TWI588973B - Memory device and method of manufacturing the same - Google Patents

Memory device and method of manufacturing the same Download PDF

Info

Publication number
TWI588973B
TWI588973B TW105100168A TW105100168A TWI588973B TW I588973 B TWI588973 B TW I588973B TW 105100168 A TW105100168 A TW 105100168A TW 105100168 A TW105100168 A TW 105100168A TW I588973 B TWI588973 B TW I588973B
Authority
TW
Taiwan
Prior art keywords
layer
conductor
forming
structures
top surface
Prior art date
Application number
TW105100168A
Other languages
Chinese (zh)
Other versions
TW201725699A (en
Inventor
莊哲輔
廖修漢
蔡耀庭
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105100168A priority Critical patent/TWI588973B/en
Application granted granted Critical
Publication of TWI588973B publication Critical patent/TWI588973B/en
Publication of TW201725699A publication Critical patent/TW201725699A/en

Links

Description

記憶元件及其製造方法Memory element and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a memory device and a method of fabricating the same.

隨著科技日新月異,提高記憶元件的積集度且縮小關鍵尺寸已然逐漸成為一種趨勢。在此趨勢下,記憶元件常遭遇字元線漏電(WL leakage)、位元線短路(BL short)以及高溫資料保持(high-temperature data retention,HTDR)不佳的問題。With the rapid development of technology, it has become a trend to increase the accumulation of memory components and reduce the critical size. Under this trend, memory components often suffer from problems of WL leakage, BL short, and high-temperature data retention (HTDR).

舉例來說,如圖1所示,在字元線12之間形成源極結構34時,由於源極結構34的頂部關鍵尺寸大於其底部關鍵尺寸,其導致源極結構34的側壁容易形成尖角10。所述尖角10的尖端往字元線12方向突出,其容易產生漏電流,進而導致字元線漏電問題產生。另外,位元線之間的介電層上的鈦金屬殘留或金屬氧化物顆粒也容易導致位元線短路的問題。For example, as shown in FIG. 1, when the source structure 34 is formed between the word lines 12, since the top critical dimension of the source structure 34 is larger than its bottom critical dimension, it causes the sidewalls of the source structure 34 to be easily formed. Corner 10. The tip end of the sharp corner 10 protrudes toward the word line 12, which is prone to leakage current, which causes a word line leakage problem. In addition, titanium metal residues or metal oxide particles on the dielectric layer between the bit lines are also liable to cause a short circuit of the bit lines.

本發明提供一種具有凹陷結構的記憶元件及其製造方法,其可解決字元線漏電、位元線短路以及高溫資料保持不佳的問題。The invention provides a memory element having a concave structure and a manufacturing method thereof, which can solve the problem that the word line leakage, the bit line short circuit and the high temperature data are not maintained well.

本發明提供一種具有凹陷結構的記憶元件及其製造方法,其可減少製程成本並提升產品良率。The present invention provides a memory element having a recessed structure and a method of manufacturing the same, which can reduce process cost and improve product yield.

本發明提供一種記憶元件包括:基底、至少兩個堆疊結構、導體結構以及凹陷結構。堆疊結構位於基底上。導體結構位於堆疊結構之間。凹陷結構位於導體結構上。凹陷結構的底面至少低於堆疊結構的頂面。The present invention provides a memory element comprising: a substrate, at least two stacked structures, a conductor structure, and a recessed structure. The stacked structure is on the substrate. The conductor structure is located between the stacked structures. The recessed structure is located on the conductor structure. The bottom surface of the recessed structure is at least lower than the top surface of the stacked structure.

在本發明的一實施例中,所述凹陷結構的頂面至底面的厚度介於80 nm至120 nm之間。In an embodiment of the invention, the thickness of the top surface to the bottom surface of the recess structure is between 80 nm and 120 nm.

在本發明的一實施例中,所述記憶元件,更包括:兩個頂蓋層以及間隙壁。頂蓋層分別位於堆疊結構上。間隙壁位於堆疊結構與導體結構之間。。In an embodiment of the invention, the memory component further includes: two cap layers and a spacer. The top cover layers are respectively located on the stacked structure. The spacer is located between the stacked structure and the conductor structure. .

