TWI551021B - Flyback power converter and control method thereof - Google Patents

Flyback power converter and control method thereof Download PDF

Info

Publication number
TWI551021B
TWI551021B TW104139075A TW104139075A TWI551021B TW I551021 B TWI551021 B TW I551021B TW 104139075 A TW104139075 A TW 104139075A TW 104139075 A TW104139075 A TW 104139075A TW I551021 B TWI551021 B TW I551021B
Authority
TW
Taiwan
Prior art keywords
signal
voltage
pulse width
circuit
width modulation
Prior art date
Application number
TW104139075A
Other languages
Chinese (zh)
Other versions
TW201720033A (en
Inventor
羅欣瑜
陳科宏
劉文鈞
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW104139075A priority Critical patent/TWI551021B/en
Application granted granted Critical
Publication of TWI551021B publication Critical patent/TWI551021B/en
Publication of TW201720033A publication Critical patent/TW201720033A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

返馳式電源轉換器及其控制方法Flyback power converter and control method thereof

本發明是有關於一種電源轉換器,且特別是一種可穩定輸出電流之返馳式電源轉換器及其控制方法。The present invention relates to a power converter, and more particularly to a flyback power converter capable of stabilizing an output current and a control method therefor.

傳統返馳式電源轉換器必須使用光耦合器(opto-coupler)回授輸出電壓以達到電氣隔離的目的。但是光耦合器易受到工作溫度的影響,因此發展一次側感測方法以取代光耦合器已成為目前發展的趨勢。Traditional flyback power converters must use an opto-coupler to feedback the output voltage for electrical isolation. However, optocouplers are susceptible to operating temperatures, so the development of primary side sensing methods to replace optocouplers has become a trend.

除此之外,在現有的返馳式電源轉換器設計下,設計者通常會藉由將偵測到的輸出電流與一設定值作比較,並且以比較的結果作為控制電源轉換運作的依據。舉例來說,一般的電源轉換控制行為通常是在偵測到的輸出電流小於設定值時,增加功率開關的導通時間以提高輸出電流,並且在偵測到輸出電流大於設定值時,降低功率開關的導通時間以減少輸出電流,從而在所述設定值上維持輸出電流的動態平衡。In addition, in the existing flyback power converter design, the designer usually compares the detected output current with a set value, and uses the comparison result as the basis for controlling the power conversion operation. For example, the general power conversion control behavior is generally to increase the on-time of the power switch to increase the output current when the detected output current is less than the set value, and to reduce the power switch when detecting that the output current is greater than the set value. The on-time is reduced to reduce the output current to maintain a dynamic balance of the output current at the set point.

然而,藉由此類控制方式雖然可令輸出電流維持動態的穩定,但由於此類控制方式通常較容易受到負載工作情形或電源轉換電路的運作情形影響,因此往往會在負載發生變化時產生漂移,使得平均輸出電流難以維持穩定。However, although such a control method can maintain the output current to be dynamically stable, since such a control method is generally more susceptible to load operation or operation of the power conversion circuit, it often drifts when the load changes. This makes it difficult to maintain an average output current.

本發明提供一種返馳式電源轉換器及其控制方法,其可解決先前技術所述及之問題。The present invention provides a flyback power converter and a control method thereof that solve the problems described in the prior art.

本發明的返馳式電源轉換器包括電源轉換電路以及控制電路。電源轉換電路包括變壓器以及功率開關。變壓器具有一次側繞組、二次側繞組以及輔助繞組。功率開關耦接一次側繞組,其中功率開關受控於脈寬調變控制訊號而切換,藉以使變壓器反應於功率開關的切換而將一次側繞組上的輸入電源轉換為二次側繞組上的輸出電壓與輸出電流。控制電路耦接電源轉換電路,用以偵測輔助繞組上的第一電壓與功率開關上的第二電壓,並據以控制電源轉換電路的運作。控制電路依據第一電壓與脈寬調變控制訊號計數脈寬調變控制訊號的禁能期間,並據以產生計時值,並且依據第二電壓產生電流指示訊號。控制電路依據計數值與電流指示訊號的乘積判斷輸出電流於脈寬調變控制訊號的訊號周期內的平均輸出電流是否符合預設電流值,藉以依據判斷結果決定脈寬調變控制訊號的責任周期。The flyback power converter of the present invention includes a power conversion circuit and a control circuit. The power conversion circuit includes a transformer and a power switch. The transformer has a primary side winding, a secondary side winding, and an auxiliary winding. The power switch is coupled to the primary side winding, wherein the power switch is controlled by the pulse width modulation control signal, so that the transformer converts the input power on the primary side winding to the output on the secondary side winding in response to switching of the power switch Voltage and output current. The control circuit is coupled to the power conversion circuit for detecting the first voltage on the auxiliary winding and the second voltage on the power switch, and thereby controlling the operation of the power conversion circuit. The control circuit adjusts the disable period of the pulse width modulation control signal according to the first voltage and the pulse width modulation control signal, and generates a timing value according to the second voltage, and generates a current indication signal according to the second voltage. The control circuit determines, according to the product of the count value and the current indication signal, whether the average output current of the output current in the signal period of the pulse width modulation control signal conforms to the preset current value, thereby determining the duty cycle of the pulse width modulation control signal according to the determination result. .

一種返馳式電源轉換電路的控制方法,其中返馳式電源轉換電路包括變壓器以及功率開關,並且變壓器具有一次側繞組、二次側繞組以及輔助繞組。所述控制方法包括:偵測輔助繞組上的第一電壓與功率開關上的第二電壓;依據第一電壓與用以控制功率開關的脈寬調變控制訊號計數脈寬調變控制訊號的禁能期間,並據以產生計時值;依據第二電壓產生電流指示訊號;計算計數值與電流指示訊號的乘積;依據乘積判斷返馳式電源轉換電路的平均輸出電流是否符合預設電流值;以及依據判斷結果決定脈寬調變控制訊號的責任周期。A control method of a flyback power conversion circuit, wherein the flyback power conversion circuit includes a transformer and a power switch, and the transformer has a primary side winding, a secondary side winding, and an auxiliary winding. The control method includes: detecting a first voltage on the auxiliary winding and a second voltage on the power switch; and prohibiting the pulse width modulation control signal according to the first voltage and the pulse width modulation control signal used to control the power switch During the energy period, the timing value is generated according to the second voltage; the current indication signal is generated according to the second voltage; the product of the count value and the current indication signal is calculated; and the average output current of the flyback power conversion circuit is determined according to the product to meet the preset current value; According to the judgment result, the duty cycle of the pulse width modulation control signal is determined.

基於上述,本發明實施例提出一種返馳式電源轉換器及其控制方法,其可藉由偵測變壓器之輔助繞組上的電壓與關聯於一次側之電感電流大小的電壓來獲取電源轉換電路的運作資訊,再基於反馳式電源轉換之輸出電流在每一訊號周期內的平均值與禁能時間長度之乘積實質上為常數的特性來決定脈寬調變控制訊號的轉態時間點,藉以令平均輸出電流可穩定地維持在預設的電流設定值上,而不會隨著負載工作情形或電源轉換電路的運作情形而產生不穩定的漂移。Based on the above, an embodiment of the present invention provides a flyback power converter and a control method thereof, which can obtain a power conversion circuit by detecting a voltage on an auxiliary winding of a transformer and a voltage associated with a magnitude of an inductor current on a primary side. The operation information is further determined by the characteristic that the product of the output current of the reverse power conversion is substantially constant in the product of the average value of the signal period and the length of the disable time, thereby determining the transition time point of the pulse width modulation control signal. The average output current can be stably maintained at a preset current setting value without causing unstable drift with load operation or operation of the power conversion circuit.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.

圖1為本發明一實施例的返馳式電源轉換器的功能方塊示意圖。請參照圖1,本實施例的返馳式電源轉換器100可應用交流-直流電源轉換(AC-to-DC conversion)系統或直流-直流電源轉換(DC-to-DC conversion)系統中,藉以將輸入電源Pin轉換為輸出電源Pout提供給後端的負載LD使用。1 is a functional block diagram of a flyback power converter according to an embodiment of the invention. Referring to FIG. 1, the flyback power converter 100 of the present embodiment can be applied to an AC-to-DC conversion system or a DC-to-DC conversion system. The input power source Pin is converted into an output power source Pout for use by the load LD of the back end.

