TWI784755B - Controller applied to a flyback power converter and operational method thereof - Google Patents

Controller applied to a flyback power converter and operational method thereof Download PDF

Info

Publication number
TWI784755B
TWI784755B TW110138477A TW110138477A TWI784755B TW I784755 B TWI784755 B TW I784755B TW 110138477 A TW110138477 A TW 110138477A TW 110138477 A TW110138477 A TW 110138477A TW I784755 B TWI784755 B TW I784755B
Authority
TW
Taiwan
Prior art keywords
voltage
sampling
controller
power converter
signal
Prior art date
Application number
TW110138477A
Other languages
Chinese (zh)
Other versions
TW202318775A (en
Inventor
鄭瑞志
許晃賓
Original Assignee
通嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通嘉科技股份有限公司 filed Critical 通嘉科技股份有限公司
Priority to TW110138477A priority Critical patent/TWI784755B/en
Application granted granted Critical
Publication of TWI784755B publication Critical patent/TWI784755B/en
Publication of TW202318775A publication Critical patent/TW202318775A/en

Links

Images

Abstract

A controller applied to a flyback power converter has a new feedback detection function. The controller includes a sample-and-hold circuit and a disable circuit. The sample-and-hold circuit is used for sampling a feedback voltage to generate a sampling voltage, wherein the controller generates a compensation voltage according to the sampling voltage, and an output voltage of a secondary side of the flyback power converter corresponds to the compensation voltage. The disable circuit is used for disabling a sampling signal to make the sample-and-hold circuit stop sampling the feedback voltage according to an input voltage, the sampling voltage, and a peak of a detection voltage.

Description

應用於返馳式電源轉換器的控制器及其操作方法 Controller for flyback power converter and method of operation thereof

本發明是有關於一種應用於返馳式電源轉換器的控制器及其操作方法,尤指一種可同時根據輸入電壓、取樣電壓和偵測電壓的峰值,去能取樣信號的控制器及其操作方法。 The present invention relates to a controller applied to a flyback power converter and its operation method, especially a controller capable of de-sampling signals according to the peak value of input voltage, sampling voltage and detection voltage at the same time and its operation method.

在現有技術中,應用於一單級返馳式功率因素校正(power factor correction,PFC)電源轉換器的一次側的控制器接收一輸入電壓(其中該輸入電壓和一直流電壓有關,且該直流電壓是通過該單級返馳式功率因素校正電源轉換器所包含的橋式整流器整流一交流電壓後所產生),並將該輸入電壓與一臨界電壓比較,其中當該輸入電壓低於該臨界電壓時,則去能輸入至該控制器內的取樣保持電路的取樣信號。如此該取樣保持電路將據以停止取樣一回授電壓以產生一取樣電壓直到該取樣信號重新致能。另外,該控制器可根據該取樣電壓產生一補償電壓,且根據該補償電壓調整一閘極控制信號(控制該單級返馳式功率因素校正電源轉換器所包含的一功率開關)的降頻曲線(frequency variation curve)以控制該單級返馳式功率因素校正電源轉換器的二次側的輸出電壓。 In the prior art, a controller applied to the primary side of a single-stage flyback power factor correction (power factor correction, PFC) power converter receives an input voltage (wherein the input voltage is related to a DC voltage, and the DC The voltage is generated by rectifying an AC voltage through the bridge rectifier included in the single-stage flyback power factor correction power converter), and comparing the input voltage with a threshold voltage, wherein when the input voltage is lower than the threshold When the voltage is high, the sampling signal that can be input to the sampling and holding circuit in the controller is disabled. In this way, the sample-and-hold circuit stops sampling a feedback voltage to generate a sampling voltage until the sampling signal is re-enabled. In addition, the controller can generate a compensation voltage according to the sampling voltage, and adjust the frequency reduction of a gate control signal (controlling a power switch included in the single-stage flyback power factor correction power converter) according to the compensation voltage A frequency variation curve is used to control the output voltage of the secondary side of the single-stage flyback power factor correction power converter.

然而因為在該取樣信號的去能區間中,該取樣保持電路停止取樣該 回授電壓以產生該取樣電壓,所以該取樣保持電路所產生的該取樣電壓不再變化。如果此時耦接於該單級返馳式功率因素校正電源轉換器的負載發生變化或該輸入電壓發生變化,則因為該取樣電壓不再變化,所以和該取樣電壓有關的該補償電壓無法即時反應該負載的變化或該輸入電壓的變化,導致該輸出電壓發生過沖(overshoot)/下沖(undershoot)的情形。因為在現有技術中,該臨界電壓為一固定值,所以如果該臨界電壓太高,則該取樣信號的去能區間變得太長,導致於該負載發生變化或該輸入電壓發生變化時,該輸出電壓的過沖/下沖將更為嚴重,甚至超出該單級返馳式功率因素校正電源轉換器調節該輸出電壓的範圍;如果該臨界電壓太低,則因為該單級返馳式功率因素校正電源轉換器的一次側的激磁電流太小,所以該單級返馳式功率因素校正電源轉換器的二次側的反射電壓太低,導致該取樣電壓錯誤(較低)。如此,該輸出電壓變高,甚至該單級返馳式功率因素校正電源轉換器出現震盪的狀況。 However, because the sample-and-hold circuit stops sampling the Feedback voltage is used to generate the sampling voltage, so the sampling voltage generated by the sample-and-hold circuit does not change anymore. If the load coupled to the single-stage flyback power factor correction power converter changes or the input voltage changes at this time, since the sampling voltage no longer changes, the compensation voltage related to the sampling voltage cannot be real-time In response to the change of the load or the change of the input voltage, the overshoot/undershoot of the output voltage occurs. Because in the prior art, the threshold voltage is a fixed value, if the threshold voltage is too high, the de-energization interval of the sampling signal becomes too long, resulting in that when the load changes or the input voltage changes, the The overshoot/undershoot of the output voltage will be more serious, even beyond the range that the single-stage flyback power factor correction power converter can regulate the output voltage; if the threshold voltage is too low, because the single-stage flyback power The excitation current of the primary side of the factor correction power converter is too small, so the reflected voltage of the secondary side of the single-stage flyback power factor correction power converter is too low, resulting in an incorrect (low) sampling voltage. In this way, the output voltage becomes higher, and even the single-stage flyback power factor correction power converter oscillates.

