TWI548036B - Method of fabricating embedded memory device - Google Patents

Method of fabricating embedded memory device Download PDF

Info

Publication number
TWI548036B
TWI548036B TW102125576A TW102125576A TWI548036B TW I548036 B TWI548036 B TW I548036B TW 102125576 A TW102125576 A TW 102125576A TW 102125576 A TW102125576 A TW 102125576A TW I548036 B TWI548036 B TW I548036B
Authority
TW
Taiwan
Prior art keywords
layer
stop layer
gap
forming
region
Prior art date
Application number
TW102125576A
Other languages
Chinese (zh)
Other versions
TW201505128A (en
Inventor
蔡耀庭
廖修漢
莊哲輔
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW102125576A priority Critical patent/TWI548036B/en
Publication of TW201505128A publication Critical patent/TW201505128A/en
Application granted granted Critical
Publication of TWI548036B publication Critical patent/TWI548036B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

嵌入式記憶元件的製造方法 Method for manufacturing embedded memory element

本發明是有關於一種嵌入式記憶元件的製造方法。 The present invention relates to a method of fabricating an embedded memory device.

嵌入式記憶元件為達到降低成本及簡化製程步驟的需求,將晶胞區與周邊區的元件整合在同一晶片上已逐漸成為一種趨勢,例如將快閃記憶體與邏輯電路元件整合在同一晶片上,此種元件稱之為嵌入式快閃記憶體(embedded flash memory)。 Embedded Memory Components In order to reduce the cost and simplify the process steps, it has become a trend to integrate the cell and peripheral components on the same wafer, for example, integrating flash memory and logic components on the same wafer. Such a component is called an embedded flash memory.

然而,習知的嵌入式記憶元件在相鄰兩個汲極區以及源極區之間最大距離處,因為無法填滿介電層而形成深孔隙,後續形成來做為金屬插塞的金屬層可能填入於這一些深孔隙中,因而衍生位元線與字元線電性短路的問題。 However, the conventional embedded memory device has a maximum distance between two adjacent drain regions and source regions, and cannot form a deep void because it cannot fill the dielectric layer, and is subsequently formed as a metal layer of a metal plug. It may be filled in these deep pores, thus causing the problem that the bit line and the word line are electrically shorted.

本發明實施例提出一種嵌入式記憶元件的製造方法可以避免在相鄰兩個汲極區以及源極區之間最大距離處,因為無法填滿介電層而形成深孔隙。 Embodiments of the present invention provide a method for fabricating an embedded memory device that avoids being at a maximum distance between two adjacent drain regions and source regions because deep dielectric layers are formed to form deep voids.

本發明實施例提出一種嵌入式記憶元件的製造方法,包 括提供基底,基底包括晶胞區與周邊區。在基底的晶胞區上形成多個第一閘極結構。在基底的周邊區上形成第二閘極結構。在周邊區的基底上形成介電層。在晶胞區形成多個虛擬自行對準接觸窗插塞,並在虛擬自行對準接觸窗周圍形成多個開口。於基底上形成第一停止層,第一停止層填入於開口中,其中在對應開口的上述第一停止層的表面上具有多個凹陷。於各個凹陷中分別形成硬罩幕層。移除硬罩幕層以及部分第一停止層。移除上述虛擬自行對準接觸窗插塞,以形成多個自行對準接觸窗開口。於自行對準接觸窗開口中形成多個自行對準接觸窗。 Embodiments of the present invention provide a method for manufacturing an embedded memory component, including A substrate is provided, the substrate including a cell region and a peripheral region. A plurality of first gate structures are formed on the cell regions of the substrate. A second gate structure is formed on the peripheral region of the substrate. A dielectric layer is formed on the substrate of the peripheral region. A plurality of dummy self-aligning contact window plugs are formed in the cell region and a plurality of openings are formed around the dummy self-aligning contact windows. A first stop layer is formed on the substrate, and the first stop layer is filled in the opening, wherein the plurality of recesses are formed on the surface of the first stop layer of the corresponding opening. A hard mask layer is formed in each of the depressions. Remove the hard mask layer and some of the first stop layer. The virtual self-aligning contact window plugs described above are removed to form a plurality of self-aligning contact window openings. A plurality of self-aligning contact windows are formed in the self-aligning contact window openings.

本發明實施例還提出一種嵌入式記憶元件的製造方法,包括提供基底,基底包括晶胞區,且晶胞區包括第一區與第二區。在基底上形成多個第一閘極結構,第一區上的第一閘極結構之間具有第一間隙,第二區上的第一閘極結構之間具有第二間隙,第一間隙小於第二間隙。在第一區第二區區上形成多數個虛擬自行對準接觸窗插塞。於基底上形成一第一停止層,其中在第二間隙中的第一停止層的高度低於第一間隙中的第一停止層的高度。非等向性蝕刻第一停止層,在第一間隙中形成相連的第一間隙壁,並在第二間隙之中形成彼此分離的第二間隙壁。在第一區與第二區上形成第二停止層,填滿第一間隙與第二間隙。 Embodiments of the present invention also provide a method of fabricating an embedded memory device, comprising providing a substrate, the substrate including a cell region, and the cell region including the first region and the second region. Forming a plurality of first gate structures on the substrate, a first gap between the first gate structures on the first region, and a second gap between the first gate structures on the second region, the first gap being less than The second gap. A plurality of virtual self-aligning contact window plugs are formed on the second zone of the first zone. A first stop layer is formed on the substrate, wherein a height of the first stop layer in the second gap is lower than a height of the first stop layer in the first gap. The first stop layer is anisotropically etched, the first first spacers are formed in the first gap, and the second spacers are separated from each other in the second gap. A second stop layer is formed on the first zone and the second zone to fill the first gap and the second gap.

本發明實施例之嵌入式記憶元件的製造方法可以避免在相鄰兩個汲極區以及源極區之間最大距離處形成深孔隙。 The method of fabricating the embedded memory device of the embodiment of the present invention can avoid forming deep voids at a maximum distance between two adjacent drain regions and source regions.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.