在本發明的一實施例中,所述凹陷結構的頂面與頂蓋層的頂面為共平面。In an embodiment of the invention, the top surface of the recessed structure and the top surface of the cap layer are coplanar.

在本發明的一實施例中,所述凹陷結構至少暴露出間隙壁的表面。In an embodiment of the invention, the recessed structure exposes at least a surface of the spacer.

在本發明的一實施例中,各所述頂蓋層的厚度介於30 nm至70 nm之間。In an embodiment of the invention, each of the cap layers has a thickness between 30 nm and 70 nm.

在本發明的一實施例中,各所述堆疊結構依序包括穿隧介電層、浮置閘極、閘間介電層、控制閘極以及介電層。In an embodiment of the invention, each of the stacked structures includes a tunneling dielectric layer, a floating gate, an inter-gate dielectric layer, a control gate, and a dielectric layer.

在本發明的一實施例中,凹陷結構的底面高於控制閘極的頂面。In an embodiment of the invention, the bottom surface of the recessed structure is higher than the top surface of the control gate.

在本發明的一實施例中,所述凹陷結構的形狀為半圓形、矩形或其組合。In an embodiment of the invention, the shape of the recessed structure is semicircular, rectangular or a combination thereof.

在本發明的一實施例中,所述凹陷結構包括單層結構、兩層結構或多層結構。In an embodiment of the invention, the recessed structure comprises a single layer structure, a two layer structure or a multilayer structure.

在本發明的一實施例中,所述凹陷結構的材料包括氮化矽、氧化矽或其組合。In an embodiment of the invention, the material of the recess structure comprises tantalum nitride, tantalum oxide or a combination thereof.

在本發明的一實施例中,所述導體結構為源極結構。In an embodiment of the invention, the conductor structure is a source structure.

在本發明的一實施例中,所述記憶元件更包括金屬內連線位於凹陷結構上。In an embodiment of the invention, the memory element further includes a metal interconnect on the recessed structure.

本發明提供一種記憶元件的製造方法,其步驟如下。於基底上形成至少兩個堆疊結構。於堆疊結構上分別形成兩個頂蓋層。於堆疊結構之間形成導體結構。於堆疊結構與導體結構之間形成間隙壁。於導體結構上形成凹陷結構。凹陷結構的底面至少低於堆疊結構的頂面。The present invention provides a method of manufacturing a memory element, the steps of which are as follows. At least two stacked structures are formed on the substrate. Two cap layers are respectively formed on the stack structure. A conductor structure is formed between the stacked structures. A spacer is formed between the stacked structure and the conductor structure. A recessed structure is formed on the conductor structure. The bottom surface of the recessed structure is at least lower than the top surface of the stacked structure.

在本發明的一實施例中,形成所述導體結構的步驟如下。於基底上形成導體材料層。導體材料層填入堆疊結構之間的空間且覆蓋頂蓋層的表面。進行平坦化製程,以移除部分導體材料層與部分頂蓋層。In an embodiment of the invention, the step of forming the conductor structure is as follows. A layer of conductive material is formed on the substrate. A layer of conductive material fills the space between the stacked structures and covers the surface of the cap layer. A planarization process is performed to remove a portion of the layer of conductor material and a portion of the cap layer.

在本發明的一實施例中,所述平坦化製程包括化學機械研磨(CMP)製程、回蝕刻製程或其組合。In an embodiment of the invention, the planarization process includes a chemical mechanical polishing (CMP) process, an etch back process, or a combination thereof.