因此,如何解決上述該臨界電壓為該固定值所造成的問題已成為該控制器的設計者的一項重要課題。 Therefore, how to solve the above-mentioned problem caused by the threshold voltage being the fixed value has become an important task for the designer of the controller.

本發明的一實施例提供一種應用於返馳式電源轉換器(flyback power converter)的控制器,其中該控制器具有新回授偵測功能。該控制器包含一取樣保持電路和一去能電路。該取樣保持電路是用以取樣一回授電壓以產生一取樣電壓,其中該控制器根據該取樣電壓產生一補償電壓,且該返馳式電源轉換器的二次側的輸出電壓和該補償電壓有關。該去能電路是用以根據一輸入電壓、該取樣電壓和一偵測電壓的峰值,去能一取樣信號以使該取樣保持電路停止取樣 該回授電壓。 An embodiment of the present invention provides a controller applied to a flyback power converter, wherein the controller has a new feedback detection function. The controller includes a sample hold circuit and a disable circuit. The sample and hold circuit is used to sample a feedback voltage to generate a sample voltage, wherein the controller generates a compensation voltage according to the sample voltage, and the output voltage of the secondary side of the flyback power converter and the compensation voltage related. The disabling circuit is used for disabling a sampling signal according to the peak value of an input voltage, the sampling voltage and a detection voltage so that the sampling and holding circuit stops sampling the feedback voltage.

本發明的另一實施例提供一種應用於返馳式電源轉換器的控制器的操作方法,其中該控制器具有新回授偵測功能,且該控制器包含一取樣保持電路和一去能電路。該操作方法包含該去能電路根據一輸入電壓、一取樣電壓和一偵測電壓的峰值,決定是否去能一取樣信號;及當該去能電路去能該取樣信號後,該取樣保持電路停止取樣一回授電壓以產生該取樣電壓直到該取樣信號重新致能。 Another embodiment of the present invention provides an operation method of a controller applied to a flyback power converter, wherein the controller has a new feedback detection function, and the controller includes a sample-and-hold circuit and a disable circuit . The operation method comprises that the disabling circuit determines whether to disable a sampling signal according to the peak value of an input voltage, a sampling voltage, and a detection voltage; and when the disabling circuit disables the sampling signal, the sampling and holding circuit stops Sampling a feedback voltage to generate the sampling voltage until the sampling signal is re-enabled.

本發明提供一種應用於返馳式電源轉換器的控制器,其中該控制器具有新回授偵測功能。因為該新回授偵測功能是使該控制器可同時根據一輸入電壓、一取樣電壓和一偵測電壓的峰值,去能一取樣信號,所以相較於現有技術,本發明有以下優點:第一、因為該偵測電壓的峰值會隨該返馳式電源轉換器的二次側的負載改變,所以該控制器可通過該偵測電壓的峰值偵測該返馳式電源轉換器的二次側的負載變化;第二、因為該取樣電壓可隨著該返馳式電源轉換器的二次側的輸出電壓改變,所以該控制器可避免該取樣信號的錯誤;第三、在該控制器可避免該取樣信號的錯誤的前提下,該控制器偵測該返馳式電源轉換器的二次側的負載和該輸入電壓,可有效地縮減該取樣信號的去能區間以使該取樣信號的去能區間最佳化。 The invention provides a controller applied to a flyback power converter, wherein the controller has a new feedback detection function. Because the new feedback detection function enables the controller to simultaneously disable a sampling signal according to the peak values of an input voltage, a sampling voltage and a detection voltage, so compared with the prior art, the present invention has the following advantages: First, because the peak value of the detection voltage changes with the load on the secondary side of the flyback power converter, the controller can detect the secondary side of the flyback power converter through the peak value of the detection voltage. Second, because the sampling voltage can change with the output voltage of the secondary side of the flyback power converter, so the controller can avoid errors in the sampling signal; third, in the control Under the premise that the controller can avoid the error of the sampling signal, the controller detects the load of the secondary side of the flyback power converter and the input voltage, and can effectively reduce the de-energy interval of the sampling signal so that the sampling The de-energy interval of the signal is optimized.

100:返馳式電源轉換器 100: flyback power converter

102:第一分壓電路 102: The first voltage divider circuit

103:功率開關 103: Power switch

104:橋式整流器 104: Bridge rectifier

106:第二分壓電路 106: The second voltage divider circuit

200:控制器 200: controller

202:取樣保持電路 202: Sample and hold circuit

204:去能電路 204: De-energizing circuit

2042:第一比較器 2042: first comparator

2044:峰值產生器 2044: Peak Generator

2046:第二比較器 2046: second comparator

2048:第三比較器 2048: The third comparator

2050:反及閘 2050: Reverse and gate

2052:及閘 2052: and gate

FCS:第一比較信號 FCS: first comparison signal

GND1、GND2:地電位 GND1, GND2: ground potential

GCS:閘極控制信號 GCS: gate control signal

NAUX:輔助繞組 NAUX: auxiliary winding

OS:輸出信號 OS: output signal

PRI:一次側 PRI: primary side

SEC:二次側 SEC: Secondary side

SCS:第二比較信號 SCS: second comparison signal

TCS:第三比較信號 TCS: third comparison signal

T1-T9:時間 T1-T9: time

VP:峰值 VP: Peak

VCS:偵測電壓 VCS: detection voltage

VCC、FB、GATE、IN、CS、GND、COMP:接腳 VCC, FB, GATE, IN, CS, GND, COMP: pins

VAUX:輔助電壓 VAUX: auxiliary voltage

VFB:回授電壓 VFB: feedback voltage

VIN:輸入電壓 VIN: input voltage

VAC:交流電壓 VAC: AC voltage

VBRI:直流電壓 VBRI: DC voltage

VOUT:輸出電壓 VOUT: output voltage

VTH1:第一臨界電壓 VTH1: the first threshold voltage

VTH2:第二臨界電壓 VTH2: the second threshold voltage

VTH3:第三臨界電壓 VTH3: the third critical voltage

VFBSH:取樣電壓 VFBSH: sampling voltage

VCOMP:補償電壓 VCOMP: Compensation voltage

VTRI:取樣信號 VTRI: Sampling signal

VTH1H:上界 VTH1H: upper bound

VTH1L:下界 VTH1L: Lower Bound

300-304:步驟 300-304: Steps

第1圖是本發明的第一實施例說明一種應用於返馳式電源轉換器(flyback power converter)的控制器的示意圖。 FIG. 1 is a schematic diagram illustrating a controller applied to a flyback power converter according to the first embodiment of the present invention.

