105529743B (en) * | 2016-02-22 | 2018-12-18 | 珠海格力电器股份有限公司 | Photovoltaic system and grid-connected power detection method and device |
CN107026606A (en) * | 2016-08-29 | 2017-08-08 | 广西塔锡科技有限公司 | A kind of anti-phase transformer of photovoltaic |
CN106353614B (en) * | 2016-08-29 | 2020-01-21 | 许继集团有限公司 | Island detection method and device for direct current system |
CN106602915A (en) * | 2016-09-28 | 2017-04-26 | 深圳市盈动力科技有限公司 | Inversion device power limitation circuit and inversion device |
CN106443343A (en) * | 2016-09-30 | 2017-02-22 | 国网福建省电力有限公司 | Small-current grounding fault positioning method employing transient zero sequence current |
CN106787624A (en) * | 2016-12-28 | 2017-05-31 | 滁州品之达电器科技有限公司 | A kind of control method of inverter |
CN106921146B (en) * | 2017-03-20 | 2019-09-13 | 特变电工西安电气科技有限公司 | A kind of the switching overvoltage protective device and method of multilevel photovoltaic grid-connected inverter |
CN106972771A (en) * | 2017-05-23 | 2017-07-21 | 唐瑭 | A kind of level approach method, level approach device and control device |
CN107171289A (en) * | 2017-06-06 | 2017-09-15 | 江西科技学院 | A kind of protection circuit |
KR101957575B1 (en) | 2017-06-23 | 2019-03-13 | 인투코어테크놀로지 주식회사 | Power supply supporting device and method of supporting power supply to load |
JP6930370B2 (en) * | 2017-10-30 | 2021-09-01 | オムロン株式会社 | Ground fault detector |
US11228247B2 (en) * | 2017-11-24 | 2022-01-18 | Mitsubishi Electric Corporation | Parallel power supply device |
CN108270239A (en) * | 2018-01-30 | 2018-07-10 | 国网上海市电力公司 | A kind of distribution network electric energy quality disturbing source direction determining method containing distributed generation resource |
DE112019000824T5 (en) * | 2018-02-15 | 2020-10-29 | Nidec Corporation | Power conversion device, drive device and power steering device |
FR3083394B1 (en) * | 2018-06-29 | 2021-03-19 | Valeo Equip Electr Moteur | POWER COMPONENT PROTECTION DEVICE FOR A TRANSISTOR BRIDGE |
JP7135548B2 (en) * | 2018-08-01 | 2022-09-13 | 株式会社ジェイテクト | Power supply monitoring device and power supply monitoring method |
CN111256345B (en) * | 2018-11-30 | 2021-05-07 | 杭州先途电子有限公司 | Photovoltaic air conditioner control method, controller and photovoltaic air conditioner |
TWI703423B (en) | 2019-06-19 | 2020-09-01 | 群光電能科技股份有限公司 | Power supply device and a power supply method |
CN113012981B (en) | 2019-12-20 | 2024-06-25 | 施耐德电气工业公司 | Contactor, control device and control method thereof |
TWI822561B (en) * | 2023-01-17 | 2023-11-11 | 固緯電子實業股份有限公司 | Device to improve current limiting response speed and waveform |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TW200729662A (en) * | 2006-01-18 | 2007-08-01 | Univ Yuan Ze | High-performance power conditioner for solar photovoltaic system |
CN102880223A (en) * | 2012-09-27 | 2013-01-16 | 易霸科技(威海)股份有限公司 | Analog circuit implementation method for MPPT (maximum power point tracking) of low-power photovoltaic inverter system |
CN102904273A (en) * | 2011-07-29 | 2013-01-30 | 通用电气公司 | Maximum power point tracking (MPPT) control of energy conversion system and relevant method |
CN202872384U (en) * | 2012-07-24 | 2013-04-10 | 华南理工大学 | Three-ring control device of single-stage photovoltaic grid-connected inversion system |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327335A (en) * | 1992-09-28 | 1994-07-05 | Sundstrand Corporation | Harmonic feedback control for an inverter |
CN2189792Y (en) * | 1994-04-28 | 1995-02-15 | 巫忆陵 | High and low voltage relay with backlash |
JP3227480B2 (en) * | 1996-05-29 | 2001-11-12 | シャープ株式会社 | Inverter device islanding operation detection method and inverter device |
US6038142A (en) * | 1998-06-10 | 2000-03-14 | Lucent Technologies, Inc. | Full-bridge isolated Current Fed converter with active clamp |