以圖1所繪示的交流-直流電源轉換系統為例,整流電路50(例如全橋整流器)會對交流電源ACin進行整流,並據以產生輸入電源Pin提供給返馳式電源轉換器100。返馳式電源轉換器100會對接收到的輸入電源Pin進行降壓/升壓轉換,以產生輸出電源Pout來驅動後端的負載LD。另一方面,在直流-直流電源轉換系統的應用中,返馳式電源轉換器100可以直接連接外部的直流電源作為其輸入電源Pin,並且同樣地對輸入電源Pin進行降壓/升壓轉換,以產生輸出電源Pout來驅動後端的負載LD。Taking the AC-DC power conversion system illustrated in FIG. 1 as an example, the rectifier circuit 50 (for example, a full bridge rectifier) rectifies the AC power source ACin, and accordingly generates an input power source Pin to provide the flyback power converter 100. The flyback power converter 100 performs buck/boost conversion on the received input power source Pin to generate an output power source Pout to drive the load LD at the back end. On the other hand, in the application of the DC-DC power conversion system, the flyback power converter 100 can directly connect an external DC power source as its input power source Pin, and similarly buck/boost the input power source Pin. The output power source Pout is generated to drive the load LD at the back end.

所述負載LD可例如為發光二極體模組、直流馬達驅動器或其他任何需要穩定電流供應的電子裝置,本發明不對此加以限制。The load LD can be, for example, a light emitting diode module, a DC motor driver, or any other electronic device that requires a stable current supply, which is not limited by the present invention.

具體而言,返馳式電源轉換器100包括電源轉換電路110以及控制電路120。電源轉換電路110至少包括變壓器與功率開關(未繪示,後續實施例會進一步說明),其中電源轉換電路110的功率開關會受控於控制電路120所提供的脈寬調變控制訊號(pulse width modulation control signal, PWM control signal)Spwm而切換,藉以使變壓器反應於功率開關的切換而將輸入電源Pin轉換為輸出電壓Vo與輸出電流Io。Specifically, the flyback power converter 100 includes a power conversion circuit 110 and a control circuit 120. The power conversion circuit 110 includes at least a transformer and a power switch (not shown, which will be further described in the following embodiments), wherein the power switch of the power conversion circuit 110 is controlled by the pulse width modulation control signal provided by the control circuit 120. The control signal, PWM control signal) is switched by Spwm, so that the transformer is converted into the output voltage Vo and the output current Io in response to the switching of the power switch.

控制電路120耦接電源轉換電路110,用以操作於電源轉換電路所產生的直流系統電壓VDD下,並且反應於負載LD的電源供應需求(power supplying requirement)而產生脈寬調變控制訊號Spwm以控制電源轉換電路110的運作。The control circuit 120 is coupled to the power conversion circuit 110 for operating under the DC system voltage VDD generated by the power conversion circuit, and generates a pulse width modulation control signal Spwm in response to a power supply requirement of the load LD. The operation of the power conversion circuit 110 is controlled.

底下搭配圖2所繪示的電路架構來對本案的返馳式電源轉換器100作進一步的說明。其中,圖3為依照圖1之一實施例的返馳式電源轉換器的電路架構示意圖。The flyback power converter 100 of the present invention will be further described below with the circuit architecture shown in FIG. 3 is a schematic diagram of a circuit architecture of a flyback power converter according to an embodiment of FIG. 1.

請參照圖2,在本實施例中,電源轉換電路110包括變壓器T、功率開關SW、輔助線路AC、電阻Rcs、輸出二極體D1及輸出電容Co。控制電路120可利用積體化的晶片來實施(但不僅限於此),其具有驅動接腳P_DR、偵測接腳P_DT1與P_DT2以及電源接腳P_VDD。Referring to FIG. 2, in the embodiment, the power conversion circuit 110 includes a transformer T, a power switch SW, an auxiliary line AC, a resistor Rcs, an output diode D1, and an output capacitor Co. The control circuit 120 can be implemented by, but not limited to, an integrated wafer having a drive pin P_DR, detection pins P_DT1 and P_DT2, and a power pin P_VDD.

變壓器T具有一次側繞組Np、二次側繞組Ns以及輔助繞組Na。變壓器T之一次側繞組Np的同名端(common-polarity terminal,即打點處)用以接收輸入電壓Vin,而變壓器T之二次側繞組s與輔助繞組Na的同名端耦接至二次側的接地端GND2。The transformer T has a primary side winding Np, a secondary side winding Ns, and an auxiliary winding Na. The common-polarity terminal of the primary winding Np of the transformer T is used to receive the input voltage Vin, and the secondary winding s of the transformer T and the same end of the auxiliary winding Na are coupled to the secondary side. Ground terminal GND2.

在一次側的配置中,功率開關SW的第一端(例如,汲極)耦接變壓器T之一次側繞組Np的異名端(opposite-polarity terminal,即未打點處)。功率開關SW的控制端(例如,閘極)耦接控制電路120的驅動接腳P_DR以接收控制電路120所產生的脈寬調變控制訊號Spwm。功率開關SW的第二端(例如,源極)耦接電阻Rcs的第一端以及控制電路120的偵測接腳P_DT2,藉以將指示流經功率開關SW之電流大小的電壓資訊Vcs回授給控制電路120以作為控制的依據。電阻Rcs的第二端會耦接一次側的接地端GND1。In the configuration of the primary side, the first end (eg, the drain) of the power switch SW is coupled to the opposite-polarity terminal of the transformer T. The control terminal (eg, the gate) of the power switch SW is coupled to the drive pin P_DR of the control circuit 120 to receive the pulse width modulation control signal Spwm generated by the control circuit 120. The second end (for example, the source) of the power switch SW is coupled to the first end of the resistor Rcs and the detecting pin P_DT2 of the control circuit 120, so as to feedback the voltage information Vcs indicating the magnitude of the current flowing through the power switch SW. Control circuit 120 serves as a basis for control. The second end of the resistor Rcs is coupled to the ground terminal GND1 of the primary side.

在二次側的配置中,二極體D1的陽極(anode)耦接變壓器T之二次側繞阻Ns的異名端,而二極體D1的陰極(cathode)則用以產生輸出電壓Vo,其中流經二次側繞阻Ns與二極體D1的電流於此定義為電感電流Is,並且提供至負載LD的電流定義為輸出電流Io。電容Co的第一端耦接二極體D1的陰極,而電容C1的第二端則耦接至二次側的接地端GND2。In the configuration of the secondary side, the anode of the diode D1 is coupled to the opposite end of the secondary side winding Ns of the transformer T, and the cathode of the diode D1 is used to generate the output voltage Vo. The current flowing through the secondary side winding Ns and the diode D1 is herein defined as the inductor current Is, and the current supplied to the load LD is defined as the output current Io. The first end of the capacitor Co is coupled to the cathode of the diode D1, and the second end of the capacitor C1 is coupled to the ground GND2 of the secondary side.

在輔助繞阻Na側的配置中,輔助線路AC可例如包括電阻R1~R3、電容C1以及二極體D2。電阻R1的第一端耦接一次側繞阻的同名端,並且電阻R1的第二端耦接至控制電路120的電源接腳P_VDD,藉以提供直流系統電壓VDD。電阻R2與R3相互串接並且耦接於輔助繞阻Na的異名端與接地端GND2之間,其中電阻R2與R3構成一分壓結構,且其分壓點/共節點耦接至控制電路120的偵測接腳P_DT1,藉以提供指示輔助繞阻Na之跨壓的電壓資訊V DET給控制電路120。電容C1耦接於電阻R1的第二端與接地端GND2之間。二極體D2的陽極耦接輔助線圈Na的異名端,並且二極體D2的陰極耦接控制電路120的電源接腳P_VDD。於此附帶一提的是,一次側的接地端GND1與二次側的接地端GND2可例如為相同或不同的接地面,本發明不以此為限。 In the configuration of the auxiliary winding Na side, the auxiliary line AC may include, for example, resistors R1 to R3, a capacitor C1, and a diode D2. The first end of the resistor R1 is coupled to the same end of the primary side winding, and the second end of the resistor R1 is coupled to the power pin P_VDD of the control circuit 120 to provide a DC system voltage VDD. The resistors R2 and R3 are connected in series with each other and coupled between the opposite end of the auxiliary winding Na and the ground GND2, wherein the resistors R2 and R3 form a voltage dividing structure, and the voltage dividing point/common node is coupled to the control circuit 120. The detection pin P_DT1 is provided to provide the voltage information V DET indicating the voltage across the auxiliary winding Na to the control circuit 120. The capacitor C1 is coupled between the second end of the resistor R1 and the ground GND2. The anode of the diode D2 is coupled to the opposite end of the auxiliary coil Na, and the cathode of the diode D2 is coupled to the power pin P_VDD of the control circuit 120. It is to be noted that the grounding end GND1 of the primary side and the grounding end GND2 of the secondary side may be the same or different grounding surfaces, for example, and the invention is not limited thereto.