第2圖是說明去能電路根據輸入電壓、取樣電壓和偵測電壓的峰值去能取樣信號的時序示意圖。 FIG. 2 is a schematic diagram illustrating the timing sequence of the disable circuit to disable the sampling signal according to the peak values of the input voltage, the sampling voltage and the detection voltage.

第3圖是本發明的第二實施例說明一種應用於返馳式電源轉換器的控制器的操作方法的流程圖。 FIG. 3 is a flowchart illustrating an operation method of a controller applied to a flyback power converter according to a second embodiment of the present invention.

請參照第1圖,第1圖是本發明的第一實施例說明一種應用於返馳式電源轉換器(flyback power converter)100的控制器200的示意圖,其中控制器200具有新回授偵測功能,控制器200是應用於返馳式電源轉換器100的一次側PRI,且返馳式電源轉換器100是一單級返馳式功率因素校正(power factor correction,PFC)電源轉換器。另外,第1圖的返馳式電源轉換器100和控制器200僅示出與本發明相關的元件,且返馳式電源轉換器100的一次側PRI的地電位GND1和返馳式電源轉換器100的二次側SEC的地電位GND2可相同或不同。如第1圖所示,控制器200包含一取樣保持電路202和一去能電路204,其中取樣保持電路202通過控制器200的接腳FB接收一回授電壓VFB,且用以取樣回授電壓VFB以產生一取樣電壓VFBSH。另外,如第1圖所示,回授電壓VFB是返馳式電源轉換器100所包含的輔助繞組NAUX上的輔助電壓VAUX通過一第一分壓電路102所產生。在取樣保持電路202產生取樣電壓VFBSH後,控制器200內的相關電路可根據取樣電壓VFBSH產生一補償電壓VCOMP(也就是控制器200的接腳COMP上的電壓),且根據補償電壓VCOMP調整一閘極控制信號GCS的降頻曲線(frequency variation curve)以控制返馳式電源轉換器100的二次側SEC的輸出電壓VOUT,也就是說返馳式電源轉換器100的二次側SEC的輸出電壓VOUT和補償電壓VCOMP有關。另外,閘極控制信號GCS是通過控制器200的接腳GATE輸入至返馳式電源轉換器100所包含的一功率開關103,其中閘極控制信號GCS是用以控制功率開關103的 開啟與關閉,且返馳式電源轉換器100是操作在一準諧振模式(quasi-resonate mode)。另外,如第1圖所示,輔助電壓VAUX可通過控制器200的接腳VCC輸入至控制器200,並做為控制器200的供電電壓,以及控制器200的接腳GND接收地電位GND1。 Please refer to FIG. 1. FIG. 1 is a schematic diagram illustrating a controller 200 applied to a flyback power converter (flyback power converter) 100 according to a first embodiment of the present invention, wherein the controller 200 has a new feedback detection Function, the controller 200 is applied to the primary side PRI of the flyback power converter 100 , and the flyback power converter 100 is a single-stage flyback power factor correction (power factor correction, PFC) power converter. In addition, the flyback power converter 100 and the controller 200 in FIG. 1 only show elements related to the present invention, and the ground potential GND1 of the primary side PRI of the flyback power converter 100 and the flyback power converter The ground potential GND2 of the secondary side SEC of 100 may be the same or different. As shown in FIG. 1, the controller 200 includes a sample-and-hold circuit 202 and a disable circuit 204, wherein the sample-and-hold circuit 202 receives a feedback voltage VFB through the pin FB of the controller 200, and is used for sampling the feedback voltage VFB to generate a sampling voltage VFBSH. In addition, as shown in FIG. 1 , the feedback voltage VFB is generated by the auxiliary voltage VAUX on the auxiliary winding NAUX included in the flyback power converter 100 through a first voltage dividing circuit 102 . After the sample-and-hold circuit 202 generates the sampling voltage VFBSH, related circuits in the controller 200 can generate a compensation voltage VCOMP (that is, the voltage on the pin COMP of the controller 200) according to the sampling voltage VFBSH, and adjust a compensation voltage VCOMP according to the compensation voltage VCOMP. The frequency variation curve of the gate control signal GCS is used to control the output voltage VOUT of the secondary side SEC of the flyback power converter 100, that is to say the output of the secondary side SEC of the flyback power converter 100 The voltage VOUT is related to the compensation voltage VCOMP. In addition, the gate control signal GCS is input to a power switch 103 included in the flyback power converter 100 through the pin GATE of the controller 200 , wherein the gate control signal GCS is used to control the power switch 103 is turned on and off, and the flyback power converter 100 is operated in a quasi-resonant mode. In addition, as shown in FIG. 1 , the auxiliary voltage VAUX can be input to the controller 200 through the pin VCC of the controller 200 as the power supply voltage of the controller 200 , and the pin GND of the controller 200 receives the ground potential GND1 .