JP2002233045A (en) * | 2001-02-02 | 2002-08-16 | Canon Inc | Ground detecting device for photovoltaic power generation system and method |
JP2002252986A (en) * | 2001-02-26 | 2002-09-06 | Canon Inc | Inverter, power supply system and method for reducing leakage current in power supply system |
JP2002367768A (en) * | 2001-06-04 | 2002-12-20 | Matsushita Electric Ind Co Ltd | Power source for driving magnetron |
JP2003018854A (en) * | 2001-07-02 | 2003-01-17 | Honda Motor Co Ltd | Resonance-type inverter device |
JP2003098215A (en) * | 2001-09-26 | 2003-04-03 | Canon Inc | Earth detection method and device in power conversion system |
TW548886B (en) * | 2001-10-16 | 2003-08-21 | Know Entpr Co Ltd U | Three-phase shunt type active power filter capable of operating in parallel |
DE10156963A1 (en) * | 2001-11-20 | 2003-06-05 | Fritz Frey | Circuit arrangement for the reliable switching of circuits |
JP3988724B2 (en) * | 2002-01-08 | 2007-10-10 | サンケン電気株式会社 | Power factor improving converter and control method thereof |
US7492620B2 (en) * | 2002-11-29 | 2009-02-17 | Rohm Co., Ltd. | DC-AC converter and controller IC thereof |
US7015597B2 (en) * | 2003-09-11 | 2006-03-21 | Square D Company | Power regulator for power inverter |
JP4491622B2 (en) * | 2003-11-10 | 2010-06-30 | 学校法人東京電機大学 | Solar power plant |
EP1700371B1 (en) * | 2003-12-22 | 2010-09-01 | Koninklijke Philips Electronics N.V. | Switched mode power supply |
TWI296460B (en) * | 2006-01-18 | 2008-05-01 | Univ Yuan Ze | High-performance power conditioner for clean energy with low input voltage |
US7977929B2 (en) * | 2006-03-02 | 2011-07-12 | Semiconductor Components Industries, Llc | Method for regulating a voltage and circuit therefor |
TWI320626B (en) * | 2006-09-12 | 2010-02-11 | Ablerex Electronics Co Ltd | Bidirectional active power conditioner |
TW200818671A (en) * | 2006-10-05 | 2008-04-16 | Holtek Semiconductor Inc | Direct-current (DC) power switching device |
US7495410B2 (en) * | 2007-01-30 | 2009-02-24 | Rockwell Automation Technologies, Inc. | Systems and methods for improved motor drive power factor control |
KR101194833B1 (en) * | 2007-08-03 | 2012-10-25 | 페어차일드코리아반도체 주식회사 | Inverter driver device and lamp driver device thereof |
US7945413B2 (en) * | 2007-09-04 | 2011-05-17 | Solarbridge Technologies, Inc. | Voltage-sensed system and method for anti-islanding protection of grid-connected inverters |
EP2034600B1 (en) * | 2007-09-05 | 2010-12-15 | ABB Oy | Single-phase to three-phase converter |
US7986539B2 (en) * | 2007-09-26 | 2011-07-26 | Enphase Energy, Inc. | Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples |
US7768242B2 (en) * | 2007-10-01 | 2010-08-03 | Silicon Laboratories Inc. | DC/DC boost converter with resistorless current sensing |
US8796884B2 (en) * | 2008-12-20 | 2014-08-05 | Solarbridge Technologies, Inc. | Energy conversion systems with power control |
CN102301578B (en) * | 2008-12-20 | 2015-01-28 | 太阳架技术公司 | Energy conversion systems with power control |
US20100157632A1 (en) * | 2008-12-20 | 2010-06-24 | Azuray Technologies, Inc. | Energy Conversion Systems With Power Control |
US8598741B2 (en) * | 2008-12-23 | 2013-12-03 | Samsung Electro-Mechanics Co, Ltd. | Photovoltaic and fuel cell hybrid generation system using single converter and single inverter, and method of controlling the same |
CN101795076B (en) * | 2009-01-29 | 2015-04-15 | 富士电机株式会社 | Power converter and method for controlling power converter |
CN201438776U (en) * | 2009-04-16 | 2010-04-14 | 永磁电子(东莞)有限公司 | High-frequency generator circuit of electrodeless lamp |
CN201392462Y (en) * | 2009-04-22 | 2010-01-27 | 陈国真 | Energy-saving switch device |
CN101552572B (en) * | 2009-05-18 | 2011-01-05 | 浙江大学 | Parallel inverter current control method adopting voltage differential compensation |