10‧‧‧第一區 10‧‧‧First District

20‧‧‧第二區 20‧‧‧Second District

100‧‧‧基底 100‧‧‧Base

100a‧‧‧晶胞區 100a‧‧‧cell area

100b‧‧‧周邊區 100b‧‧‧ surrounding area

102、110‧‧‧閘極結構 102, 110‧‧‧ gate structure

103‧‧‧穿隧氧化層 103‧‧‧ Tunneling Oxidation Layer

104、106、112‧‧‧導體層 104, 106, 112‧‧‧ conductor layer

105‧‧‧閘間介電層 105‧‧‧Interruptor dielectric layer

107、113‧‧‧金屬矽化物層 107, 113‧‧‧ metal telluride layer

108、114‧‧‧下罩幕層 108, 114‧‧‧ under the cover layer

109‧‧‧上罩幕層 109‧‧‧Upper cover

111‧‧‧閘氧化層 111‧‧‧Well oxide layer

115‧‧‧罩幕層 115‧‧‧ Cover layer

116、120、132、133‧‧‧停止層 116, 120, 132, 133‧‧‧ stop layer

117‧‧‧襯層 117‧‧‧ lining

118、119、132a、132b‧‧‧間隙壁 118, 119, 132a, 132b‧‧‧ spacers

122‧‧‧介電層 122‧‧‧ dielectric layer

124‧‧‧導體層 124‧‧‧Conductor layer

125‧‧‧罩幕層 125‧‧‧ Cover layer

126‧‧‧頂蓋層 126‧‧‧Top cover

127‧‧‧虛擬自行對準接觸窗插塞 127‧‧‧Virtual self-aligning contact window plug

128‧‧‧開口 128‧‧‧ openings

130‧‧‧間隙壁 130‧‧‧ spacer

133‧‧‧停止層 133‧‧‧stop layer

134‧‧‧凹陷 134‧‧‧ dent

136‧‧‧硬罩幕材料層 136‧‧‧ Hard mask material layer

136a‧‧‧硬罩幕層 136a‧‧‧hard mask layer

140‧‧‧開口 140‧‧‧ openings

142‧‧‧自行對準接觸窗開口 142‧‧‧ Self-aligning contact window openings

144‧‧‧阻障層金屬層 144‧‧‧Metal layer of barrier layer

146‧‧‧導體金屬層 146‧‧‧Conductor metal layer

148‧‧‧自行對準接觸窗 148‧‧‧ Self-aligning contact window

150‧‧‧汲極區 150‧‧‧Bungee Area

160‧‧‧源極區 160‧‧‧ source area

162、164‧‧‧間隙 162, 164‧ ‧ gap

166‧‧‧孔隙 166‧‧‧ pores

a、c‧‧‧距離 a, c‧‧‧ distance

圖1A至1I為根據本發明第一實施例所繪示之一種嵌入式記憶元件的製造流程的剖面示意圖。 1A to 1I are cross-sectional views showing a manufacturing process of an embedded memory device according to a first embodiment of the present invention.

圖2為根據本發明實施例所繪示之一種嵌入式記憶元件的源極區與汲極區的俯視圖。 2 is a top plan view of a source region and a drain region of an embedded memory device according to an embodiment of the invention.

圖3A至3C為根據本發明第二實施例所繪示之一種嵌入式記憶元件的部分製造流程的剖面示意圖。 3A to 3C are cross-sectional views showing a part of a manufacturing process of an embedded memory device according to a second embodiment of the present invention.

圖4為習知一種嵌入式記憶元件的掃描式電子顯微鏡的影像。 4 is an image of a scanning electron microscope of a conventional embedded memory device.

圖5為本發明第二實施例之嵌入式記憶元件的掃描式電子顯微鏡的影像。 Figure 5 is an image of a scanning electron microscope of an embedded memory device in accordance with a second embodiment of the present invention.

圖1A至1I為根據本發明第一實施例所繪示之嵌入式記憶元件的製造流程的剖面示意圖。圖2為根據本發明一實施例所繪示之嵌入式記憶元件的源極區與汲極區的俯視圖。 1A to 1I are cross-sectional views showing a manufacturing process of an embedded memory device according to a first embodiment of the present invention. 2 is a top plan view of a source region and a drain region of an embedded memory device according to an embodiment of the invention.

請參照圖1A,提供基底100。基底100可以是半導體或是半導體化合物,例如是矽或是矽化鍺。基底10也可以是絕緣層上有矽(SOI)。基底100具有晶胞區100a與周邊區100b。於晶胞 區100a的基底100上形成多數個閘極結構102,並於周邊區100b的基底100上形成至少一閘極結構110。 Referring to FIG. 1A, a substrate 100 is provided. Substrate 100 can be a semiconductor or a semiconductor compound such as germanium or germanium. The substrate 10 may also be a layer of germanium (SOI) on the insulating layer. The substrate 100 has a cell region 100a and a peripheral region 100b. Unit cell A plurality of gate structures 102 are formed on the substrate 100 of the region 100a, and at least one gate structure 110 is formed on the substrate 100 of the peripheral region 100b.

閘極結構102可以是非揮發性記憶元件的閘極結構,例如是快閃記憶元件的閘極結構,比如是包括依序堆疊在基底100上的穿隧氧化層103、導體層104、閘間介電層105及導體層106。穿隧氧化層103的材料例如是氧化矽。導體層104作為浮置閘極,其材料例如是摻雜多晶矽。閘間介電層105例如是氧化矽、氮化矽以及氧化矽(ONO)複合層。導體層106作為控制閘極,其材料例如是摻雜多晶矽。此外,閘極結構110包括依序堆疊在基底100上的閘介電層111及導體層112。導體層112作為邏輯元件之閘極,其材料例如是摻雜多晶矽。 The gate structure 102 can be a gate structure of a non-volatile memory element, such as a gate structure of a flash memory element, such as a tunnel oxide layer 103, a conductor layer 104, and a gate inter-layer stacked on the substrate 100. Electrical layer 105 and conductor layer 106. The material that tunnels through the oxide layer 103 is, for example, cerium oxide. The conductor layer 104 acts as a floating gate, the material of which is, for example, doped polysilicon. The inter-gate dielectric layer 105 is, for example, a composite layer of hafnium oxide, tantalum nitride, and hafnium oxide (ONO). The conductor layer 106 serves as a control gate, the material of which is, for example, doped polysilicon. In addition, the gate structure 110 includes a gate dielectric layer 111 and a conductor layer 112 which are sequentially stacked on the substrate 100. The conductor layer 112 acts as a gate for the logic element, the material of which is, for example, doped polysilicon.

形成閘極結構102與閘極結構110的方法包括以下步驟。首先,分別於晶胞區100a及周邊區100b之基底100上形成不同的堆疊材料層(未繪示)。具體言之,於基底100之晶胞區100a上依序堆疊穿隧氧化材料層、第一導體材料層、閘間介電材料層及第二導體材料層,而於基底100之周邊區100b上依序堆疊閘氧化材料層及第二導體材料層,其中晶胞區100a與周邊區100b上的第二導體材料層為同時形成之。然後,對晶胞區100a上的第二導體材料層進行離子植入製程。之後,對上述材料層進行至少一圖案化步驟,以於晶胞區100a的基底100上形成閘極結構102以及於周邊區100b的基底100上形成閘極結構110。 The method of forming the gate structure 102 and the gate structure 110 includes the following steps. First, different stacked material layers (not shown) are formed on the substrate 100 of the cell region 100a and the peripheral region 100b, respectively. Specifically, the tunneling oxide material layer, the first conductor material layer, the inter-gate dielectric material layer and the second conductor material layer are sequentially stacked on the cell region 100a of the substrate 100 on the peripheral region 100b of the substrate 100. The gate oxide material layer and the second conductor material layer are sequentially stacked, wherein the cell layer region 100a and the second conductor material layer on the peripheral region 100b are simultaneously formed. Then, the second conductor material layer on the cell region 100a is subjected to an ion implantation process. Thereafter, at least one patterning step is performed on the material layer to form a gate structure 102 on the substrate 100 of the cell region 100a and a gate structure 110 on the substrate 100 of the peripheral region 100b.

在一實施例中,閘極結構102可以更包括依序堆疊在導 體層106上的金屬矽化物層107、下罩幕層108及上罩幕層109。閘極結構110可以更包括依序堆疊在導體層112上的金屬矽化物層113、下罩幕層114及上罩幕層115。形成金屬矽化物層107與金屬矽化物層113是為了分別降低導體層106與導體層112的阻值。金屬矽化物層107與金屬矽化物層113的材料相同,例如均為矽化鎢。 In an embodiment, the gate structure 102 may further comprise a stack of leads in sequence. The metal telluride layer 107, the lower mask layer 108 and the upper mask layer 109 on the bulk layer 106. The gate structure 110 may further include a metal germanide layer 113, a lower mask layer 114, and an upper mask layer 115 which are sequentially stacked on the conductor layer 112. The metal telluride layer 107 and the metal telluride layer 113 are formed in order to lower the resistance values of the conductor layer 106 and the conductor layer 112, respectively. The metal telluride layer 107 is the same material as the metal telluride layer 113, and is, for example, tungsten telluride.