如第1圖所示,去能電路204包含一第一比較器2042、一峰值產生器2044、一第二比較器2046、一第三比較器2048、一反及閘2050和一及閘2052。第一比較器2042是用以通過控制器200的接腳IN接收一輸入電壓VIN且當輸入電壓VIN小於一第一臨界電壓VTH1時,產生一第一比較信號FCS(也就是一第一高電位信號),其中第一比較器2042還具有一遲滯功能。另外,如第1圖所示,一直流電壓VBRI是一交流電壓VAC通過返馳式電源轉換器100所包含的橋式整流器104整流所產生,且輸入電壓VIN是直流電壓VBRI通過一第二分壓電路106所產生。峰值產生器2044是用以通過控制器200的接腳CS接收一偵測電壓VCS並據以產生偵測電壓VCS的峰值VP;第二比較器2046用以接收峰值VP且當峰值VP小於一第二臨界電壓VTH2時,產生一第二比較信號SCS(也就是一第二高電位信號)。第三比較器2048是用以接收取樣電壓VFBSH且當取樣電壓VFBSH小於一第三臨界電壓VTH3時,產生一第三比較信號TCS(也就是一第三高電位信號)。反及閘2050是用以接收第一比較信號FCS、第二比較信號SCS和第三比較信號TCS,並據以產生一輸出信號OS(也就是一第一低電位信號)。因為輸出信號OS是該第一低電位信號,所以及閘2052可根據輸出信號OS去能取樣信號VTRI,也就是說當及閘2052接收到輸出信號OS時,取樣信號VTRI並不會通過及閘2052到取樣保持電路202(此時及閘2052的輸出是處於一低電位)。當取樣保持電路202沒有接收到取樣信號VTRI時,取樣保持電路202將停止取樣回授電壓VFB,此時取樣保持電路202將維持前次所產生的取樣電壓VFBSH直到取樣信號VTRI的去能 區間結束。另外,本發明並不受限於第一比較信號FCS是該第一高電位信號,第二比較信號SCS是該第二高電位信號,第三比較信號TCS是該第三高電位信號,輸出信號OS是該第一低電位信號,反及閘2050,和及閘2052,也就是說只要去能電路204可利用輸入電壓VIN、取樣電壓VFBSH、偵測電壓VCS的峰值VP以及邏輯閘去能取樣信號VTRI,都落入本發明的範疇。 As shown in FIG. 1 , the disable circuit 204 includes a first comparator 2042 , a peak generator 2044 , a second comparator 2046 , a third comparator 2048 , an NAND gate 2050 and an NAND gate 2052 . The first comparator 2042 is used to receive an input voltage VIN through the pin IN of the controller 200, and when the input voltage VIN is less than a first threshold voltage VTH1, generate a first comparison signal FCS (that is, a first high potential signal), wherein the first comparator 2042 also has a hysteresis function. In addition, as shown in FIG. 1, a DC voltage VBRI is generated by rectifying an AC voltage VAC through the bridge rectifier 104 included in the flyback power converter 100, and the input voltage VIN is generated by passing the DC voltage VBRI through a second divider. generated by voltage circuit 106. The peak value generator 2044 is used to receive a detection voltage VCS through the pin CS of the controller 200 and thereby generate the peak value VP of the detection voltage VCS; the second comparator 2046 is used to receive the peak value VP and when the peak value VP is less than a first When the threshold voltage VTH2 is reached, a second comparison signal SCS (that is, a second high potential signal) is generated. The third comparator 2048 is used for receiving the sampling voltage VFBSH and generating a third comparison signal TCS (ie, a third high potential signal) when the sampling voltage VFBSH is smaller than a third threshold voltage VTH3 . The NAND gate 2050 is used to receive the first comparison signal FCS, the second comparison signal SCS and the third comparison signal TCS, and generate an output signal OS (ie, a first low level signal) accordingly. Because the output signal OS is the first low potential signal, the AND gate 2052 can disable the sampling signal VTRI according to the output signal OS, that is to say, when the AND gate 2052 receives the output signal OS, the sampling signal VTRI will not pass through the AND gate. 2052 to the sample and hold circuit 202 (the output of the AND gate 2052 is at a low potential at this moment). When the sample and hold circuit 202 does not receive the sampling signal VTRI, the sample and hold circuit 202 will stop sampling the feedback voltage VFB, and the sample and hold circuit 202 will maintain the previously generated sampling voltage VFBSH until the sampling signal VTRI is disabled. Interval ends. In addition, the present invention is not limited to the fact that the first comparison signal FCS is the first high potential signal, the second comparison signal SCS is the second high potential signal, the third comparison signal TCS is the third high potential signal, and the output signal OS is the first low potential signal, the NAND gate 2050 and the AND gate 2052, that is to say, as long as the disabling circuit 204 can use the input voltage VIN, the sampling voltage VFBSH, the peak value VP of the detection voltage VCS and the logic gate to disabling sampling The signal VTRI falls within the scope of the present invention.

另外,請參照第2圖,第2圖是說明去能電路204根據輸入電壓VIN、取樣電壓VFBSH和偵測電壓VCS的峰值VP去能取樣信號VTRI的時序示意圖。如第2圖所示,在時間T0和一時間T1之間、一時間T2和一時間T3之間以及一時間T4和一時間T5之間,輸入電壓VIN小於第一臨界電壓VTH1(其中VTH1H是對應第一臨界電壓VTH1的遲滯區間的上界以及VTH1L是對應第一臨界電壓VTH1的遲滯區間的下界)。同樣地,在時間T0和時間T1之間、時間T2和時間T3之間以及時間T4和時間T5之間,峰值VP也小於第二臨界電壓VTH2。另外,在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,取樣電壓VFBSH小於第三臨界電壓VTH3。如第2圖所示,只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,輸入電壓VIN小於第一臨界電壓VTH1,峰值VP小於第二臨界電壓VTH2,以及取樣電壓VFBSH小於第三臨界電壓VTH3才會同時發生,也就是說只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,第一比較器2042、第二比較器2046和第三比較器2048才會同時分別產生該第一高電位信號、該第二高電位信號和該第三高電位信號。因為反及閘2050的特性,所以反及閘2050只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間才會產生輸出信號OS(也就是該第一低電位信號)。因此,因為反及閘2050只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間才會產生輸出信號OS(也就是該第 一低電位信號),所以去能電路204只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,才會通過及閘2052和輸出信號OS去能取樣信號VTRI,也就是說取樣保持電路202在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間將停止取樣回授電壓VFB,並維持當下的取樣電壓VFBSH,其中時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間即為取樣信號VTRI的去能區間。另外,如第2圖所示,取樣保持電路202在時間T6和時間T1之間、時間T2和時間T7之間、時間T8和時間T3之間以及時間T4和時間T9之間仍舊可以取樣回授電壓VFB。 In addition, please refer to FIG. 2 . FIG. 2 is a schematic diagram illustrating the timing sequence of the disabling circuit 204 disabling the sampling signal VTRI according to the peak value VP of the input voltage VIN, the sampling voltage VFBSH and the detection voltage VCS. As shown in FIG. 2, between time T0 and a time T1, between a time T2 and a time T3, and between a time T4 and a time T5, the input voltage VIN is less than the first threshold voltage VTH1 (wherein VTH1H is The upper boundary of the hysteresis interval corresponding to the first threshold voltage VTH1 and VTH1L is the lower boundary of the hysteresis interval corresponding to the first threshold voltage VTH1). Likewise, between time T0 and time T1 , between time T2 and time T3 , and between time T4 and time T5 , the peak value VP is also smaller than the second threshold voltage VTH2 . In addition, between time T0 and time T6 , between time T7 and time T8 , and between time T9 and time T5 , the sampling voltage VFBSH is smaller than the third threshold voltage VTH3 . As shown in Figure 2, only between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5, the input voltage VIN is less than the first critical voltage VTH1, and the peak value VP is less than the second critical voltage VTH2, and the sampling voltage VFBSH less than the third threshold voltage VTH3 will occur at the same time, that is to say, only between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5, the first comparator 2042, the second comparator 2046 and the third comparator 2048 respectively generate the first high potential signal, the second high potential signal and the third high potential signal at the same time. Because of the characteristics of the NAND gate 2050, the NAND gate 2050 will only generate the output signal OS between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5 (that is, the first low level signal). Therefore, because the NAND gate 2050 will only generate the output signal OS between the time T0 and the time T6, between the time T7 and the time T8, and between the time T9 and the time T5 (that is, the first A low potential signal), so the disabling circuit 204 will pass through the AND gate 2052 and the output signal OS to disabling sampling only between the time T0 and the time T6, between the time T7 and the time T8, and between the time T9 and the time T5 The signal VTRI, that is to say, the sample and hold circuit 202 will stop sampling the feedback voltage VFB between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5, and maintain the current sampling voltage VFBSH, The period between time T0 and time T6 , between time T7 and time T8 , and between time T9 and time T5 is the de-energization interval of the sampling signal VTRI. In addition, as shown in Figure 2, the sample-and-hold circuit 202 can still sample feedback between time T6 and time T1, between time T2 and time T7, between time T8 and time T3, and between time T4 and time T9. Voltage VFB.