CN102474186A (en) * | 2009-07-24 | 2012-05-23 | Nec显示器解决方案株式会社 | Switching power source and electronic device using the same |
JP4913849B2 (en) * | 2009-07-29 | 2012-04-11 | 山洋電気株式会社 | System-linked inverter device and control method thereof |
US20110044083A1 (en) * | 2009-08-20 | 2011-02-24 | Christopher Thompson | Adaptive Photovoltaic Inverter |
TWI393333B (en) * | 2009-09-22 | 2013-04-11 | Richpower Microelectronics | Controller chip and protection method for a power converter |
TWM380576U (en) * | 2009-11-02 | 2010-05-11 | Ampower Technology Co Ltd | Photovoltaic module and power supply system using the same |
CN101728957B (en) * | 2009-11-24 | 2011-09-28 | 华东交通大学 | Method for reducing no-load loss of inverter with two-stage structure |
CN102118018B (en) * | 2009-12-31 | 2015-07-08 | 天津市松正电动汽车技术股份有限公司 | Protection circuit with functions of upper limit and lower limit |
US8362732B2 (en) * | 2010-02-02 | 2013-01-29 | GM Global Technology Operations LLC | Motor phase winding fault detection method and apparatus |
CN102148584B (en) * | 2010-02-10 | 2013-04-17 | 上海英孚特电子技术有限公司 | Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter |
CA2789574A1 (en) * | 2010-02-22 | 2011-08-25 | Petra Solar Inc. | Method and system for controlling resonant converters used in solar inverters |
KR101090263B1 (en) * | 2010-03-08 | 2011-12-07 | 헥스파워시스템(주) | Ground fault detection device and method with direct current wire for system of photovoltaic power generation |
JP5045772B2 (en) * | 2010-03-11 | 2012-10-10 | オムロン株式会社 | Capacitor capacity missing detection method in power conditioner, power conditioner for implementing the same, and photovoltaic power generation system including the same |
KR101089906B1 (en) * | 2010-04-02 | 2011-12-05 | 성균관대학교산학협력단 | Maximum power point tracker, power conversion controller, power inverter of insulating structure, and method for maximum power point tracking of power inverter |
WO2011163437A2 (en) * | 2010-06-25 | 2011-12-29 | Massachusetts Institute Of Technology | Power processing methods and apparatus for photovoltaic systems |
CN101950976B (en) * | 2010-08-25 | 2012-11-28 | 常熟开关制造有限公司(原常熟开关厂) | Grid-connected operation method of grid-connected type photovoltaic inverter |
CN101950985B (en) * | 2010-11-01 | 2013-07-03 | 上海兆能电力电子技术有限公司 | Method for suppressing output harmonic wave and direct current component of single-phase grid-combined photovoltaic inverter |
TWM408678U (en) * | 2010-11-16 | 2011-08-01 | Allis Electric Co Ltd | Photovoltaic powered system |
US8531123B2 (en) * | 2010-12-20 | 2013-09-10 | O2Micro, Inc. | DC/DC converter with multiple outputs |
CN102025291A (en) * | 2010-12-20 | 2011-04-20 | 东南大学 | Photovoltaic assembly with MPPT (Maximum Power Point Tracking) module |
EP2477298B1 (en) * | 2011-01-15 | 2021-04-21 | GE Energy Power Conversion Technology Limited | Controllers for static energy supply units |
CN102118028B (en) * | 2011-01-27 | 2013-01-23 | 华中科技大学 | Method for suppressing and controlling current harmonics of three-phase LCL (Lower Control Limit) type grid-connected inverter |
CN102130610B (en) * | 2011-01-31 | 2013-02-27 | 天津大学 | Method for controlling constant-voltage discharging of energy storage system of flywheel |
JP2012173773A (en) * | 2011-02-17 | 2012-09-10 | Toshiba Corp | Power conversion device |
TW201250429A (en) * | 2011-06-15 | 2012-12-16 | Solarrich Applied Energy & Technology Co Ltd | Method for optimizing output power of solar cell |
CN102223100A (en) * | 2011-06-17 | 2011-10-19 | 北京中能清源科技有限公司 | Control method of three-phase grid-connected inverter based on modified proportional resonant regulator |
CN102244497B (en) * | 2011-07-08 | 2013-05-08 | 大禹电气科技股份有限公司 | Frequency conversion control method and device |