此外,形成下罩幕層108與上罩幕層109是為了拉開字元線(由導體層106及其上的金屬矽化物層107構成)與後續形成之位元線之間的最短距離。下罩幕層108與下罩幕層114的材料相同,例如均為氮化矽。上罩幕層109與上罩幕層115的材料相同,例如均為四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2)。在此實施例中,是以雙層罩幕層結構為例來說明之,但本發明並不以此為限。在其他的實施例中,也可以使用單層或大於兩層的罩幕層結構。 In addition, the lower mask layer 108 and the upper mask layer 109 are formed to pull the shortest distance between the word line (consisting of the conductor layer 106 and the metal telluride layer 107 thereon) and the subsequently formed bit line. The lower mask layer 108 is the same material as the lower mask layer 114, such as tantalum nitride. The upper mask layer 109 is made of the same material as the upper mask layer 115, and is, for example, cerium oxide (TEOS-SiO 2 ) formed of tetraethoxy siloxane. In this embodiment, the double-layer mask layer structure is taken as an example, but the invention is not limited thereto. In other embodiments, a single layer or more than two layers of the cover layer structure may also be used.

特別要說明的是,在圖1A中是以於周邊區100b上形成一個閘極結構110為例來說明之,但本發明並不以此為限。在其他的實施例中,周邊區100b上可形成多數個閘極結構110,周邊區100b可具有高壓元件區及低壓元件區(未繪示),且形成於高壓元件區及低壓元件區上的閘介電層具有不同的厚度。 In particular, in FIG. 1A, a gate structure 110 is formed on the peripheral region 100b as an example, but the invention is not limited thereto. In other embodiments, a plurality of gate structures 110 may be formed on the peripheral region 100b. The peripheral region 100b may have a high voltage component region and a low voltage component region (not shown), and are formed on the high voltage component region and the low voltage component region. The gate dielectric layers have different thicknesses.

此外,在圖1A中,晶胞區100a是以快閃記憶體的閘極結構102來說明,然而,本發明並不以此為限,晶胞區100a上的閘極結構102也可以是其他非揮發性記憶體的閘極結構,例如導 體層104可以取代為以介電層製作的電荷儲存層。 In addition, in FIG. 1A, the cell region 100a is illustrated by the gate structure 102 of the flash memory. However, the present invention is not limited thereto, and the gate structure 102 on the cell region 100a may be other. Gate structure of non-volatile memory, such as The bulk layer 104 can be replaced by a charge storage layer made of a dielectric layer.

然後,請繼續參照圖1A,於基底100上順應性地形成襯層117,以覆蓋閘極結構102及閘極結構110。襯層117的材料例如是高溫氧化物(high-temperature oxide,HTO),且其形成方法例如是進行化學氣相沈積製程。在一實施例中,於形成閘極結構102與閘極結構110的步驟之後且於形成襯層117的步驟之前,也可以進行至少一離子植入步驟,以於晶胞區100a之基底100中形成多數個淺摻雜區(未繪示),並於周邊區100b之高壓元件區之基底100中形成多數個淺摻雜區(未繪示)。 Then, referring to FIG. 1A, a liner 117 is conformally formed on the substrate 100 to cover the gate structure 102 and the gate structure 110. The material of the liner layer 117 is, for example, a high-temperature oxide (HTO), and the formation method thereof is, for example, a chemical vapor deposition process. In one embodiment, at least one ion implantation step may be performed after the step of forming the gate structure 102 and the gate structure 110 and before the step of forming the liner layer 117, in the substrate 100 of the cell region 100a. A plurality of shallow doped regions (not shown) are formed, and a plurality of shallow doped regions (not shown) are formed in the substrate 100 of the high voltage device region of the peripheral region 100b.

接著,於每一個閘極結構102及閘極結構110的側壁上形成間隙壁118。間隙壁118的材料例如是氮化矽。形成間隙壁118的方法包括於基底100上沈積間隙壁材料層(未繪示)。然後,進行非等向性蝕刻製程,以移除部分間隙壁材料層。在一實施例中(未繪示),上述移除部分間隙壁材料層的步驟也可以同時移除閘極結構之間的部分襯層117。 Next, spacers 118 are formed on the sidewalls of each of the gate structures 102 and the gate structures 110. The material of the spacers 118 is, for example, tantalum nitride. The method of forming the spacers 118 includes depositing a layer of spacer material (not shown) on the substrate 100. An anisotropic etch process is then performed to remove a portion of the spacer material layer. In an embodiment (not shown), the step of removing a portion of the spacer material layer may also remove portions of the liner 117 between the gate structures.

之後,請參照圖1A,於基底100上順應性地形成停止層116,以覆蓋閘極結構102及閘極結構110。停止層116的材料例如是四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2),且其形成方法例如是進行化學氣相沈積製程。在一實施例中,於形成間隙壁118的步驟之後以及於形成停止層116的步驟之前,也可以進行至少一離子植入步驟,於晶胞區100a之基底100中形成多數個濃摻雜區(未繪示),並於周邊區100b之低壓元件區之基底100中形 成多數個淺摻雜區(未繪示)。 Thereafter, referring to FIG. 1A, a stop layer 116 is conformally formed on the substrate 100 to cover the gate structure 102 and the gate structure 110. The material of the stop layer 116 is, for example, ruthenium dioxide (TEOS-SiO 2 ) formed of tetraethoxy siloxane, and the formation method thereof is, for example, a chemical vapor deposition process. In one embodiment, after the step of forming the spacers 118 and before the step of forming the stop layer 116, at least one ion implantation step may be performed to form a plurality of heavily doped regions in the substrate 100 of the unit cell region 100a. (not shown), and a plurality of shallow doped regions (not shown) are formed in the substrate 100 of the low voltage device region of the peripheral region 100b.

其後,請參照圖1B,可以在閘極結構110側壁上的停止層116的側壁形成間隙壁119。間隙壁119的材料例如是氮化矽,形成的方法例如是化學氣相沉積法,厚度例如是20nm至200nm。形成間隙壁119的方法包括於基底100上沈積間隙壁材料層(未繪示)。然後,進行非等向性蝕刻製程,以移除部分間隙壁材料層。之後,於基底100上形成導體層124,以覆蓋閘極結構110並至少填滿閘極結構102之間的間隙。導體層124的材料例如是多晶矽,其形成的方法例如是進行化學氣相沉積製程,厚度例如是約60奈米。之後,可以選擇性對導體層124進行平坦化製程,使導體層124具有平坦的表面。之後,在晶胞區100a上形成罩幕層125,裸露出周邊區100b上的導體層124。罩幕層125例如是光阻層。 Thereafter, referring to FIG. 1B, a spacer 119 may be formed on the sidewall of the stop layer 116 on the sidewall of the gate structure 110. The material of the spacer 119 is, for example, tantalum nitride, and the formation method is, for example, chemical vapor deposition, and the thickness is, for example, 20 nm to 200 nm. The method of forming the spacers 119 includes depositing a layer of spacer material (not shown) on the substrate 100. An anisotropic etch process is then performed to remove a portion of the spacer material layer. Thereafter, a conductor layer 124 is formed on the substrate 100 to cover the gate structure 110 and fill at least the gap between the gate structures 102. The material of the conductor layer 124 is, for example, polycrystalline germanium, which is formed by, for example, a chemical vapor deposition process having a thickness of, for example, about 60 nm. Thereafter, the conductor layer 124 can be selectively planarized so that the conductor layer 124 has a flat surface. Thereafter, a mask layer 125 is formed on the cell region 100a to expose the conductor layer 124 on the peripheral region 100b. The mask layer 125 is, for example, a photoresist layer.