因為去能電路204可同時根據輸入電壓VIN、取樣電壓VFBSH和偵測電壓VCS的峰值VP,去能取樣信號VTRI,所以相較於現有技術,本發明有以下優點:第一、因為當返馳式電源轉換器100的二次側SEC的負載(未繪示於第1圖)改變時,偵測電壓VCS的峰值VP也會隨之改變,所以去能電路204可通過偵測電壓VCS的峰值VP偵測返馳式電源轉換器100的二次側SEC的負載變化;第二、因為取樣電壓VFBSH可隨著輸出電壓VOUT改變,所以去能電路204可避免取樣信號VTRI的錯誤;第三、在去能電路204可避免取樣信號VTRI的錯誤的前提下,偵測返馳式電源轉換器100的二次側SEC的負載和輸入電壓VIN,可有效地縮減取樣信號VTRI的去能區間以使取樣信號VTRI的去能區間最佳化。因此,相較於現有技術,本發明可同時達到電壓調整率<±5%且二次側SEC的負載的動態(dynamic)率<±13%之規格要求。 Because the disable circuit 204 can simultaneously disable the sampling signal VTRI according to the peak value VP of the input voltage VIN, the sampling voltage VFBSH, and the detection voltage VCS, so compared with the prior art, the present invention has the following advantages: First, because when the flyback When the load (not shown in FIG. 1 ) of the secondary side SEC of the type power converter 100 changes, the peak value VP of the detection voltage VCS will also change accordingly, so the disabling circuit 204 can pass the peak value of the detection voltage VCS VP detects the load change of the secondary side SEC of the flyback power converter 100; second, because the sampling voltage VFBSH can change with the output voltage VOUT, the disabling circuit 204 can avoid the error of the sampling signal VTRI; third, On the premise that the disabling circuit 204 can avoid errors in the sampling signal VTRI, detecting the load of the secondary side SEC of the flyback power converter 100 and the input voltage VIN can effectively reduce the disabling interval of the sampling signal VTRI so that The de-energy interval of the sampled signal VTRI is optimized. Therefore, compared with the prior art, the present invention can simultaneously meet the specification requirements of the voltage regulation rate<±5% and the dynamic rate of the load of the secondary side SEC<±13%.

請參照第1-3圖,第3圖是本發明的第二實施例說明一種應用於返馳式電源轉換器的控制器的操作方法的流程圖。第3圖的操作方法是利用第1圖的電源轉換器100和控制器200說明,詳細步驟如下: 步驟300:開始;步驟302:去能電路204是否去能取樣信號VTRI;如果是,進行步驟304;如果否,進行步驟302;步驟304:取樣保持電路202停止取樣回授電壓VFB以產生取樣電壓VFBSH直到取樣信號VTRI重新致能,跳回步驟302。 Please refer to FIGS. 1-3 . FIG. 3 is a flow chart illustrating an operation method of a controller applied to a flyback power converter according to a second embodiment of the present invention. The operation method in Fig. 3 is explained by using the power converter 100 and the controller 200 in Fig. 1, and the detailed steps are as follows: Step 300: Start; Step 302: Whether the disable circuit 204 disables the sampling signal VTRI; If yes, proceed to Step 304; If not, proceed to Step 302; Step 304: The sampling and holding circuit 202 stops sampling the feedback voltage VFB to generate the sampling voltage VFBSH until the sampling signal VTRI is enabled again, then jump back to step 302 .