詳細而言,在反馳式電源轉換器100處於正常運作的情況下,控制電路120會反應於負載LD的電源供應需求而對應地產生脈寬調變訊號PWM以控制電源轉換電路110的運作。在此條件下,當功率開關SW反應於控制電路120所產生之脈寬調變控制訊號PWM而導通(turned on)時,輸入電壓Vin會跨接於變壓器T的一次側繞阻Np上,以至於一次側繞阻Np會反應於輸入電壓Vin而儲能使電感電流Ip線性地增加。與此同時,在二次側繞阻Ns上,由於受到二極體D1的逆向偏壓阻隔,所以變壓器T的二次側繞阻Ns將無電流流通。另外,在輔助繞阻Na側,由於受到二極體D2的逆向偏壓阻隔,所以變壓器T的輔助繞阻Na也無電流流通。此時,輸出電流Io是由輸出電容Co對負載LD放電所提供。In detail, in the case where the flyback power converter 100 is in normal operation, the control circuit 120 correspondingly generates a pulse width modulation signal PWM to control the operation of the power conversion circuit 110 in response to the power supply demand of the load LD. Under this condition, when the power switch SW is turned on in response to the pulse width modulation control signal PWM generated by the control circuit 120, the input voltage Vin is connected across the primary side winding Np of the transformer T to As for the primary side winding Np, it is reflected in the input voltage Vin and the storage can cause the inductor current Ip to increase linearly. At the same time, on the secondary side winding Ns, due to the reverse bias of the diode D1, the secondary side winding Ns of the transformer T will have no current flowing. In addition, on the auxiliary winding Na side, since the reverse bias of the diode D2 is blocked, the auxiliary winding Na of the transformer T also has no current flowing. At this time, the output current Io is supplied by the output capacitor Co discharging the load LD.

另一方面,當功率開關SW反應於控制電路120所產生之脈寬調變控制訊號Spwm而截止時,基於楞次定律(Lenz's law),變壓器T之一次側繞阻Np所儲存的能量會轉移至變壓器T的二次側繞阻Ns與輔助繞阻Na。與此同時,由於二極體D1處於順向偏壓導通,所以轉移至變壓器T之二次側繞阻Ns的能量將會對電容Co進行充電,並且供應輸出電壓Vo給負載LD。此時,輸出電流Io會與電感電流Is相同。另外,轉移至變壓器T之輔助繞阻Na的能量將會透過二極體D2而供應直流系統電壓VDD給控制電路120。On the other hand, when the power switch SW is turned off in response to the pulse width modulation control signal Spwm generated by the control circuit 120, the energy stored in the primary side winding Np of the transformer T is transferred based on Lenz's law. The secondary side winding Ns to the transformer T and the auxiliary winding Na. At the same time, since the diode D1 is turned on in the forward bias, the energy transferred to the secondary side winding Ns of the transformer T will charge the capacitor Co, and supply the output voltage Vo to the load LD. At this time, the output current Io is the same as the inductor current Is. In addition, the energy transferred to the auxiliary winding Na of the transformer T will supply the DC system voltage VDD to the control circuit 120 through the diode D2.

由此可知,基於控制電路120所產生之脈寬調變控制訊號Spwm而交替地導通與截止功率開關SW的運作方式,返馳式電源轉換器100即可持續地供應輸出電壓Vo與直流系統電壓VDD。Therefore, it can be seen that the operation mode of the power switch 100 is alternately turned on and off based on the pulse width modulation control signal Spwm generated by the control circuit 120, and the flyback power converter 100 continuously supplies the output voltage Vo and the DC system voltage. VDD.

進一步搭配圖3所繪示的步驟流程來說明返馳式電源轉換器100的控制方法。圖3為本發明一實施例的返馳式電源轉換電路的控制方法的步驟流程圖。The control method of the flyback power converter 100 will be described with reference to the flow of steps illustrated in FIG. 3 . 3 is a flow chart showing the steps of a method for controlling a flyback power conversion circuit according to an embodiment of the present invention.

請同時參照圖2與圖3,在本實施例中,控制電路120首先會在電源轉換電路110運作的過程中偵測輔助繞阻Na上的電壓V DET與功率開關SW上的電壓Vcs(步驟S310),其中電壓V DET會在功率開關SW導通的期間內會與輸入電壓Vin相關並且在功率開關SW截止的期間內會與輸出電壓Vo相關,而電壓Vcs則是會與一次側的電感電流Ip大小相關。 Referring to FIG. 2 and FIG. 3 simultaneously, in the embodiment, the control circuit 120 first detects the voltage V DET on the auxiliary winding Na and the voltage Vcs on the power switch SW during the operation of the power conversion circuit 110 (steps) S310), wherein the voltage V DET is related to the input voltage Vin during the period in which the power switch SW is turned on and is related to the output voltage Vo during the off period of the power switch SW, and the voltage Vcs is the inductor current with the primary side. Ip size is related.

接著,控制電路120會依據偵測到的電壓V DET與脈寬調變控制訊號Spwm的訊號周期來計數脈寬調變控制訊號Spwm的禁能期間,並據以產生計時值(步驟S320)。另一方面,控制電路120會依據偵測到的電壓V CS與變壓器T的匝數比的資訊來產生指示二次側電感電流Is/輸出電流Io大小的電流指示訊號(步驟S330)。 Then, the control circuit 120 counts the disable period of the pulse width modulation control signal Spwm according to the detected signal voltage V DET and the signal period of the pulse width modulation control signal Spwm, and generates a timing value accordingly (step S320). On the other hand, the control circuit 120 generates a current indicating signal indicating the magnitude of the secondary side inductor current Is/output current Io according to the detected ratio of the voltage V CS to the turns ratio of the transformer T (step S330).

在取得有關於脈寬調變控制訊號Spwm的禁能期間長度的計時值以及有關於輸出電流Io大小的電流指示訊號後,控制電路120會計算脈寬調變控制訊號Spwm的禁能期間長度與輸出電流Io的乘積(步驟S340),並且進一步根據所計算出之乘積來判斷輸出電流Io於脈寬調變控制訊號Spwm的訊號周期內的平均輸出電流是否符合設定的預設電流值(步驟S350),再依據判斷結果來決定脈寬調變控制訊號Spwm的責任周期(duty cycle)(步驟S360)。After obtaining the timing value of the length of the disable period of the pulse width modulation control signal Spwm and the current indication signal regarding the magnitude of the output current Io, the control circuit 120 calculates the length of the disable period of the pulse width modulation control signal Spwm and The product of the output current Io (step S340), and further determining, according to the calculated product, whether the average output current of the output current Io in the signal period of the pulse width modulation control signal Spwm meets the set preset current value (step S350) Then, the duty cycle of the pulse width modulation control signal Spwm is determined according to the judgment result (step S360).

由上述控制方式可知,在本實施例中,控制電路120可藉由偵測變壓器T之輔助繞組Na上的電壓V DET與關聯於一次側之電感電流Ip大小的電壓來獲取電源轉換電路110運作時之輸入電壓Vin、輸出電壓Vo、輸出電流Io及充/放電時間等資訊。其中,控制電路120可依據所述資訊計算出脈寬調變控制訊號Spwm的禁能期間長度,再基於反馳式電源轉換之輸出電流Io在每一訊號周期內的平均值與禁能時間長度之乘積實質上為常數的特性來決定脈寬調變控制訊號Spwm的轉態時間點,藉以調變所產生的脈寬調變控制訊號Spwm的責任周期。如此一來,電源轉換電路110的平均輸出電流即可穩定地維持在預設的電流設定值上,而不會隨著負載LD工作情形或電源轉換電路110的運作情形而產生不穩定的漂移。 According to the above control method, in the embodiment, the control circuit 120 can obtain the operation of the power conversion circuit 110 by detecting the voltage V DET on the auxiliary winding Na of the transformer T and the voltage corresponding to the magnitude of the inductor current Ip on the primary side. Information such as input voltage Vin, output voltage Vo, output current Io, and charge/discharge time. The control circuit 120 can calculate the length of the disable period of the pulse width modulation control signal Spwm according to the information, and then based on the average value and the length of the disable time of the output current Io of the reverse power conversion in each signal period. The product of the product is substantially constant to determine the transition time point of the pulse width modulation control signal Spwm, thereby modulating the duty cycle of the pulse width modulation control signal Spwm generated. In this way, the average output current of the power conversion circuit 110 can be stably maintained at a preset current setting value without causing unstable drift with the operation of the load LD or the operation of the power conversion circuit 110.