請參照圖1C,以罩幕層125為蝕刻罩幕,圖案化導體層124,移除周邊區100b上的導體層124,裸露出停止層116。之後,移除罩幕層125。然後,在基底100上形成停止層120,覆蓋晶胞區100a的導體層124以及周邊區100b的第一停止層116。停止層120的材料例如是氮化矽,形成的方法例如是化學氣相沉積法,厚度例如是20nm至200nm。之後,在周邊區100b的停止層120上形成介電層122。介電層122的材料例如是旋塗式玻璃,其形成方法利如是旋塗法。介電層122的材料可以例如是氧化矽,其形成方法利如是化學氣相沉積法。之後,以晶胞區100a上的停止層120為研磨終止層,利用化學機械研磨製程對周邊區100b上的介電層 122進行平坦化製程。 Referring to FIG. 1C, the mask layer 125 is used as an etch mask to pattern the conductor layer 124, and the conductor layer 124 on the peripheral region 100b is removed to expose the stop layer 116. Thereafter, the mask layer 125 is removed. Then, a stop layer 120 is formed on the substrate 100, covering the conductor layer 124 of the cell region 100a and the first stop layer 116 of the peripheral region 100b. The material of the stop layer 120 is, for example, tantalum nitride, and the formation method is, for example, chemical vapor deposition, and the thickness is, for example, 20 nm to 200 nm. Thereafter, a dielectric layer 122 is formed on the stop layer 120 of the peripheral region 100b. The material of the dielectric layer 122 is, for example, a spin-on glass, which is formed by a spin coating method. The material of the dielectric layer 122 may be, for example, ruthenium oxide, which is formed by a chemical vapor deposition method. Thereafter, the stop layer 120 on the cell region 100a is used as a polishing stop layer, and the dielectric layer on the peripheral region 100b is processed by a chemical mechanical polishing process. 122 performs a flattening process.

之後,請參照圖1D,移除晶胞區100a上的停止層120。然後,在基底100上形成頂蓋層126,覆蓋晶胞區100a上的導體層124以及周邊區100b上的介電層122。頂蓋層126的材料例如是氮化矽,形成的方法例如是電漿增強型化學氣相沉積法,厚度可以是100nm至300nm。 Thereafter, referring to FIG. 1D, the stop layer 120 on the cell region 100a is removed. A cap layer 126 is then formed over the substrate 100 to cover the conductor layer 124 on the cell region 100a and the dielectric layer 122 on the peripheral region 100b. The material of the cap layer 126 is, for example, tantalum nitride, and the method of formation is, for example, plasma enhanced chemical vapor deposition, and the thickness may be from 100 nm to 300 nm.

之後,請參照圖1E,利用微影與蝕刻製程,以停止層116為終止層,圖案化頂蓋層126與導體層124,以在晶胞區100a形成虛擬自行對準接觸窗插塞127,並在虛擬自行對準接觸窗插塞127周圍形成開口128。之後,可以選擇性在虛擬自行對準接觸窗插塞127的側壁形成間隙壁130。間隙壁130的材料例如是氮化矽,厚度例如是5nm至20nm。形成間隙壁130的方法包括於基底100上沈積間隙壁材料層(未繪示)。然後,進行非等向性蝕刻製程,以移除部分間隙壁材料層。 Thereafter, referring to FIG. 1E, using the lithography and etching process, the stop layer 116 is used as the termination layer, and the cap layer 126 and the conductor layer 124 are patterned to form a dummy self-aligned contact window plug 127 in the cell region 100a. An opening 128 is formed around the virtual self-aligning contact window plug 127. Thereafter, the spacers 130 may be selectively formed on the sidewalls of the dummy self-aligning contact window plugs 127. The material of the spacers 130 is, for example, tantalum nitride, and the thickness is, for example, 5 nm to 20 nm. The method of forming the spacers 130 includes depositing a layer of spacer material (not shown) on the substrate 100. An anisotropic etch process is then performed to remove a portion of the spacer material layer.

之後,請參照圖1F,在基底100上形成停止層132。停止層132的材料可以採用與頂蓋層126相同的材料,例如是氮化矽,形成的方法例如是化學氣相沉積法。停止層132覆蓋頂蓋層126並填入於開口128中。請參照圖2,相鄰兩個汲極區150之間的距離為a,相鄰兩個汲極區150以及源極區160之間最大距離為c,且c>a。在本實施例中,圖1F的停止層132的厚度t1大於相鄰兩個汲極區150之間的距離a的1/2,例如是30nm至100nm。由於停止層132的厚度t1大於相鄰兩個汲極區150之間的距離a的 1/2,因此,可以填滿相鄰兩個汲極區150之間的間隙,但若是厚度未達相鄰兩個汲極區150以及源極區160之間最大距離c的1/2,相鄰兩個汲極區150以及源極區160彼此之間的間隙將無法被停止層132填滿,而留下孔隙的直徑小於c-a,即半徑小於(c-a)/2。而此孔隙可以被後續形成的硬罩幕材料層136填滿。 Thereafter, referring to FIG. 1F, a stop layer 132 is formed on the substrate 100. The material of the stop layer 132 may be the same material as the cap layer 126, such as tantalum nitride, formed by, for example, chemical vapor deposition. The stop layer 132 covers the cap layer 126 and is filled in the opening 128. Referring to FIG. 2, the distance between two adjacent drain regions 150 is a, and the maximum distance between adjacent two drain regions 150 and source regions 160 is c, and c>a. In the present embodiment, the thickness t 1 of the stop layer 132 of FIG. 1F is greater than 1/2 of the distance a between the adjacent two drain regions 150, for example, 30 nm to 100 nm. Since the thickness t 1 of the stop layer 132 is greater than 1/2 of the distance a between the adjacent two drain regions 150, the gap between the adjacent two drain regions 150 can be filled, but if the thickness is not up to Between the two adjacent drain regions 150 and the source regions 160, the gap between the two adjacent drain regions 150 and the source regions 160 will not be filled by the stop layer 132. The diameter of the remaining pores is less than ca, ie the radius is less than (ca)/2. The pores may be filled by a subsequently formed hard mask material layer 136.

此外,請參照圖1F,停止層132的表面因基底100上的結構或材料層而有高低起伏,在對應開口128之處具有多個凹陷134。在一實施例中,凹陷134的深度例如是600埃。 In addition, referring to FIG. 1F, the surface of the stop layer 132 has high and low undulations due to the structure or material layer on the substrate 100, and has a plurality of recesses 134 at the corresponding openings 128. In an embodiment, the depth of the recess 134 is, for example, 600 angstroms.

接著,請繼續參照圖1F,在基底100上形成硬罩幕材料層136。硬罩幕材料層136的材料與停止層132不同,例如是四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2),且其形成方法例如是進行化學氣相沈積製程。 Next, referring to FIG. 1F, a hard mask material layer 136 is formed on the substrate 100. The material of the hard mask material layer 136 is different from the stop layer 132, for example, cerium oxide (TEOS-SiO 2 ) formed of tetraethoxy siloxane, and is formed by, for example, performing a chemical vapor deposition process.