TWI444807B (en) * | 2011-08-23 | 2014-07-11 | Univ Nat Cheng Kung | Analog control apparatus of inverter |
CN102307007B (en) * | 2011-09-13 | 2013-11-06 | 矽力杰半导体技术(杭州)有限公司 | PFC (power factor correction) control circuit based on master-slave interlaced critical conduction mode and control method thereof |
CN202372616U (en) * | 2011-11-25 | 2012-08-08 | 比亚迪股份有限公司 | Signal fault detection circuit |
TWI481146B (en) * | 2011-12-02 | 2015-04-11 | Darfon Electronics Corp | Off-grid solar inverter system without a battery and control method thereof |
TWM426948U (en) * | 2011-12-09 | 2012-04-11 | Topper Sun Energy Technology | Improvement of solar power generation system inverter |
US9653923B2 (en) * | 2011-12-12 | 2017-05-16 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Resonant power management architectures |
US9143056B2 (en) * | 2011-12-16 | 2015-09-22 | Empower Micro Systems, Inc. | Stacked voltage source inverter with separate DC sources |
CN102496960A (en) * | 2011-12-24 | 2012-06-13 | 朱建国 | Photovoltaic grid-connected inverter and method for reducing working loss of photovoltaic grid-connected inverter |
CN102611341B (en) * | 2012-03-12 | 2014-07-30 | 深圳市英威腾电气股份有限公司 | Photovoltaic inverter and method for tracking maximum power of same |
TWI464555B (en) * | 2012-03-22 | 2014-12-11 | 中原大學 | Photovoltaic system having power-increment-aided incremental-conductance maximum power point tracking controller using constant-frequency variable-duty control and method thereof |
CN102611141A (en) * | 2012-03-30 | 2012-07-25 | 南京大学 | MPPT (maximum power point tracking) control device and method of photovoltaic inverter based on perturbation method |
TW201349724A (en) * | 2012-05-25 | 2013-12-01 | Delta Electronics Inc | Power converter and method for controlling the same |
CN102882401A (en) * | 2012-09-19 | 2013-01-16 | 华为技术有限公司 | Inverter with wide voltage input range and input-stage circuit thereof |
CN202880967U (en) * | 2012-10-19 | 2013-04-17 | 深圳市天源新能源有限公司 | Photovoltaic seawater desalination system and photovoltaic seawater desalination inverter |
CN202888934U (en) * | 2012-11-13 | 2013-04-17 | 国家电网公司 | Soft start circuit and charger |
CN203135741U (en) * | 2013-01-05 | 2013-08-14 | 苏州泽众新能源科技有限公司 | Multifunctional power converter |
TWI466403B (en) * | 2013-01-30 | 2014-12-21 | Chicony Power Tech Co Ltd | Solar energy conversion apparatus |
CN203243242U (en) * | 2013-03-19 | 2013-10-16 | 广东工业大学 | Single-phase photovoltaic grid-connected inverter |
CN103337901B (en) * | 2013-06-28 | 2016-03-30 | 华为技术有限公司 | The method of uninterrupted power supply and uninterrupted power supply |
CN203387430U (en) * | 2013-07-25 | 2014-01-08 | 天津大学 | Micro photovoltaic grid connected inverter for optimization of direct current bus capacitor |
CN103501555B (en) * | 2013-09-25 | 2015-02-18 | 电子科技大学 | Digital phase locking and frequency tracking electromagnetic induction heating power controller |
CN103558496B (en) * | 2013-11-14 | 2016-08-17 | 阳光电源股份有限公司 | A kind of one pole earthed system and failure detector, method |
-
2015
- 2015-01-22 CN CN201510031553.8A patent/CN104868764B/en active Active
- 2015-01-23 CN CN201510034255.4A patent/CN104868770B/en active Active
- 2015-01-23 CN CN201520047286.9U patent/CN204465376U/en active Active
- 2015-01-26 TW TW104102536A patent/TWI565221B/en active
- 2015-01-27 CN CN201510039793.2A patent/CN104868493B/en active Active
- 2015-01-27 CN CN201510039854.5A patent/CN104865458A/en active Pending
- 2015-01-27 CN CN201510039055.8A patent/CN104868766A/en active Pending
- 2015-01-30 TW TW104103278A patent/TWI548197B/en active
- 2015-01-30 TW TW104103281A patent/TWI548192B/en active
- 2015-02-05 TW TW104103880A patent/TWI554019B/en active
- 2015-02-05 TW TW104103879A patent/TWI539735B/en active
- 2015-02-05 TW TW104103964A patent/TWI554020B/en active