除此之外,由於控制電路120透過輔助線路AC所偵測到的電壓V DET可在功率開關SW導通與截止的期間內分別指示有關於輸入電壓Vin與輸出電壓Vo的資訊,因此,在一範例實施例中,控制電路120還可依據功率開關SW導通期間(即,脈寬調變控制訊號Spwm的致能期間)內所偵測到的電壓V DET來進行輸出過電壓保護與輸出短路保護,並且依據功率開關SW截止期間(即,脈寬調變控制訊號Spwm的禁能期間)內所偵測到的電壓V DET來進行高壓補償、低壓補償或欠壓保護等控制動作,藉以提高整體返馳式電源轉換器100的運作穩定性。 In addition, since the voltage V DET detected by the control circuit 120 through the auxiliary line AC can respectively indicate information about the input voltage Vin and the output voltage Vo during the period in which the power switch SW is turned on and off, therefore, In an exemplary embodiment, the control circuit 120 can also perform output over-voltage protection and output short-circuit protection according to the detected voltage V DET during the on period of the power switch SW (ie, the enable period of the pulse width modulation control signal Spwm). And according to the voltage V DET detected during the off period of the power switch SW (ie, the disable period of the pulse width modulation control signal Spwm), a control action such as high voltage compensation, low voltage compensation, or undervoltage protection is performed to improve the overall operation. The operational stability of the flyback power converter 100.

底下以圖4與圖5來具體說明控制電路120的實施範例。其中,圖4為本發明一實施例的控制電路的功能方塊示意圖。圖5為依照圖4之一實施例的控制電路的電路架構示意圖。An example of the implementation of the control circuit 120 will be specifically described below with reference to FIGS. 4 and 5. 4 is a functional block diagram of a control circuit according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a circuit architecture of a control circuit in accordance with an embodiment of FIG.

請先參照圖4,在本實施例中,控制電路120包括脈寬調變訊號產生電路122、開關驅動電路124以及平均輸出電流偵測電路126。脈寬調變訊號產生電路122用以依據預設時脈訊號PWM_CLK與誤差放大訊號Sea產生指示脈寬調變訊號Spwm的責任周期的周期訊號T_pwm。開關驅動電路124耦接脈寬調變訊號產生電路122與功率開關SW。開關驅動電路124會依據接收到的周期訊號T_pwm產生具有對應的致能期間與禁能期間的脈寬調變控制訊號Spwm。Referring to FIG. 4, in the embodiment, the control circuit 120 includes a pulse width modulation signal generating circuit 122, a switch driving circuit 124, and an average output current detecting circuit 126. The pulse width modulation signal generating circuit 122 is configured to generate a periodic signal T_pwm indicating a duty cycle of the pulse width modulation signal Spwm according to the preset clock signal PWM_CLK and the error amplification signal Sea. The switch driving circuit 124 is coupled to the pulse width modulation signal generating circuit 122 and the power switch SW. The switch driving circuit 124 generates a pulse width modulation control signal Spwm having a corresponding enable period and disable period according to the received periodic signal T_pwm.

平均輸出電流偵測電路126耦接脈寬調變訊號產生電路122,其可用以依據電壓V DET與周期訊號T_pwm計數脈寬調變訊號Spwm的禁能期間並據以產生計時值。此外,平均輸出電流偵測電路126還會取樣電壓Vcs以產生電流指示訊號。 The average output current detecting circuit 126 is coupled to the pulse width modulation signal generating circuit 122, and can be used to count the disable period of the pulse width modulation signal Spwm according to the voltage V DET and the periodic signal T_pwm and generate a timing value accordingly. In addition, the average output current detecting circuit 126 also samples the voltage Vcs to generate a current indicating signal.

在本實施例中,平均輸出電流偵測電路126會對計數值與電流指示訊號進行相乘處理以產生乘積訊號。平均輸出電流偵測電路126會接著對所計算出的乘積訊號與代表特定電流設定值之參考電壓進行誤差放大,並據以產生誤差放大訊號Sea提供給脈寬調變訊號產生電路122。其中,脈寬調變訊號產生電路122會在乘積訊號等於參考電壓時,依據誤差放大訊號Sea將周期訊號T_pwm從致能準位(例如為高準位)切換至禁能準位(例如為低準位)。由於脈寬調變控制訊號Spwm的訊號周期為固定的,且是由脈寬調變訊號產生電路122中的預設時脈訊號PWM_CLK所決定,因此透過依據誤差放大訊號Sea調整脈寬調變控制訊號Spwm的轉態時間點的方式即實現脈寬調變控制訊號Spwm的責任周期的控制。In this embodiment, the average output current detecting circuit 126 multiplies the count value and the current indicating signal to generate a product signal. The average output current detecting circuit 126 then performs error amplification on the calculated product signal and a reference voltage representing a specific current setting value, and accordingly generates an error amplification signal Sea to be supplied to the pulse width modulation signal generating circuit 122. The pulse width modulation signal generating circuit 122 switches the periodic signal T_pwm from the enable level (for example, a high level) to the disable level according to the error amplification signal Sea when the product signal is equal to the reference voltage (for example, low). Level). Since the signal period of the pulse width modulation control signal Spwm is fixed and determined by the preset clock signal PWM_CLK in the pulse width modulation signal generating circuit 122, the pulse width modulation control is adjusted according to the error amplification signal Sea. The mode of the transition time of the signal Spwm is the control of the duty cycle of the pulse width modulation control signal Spwm.

更具體地說,控制電路120的具體電路結構範例可如圖5所示。請參照圖5,在本實施例中,脈寬調變訊號產生電路122包括三角波及方波產生電路TSGC、比較器COMP以及正反器D1。平均輸出電流偵測電路126包括計時器CTC、取樣及保持電路SHC、乘法器MC以及誤差放大器EA。其中,計時器CTC又可利用包括反相器INV、反相比較器INVC、正反器D2以及累加器AAC的架構來實現(但本發明不僅限於此)。More specifically, a specific circuit configuration example of the control circuit 120 can be as shown in FIG. Referring to FIG. 5, in the embodiment, the pulse width modulation signal generating circuit 122 includes a triangular wave and square wave generating circuit TSGC, a comparator COMP, and a flip-flop D1. The average output current detecting circuit 126 includes a timer CTC, a sample and hold circuit SHC, a multiplier MC, and an error amplifier EA. Among them, the timer CTC can be implemented by an architecture including an inverter INV, an inverting comparator INVC, a flip-flop D2, and an accumulator AAC (however, the present invention is not limited thereto).

在脈寬調變訊號產生電路122中,三角波及方波產生電路TSGC會提供預設時脈訊號PWM_CLK至正反器D1的設定端(標示為S),並且提供參考電壓Vref1至比較器COMP的反相端。比較器COMP的非反相端耦接誤差放大器EA的輸出端,並且比較器COMP的輸出端耦接正反器D1的重置端(標示為R)。正反器D1的輸出端(標示為Q)耦接開關驅動電路124與反相器INV的輸入端以提供周期訊號T_pwm。In the pulse width modulation signal generating circuit 122, the triangular wave and square wave generating circuit TSGC provides a preset clock signal PWM_CLK to the set terminal (labeled as S) of the flip-flop D1, and provides the reference voltage Vref1 to the comparator COMP. Inverting terminal. The non-inverting terminal of the comparator COMP is coupled to the output of the error amplifier EA, and the output of the comparator COMP is coupled to the reset terminal (labeled as R) of the flip-flop D1. The output of the flip-flop D1 (labeled Q) is coupled to the input of the switch drive circuit 124 and the inverter INV to provide a periodic signal T_pwm.

在平均輸出電流偵測電路126中,計時器CTC會接收電壓V DET與周期訊號T­_pwm,並依據周期訊號T_pwm而於脈寬調變控制訊號Spwm進入禁能期間時開始計時以產生計時值CV_Toff,並且依據電壓V DET重置計時值CV_Toff。 In the average output current detecting circuit 126, the timer CTC receives the voltage V DET and the periodic signal T_pwm, and starts timing according to the periodic signal T_pwm when the pulse width modulation control signal Spwm enters the disable period to generate the timing value CV_Toff, And the timing value CV_Toff is reset according to the voltage V DET .