請參照圖2,更具體地說,硬罩幕材料層136可填滿凹陷134(圖1F),且其厚度t2大於相鄰兩個汲極區150之間的距離(a)的一半(a/2),且大於相鄰兩個汲極區150以及源極區160之間最大距離(c)減去相鄰兩個汲極區150之間的距離(a)的一半((c-a)/2),例如是100nm至200nm。在一實施例中,凹陷134的深度例如是600埃,硬罩幕材料層136的厚度例如是1000埃。停止層132的厚度t1為大於a/2,而相鄰兩個汲極區150以及源極區160彼此之間因為無法被停止層132填滿而留下的孔隙的半徑小於(c-a)/2,由於硬罩幕材料層136的厚度t2大於(c-a)/2,因此可以將半徑小於(c-a)/2的孔隙填滿。 Referring to FIG. 2, more specifically, the hard mask material layer 136 may fill the recess 134 (FIG. 1F) and have a thickness t 2 greater than half the distance (a) between the adjacent two drain regions 150 ( a/2), and greater than the maximum distance between the adjacent two drain regions 150 and the source region 160 (c) minus half the distance (a) between the adjacent two drain regions 150 ((ca) /2), for example, 100 nm to 200 nm. In one embodiment, the depth of the recess 134 is, for example, 600 angstroms, and the thickness of the hard mask material layer 136 is, for example, 1000 angstroms. The thickness t 1 of the stop layer 132 is greater than a/2, and the radius of the aperture between the adjacent two drain regions 150 and the source region 160 due to being unable to be filled by the stop layer 132 is less than (ca)/ 2. Since the thickness t 2 of the hard mask material layer 136 is larger than (ca)/2, the pores having a radius smaller than (ca)/2 may be filled.

其後,請參照圖1G,以停止層132為終止層,進行平坦化製程,移除凹陷134以外的硬罩幕材料層136,留下在凹陷134之中的硬罩幕層136a,留下的硬罩幕層136a與停止層132具有平坦的表面。平坦化製程可以採用化學機械研磨製程來實施。 Thereafter, referring to FIG. 1G, with the stop layer 132 as the termination layer, a planarization process is performed to remove the hard mask material layer 136 other than the recess 134, leaving the hard mask layer 136a in the recess 134, leaving The hard mask layer 136a and the stop layer 132 have a flat surface. The planarization process can be carried out using a chemical mechanical polishing process.

之後,請參照圖1H,移除硬罩幕層136a、部分的停止層132及虛擬自行對準接觸窗插塞127的頂蓋層126,之後再移除虛擬自行對準接觸窗插塞127的導體層124,以形成開口140。在一實施例中,硬罩幕層136a的材料與停止層132的材料不同,而頂蓋層126的材料與停止層132的材料相同,因此可以選擇對於硬罩幕層136a/停止層132具有大致相同的蝕刻率的蝕刻劑,例如是對於硬罩幕層136a:停止層132=1:1的蝕刻劑,蝕刻硬罩幕層136a以及停止層132,再以相同的蝕刻劑向下蝕刻頂蓋層126及其周圍的停止層132。在一實施例中,自停止層132的表面向下蝕刻的深度例如是1000埃左右。其後,再選擇對於停止層132/停止層116具有高蝕刻選擇比以及對於頂蓋層126/停止層116具有高蝕刻選擇比的蝕刻劑,例如對於停止層132:停止層116=100:1以及對於頂蓋層126:停止層116=100:1的蝕刻劑進行蝕刻,留下閘極結構102上方的停止層132a以及間隙壁130。接著,再改變蝕刻劑,以停止層116為終止層,往下蝕刻移除導體層124,以形成開口140,裸露出停止層116。 Thereafter, referring to FIG. 1H, the hard mask layer 136a, a portion of the stop layer 132, and the cap layer 126 of the dummy self-aligned contact window plug 127 are removed, and then the dummy self-aligned contact window plug 127 is removed. Conductor layer 124 to form opening 140. In one embodiment, the material of the hard mask layer 136a is different from the material of the stop layer 132, and the material of the cap layer 126 is the same as the material of the stop layer 132, and thus may have a choice for the hard mask layer 136a/stop layer 132. An etchant having substantially the same etch rate, for example, an etchant for the hard mask layer 136a: stop layer 132 = 1:1, etching the hard mask layer 136a and the stop layer 132, and etching the top with the same etchant The cap layer 126 and its surrounding stop layer 132. In one embodiment, the depth etched down from the surface of the stop layer 132 is, for example, about 1000 angstroms. Thereafter, an etchant having a high etch selectivity for stop layer 132/stop layer 116 and a high etch selectivity ratio for cap layer 126/stop layer 116 is selected, such as for stop layer 132: stop layer 116 = 100:1 And etching the etchant for the cap layer 126: stop layer 116 = 100:1, leaving the stop layer 132a over the gate structure 102 and the spacers 130. Next, the etchant is further changed to stop the layer 116 as a termination layer, and the conductor layer 124 is etched away to form the opening 140, exposing the stop layer 116.

之後,請參照圖1I,移除開口140裸露的停止層116及其下方的襯層117,以形成自行對準接觸窗開口142,再於自行對 準接觸窗開口142填入阻障層金屬層144與導體金屬層146,以形成自行對準接觸窗148等等製程。阻障層金屬層144的材料例如是鈦或氮化鈦,形成的方法利如是化學氣相沉積法,厚度例如是5nm至30nm。導體金屬層146的材料例如是鎢,形成的方法利如是化學氣相沉積法,厚度例如是100nm至300nm。這一些後續的步驟均為本領域具有通常知識者所熟知,於此不再贅述。 Thereafter, referring to FIG. 1I, the exposed stop layer 116 of the opening 140 and the underlying lining 117 are removed to form a self-aligned contact window opening 142, and then The quasi-contact window opening 142 fills the barrier metal layer 144 and the conductor metal layer 146 to form a self-aligned contact window 148 and the like. The material of the barrier metal layer 144 is, for example, titanium or titanium nitride, and the formation method is, for example, chemical vapor deposition, and the thickness is, for example, 5 nm to 30 nm. The material of the conductor metal layer 146 is, for example, tungsten, and the formation method is, for example, chemical vapor deposition, and the thickness is, for example, 100 nm to 300 nm. These subsequent steps are well known to those of ordinary skill in the art and will not be described again.

在上述的實施例中,請參照圖1F,在基底100上形成停止層132之後,即形成硬罩幕材料層136。然而,本發明並不以此為限。當形成停止層132之後,停止層132表面的高低起伏較大時,在形成停止層132以及硬罩幕材料層136的步驟之間還可以包括其他步驟,以減少高低起伏,避免孔隙形成。 In the above embodiment, referring to FIG. 1F, after the stop layer 132 is formed on the substrate 100, the hard mask material layer 136 is formed. However, the invention is not limited thereto. When the height of the surface of the stop layer 132 is large after the formation of the stop layer 132, other steps may be included between the steps of forming the stop layer 132 and the hard mask material layer 136 to reduce high and low undulations and avoid void formation.

圖3A至3C為根據本發明第二實施例所繪示之嵌入式記憶元件的部分製造流程的剖面示意圖。 3A to 3C are cross-sectional views showing a part of a manufacturing process of an embedded memory device according to a second embodiment of the present invention.