在步驟302中,當去能電路204沒有去能取樣信號VTRI時,取樣保持電路202可取樣回授電壓VFB以產生取樣電壓VFBSH。另外,如第2圖所示,只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,輸入電壓VIN小於第一臨界電壓VTH1,峰值VP小於第二臨界電壓VTH2,以及取樣電壓VFBSH小於第三臨界電壓VTH3才會同時發生,也就是說只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間,第一比較器2042、第二比較器2046和第三比較器2048才會同時分別產生該第一高電位信號、該第二高電位信號和該第三高電位信號。也就是說反及閘2050只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間才會產生輸出信號OS(也就是該第一低電位信號)。因此,因為反及閘2050只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間才會產生輸出信號OS(也就是該第一低電位信號),所以去能電路204只有在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間才會通過及閘2052和輸出信號OS去能取樣信號VTRI。 In step 302 , when the sampling signal VTRI is not disabled by the disabling circuit 204 , the sample and hold circuit 202 can sample the feedback voltage VFB to generate the sampling voltage VFBSH. In addition, as shown in Figure 2, only between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5, the input voltage VIN is less than the first threshold voltage VTH1, and the peak value VP is less than the second The critical voltage VTH2 and the sampling voltage VFBSH will be less than the third critical voltage VTH3 at the same time, that is to say, only between the time T0 and the time T6, between the time T7 and the time T8, and between the time T9 and the time T5, the first The comparator 2042 , the second comparator 2046 and the third comparator 2048 respectively generate the first high potential signal, the second high potential signal and the third high potential signal at the same time. That is to say, the NAND gate 2050 will generate the output signal OS (that is, the first low potential signal) only between the time T0 and the time T6, between the time T7 and the time T8, and between the time T9 and the time T5. Therefore, because the NAND gate 2050 will only generate the output signal OS (that is, the first low potential signal) between the time T0 and the time T6, between the time T7 and the time T8, and between the time T9 and the time T5, so The disable circuit 204 disables the sampling signal VTRI through the AND gate 2052 and the output signal OS only between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5.

在步驟304中,取樣保持電路202在時間T0和時間T6之間、時間T7和時間T8之間以及時間T9和時間T5之間將停止取樣回授電壓VFB,並維持當下的 取樣電壓VFBSH直到取樣信號VTRI重新致能。另外,如第2圖所示,取樣保持電路202在時間T6和時間T1之間、時間T2和時間T7之間、時間T8和時間T3之間以及時間T4和時間T9之間仍舊可以取樣回授電壓VFB。 In step 304, the sample and hold circuit 202 will stop sampling the feedback voltage VFB between time T0 and time T6, between time T7 and time T8, and between time T9 and time T5, and maintain the current The voltage VFBSH is sampled until the sampling signal VTRI is re-enabled. In addition, as shown in Figure 2, the sample-and-hold circuit 202 can still sample feedback between time T6 and time T1, between time T2 and time T7, between time T8 and time T3, and between time T4 and time T9. Voltage VFB.

綜上所述,本發明所提供的控制器具有新回授偵測功能。因為該新回授偵測功能是使該控制器內的去能電路可同時根據該輸入電壓、該取樣電壓和該偵測電壓的峰值,去能該取樣信號,所以相較於現有技術,本發明有以下優點:第一、因為該偵測電壓的峰值會隨該返馳式電源轉換器的二次側的負載改變,所以該控制器可通過該偵測電壓的峰值偵測該返馳式電源轉換器的二次側的負載變化;第二、因為該取樣電壓可隨著該返馳式電源轉換器的二次側的輸出電壓改變,所以該控制器可避免該取樣信號的錯誤;第三、在該控制器可避免該取樣信號的錯誤的前提下,該控制器偵測該返馳式電源轉換器的二次側的負載和該輸入電壓,可有效地縮減該取樣信號的去能區間以使該取樣信號的去能區間最佳化。 In summary, the controller provided by the present invention has a new feedback detection function. Because the new feedback detection function is to enable the disabling circuit in the controller to simultaneously disable the sampling signal according to the peak value of the input voltage, the sampling voltage and the detection voltage, so compared with the prior art, this The invention has the following advantages: First, because the peak value of the detection voltage changes with the load on the secondary side of the flyback power converter, the controller can detect the flyback power converter through the peak value of the detection voltage The load variation of the secondary side of the power converter; second, because the sampling voltage can change with the output voltage of the secondary side of the flyback power converter, so the controller can avoid the error of the sampling signal; the second 3. On the premise that the controller can avoid the error of the sampling signal, the controller detects the load on the secondary side of the flyback power converter and the input voltage, which can effectively reduce the de-energy of the sampling signal interval to optimize the de-energized interval of the sampled signal.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:返馳式電源轉換器 100: flyback power converter

102:第一分壓電路 102: The first voltage divider circuit

103:功率開關 103: Power switch

104:橋式整流器 104: Bridge rectifier

106:第二分壓電路 106: The second voltage divider circuit

200:控制器 200: controller

202:取樣保持電路 202: Sample and hold circuit

204:去能電路 204: De-energizing circuit

2042:第一比較器 2042: first comparator

2044:峰值產生器 2044: Peak Generator

2046:第二比較器 2046: second comparator

2048:第三比較器 2048: The third comparator

2050:反及閘 2050: Reverse and gate

2052:及閘 2052: and gate

FCS:第一比較信號 FCS: first comparison signal

GND1、GND2:地電位 GND1, GND2: ground potential

GCS:閘極控制信號 GCS: gate control signal

NAUX:輔助繞組 NAUX: auxiliary winding

OS:輸出信號 OS: output signal

PRI:一次側 PRI: primary side

SEC:二次側 SEC: Secondary side

SCS:第二比較信號 SCS: second comparison signal

TCS:第三比較信號 TCS: third comparison signal

VP:峰值 VP: Peak

VCS:偵測電壓 VCS: detection voltage

VCC、FB、GATE、IN、CS、GND、COMP:接腳 VCC, FB, GATE, IN, CS, GND, COMP: pins

VAUX:輔助電壓 VAUX: auxiliary voltage

VFB:回授電壓 VFB: feedback voltage

VIN:輸入電壓 VIN: input voltage

VAC:交流電壓 VAC: AC voltage

VBRI:直流電壓 VBRI: DC voltage

VOUT:輸出電壓 VOUT: output voltage

VTH1:第一臨界電壓 VTH1: the first threshold voltage

VTH2:第二臨界電壓 VTH2: the second threshold voltage

VTH3:第三臨界電壓 VTH3: the third threshold voltage

VFBSH:取樣電壓 VFBSH: sampling voltage

VCOMP:補償電壓 VCOMP: Compensation voltage

VTRI:取樣信號 VTRI: Sampling signal

Claims (13)