更具體地說,在計時器CTC中,反相器INV的輸出端耦接正反器D2的時脈輸入端(標示為CK)。反相比較器INVC的非反相端接收電壓V DET,反相比較器INVC的反相端耦接參考電壓Vref2,並且反相比較器INVC的輸出端耦接正反器D2的重置端。正反器D2的資料輸入端(標示為D)接收直流系統電壓VDD,並且正反器D2的輸出端根據其資料輸入端、時脈輸入端及重置端上的訊號而產生在禁能期間切換為高準位的禁能期間指示訊號SToff。其中,禁能期間指示訊號SToff會與周期訊號T_pwm互為反相。累加器AAC會在禁能期間指示訊號SToff切換為高準位時進行累加計數動作,藉以產生指示禁能期間長度的計數值CV_Toff。 More specifically, in the timer CTC, the output of the inverter INV is coupled to the clock input of the flip-flop D2 (labeled CK). The non-inverting terminal of the inverting comparator INVC receives the voltage V DET , the inverting terminal of the inverting comparator INVC is coupled to the reference voltage Vref2 , and the output terminal of the inverting comparator INVC is coupled to the reset terminal of the flip-flop D2 . The data input terminal (labeled as D) of the flip-flop D2 receives the DC system voltage VDD, and the output terminal of the flip-flop D2 is generated during the disable period according to the signals on the data input terminal, the clock input terminal and the reset terminal. The disable period indication signal SToff is switched to the high level. The disable period indication signal SToff and the period signal T_pwm are mutually inverted. The accumulator AAC performs an accumulating action when the indication signal SToff is switched to the high level during the disable period, thereby generating a count value CV_Toff indicating the length of the inactive period.

取樣及保持電路SHC用以在脈寬調變控制訊號Spwm的致能期間內取樣並保持電壓Vcs,並且據以產生可表示取樣時間點下之一次側電感電流Ip大小的電流指示訊號Scd。在本實施例中,取樣及保持電路SHC可以設計為僅在致能期間的一半時進行取樣,或是在致能期間內以固定的時間間隔進行取樣,本發明不對此加以限制。The sample and hold circuit SHC is configured to sample and hold the voltage Vcs during the enable period of the pulse width modulation control signal Spwm, and accordingly generate a current indication signal Scd indicating the magnitude of the primary side inductor current Ip at the sampling time point. In the present embodiment, the sample and hold circuit SHC may be designed to perform sampling only at half of the enabling period, or to sample at fixed time intervals during the enabling period, which is not limited by the present invention.

乘法器MC耦接計時器CTC與取樣及保持電路SHC,其可用以對計時器CTC所輸出的計數值CV_Toff與取樣及保持電路SHC所輸出的電流指示訊號Scd進行相乘處理以產生乘積訊號Sm。The multiplier MC is coupled to the timer CTC and the sample and hold circuit SHC, which can be used to multiply the count value CV_Toff outputted by the timer CTC and the current indication signal Scd outputted by the sample and hold circuit SHC to generate a product signal Sm. .

誤差放大器EA的反相端耦接乘法器MC的輸出端以接收乘積訊號Sm。誤差放大器EA的非反相端耦接指示預設電流值的參考電壓Vrefi。誤差放大器EA的輸出端耦接比較器COMP的非反相端以提供誤差放大訊號。The inverting terminal of the error amplifier EA is coupled to the output of the multiplier MC to receive the product signal Sm. The non-inverting terminal of the error amplifier EA is coupled to a reference voltage Vrefi indicating a preset current value. The output of the error amplifier EA is coupled to the non-inverting terminal of the comparator COMP to provide an error amplification signal.

底下以圖6的訊號時序來說明電源轉換電路110操作在不連續導通模式(DCM)下時,控制電路120的具體電路運作。The specific circuit operation of the control circuit 120 when the power conversion circuit 110 operates in the discontinuous conduction mode (DCM) will be described below with the signal timing of FIG.

請同時參照圖2、圖5與圖6,當訊號時序從致能期間Ton進入禁能期間Toff時,脈寬調變控制訊號Spwm會從高準位切換至低準位,使得功率開關SW反應於低準位的脈寬調變控制訊號Spwm而截止。Referring to FIG. 2, FIG. 5 and FIG. 6 simultaneously, when the signal timing enters the disable period Toff from the enable period Ton, the pulse width modulation control signal Spwm switches from the high level to the low level, so that the power switch SW reacts. The pulse width modulation control signal Spwm at the low level is turned off.

在禁能期間Toff內,一次側的電流路徑會被截止,使得電感電流Ip降至零,而二次側繞阻Ns則會基於前一致能期間Ton所儲存的能量而開始放電,並據以產生電感電流Is,其中電感電流Is會在禁能期間Toff內隨放電時間而逐漸降低。During the disable period Toff, the current path on the primary side is cut off, so that the inductor current Ip drops to zero, and the secondary side winding Ns starts to discharge based on the energy stored in the previous uniform energy period Ton, and accordingly The inductor current Is is generated, wherein the inductor current Is gradually decreases with the discharge time during the disable period Toff.

此外,輔助繞阻Na的跨壓此時會與輸出電壓Vo及二次側繞阻Ns的匝數比相關,故電壓V DET此時可表示為與輸出電壓Vo、輔助繞阻Na與二次側繞阻Ns之匝數比以及電阻R1與R2之電阻值相關的參數(V DET=Na/Ns*Vo*R1/(R1+R2))。因此,反相比較器124在禁能期間Toff內會反應於電壓V DET而輸出低準位的訊號,使得正反器D2依據反相的周期訊號T_pwm而輸出高準位的禁能期間指示訊號SToff。此時累加器AAC會基於高準位的禁能期間指示訊號SToff進行累加計數,並且據以產生指示禁能期間長度的計時值CV_Toff。 In addition, the voltage across the auxiliary winding Na is related to the turns ratio of the output voltage Vo and the secondary side winding Ns, so the voltage V DET can be expressed as the output voltage Vo and the auxiliary winding Na and the second time. The parameter of the turns ratio of the side winding Ns and the resistance value of the resistors R1 and R2 (V DET =Na/Ns*Vo*R1/(R1+R2)). Therefore, the inverting comparator 124 outputs a low-level signal in response to the voltage V DET during the disable period Toff, so that the flip-flop D2 outputs the high-level disable period indication signal according to the inverted periodic signal T_pwm. SToff. At this time, the accumulator AAC performs an accumulating count based on the high-level disable period indication signal SToff, and accordingly generates a timing value CV_Toff indicating the length of the inactive period.

隨著二次側繞阻Ns與輔助繞阻Na的電能洩放完畢,電感電流Is會從峰值電流Isp降至零,並且電壓V DET也隨之迅速下降並且開始震盪。其中,當電壓V DET降至低於參考電壓Vref2時,反相比較器INVC會改為輸出高準位的訊號,使得正反器D2反應於反相比較器INVC的輸出而將禁能期間指示訊號SToff下拉至低準位。此時累加器AAC反應於低準位的禁能期間指示訊號SToff而停止計數。 As the secondary side winding Ns and the auxiliary winding Na are discharged, the inductor current Is drops from the peak current Isp to zero, and the voltage V DET also drops rapidly and begins to oscillate. Wherein, when the voltage V DET falls below the reference voltage Vref2, the inverting comparator INVC will change to output a high level signal, so that the flip-flop D2 reacts to the output of the inverting comparator INVC to indicate the disable period. The signal SToff is pulled down to the low level. At this time, the accumulator AAC responds to the low-level disable period indication signal SToff and stops counting.

接著,當預設時脈訊號PWM_CLK致能時,訊號周期Tp會從禁能期間Toff進入致能期間Ton。此時脈寬調變控制訊號Spwm會從低準位切換至高準位,使得功率開關SW反應於高準位的脈寬調變控制訊號Spwm而導通。Then, when the preset clock signal PWM_CLK is enabled, the signal period Tp enters the enable period Ton from the disable period Toff. At this time, the pulse width modulation control signal Spwm is switched from the low level to the high level, so that the power switch SW is turned on in response to the high level pulse width modulation control signal Spwm.

在致能期間Ton內,一次側繞阻Np會基於輸入電壓Vin而儲能,使得一次側的電感電流Ip從零電流逐漸上升。因此,電壓Vcs會基於逐漸上升的電感電流Ip而隨之上升。During the enable period Ton, the primary side winding Np stores energy based on the input voltage Vin, so that the primary side inductor current Ip gradually rises from zero current. Therefore, the voltage Vcs rises based on the gradually rising inductor current Ip.

另一方面,二次側繞阻Ns與輔助繞阻Na皆無電流流通,故電壓V DET此時為與輸入電壓Vin相關之負電壓(可表示為VDET=-Na/Np*Vin*R2/(R1+R2),其中Na/Np表示輔助繞阻Na與一次側繞阻Np的匝數比)。此時由於電壓V DET為負電壓,因此反相比較器INVC會持續輸出高準位的訊號至正反器D2的重置端,使得禁能期間指示訊號SToff在致能期間Ton內被維持在低準位。 On the other hand, the secondary side winding Ns and the auxiliary winding Na have no current flow, so the voltage V DET is a negative voltage associated with the input voltage Vin (which can be expressed as VDET=-Na/Np*Vin*R2/( R1+R2), where Na/Np represents the turns ratio of the auxiliary winding Na to the primary side winding Np). At this time, since the voltage V DET is a negative voltage, the inverting comparator INVC continuously outputs a high-level signal to the reset terminal of the flip-flop D2, so that the disable period indication signal SToff is maintained during the enable period Ton. Low level.