請參照圖3A,依照上述實施例的方法進行至形成圖1F的停止層132。為簡化圖式,在圖3A至圖3C,僅繪示出基底100的晶胞區100a的另一個方向,而未繪示出虛擬接觸窗插塞27以及圖1F的周邊區100b。基底100包括第一區10與第二區20。第一區10上兩個相鄰的閘極結構102之間的距離較小於第二區20上兩個相鄰的閘極結構102之間的距離。停止層132的厚度t1大於圖2中相鄰兩個汲極區150之間的距離(a)的一半(a/2),例如是30nm至100nm。由於在第一區10的兩個相鄰的閘極結構102之間的間隙162小於在第二區20的兩個相鄰的閘極結構102之間的 間隙164,而停止層132的厚度不足以填滿第二區20的兩個相鄰的閘極結構102之間的間隙164,因此,間隙164中所填入的停止層132的高度會低於間隙162中所填入的停止層132的高度。 Referring to FIG. 3A, the method according to the above embodiment proceeds to form the stop layer 132 of FIG. 1F. To simplify the drawing, in FIGS. 3A to 3C, only the other direction of the cell region 100a of the substrate 100 is illustrated, and the dummy contact plug 27 and the peripheral region 100b of FIG. 1F are not illustrated. The substrate 100 includes a first zone 10 and a second zone 20. The distance between two adjacent gate structures 102 on the first region 10 is less than the distance between two adjacent gate structures 102 on the second region 20. The thickness t 1 of the stop layer 132 is greater than half (a/2) of the distance (a) between adjacent two drain regions 150 in FIG. 2, for example, 30 nm to 100 nm. Since the gap 162 between the two adjacent gate structures 102 of the first region 10 is smaller than the gap 164 between the two adjacent gate structures 102 of the second region 20, the thickness of the stop layer 132 is insufficient. To fill the gap 164 between the two adjacent gate structures 102 of the second region 20, therefore, the height of the stop layer 132 filled in the gap 164 may be lower than the stop layer 132 filled in the gap 162. the height of.

之後,請參照圖3B,非等向性回蝕刻停止層132。在第二區20中,距離較遠的兩個相鄰的閘極結構102之間的間隙164底部的停止層132的厚度較薄,因而被移除,而在第二間隙164中形成兩個分離的間隙壁132b。而在第一區10中,距離較近的兩個相鄰的閘極結構102之間的間隙162中則因為停止層132的厚度較厚,因此,在非等向性回蝕刻後,形成兩個相連的間隙壁132a,而未裸露出間隙162的底部。 Thereafter, referring to FIG. 3B, the anisotropic etch back stop layer 132. In the second zone 20, the stop layer 132 at the bottom of the gap 164 between the two adjacent gate structures 102 that are further apart is thinner and thus removed, and two are formed in the second gap 164. Separate spacers 132b. In the first region 10, the gap 162 between the two adjacent gate structures 102 is closer, because the thickness of the stop layer 132 is thicker, and therefore, after the anisotropic etchback, two are formed. The associated spacers 132a are not exposed to the bottom of the gap 162.

其後請參照圖3C,在基底100上形成停止層133,覆蓋在閘極結構102上方的停止層116上以及間隙壁132a以及間隙壁132b上,並填滿間隙162以及164。停止層133的材料可與停止層132的材料相同或相異。在本實施例中,停止層133的材料與停止層132的材料可以同為氮化矽,形成的方法例如是化學氣相沉積法。停止層133的厚度大於圖2中相鄰兩個汲極區150以及源極區160之間最大距離c減去相鄰兩個汲極區150之間的距離a的一半((c-a)/2),例如是30nm至100nm。停止層133可以填滿間隙162以及164,避免孔隙形成,而且可以減少基底100表面上的高低落差。 3C, a stop layer 133 is formed on the substrate 100, overlying the stop layer 116 above the gate structure 102, as well as the spacers 132a and the spacers 132b, and filling the gaps 162 and 164. The material of the stop layer 133 may be the same as or different from the material of the stop layer 132. In the present embodiment, the material of the stop layer 133 and the material of the stop layer 132 may be the same as tantalum nitride, and the formation method is, for example, chemical vapor deposition. The thickness of the stop layer 133 is greater than the maximum distance c between the adjacent two drain regions 150 and the source region 160 in FIG. 2 minus half the distance a between the adjacent two drain regions 150 ((ca)/2 ), for example, 30 nm to 100 nm. The stop layer 133 can fill the gaps 162 and 164, avoiding the formation of voids, and can reduce the height difference on the surface of the substrate 100.

後續的步驟如圖1F形成硬罩幕材料層136之步驟,再接著依照圖1G至1I之步驟完成嵌入式記憶體的製作。 Subsequent steps are as shown in FIG. 1F to form a hard mask material layer 136, and then the fabrication of the embedded memory is completed in accordance with the steps of FIGS. 1G through 1I.

圖4為習知一種嵌入式記憶元件的掃描式電子顯微鏡的影像。圖5為本發明第二實施例之嵌入式記憶元件的掃描式電子顯微鏡的影像。 4 is an image of a scanning electron microscope of a conventional embedded memory device. Figure 5 is an image of a scanning electron microscope of an embedded memory device in accordance with a second embodiment of the present invention.

請參照圖4,習知的嵌入式記憶元件在相鄰兩個汲極區以及源極區之間最大距離處,因為無法填滿介電層,而導致介電層的表面形成孔隙166,導致後續形成來做為金屬插塞的金屬層可能填入於這一些孔隙中,導致位元線與字元線電性短路的問題。 Referring to FIG. 4, the conventional embedded memory device has a maximum distance between two adjacent drain regions and source regions. Because the dielectric layer cannot be filled, the surface of the dielectric layer forms voids 166, resulting in Subsequent formation of a metal layer as a metal plug may be filled in these pores, causing a problem of electrical short between the bit line and the word line.

請參照圖5,依照本發明上述第二實施例的嵌入式記憶元件在相鄰兩個汲極區以及源極區之間最大距離處,因為利用重覆沉積以及回蝕刻的方式,閘極結構之間的間隙因為形成間隙壁以及停止層而被填滿,因此不會有孔隙形成所衍生的問題。 Referring to FIG. 5, the embedded memory device according to the second embodiment of the present invention has a maximum distance between two adjacent drain regions and source regions, because the gate structure is formed by means of repeated deposition and etch back. The gap between them is filled because the gaps are formed and the stop layer is formed, so there is no problem derived from the formation of pores.

依照本發明實施例所述,本發明可以避免在相鄰兩個汲極區以及源極區之間最大距離處形成孔隙,避免後續的金屬填入孔隙之中,而造成位元線與字元線短路的問題。 According to the embodiment of the invention, the invention can avoid forming pores at the maximum distance between two adjacent drain regions and source regions, thereby avoiding subsequent metal filling into the pores, thereby causing bit lines and characters. The problem of short circuit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧第一區 10‧‧‧First District

20‧‧‧第二區 20‧‧‧Second District

100‧‧‧基底 100‧‧‧Base

102‧‧‧閘極結構 102‧‧‧ gate structure

116‧‧‧停止層 116‧‧‧stop layer

117‧‧‧襯層 117‧‧‧ lining

118、132a、132b‧‧‧間隙壁 118, 132a, 132b‧‧‧ spacers

133‧‧‧停止層 133‧‧‧stop layer

162、164‧‧‧間隙 162, 164‧ ‧ gap

Claims (16)