一種應用於返馳式電源轉換器(flyback power converter)的控制器,其中該控制器具有新回授偵測功能,該控制器包含:一取樣保持電路,用以取樣一回授電壓以產生一取樣電壓,其中該控制器根據該取樣電壓產生一補償電壓,且該返馳式電源轉換器的二次側的輸出電壓和該補償電壓有關;及一去能電路,包含:一第一比較器,用以接收一輸入電壓且當該輸入電壓小於一第一臨界電壓時,產生一第一比較信號,其中該第一比較器具有一遲滯功能;及一峰值產生器,用以接收一偵測電壓並據以產生一偵測電壓的峰值;其中該去能電路根據該輸入電壓、該取樣電壓和該偵測電壓的峰值,去能一取樣信號以使該取樣保持電路停止取樣該回授電壓。 A controller applied to a flyback power converter, wherein the controller has a new feedback detection function, the controller includes: a sample and hold circuit for sampling a feedback voltage to generate a sampling voltage, wherein the controller generates a compensation voltage according to the sampling voltage, and the output voltage of the secondary side of the flyback power converter is related to the compensation voltage; and an energy-disabling circuit, comprising: a first comparator , used to receive an input voltage and generate a first comparison signal when the input voltage is less than a first threshold voltage, wherein the first comparator has a hysteresis function; and a peak value generator, used to receive a detection voltage And accordingly generate a peak value of the detection voltage; wherein the disabling circuit disables a sampling signal according to the input voltage, the sampling voltage and the peak value of the detection voltage so that the sample and hold circuit stops sampling the feedback voltage. 如請求項1所述的控制器,其中該控制器應用於該返馳式電源轉換器的一次側,且該返馳式電源轉換器是一單級返馳式功率因素校正(power factor correction,PFC)電源轉換器。 The controller as claimed in item 1, wherein the controller is applied to the primary side of the flyback power converter, and the flyback power converter is a single-stage flyback power factor correction (power factor correction, PFC) power converter. 如請求項1所述的控制器,其中該回授電壓和該返馳式電源轉換器所包含的輔助繞組上的輔助電壓有關。 The controller as claimed in claim 1, wherein the feedback voltage is related to an auxiliary voltage on an auxiliary winding included in the flyback power converter. 如請求項1所述的控制器,其中該控制器的供電電壓和該返馳式電源轉換器所包含的輔助繞組上的輔助電壓有關。 The controller as claimed in claim 1, wherein the supply voltage of the controller is related to the auxiliary voltage on the auxiliary winding included in the flyback power converter. 如請求項1所述的控制器,其中該輸入電壓和一直流電壓有關,且該直流電壓是通過該返馳式電源轉換器所包含的橋式整流器整流一交流電壓後所產生。 The controller as claimed in claim 1, wherein the input voltage is related to a DC voltage, and the DC voltage is generated by rectifying an AC voltage by a bridge rectifier included in the flyback power converter. 如請求項1所述的控制器,其中該去能電路包含:一第二比較器,用以接收該偵測電壓的峰值且當該偵測電壓的峰值小於一第二臨界電壓時,產生一第二比較信號;一第三比較器,用以接收該取樣電壓且當該取樣電壓小於一第三臨界電壓時,產生一第三比較信號;一反及閘,用以接收該第一比較信號、該第二比較信號和該第三比較信號,並據以產生一輸出信號;及一及閘,用以根據該輸出信號去能該取樣信號。 The controller as described in claim 1, wherein the disable circuit includes: a second comparator for receiving the peak value of the detection voltage and generating a voltage when the peak value of the detection voltage is less than a second threshold voltage A second comparison signal; a third comparator for receiving the sampling voltage and generating a third comparison signal when the sampling voltage is less than a third threshold voltage; an NAND gate for receiving the first comparison signal , the second comparison signal and the third comparison signal, and generate an output signal accordingly; and an AND gate, used to disable the sampling signal according to the output signal. 一種應用於返馳式電源轉換器(flyback power converter)的控制器的操作方法,其中該控制器具有新回授偵測功能,且該控制器包含一取樣保持電路和一去能電路,該操作方法包含:當一輸入電壓小於一第一臨界電壓時,該去能電路的一第一比較器產生一第一比較信號;當一偵測電壓的峰值小於一第二臨界電壓時,該去能電路的一第二比較器產生一第二比較信號;當一取樣電壓小於一第三臨界電壓時,該去能電路的一第三比較器產生一第三比較信號;該去能電路根據該第一比較信號、該第二比較信號和該第三比較信號,決 定是否去能一取樣信號;及當該去能電路去能該取樣信號後,該取樣保持電路停止取樣一回授電壓以產生該取樣電壓直到該取樣信號重新致能。 A method for operating a controller applied to a flyback power converter, wherein the controller has a new feedback detection function, and the controller includes a sample-and-hold circuit and a disabling circuit, the operation The method includes: when an input voltage is less than a first critical voltage, a first comparator of the disabling circuit generates a first comparison signal; when a peak value of a detection voltage is less than a second critical voltage, the disabling A second comparator of the circuit generates a second comparison signal; when a sampling voltage is less than a third critical voltage, a third comparator of the disabling circuit generates a third comparison signal; the disabling circuit generates a third comparison signal according to the first A comparison signal, the second comparison signal and the third comparison signal determine Determine whether to disable a sampling signal; and when the disabling circuit disables the sampling signal, the sample hold circuit stops sampling a feedback voltage to generate the sampling voltage until the sampling signal is enabled again. 如請求項7所述的操作方法,其中該控制器根據該取樣電壓產生一補償電壓,且該返馳式電源轉換器的二次側的輸出電壓和該補償電壓有關。 The operation method as claimed in claim 7, wherein the controller generates a compensation voltage according to the sampled voltage, and the output voltage of the secondary side of the flyback power converter is related to the compensation voltage. 如請求項7所述的操作方法,其中該控制器應用於該返馳式電源轉換器的一次側。 The operation method as claimed in item 7, wherein the controller is applied to the primary side of the flyback power converter. 如請求項7所述的操作方法,其中該回授電壓和該返馳式電源轉換器所包含的輔助繞組上的輔助電壓有關。 The operation method as claimed in claim 7, wherein the feedback voltage is related to the auxiliary voltage on the auxiliary winding included in the flyback power converter. 如請求項7所述的操作方法,其中該控制器的供電電壓和該返馳式電源轉換器所包含的輔助繞組上的輔助電壓有關。 The operation method as claimed in item 7, wherein the power supply voltage of the controller is related to the auxiliary voltage on the auxiliary winding included in the flyback power converter. 如請求項7所述的操作方法,其中該輸入電壓和一直流電壓有關,且該直流電壓是通過該返馳式電源轉換器所包含的橋式整流器整流一交流電壓所產生。 The operation method as claimed in claim 7, wherein the input voltage is related to a DC voltage, and the DC voltage is generated by rectifying an AC voltage through a bridge rectifier included in the flyback power converter. 如請求項7所述的操作方法,其中該去能電路根據該第一比較信號、該第二比較信號和該第三比較信號,決定是否去能該取樣信號包含:根據該第一比較信號、該第二比較信號和該第三比較信號,產生一輸出信 號;及根據該輸出信號去能該取樣信號。 The operation method as described in claim item 7, wherein the disabling circuit determines whether to disable the sampling signal according to the first comparison signal, the second comparison signal and the third comparison signal includes: according to the first comparison signal, The second comparison signal and the third comparison signal generate an output signal number; and deactivate the sampled signal according to the output signal.
TW110138477A 2021-10-18 2021-10-18 Controller applied to a flyback power converter and operational method thereof TWI784755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110138477A TWI784755B (en) 2021-10-18 2021-10-18 Controller applied to a flyback power converter and operational method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110138477A TWI784755B (en) 2021-10-18 2021-10-18 Controller applied to a flyback power converter and operational method thereof