在本實施例中,乘法器MC會基於取樣及保持電路SHC所產生的電流指示訊號Scd與計時器CTC所產生的計時值CV_Toff進行相乘處理。而代表相乘結果之乘積訊號Sm會被提供至誤差放大器EA的反相端,藉以和誤差放大器EA的參考電壓Vrefi比較。In the present embodiment, the multiplier MC performs multiplication processing based on the current indication signal Scd generated by the sample and hold circuit SHC and the timing value CV_Toff generated by the timer CTC. The product signal Sm representing the multiplication result is supplied to the inverting terminal of the error amplifier EA, thereby being compared with the reference voltage Vrefi of the error amplifier EA.

如圖6所示,由於電壓Vcs會在致能期間Ton內隨時間逐漸上升,因此計數值CV_Toff與電流指示訊號Scd的相乘結果也會逐漸增大,直到乘積訊號Sm的準位等於參考電壓Vrefi時,即表示目前的平均輸出電流Iavg已達到設定的預設電流值。此時,誤差放大訊號Sea會使比較器COMP輸出高準位的訊號來重置正反器D1,藉以令周期訊號T_pwm從高準位下拉至低準位,並且再次進入下一周期的禁能期間。As shown in FIG. 6, since the voltage Vcs gradually rises with time during the enable period Ton, the multiplication result of the count value CV_Toff and the current indication signal Scd is gradually increased until the level of the product signal Sm is equal to the reference voltage. In Vrefi, it means that the current average output current Iavg has reached the set preset current value. At this time, the error amplification signal Sea causes the comparator COMP to output a high-level signal to reset the flip-flop D1, so that the periodic signal T_pwm is pulled from the high level to the low level, and the next period is disabled again. period.

由於在返馳式電源轉換電路的電源轉換行為中,其具有每一訊號周期Tp內的平均輸出電流Iavg與禁能期間長度的乘積為定值的特性,因此本實施例藉由比較乘積訊號(代表禁能期間長度與取樣到的電感電流Ip大小之乘積)與參考電壓Vrefi(代表電流設定值)的方式來決定脈寬調變訊號Spwm的轉態時間點,即可令輸出電流Io在每一訊號周期Tp內的平均值皆穩定地維持在電流設定值上。Since the product of the power conversion behavior of the flyback power conversion circuit has a characteristic that the product of the average output current Iavg and the length of the disable period in each signal period Tp is constant, the present embodiment compares the product signal by Determining the transition time of the pulse width modulation signal Spwm by means of the reference voltage Vrefi (representing the current setting value), the output current Io is The average value in one signal period Tp is stably maintained at the current set value.

底下以圖7的訊號時序來說明電源轉換電路110操作在連續導通模式(CCM)下時,控制電路120的具體電路運作。The specific circuit operation of the control circuit 120 when the power conversion circuit 110 is operated in the continuous conduction mode (CCM) will be described below with the signal timing of FIG.

請同時參照圖2、圖5與圖7,本實施例與前述圖6實施例的運作大致相同。兩者間的差異僅在於在DCM中,禁能期間指示訊號SToff僅會在電感電流Ip不為零的期間內為高準位,亦即在DCM下,計時器CTC僅會計數電感電流Ip不為零的期間長度。而在CCM中,由於電感電流Is在禁能期間Toff內不會降至零,因此禁能期間指示訊號SToff會在整個禁能期間Toff內皆為高準位,亦即,在CCM下,計時器CTC所計數的期間長度即為禁能期間Toff的長度。Referring to FIG. 2, FIG. 5 and FIG. 7, the operation of this embodiment is substantially the same as that of the foregoing embodiment of FIG. The only difference between the two is that in the DCM, the disable period indication signal SToff is only high level during the period when the inductor current Ip is not zero, that is, under DCM, the timer CTC only counts the inductor current Ip. The length of the period of zero. In the CCM, since the inductor current Is does not fall to zero during the disable period Toff, the disable period indication signal SToff will be at a high level during the entire inactive period Toff, that is, under the CCM, timing The length of the period counted by the CTC is the length of the inactive period Toff.

除此上述差異之外,在CCM下,控制電路120同樣可藉由比較乘積訊號Sm與參考電壓Vrefi的方式來準確的在平均輸出電流Iavg符合預設電流值時切換脈寬調變控制訊號Spwm的準位,因此同樣可以實現令輸出電流Io在每一訊號周期Tp內的平均值皆穩定地維持在電流設定值上的效果。其餘電路運作請參照前述圖6實施例的說明,於此不再贅述。In addition to the above differences, under the CCM, the control circuit 120 can also switch the pulse width modulation control signal Spwm accurately when the average output current Iavg meets the preset current value by comparing the product signal Sm with the reference voltage Vrefi. Therefore, the effect that the average value of the output current Io in each signal period Tp is stably maintained at the current set value can be achieved as well. For the operation of the remaining circuits, please refer to the description of the foregoing embodiment of FIG. 6, and details are not described herein again.

綜上所述,本發明實施例提出一種返馳式電源轉換器及其控制方法,其可藉由偵測變壓器之輔助繞組上的電壓與關聯於一次側之電感電流大小的電壓來獲取電源轉換電路的運作資訊,再基於反馳式電源轉換之輸出電流在每一訊號周期內的平均值與禁能時間長度之乘積實質上為常數的特性來決定脈寬調變控制訊號的轉態時間點,藉以令平均輸出電流可穩定地維持在預設的電流設定值上,而不會隨著負載工作情形或電源轉換電路的運作情形而產生不穩定的漂移。In summary, the embodiment of the present invention provides a flyback power converter and a control method thereof, which can obtain power conversion by detecting a voltage on an auxiliary winding of a transformer and a voltage associated with an inductor current of a primary side. The operation information of the circuit is determined based on the characteristic that the product of the output current of the reverse power conversion is substantially constant in the product of the average value of the signal period and the length of the disable time, thereby determining the transition time of the pulse width modulation control signal. Therefore, the average output current can be stably maintained at a preset current setting value without generating an unstable drift depending on the load operation condition or the operation of the power conversion circuit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

50‧‧‧整流電路
100‧‧‧返馳式電源轉換器
110‧‧‧電源轉換電路
120‧‧‧控制電路
122‧‧‧脈寬調變訊號產生電路
124‧‧‧開關驅動電路
126‧‧‧平均電流偵測電路
AAC‧‧‧累加器
AC‧‧‧輔助線路
ACin‧‧‧交流電源
C1、Co‧‧‧電容
CTC‧‧‧計時器
COMP‧‧‧比較器
CV_Toff‧‧‧計數值
D1、D2‧‧‧二極體
DFF1、DFF2‧‧‧正反器
EA‧‧‧誤差放大器
GND1、GND2‧‧‧接地端
INV‧‧‧反相器
INVC‧‧‧反相比較器
Ip、Is‧‧‧電感電流
Ipp、Isp‧‧‧峰值電流
Io‧‧‧輸出電流
MC‧‧‧乘法器
Na‧‧‧輔助繞阻
Np‧‧‧一次側繞阻
Ns‧‧‧二次側繞阻
P_DR‧‧‧驅動接腳
P_DT1、P_DT2‧‧‧偵測接腳
P_VDD‧‧‧電源接腳
Pin‧‧‧輸入電源
Pout‧‧‧輸出電源
R1、R2、R3、Rcs‧‧‧電阻
S310~S360‧‧‧返馳式電源轉換電路的控制方法步驟
Scd‧‧‧電流指示訊號
Sea‧‧‧誤差放大訊號
SHC‧‧‧取樣及保持電路
SToff‧‧‧禁能期間指示訊號
Spwm‧‧‧脈寬調變控制訊號
SW‧‧‧功率開關
T‧‧‧變壓器
T_pwm‧‧‧周期訊號
TSGC‧‧‧三角波及方波產生電路
VDD‧‧‧直流系統電壓
VDET、Vcs‧‧‧電壓
Vo‧‧‧輸出電壓
Vref1、Vref2、Vrefi‧‧‧參考電壓
50‧‧‧Rectifier circuit
100‧‧‧Return-type power converter
110‧‧‧Power conversion circuit
120‧‧‧Control circuit
122‧‧‧ Pulse width modulation signal generation circuit
124‧‧‧Switch drive circuit
126‧‧‧Average current detection circuit
AAC‧‧‧ accumulator
AC‧‧‧Auxiliary line
ACin‧‧‧AC power supply
C1, Co‧‧‧ capacitor
CTC‧‧‧Timer
COMP‧‧‧ comparator
CV_Toff‧‧‧ count value
D1, D2‧‧‧ diode
DFF1, DFF2‧‧‧ forward and reverse
EA‧‧‧Error Amplifier
GND1, GND2‧‧‧ Ground
INV‧‧‧Inverter
INVC‧‧‧ Inverting Comparator
Ip, Is‧‧‧Inductor Current
Ipp, Isp‧‧‧ peak current
Io‧‧‧ output current
MC‧‧‧ Multiplier
Na‧‧‧Auxiliary winding
Np‧‧‧ primary side winding
Ns‧‧‧ secondary winding
P_DR‧‧‧ drive pin
P_DT1, P_DT2‧‧‧Detection pin
P_VDD‧‧‧ power pin
Pin‧‧‧ input power
Pout‧‧‧Output power supply
R1, R2, R3, Rcs‧‧‧ resistors
S310~S360‧‧‧Return-type power conversion circuit control method steps
Scd‧‧‧current indication signal
Sea‧‧‧Error amplification signal
SHC‧‧‧Sampling and Holding Circuit
SToff‧‧‧Indication signal during the ban period
Spwm‧‧‧ pulse width modulation control signal
SW‧‧‧Power switch
T‧‧‧Transformer
T_pwm‧‧‧cycle signal
TSGC‧‧‧ triangle wave and square wave generating circuit
VDD‧‧‧DC system voltage
V DET , Vcs‧‧‧ voltage
Vo‧‧‧ output voltage
Vref1, Vref2, Vrefi‧‧‧ reference voltage