- 2015-02-12 TW TW104104727A patent/TWI565203B/en active
- 2015-02-13 TW TW104105091A patent/TWI535174B/en active
- 2015-02-13 TW TW104105096A patent/TWI556567B/en active
- 2015-02-13 CN CN201510079043.8A patent/CN104917414A/en active Pending
- 2015-02-13 TW TW104105088A patent/TWI548195B/en active
- 2015-02-13 CN CN201510078647.0A patent/CN104868767B/en active Active
- 2015-02-13 TW TW104105094A patent/TWI565177B/en active
- 2015-02-13 TW TW104105099A patent/TWI548200B/en active
- 2015-02-13 CN CN201510078631.XA patent/CN104901566B/en active Active
- 2015-02-13 TW TW104202504U patent/TWM513513U/en unknown
- 2015-02-16 CN CN201510083477.5A patent/CN104935199B/en active Active
- 2015-02-16 CN CN201510083340.XA patent/CN104917361B/en active Active
- 2015-02-16 CN CN201510083338.2A patent/CN104917413B/en active Active
- 2015-02-16 CN CN201510083292.4A patent/CN104917455B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TW200729662A (en) * | 2006-01-18 | 2007-08-01 | Univ Yuan Ze | High-performance power conditioner for solar photovoltaic system |
CN102904273A (en) * | 2011-07-29 | 2013-01-30 | 通用电气公司 | Maximum power point tracking (MPPT) control of energy conversion system and relevant method |
CN202872384U (en) * | 2012-07-24 | 2013-04-10 | 华南理工大学 | Three-ring control device of single-stage photovoltaic grid-connected inversion system |
CN102880223A (en) * | 2012-09-27 | 2013-01-16 | 易霸科技(威海)股份有限公司 | Analog circuit implementation method for MPPT (maximum power point tracking) of low-power photovoltaic inverter system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI554019B (en) | Inverting apparatus and control method thereof | |
US7091707B2 (en) | Method and apparatus for controlling power drawn from an energy converter | |
US9257896B1 (en) | Control circuit of power converter and method for maximum power point tracking | |
EP2551985A2 (en) | System and method for power curtailment in a power network | |
US11031786B2 (en) | Power convertor, power generation system, and power generation control method | |
JPWO2015011781A1 (en) | Control device for inverter for photovoltaic power generation | |
CN103795083A (en) | Grid connection current soft start and soft stop method and system for photovoltaic grid-connected inverter | |
CN102611341B (en) | Photovoltaic inverter and method for tracking maximum power of same | |
US9541587B2 (en) | Inverting apparatus for avoiding misjudgement of maximum power point tracking operation and control method thereof | |
JP5979404B1 (en) | Distributed power control method and control apparatus | |
JP6370541B2 (en) | State estimation device | |
KR20200088159A (en) | Grid-connected inverter and method for detecting islanding of grid-connected inverter | |
CN109962489B (en) | MPPT misjudgment correction control method and system | |
US9564830B2 (en) | Control method of inverting apparatus for achieving MPPT and inverting apparatus thereof | |
JP6242128B2 (en) | Power converter | |
JP6308618B2 (en) | PV power conditioner | |
CN109962490B (en) | Power scheduling control method of power generation system | |
KR20230100975A (en) | apparatus and method for Maximum power point tracking in photovoltaic system having flyback convertor | |
TWI418827B (en) | Isolation operation detection method of electric current control type electric current converter | |
JP6625469B2 (en) | Power control device | |
JP3028912B2 (en) | Control device for power converter | |
US20210215135A1 (en) | Method for controlling a wind power installation | |
CN110719039A (en) | Novel micro-grid energy storage device power supply system | |
JP2016025804A (en) | Booster connection device for photovoltaic power generation system | |
CN111969945A (en) | quasi-MPPT novel photovoltaic panel tracking method, equipment and storage medium |