一種嵌入式記憶元件的製造方法,包括:提供一基底,該基底包括一晶胞區與一周邊區;在該基底的該晶胞區上形成多數個第一閘極結構;在該基底的周邊區上形成一第二閘極結構;在該周邊區的該基底上形成一介電層;在該晶胞區形成多數個虛擬自行對準接觸窗插塞,並在該些虛擬自行對準接觸窗周圍形成多數個開口;於該基底上形成一第一停止層,該第一停止層填入於該些開口中,其中在對應該些開口的該第一停止層的表面上具有多數個凹陷;於各該凹陷中分別形成一硬罩幕層;移除該些硬罩幕層以及部分該第一停止層;移除該些虛擬自行對準接觸窗插塞,以形成多數個自行對準接觸窗開口;以及於該些自行對準接觸窗開口中形成多數個自行對準接觸窗。 A method of fabricating an embedded memory device, comprising: providing a substrate comprising a cell region and a peripheral region; forming a plurality of first gate structures on the cell region of the substrate; in a peripheral region of the substrate Forming a second gate structure; forming a dielectric layer on the substrate of the peripheral region; forming a plurality of dummy self-aligned contact window plugs in the cell region, and in the dummy self-aligning contact windows Forming a plurality of openings around the substrate; forming a first stop layer on the substrate, the first stop layer filling in the openings, wherein a plurality of recesses are formed on a surface of the first stop layer corresponding to the openings; Forming a hard mask layer in each of the recesses; removing the hard mask layer and a portion of the first stop layer; removing the dummy self-aligning contact window plugs to form a plurality of self-aligned contacts a window opening; and a plurality of self-aligning contact windows are formed in the self-aligning contact window openings. 如申請專利範圍第1項所述之嵌入式記憶元件的製造方法,其中於該些凹陷中形成該些硬罩幕層的方法包括:於該基底上形成一硬罩幕材料層;以及以該第一停止層為終止層,進行平坦化製程,移除該些凹陷以外的該硬罩幕材料層,留下該些凹陷中的該些硬罩幕層。 The method of manufacturing the embedded memory device of claim 1, wherein the forming the hard mask layer in the recesses comprises: forming a hard mask material layer on the substrate; The first stop layer is a termination layer, and a planarization process is performed to remove the hard mask material layer other than the recesses, leaving the hard mask layers in the recesses. 如申請專利範圍第1項所述之嵌入式記憶元件的製造方 法,其中該第一停止層的材料與該硬罩幕層的材料不同。 The manufacturer of the embedded memory device as described in claim 1 of the patent application scope The method wherein the material of the first stop layer is different from the material of the hard mask layer. 如申請專利範圍第2項所述之嵌入式記憶元件的製造方法,其中在移除該些硬罩幕層以及部分該第一停止層時,使用對於該些硬罩幕層:該第一停止層的蝕刻選擇比為1:1的蝕刻劑。 The method of manufacturing the embedded memory device of claim 2, wherein when the hard mask layer and a portion of the first stop layer are removed, the hard mask layer is used: the first stop The etch of the layer selects an etchant with a ratio of 1:1. 如申請專利範圍第4項所述之嵌入式記憶元件的製造方法,其中該些虛擬自行對準接觸窗分別包括一頂蓋層,該頂蓋層的材料與該第一停止層的材料相同,且更包括在移除該些硬罩幕層以及部分該第一停止層後,更包括移除該頂蓋層與另一部分之該第一停止層。 The manufacturing method of the embedded memory device of claim 4, wherein the virtual self-aligning contact windows respectively comprise a top cover layer, the material of the top cover layer being the same as the material of the first stop layer, And further comprising, after removing the hard mask layer and a portion of the first stop layer, further comprising removing the first stop layer of the cap layer and another portion. 如申請專利範圍第5項所述之嵌入式記憶元件的製造方法,更包括在形成虛擬自行對準接觸窗插塞以及該介電層之前,在該基底上形成一第二停止層,且在移除虛擬自行對準接觸窗插塞之後,更包括移除該第二停止層,以形成該些自行對準接觸窗開口。 The method of fabricating an embedded memory device according to claim 5, further comprising forming a second stop layer on the substrate before forming the dummy self-aligned contact window plug and the dielectric layer, and After removing the dummy self-aligning contact window plug, the second stop layer is further removed to form the self-aligning contact window openings. 如申請專利範圍第6項所述之嵌入式記憶元件的製造方法,其中在移除該頂蓋層與該另一部分之該第一停止層時,使用對於該頂蓋層:該第二停止層的蝕刻選擇比為100:1的蝕刻劑。 The method of manufacturing an embedded memory device according to claim 6, wherein when the top cover layer and the first stop layer of the other portion are removed, the top cover layer is used: the second stop layer The etch selectivity ratio is 100:1 etchant. 如申請專利範圍第1項所述之嵌入式記憶元件的製造方法,更包括在該些虛擬自行對準接觸窗插塞的側壁分別形成一間隙壁。 The method for manufacturing an embedded memory device according to claim 1, further comprising forming a spacer on each side wall of the dummy self-aligning contact window plug. 如申請專利範圍第8項所述之嵌入式記憶元件的製造方法,其中該些間隙壁的材料與該第一停止層的材料相同。 The method of manufacturing an embedded memory device according to claim 8, wherein the material of the spacers is the same as the material of the first stop layer. 如申請專利範圍第1項所述之嵌入式記憶元件的製造方法,其中t1>a/2,t1為該第一停止層的厚度;a為相鄰兩個汲極區之間的距離。 The method of manufacturing an embedded memory device according to claim 1, wherein t 1 > a/2, t 1 is a thickness of the first stop layer; a is a distance between adjacent two drain regions . 如申請專利範圍第1項所述之嵌入式記憶元件的製造方法,其中該晶胞區包括一第一區與一第二區,該第一區上的該些第一閘極結構之間具有一第一間隙,該第二區上的該些第一閘極結構之間具有一第二間隙,該第一間隙小於該第二間隙,在該第二間隙中的該第一停止層的高度低於該第一間隙中的該第一停止層的高度,在形成該第一停止層之後以及於各該凹陷中分別形成該些硬罩幕層之前,更包括:非等向性蝕刻該第一停止層,在該第一間隙中形成相連的第一間隙壁,並在該第二間隙之中形成彼此分離的第二間隙壁;以及在該第一區與該第二區上形成一第二停止層,填滿該第一間隙與第二間隙。 The method of fabricating an embedded memory device according to claim 1, wherein the cell region includes a first region and a second region, and the first gate structures on the first region have a first gap, a second gap between the first gate structures on the second region, the first gap being smaller than the second gap, the height of the first stop layer in the second gap Lower than the height of the first stop layer in the first gap, after forming the first stop layer and before forming the hard mask layers in each of the recesses, further comprising: anisotropic etching a stop layer, forming a first gap in the first gap, and forming a second spacer separated from each other in the second gap; and forming a first layer on the first region and the second region The second stop layer fills the first gap and the second gap. 如申請專利範圍第11項所述之嵌入式記憶元件的製造方法,其中該第二停止層與該第一停止層的材料相同。 The method of manufacturing an embedded memory device according to claim 11, wherein the second stop layer is the same material as the first stop layer. 如申請專利範圍第11項所述之嵌入式記憶元件的製造方法,其中t1>a/2且t2>(c-a)/2,其中,t1為該第一停止層的厚度;t2為該第二停止層的厚度; a為相鄰兩個汲極區之間的距離;以及c為該相鄰兩個汲極區與一源極區之間的最大距離。 The method of manufacturing an embedded memory device according to claim 11, wherein t 1 > a/2 and t 2 > (ca)/2, wherein t 1 is the thickness of the first stop layer; t 2 The thickness of the second stop layer; a is the distance between two adjacent drain regions; and c is the maximum distance between the adjacent two drain regions and one source region. 一種嵌入式記憶元件的製造方法,包括:提供一基底,該基底包括一晶胞區,且該晶胞區包括一第一區與一第二區;在該基底上形成多數個第一閘極結構,該第一區上的該些第一閘極結構之間具有一第一間隙,該第二區上的該些第一閘極結構之間具有一第二間隙,該第一間隙小於該第二間隙;在該第一區與該第二區上形成多數個虛擬自行對準接觸窗插塞,並在該些虛擬自行對準接觸窗周圍形成多數個開口;於該基底上形成一第一停止層,該第一停止層填入於該些開口中,其中在對應該些開口的該第一停止層的表面上具有多數個凹陷,其中在該第二間隙中的該第一停止層的高度低於該第一間隙中的該第一停止層的高度;非等向性蝕刻該第一停止層,在該第一間隙中形成相連的第一間隙壁,並在該第二間隙之中形成彼此分離的第二間隙壁;以及在該第一區與該第二區上形成一第二停止層,填滿該第一間隙與該第二間隙。 A method of fabricating an embedded memory device, comprising: providing a substrate, the substrate comprising a cell region, and the cell region includes a first region and a second region; forming a plurality of first gates on the substrate a first gap between the first gate structures on the first region, and a second gap between the first gate structures on the second region, the first gap being smaller than the first gap a second gap; forming a plurality of dummy self-aligning contact window plugs on the first area and the second area, and forming a plurality of openings around the virtual self-aligning contact windows; forming a first a stop layer, the first stop layer being filled in the openings, wherein a plurality of recesses are formed on a surface of the first stop layer corresponding to the openings, wherein the first stop layer in the second gap a height lower than a height of the first stop layer in the first gap; anisotropic etching of the first stop layer, forming a first gap in the first gap, and in the second gap Forming a second spacer separated from each other; and in the Region is formed on the second region and a second stop layer, fills the first gap and the second gap. 如申請專利範圍第14項所述之嵌入式記憶元件的製造方法,其中該第二停止層與該第一停止層的材質相同。 The method of manufacturing an embedded memory device according to claim 14, wherein the second stop layer is made of the same material as the first stop layer. 如申請專利範圍第14項所述之嵌入式記憶元件的製造方 法,其中t1>a/2;且t2>(c-a)/2,其中t1為該第一停止層的厚度;t2為該第二停止層的厚度;a為相鄰兩個汲極區之間的距離;以及c為該相鄰兩個汲極區與一源極區之間的最大距離。 The method of manufacturing an embedded memory device according to claim 14, wherein t 1 >a/2; and t 2 > (ca) / 2, wherein t 1 is the thickness of the first stop layer; t 2 The thickness of the second stop layer; a is the distance between two adjacent drain regions; and c is the maximum distance between the adjacent two drain regions and one source region.
TW102125576A 2013-07-17 2013-07-17 Method of fabricating embedded memory device TWI548036B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102125576A TWI548036B (en) 2013-07-17 2013-07-17 Method of fabricating embedded memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102125576A TWI548036B (en) 2013-07-17 2013-07-17 Method of fabricating embedded memory device