圖1為本發明一實施例的返馳式電源轉換器的功能方塊示意圖。 圖2為依照圖1之一實施例的返馳式電源轉換器的電路架構示意圖。 圖3為本發明一實施例的返馳式電源轉換電路的控制方法的步驟流程圖。 圖4為本發明一實施例的控制電路的功能方塊示意圖。 圖5為依照圖4之一實施例的控制電路的電路架構示意圖。 圖6為本發明一實施例的返馳式電源轉換器的訊號時序示意圖。 圖7為本發明另一實施例的返馳式電源轉換器的訊號時序示意圖。1 is a functional block diagram of a flyback power converter according to an embodiment of the invention. 2 is a circuit schematic diagram of a flyback power converter in accordance with an embodiment of FIG. 1. 3 is a flow chart showing the steps of a method for controlling a flyback power conversion circuit according to an embodiment of the present invention. 4 is a functional block diagram of a control circuit according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a circuit architecture of a control circuit in accordance with an embodiment of FIG. FIG. 6 is a timing diagram of signals of a flyback power converter according to an embodiment of the invention. FIG. 7 is a timing diagram of signals of a flyback power converter according to another embodiment of the present invention.

S310~S360‧‧‧返馳式電源轉換電路的控制方法步驟 S310~S360‧‧‧Return-type power conversion circuit control method steps

Claims (9)

一種返馳式電源轉換器,包括: 一電源轉換電路,包括: 一變壓器,具有一一次側繞組、一二次側繞組以及一輔助繞組;以及 一功率開關,耦接該一次側繞組,其中該功率開關受控於一脈寬調變控制訊號而切換,藉以使該變壓器反應於該功率開關的切換而將該一次側繞組上的一輸入電源轉換為該二次側繞組上的一輸出電壓與一輸出電流;以及 一控制電路,耦接電源轉換電路,用以偵測該輔助繞組上的一第一電壓與該功率開關上的一第二電壓,並據以控制該電源轉換電路的運作, 其中,該控制電路依據該第一電壓與該脈寬調變控制訊號計數該脈寬調變控制訊號的一禁能期間,並據以產生一計時值,並且依據該第二電壓產生一電流指示訊號, 其中,該控制電路依據該計數值與該電流指示訊號的乘積判斷該輸出電流於該脈寬調變控制訊號的一訊號周期內的一平均輸出電流是否符合一預設電流值,藉以依據判斷結果決定該脈寬調變控制訊號的責任周期。A flyback power converter includes: a power conversion circuit comprising: a transformer having a primary side winding, a secondary side winding, and an auxiliary winding; and a power switch coupled to the primary side winding, wherein The power switch is controlled by a pulse width modulation control signal, so that the transformer converts an input power on the primary side winding to an output voltage on the secondary side winding in response to switching of the power switch And a control circuit coupled to the power conversion circuit for detecting a first voltage on the auxiliary winding and a second voltage on the power switch, and thereby controlling the operation of the power conversion circuit The control circuit counts an inactive period of the pulse width modulation control signal according to the first voltage and the pulse width modulation control signal, and generates a timing value according to the second voltage, and generates a current according to the second voltage. An indication signal, wherein the control circuit determines the output current to be a signal week of the pulse width modulation control signal according to a product of the count value and the current indication signal An average output current in compliance with a preset current value, whereby judgment based on the result of the decision the duty cycle of the PWM control signal. 如申請專利範圍第1項所述的返馳式電源轉換器,其中該控制電路包括: 一脈寬調變訊號產生電路,用以依據一預設時脈訊號與一誤差放大訊號產生指示該脈寬調變訊號的責任周期的一周期訊號; 一開關驅動電路,耦接該脈寬調變訊號產生電路與該功率開關,用以依據該周期訊號產生該脈寬調變控制訊號;以及 一平均輸出電流偵測電路,耦接該脈寬調變訊號產生電路,用以依據該第一電壓計數該禁能期間並據以產生該計時值,並且取樣該第二電壓以產生該電流指示訊號, 其中,該平均輸出電流偵測電路對該計數值與該電流指示訊號進行相乘處理以產生一乘積訊號,並且將該乘積訊號與一參考電壓之差值經放大後產生該誤差放大訊號提供給該脈寬調變訊號產生電路。The flyback power converter of claim 1, wherein the control circuit comprises: a pulse width modulation signal generating circuit for generating the indication according to a preset clock signal and an error amplification signal a one-cycle signal of the duty cycle of the wide-band signal; a switch driving circuit coupled to the pulse width modulation signal generating circuit and the power switch for generating the pulse width modulation control signal according to the periodic signal; and an average An output current detecting circuit is coupled to the pulse width modulation signal generating circuit for counting the disable period according to the first voltage and generating the timing value, and sampling the second voltage to generate the current indicating signal, The average output current detecting circuit multiplies the count value by the current indicating signal to generate a product signal, and the difference between the product signal and a reference voltage is amplified to generate the error amplifying signal. The pulse width modulation signal generating circuit. 如申請專利範圍第2項所述的返馳式電源轉換器,其中當該乘積訊號等於該參考電壓時,該脈寬調變訊號產生電路依據該誤差放大訊號將該周期訊號從一致能準位切換至一禁能準位。The flyback power converter of claim 2, wherein when the product signal is equal to the reference voltage, the pulse width modulation signal generating circuit selects the periodic signal from the uniform level according to the error amplification signal Switch to an inactive level. 如申請專利範圍第2項所述的返馳式電源轉換器,其中該平均輸出電流偵測電路包括: 一計時器,接收該第一電壓與該周期訊號,依據該周期訊號於進入該禁能期間時開始計時以產生該計時值,並且依據該第一電壓重置該計時值; 一取樣及保持電路,用以在該脈寬調變控制訊號的一致能期間內取樣並保持該第二電壓,並且據以產生該電流指示訊號; 一乘法器,耦接該計時器與該取樣及保持電路,用以對該計數值與該電流指示訊號進行相乘處理以產生該乘積訊號;以及 一誤差放大器,其第一輸入端耦接該乘法器的輸出端以接收該乘積訊號,其第二輸入端耦接該參考電壓,且其輸出端耦接該脈寬調變訊號產生電路以提供該誤差放大訊號。The flyback power converter of claim 2, wherein the average output current detecting circuit comprises: a timer that receives the first voltage and the periodic signal, and enters the disable according to the periodic signal Timing is started to generate the timing value, and the timing value is reset according to the first voltage; a sampling and holding circuit for sampling and maintaining the second voltage during the uniform energy period of the pulse width modulation control signal And generating the current indication signal; a multiplier coupled to the timer and the sample and hold circuit for multiplying the count value by the current indication signal to generate the product signal; and an error An amplifier having a first input coupled to the output of the multiplier to receive the product signal, a second input coupled to the reference voltage, and an output coupled to the pulse width modulation signal generating circuit to provide the error Zoom in on the signal. 如申請專利範圍第1項所述的返馳式電源轉換器,其中該功率開關於該脈寬調變控制訊號的一致能期間內被導通,藉以令該一次側繞組反應於導通的功率開關而儲能,其中該控制電路依據該致能期間內偵測到的第一偵測電壓獲得一輸入電壓資訊。The flyback power converter of claim 1, wherein the power switch is turned on during a uniform energy period of the pulse width modulation control signal, so that the primary side winding reacts to the turned on power switch. The energy storage device, wherein the control circuit obtains an input voltage information according to the first detection voltage detected during the enabling period. 如申請專利範圍第5項所述的返馳式電源轉換器,其中該功率開關於該禁能期間內被截止,藉以令該一次側繞組所儲存的電能轉移至該二次側繞組,從而在該二次側繞組產生一電感電流,其中該控制電路依據該禁能期間內偵測到的第一偵測電壓獲得一輸出電壓資訊。The flyback power converter of claim 5, wherein the power switch is turned off during the disable period, thereby transferring electrical energy stored in the primary side winding to the secondary winding, thereby The secondary winding generates an inductor current, wherein the control circuit obtains an output voltage information according to the first detected voltage detected during the disable period. 如申請專利範圍第1項所述的返馳式電源轉換器,其中該控制電路具有一第一偵測端、一第二偵測端、一電源端以及一驅動端,該功率開關的第一端耦接該一次側繞組,該功率開關的第二端耦接該第二偵測端,並且該功率開關的控制端耦接該驅動端。The flyback power converter of claim 1, wherein the control circuit has a first detecting end, a second detecting end, a power end, and a driving end, the first of the power switches The second end of the power switch is coupled to the second detecting end, and the control end of the power switch is coupled to the driving end. 如申請專利範圍第7項所述的返馳式電源轉換器,該電源轉換電路更包括: 一輔助線路,耦接該輔助繞組與該第一偵測端,用以依據該輸入電源產生一電源電壓提供至該電源端,並且將該第一電壓提供至該第一偵測端; 一電阻,其第一端耦接該功率開關的第二端與該第二偵測端,且其第二端耦接一第一接地端; 一輸出二極體,其陽極耦接該二次側繞組;以及 一輸出電容,其第一端耦接該輸出二極體的第二端,且其第二端耦接一第二接地端。The power conversion circuit further includes: an auxiliary line coupled to the auxiliary winding and the first detecting end for generating a power source according to the input power source, a voltage is supplied to the power terminal, and the first voltage is supplied to the first detecting end; a resistor having a first end coupled to the second end of the power switch and the second detecting end, and a second The end is coupled to a first ground end; an output diode having an anode coupled to the secondary side winding; and an output capacitor having a first end coupled to the second end of the output diode and second The terminal is coupled to a second ground. 一種返馳式電源轉換電路的控制方法,其中該返馳式電源轉換電路包括一變壓器以及一功率開關,並且該變壓器具有一一次側繞組、一二次側繞組以及一輔助繞組,該控制方法包括: 偵測該輔助繞組上的一第一電壓與該功率開關上的一第二電壓; 依據該第一電壓與用以控制該功率開關的一脈寬調變控制訊號計數該脈寬調變控制訊號的一禁能期間,並據以產生一計時值; 依據該第二電壓產生一電流指示訊號; 計算該計數值與該電流指示訊號的乘積; 依據該乘積判斷該返馳式電源轉換電路的一平均輸出電流是否符合一預設電流值;以及 依據判斷結果決定該脈寬調變控制訊號的責任周期。A control method for a flyback power conversion circuit, wherein the flyback power conversion circuit includes a transformer and a power switch, and the transformer has a primary side winding, a secondary side winding, and an auxiliary winding, the control method The method includes: detecting a first voltage on the auxiliary winding and a second voltage on the power switch; and counting the pulse width modulation according to the first voltage and a pulse width modulation control signal used to control the power switch Controlling a disable period of the signal, and generating a timing value; generating a current indicating signal according to the second voltage; calculating a product of the count value and the current indicating signal; determining the flyback power conversion circuit according to the product Whether an average output current meets a preset current value; and determining a duty cycle of the pulse width modulation control signal according to the judgment result.
TW104139075A 2015-11-25 2015-11-25 Flyback power converter and control method thereof TWI551021B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104139075A TWI551021B (en) 2015-11-25 2015-11-25 Flyback power converter and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104139075A TWI551021B (en) 2015-11-25 2015-11-25 Flyback power converter and control method thereof