Publications (2)

Publication Number Publication Date
TWI784755B true TWI784755B (en) 2022-11-21
TW202318775A TW202318775A (en) 2023-05-01

Family

ID=85794621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138477A TWI784755B (en) 2021-10-18 2021-10-18 Controller applied to a flyback power converter and operational method thereof

Country Status (1)

Country Link
TW (1) TWI784755B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201206034A (en) * 2010-07-29 2012-02-01 Tpv Electronics Fujian Co Ltd Over power protection (OPP) compensation circuit and flyback power supply
CN102624238A (en) * 2011-07-29 2012-08-01 崇贸科技股份有限公司 Switching controller for flyback type power converter and the controller and control circuit thereof
JP5522760B2 (en) * 2012-03-12 2014-06-18 リニアー テクノロジー コーポレイション Isolated flyback converter with sleep mode for light load operation
US8913404B2 (en) * 2012-03-26 2014-12-16 Silergy Semiconductor Technology (Hangzhou) Ltd Constant voltage constant current control circuits and methods with improved load regulation
TW201539960A (en) * 2014-04-11 2015-10-16 Power Forest Technology Corp Flyback-based power conversion apparatus
TWI525975B (en) * 2013-02-18 2016-03-11 崇貿科技股份有限公司 Control circuit of flyback power converter
TWI551021B (en) * 2015-11-25 2016-09-21 財團法人金屬工業研究發展中心 Flyback power converter and control method thereof
US9748852B2 (en) * 2014-10-28 2017-08-29 Advanced Charging Technologies, LLC Electrical circuit for delivering power to consumer electronic devices
TWI599160B (en) * 2015-05-06 2017-09-11 立錡科技股份有限公司 Flyback power converter and controller and driver thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201206034A (en) * 2010-07-29 2012-02-01 Tpv Electronics Fujian Co Ltd Over power protection (OPP) compensation circuit and flyback power supply
CN102624238A (en) * 2011-07-29 2012-08-01 崇贸科技股份有限公司 Switching controller for flyback type power converter and the controller and control circuit thereof
JP5522760B2 (en) * 2012-03-12 2014-06-18 リニアー テクノロジー コーポレイション Isolated flyback converter with sleep mode for light load operation
US8913404B2 (en) * 2012-03-26 2014-12-16 Silergy Semiconductor Technology (Hangzhou) Ltd Constant voltage constant current control circuits and methods with improved load regulation
TWI525975B (en) * 2013-02-18 2016-03-11 崇貿科技股份有限公司 Control circuit of flyback power converter
TW201539960A (en) * 2014-04-11 2015-10-16 Power Forest Technology Corp Flyback-based power conversion apparatus
US9748852B2 (en) * 2014-10-28 2017-08-29 Advanced Charging Technologies, LLC Electrical circuit for delivering power to consumer electronic devices
TWI599160B (en) * 2015-05-06 2017-09-11 立錡科技股份有限公司 Flyback power converter and controller and driver thereof
TWI551021B (en) * 2015-11-25 2016-09-21 財團法人金屬工業研究發展中心 Flyback power converter and control method thereof

Also Published As

Publication number Publication date
TW202318775A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
US9954450B2 (en) Control circuit, control method and primary-controlled flyback converter using the same
TWI390378B (en) Control circuit and method of Chi - back power converter
US8270184B2 (en) Isolated voltage converter with feedback on the primary winding and passive snubber network, and corresponding control method
TWI441427B (en) Shunt regulator, flyback converter and control method for its output feedback
US7592790B2 (en) Start-up circuit with feedforward compensation for power converters
US11711015B2 (en) Switching converter with quasi-resonant control and control method thereof
US20150115919A1 (en) Programmable current limit circuit for a programmable power supply
US9318962B2 (en) Circuits and methods for reducing output voltage overshoot of switch mode power supply
KR20100105419A (en) Power supply apparatus
US8749999B2 (en) Controller and power converter using the same for clamping maximum switching current of power converter
US9270184B2 (en) Control circuit and terminal for cable compensation and wake-up of primary-side regulated power converter
US9093918B2 (en) Control circuit for offline power converter without input capacitor
US10554139B2 (en) Synchronous rectifier applied to a secondary side of a power converter and operational method thereof
KR20130032844A (en) Adaptive biasing for integrated circuits
JP5857702B2 (en) Switching power supply
TWI784755B (en) Controller applied to a flyback power converter and operational method thereof
TWI469478B (en) Method for controlling power converter and power converter thereof
US20230107131A1 (en) Switching mode power supply with stable zero crossing detection, the control circuit and the method thereof
TWI711248B (en) Primary controller applied to a primary side of a power converter and operational method thereof
TW201740665A (en) Switching regulator with PFC function and control circuit and control method thereof
US20130063986A1 (en) Control circuit for controlling the maximum output current of power converter and method thereof
CN115995973A (en) Controller applied to flyback power converter and operation method thereof
CN110768533B (en) Power supply controller and related control method
KR101005269B1 (en) Switching control circuit having off-time modulation to improve efficiency of primary-side controlled power supply
TWI824383B (en) Secondary controller applied to a secondary side of a power converter and operation method thereof