Publications (2)

Publication Number Publication Date
TW201505128A TW201505128A (en) 2015-02-01
TWI548036B true TWI548036B (en) 2016-09-01

Family

ID=53018998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102125576A TWI548036B (en) 2013-07-17 2013-07-17 Method of fabricating embedded memory device

Country Status (1)

Country Link
TW (1) TWI548036B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765643B (en) * 2021-04-06 2022-05-21 華邦電子股份有限公司 Memory device and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572075B (en) * 2015-06-15 2017-02-21 旺宏電子股份有限公司 Memory device and method for fabricating the same
US9530784B1 (en) 2015-06-18 2016-12-27 Macronix International Co., Ltd. Memory device and method for fabricating the same
TWI721546B (en) 2019-08-30 2021-03-11 華邦電子股份有限公司 Memory device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148586A (en) * 1994-11-21 1996-06-07 Toshiba Corp Manufacture of semiconductor device
JPH1187653A (en) * 1997-09-09 1999-03-30 Fujitsu Ltd Semiconductor device and its manufacture
JP2000311992A (en) * 1999-04-26 2000-11-07 Toshiba Corp Nonvolatile semiconductor memory device and manufacture thereof
US6145069A (en) * 1999-01-29 2000-11-07 Interactive Silicon, Inc. Parallel decompression and compression system and method for improving storage density and access speed for non-volatile memory and embedded memory devices
JP2003297950A (en) * 2002-03-29 2003-10-17 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2004006433A (en) * 2002-03-15 2004-01-08 Toshiba Corp Semiconductor memory device and its manufacturing method
US20050088889A1 (en) * 2003-10-28 2005-04-28 Chang-Hyun Lee Non-volatile memory devices having a multi-layered charge storage layer and methods of forming the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148586A (en) * 1994-11-21 1996-06-07 Toshiba Corp Manufacture of semiconductor device
JPH1187653A (en) * 1997-09-09 1999-03-30 Fujitsu Ltd Semiconductor device and its manufacture
US6145069A (en) * 1999-01-29 2000-11-07 Interactive Silicon, Inc. Parallel decompression and compression system and method for improving storage density and access speed for non-volatile memory and embedded memory devices
JP2000311992A (en) * 1999-04-26 2000-11-07 Toshiba Corp Nonvolatile semiconductor memory device and manufacture thereof
JP2004006433A (en) * 2002-03-15 2004-01-08 Toshiba Corp Semiconductor memory device and its manufacturing method
JP2003297950A (en) * 2002-03-29 2003-10-17 Fujitsu Ltd Semiconductor device and its manufacturing method
US20050088889A1 (en) * 2003-10-28 2005-04-28 Chang-Hyun Lee Non-volatile memory devices having a multi-layered charge storage layer and methods of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765643B (en) * 2021-04-06 2022-05-21 華邦電子股份有限公司 Memory device and method of manufacturing the same
US11631685B2 (en) 2021-04-06 2023-04-18 Winbond Electronics Corp. Memory device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201505128A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
US9595535B1 (en) Integration of word line switches with word line contact via structures
US9728499B2 (en) Set of stepped surfaces formation for a multilevel interconnect structure
US9502429B2 (en) Set of stepped surfaces formation for a multilevel interconnect structure
US8878272B2 (en) Semiconductor device having stacked storage nodes of capacitors in cell region separated from peripheral region
KR100414507B1 (en) A semiconductor device and a manufacturing method of the same
TW201546961A (en) Method of forming self-aligned contacts using a replacement metal gate process in a semiconductor device
US20070235798A1 (en) Method for forming self-aligned contacts and local interconnects simultaneously
TWI548036B (en) Method of fabricating embedded memory device
CN110718501B (en) Gap filling method and method for manufacturing semiconductor device using the same
TWI543304B (en) Embedded memory device and method of fabricating the same
TWI685085B (en) Memory device and method of manufacturing the same
KR20110024494A (en) Method for manufacturing semiconductor device using dual storage node contact hole
US8823107B2 (en) Method for protecting the gate of a transistor and corresponding integrated circuit
CN108831890B (en) Preparation method of three-dimensional memory
TWI538107B (en) Flash memory and method of fabricating the same
CN104425385B (en) The manufacture method of embedded memory element
TWI469269B (en) Method of forming word line of embedded flash memory
CN104795396B (en) Flash memory and its manufacturing method
CN106992178B (en) Memory element and manufacturing method thereof
TWI588973B (en) Memory device and method of manufacturing the same
US11482448B2 (en) Planarization method of a capping insulating layer, a method of forming a semiconductor device using the same, and a semiconductor device formed thereby
TWI569415B (en) Semiconductor structure and method for manufacturing the same
TW201519367A (en) Method for fabricating a memory
CN111696989B (en) Memory element and method for manufacturing the same
KR20120127026A (en) Method for fabricating semiconductor device