Publications (2)

Publication Number Publication Date
TWI551021B true TWI551021B (en) 2016-09-21
TW201720033A TW201720033A (en) 2017-06-01

Family

ID=57445187

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139075A TWI551021B (en) 2015-11-25 2015-11-25 Flyback power converter and control method thereof

Country Status (1)

Country Link
TW (1) TWI551021B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960594B1 (en) 2016-10-28 2018-05-01 Weltrend Semiconductor Inc. System for dynamically controlling an operation of over voltage protection and a voltage converter
CN113224933A (en) * 2021-05-14 2021-08-06 杭州欧佩捷科技有限公司 Secondary side-to-primary side isolation control method of isolation converter
TWI784755B (en) * 2021-10-18 2022-11-21 通嘉科技股份有限公司 Controller applied to a flyback power converter and operational method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771830B (en) * 2020-12-17 2022-07-21 通嘉科技股份有限公司 Flyback power converter and relevant control methods
TWI831147B (en) * 2022-03-11 2024-02-01 國立虎尾科技大學 Switch mode power supply circuit with high voltage output, and electrostatic spray apparatus and agricultural plant protection apparatus using the same
TWI806715B (en) * 2022-07-21 2023-06-21 通嘉科技股份有限公司 Package applied to a flyback power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082508B (en) * 2009-11-26 2013-04-03 立锜科技股份有限公司 Power converter control circuit and method
CN102263501B (en) * 2010-05-31 2014-10-22 通嘉科技股份有限公司 Control method and controller
CN102055335B (en) * 2009-11-03 2015-08-12 立锜科技股份有限公司 Buck-boost power converter and control method thereof
TW201534035A (en) * 2014-02-26 2015-09-01 Fsp Technology Inc Inverting apparatus and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055335B (en) * 2009-11-03 2015-08-12 立锜科技股份有限公司 Buck-boost power converter and control method thereof
CN102082508B (en) * 2009-11-26 2013-04-03 立锜科技股份有限公司 Power converter control circuit and method
CN102263501B (en) * 2010-05-31 2014-10-22 通嘉科技股份有限公司 Control method and controller
TW201534035A (en) * 2014-02-26 2015-09-01 Fsp Technology Inc Inverting apparatus and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960594B1 (en) 2016-10-28 2018-05-01 Weltrend Semiconductor Inc. System for dynamically controlling an operation of over voltage protection and a voltage converter
TWI629844B (en) * 2016-10-28 2018-07-11 偉詮電子股份有限公司 System for dynamically controlling over voltage protection and voltage converter
CN113224933A (en) * 2021-05-14 2021-08-06 杭州欧佩捷科技有限公司 Secondary side-to-primary side isolation control method of isolation converter
CN113224933B (en) * 2021-05-14 2022-08-09 杭州欧佩捷科技有限公司 Secondary side-to-primary side isolation control method of isolation converter
TWI784755B (en) * 2021-10-18 2022-11-21 通嘉科技股份有限公司 Controller applied to a flyback power converter and operational method thereof

Also Published As

Publication number Publication date
TW201720033A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
TWI551021B (en) Flyback power converter and control method thereof
US9882500B2 (en) Power supply device
US8154264B2 (en) Method and systems for conduction mode control
US9362830B2 (en) Switch mode power supply, control circuit and associated control method
US8085022B2 (en) Switching regulator and control circuit thereof, and method for determining on-time in switching regulator
US9337739B2 (en) Power controller with over power protection
TWI441427B (en) Shunt regulator, flyback converter and control method for its output feedback
US8634212B2 (en) Controller and controlling method for power converter
US9178415B1 (en) Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter
JP2008541380A (en) Capacitor charging method and apparatus
US9755527B2 (en) Switching power supply device
KR20090084292A (en) Resonant converter
TW201946351A (en) Semiconductor device for power control, switching power device and design method thereof
CN110311567B (en) Control switch resonant converter
TW201334376A (en) Multi-stage sampling circuit for a power converter controller
JP2011091925A (en) Switching power supply unit
US11664735B2 (en) Isolated power supply and control circuit thereof
US9318961B2 (en) Switching power-supply device
US20110194316A1 (en) Switching power supply device
JP7095784B2 (en) Switching power supply
CN113725820B (en) Over-power protection method and circuit for flyback converter and flyback converter
US8749999B2 (en) Controller and power converter using the same for clamping maximum switching current of power converter
US20110254537A1 (en) Method and Apparatus for Detecting CCM Operation of a Magnetic Device
US8619441B2 (en) Switching regulator
JP2012227075A (en) Constant current power supply device