在本發明的一實施例中,形成所述凹陷結構的步驟如下。於基底上形成圖案化罩幕層。圖案化罩幕層具有開口。開口至少暴露導體結構的頂面。進行蝕刻製程,移除部分導體結構與部分頂蓋層,以形成凹陷開口。凹陷開口至少暴露出間隙壁的表面。形成至少一介電材料層並填入凹陷開口中。In an embodiment of the invention, the step of forming the recessed structure is as follows. A patterned mask layer is formed on the substrate. The patterned mask layer has an opening. The opening exposes at least the top surface of the conductor structure. An etching process is performed to remove a portion of the conductor structure and a portion of the cap layer to form a recessed opening. The recessed opening exposes at least the surface of the spacer. At least one layer of dielectric material is formed and filled into the recessed opening.

本發明另提供一種記憶元件的製造方法,其步驟如下。於基底上形成多個導體結構。於導體結構之間形成多個介電層。於導體結構與介電層上形成金屬層。於金屬層上形成圖案化罩幕層。圖案化罩幕層具有多個開口。開口分別對應介電層的頂面。以圖案化罩幕層為幕層,移除部分介電層,使得介電層的頂面低於導體結構的頂面。The present invention further provides a method of manufacturing a memory element, the steps of which are as follows. A plurality of conductor structures are formed on the substrate. A plurality of dielectric layers are formed between the conductor structures. A metal layer is formed on the conductor structure and the dielectric layer. A patterned mask layer is formed on the metal layer. The patterned mask layer has a plurality of openings. The openings respectively correspond to the top surface of the dielectric layer. With the patterned mask layer as the curtain layer, a portion of the dielectric layer is removed such that the top surface of the dielectric layer is lower than the top surface of the conductor structure.

在本發明的一實施例中,所述介電層的頂面與導體結構的頂面之間的距離介於10 nm至40 nm之間。In an embodiment of the invention, the distance between the top surface of the dielectric layer and the top surface of the conductor structure is between 10 nm and 40 nm.

在本發明的一實施例中,所述導體結構為位元線。In an embodiment of the invention, the conductor structure is a bit line.

基於上述,本發明藉由源極結構上的凹陷結構,其可移除先前技術中的尖角,以解決字元線漏電問題。另外,在本發明中,源極結構上的凹陷結構與字元線上的頂蓋層可增加高溫資料保持(HTDR)能力,並進而提升良率。此外,本發明移除先前技術中的接觸窗的製程步驟,其不僅可解決位元線之間的介電層上的鈦金屬殘留所導致位元線短路的問題,還可減少製程成本。Based on the above, the present invention solves the problem of word line leakage by the recessed structure on the source structure, which can remove the sharp corners of the prior art. In addition, in the present invention, the recess structure on the source structure and the cap layer on the word line can increase the high temperature data retention (HTDR) capability and thereby increase the yield. In addition, the present invention removes the process steps of the prior art contact window, which not only solves the problem of short-circuiting of the bit line caused by the residual titanium metal on the dielectric layer between the bit lines, but also reduces the process cost.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not be repeated.

圖2A至圖2J是依照本發明第一實施例的記憶元件之製造流程的剖面示意圖。2A through 2J are schematic cross-sectional views showing a manufacturing process of a memory element in accordance with a first embodiment of the present invention.

請參照圖2A,本發明之第一實施例提供一種記憶元件的製造方法,其步驟如下。首先,提供基底100。在本實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(SOI)。Referring to FIG. 2A, a first embodiment of the present invention provides a method of fabricating a memory device, the steps of which are as follows. First, a substrate 100 is provided. In the present embodiment, the substrate 100 may be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (SOI) on the insulating layer.

接著,於基底100上形成多個堆疊結構102。詳細地說,堆疊結構102由穿隧介電層104、浮置閘極106、閘間介電層108、第一控制閘極110、第二控制閘極112以及介電層114、116依序堆疊而成。在本實施例中,穿隧介電層104的材料可例如是氧化矽,其形成方法可以是化學氣相沉積法、熱氧化法等。浮置閘極106的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以是化學氣相沈積法。閘間介電層108可例如是由氧化層/氮化層/氧化層(Oxide/Nitride/Oxide, ONO)所構成的複合層,此複合層可為三層或更多層,本發明並不限於此,其形成方法可例如是化學氣相沈積法。第一控制閘極110的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以是化學氣相沈積法。第二控制閘極112的材料可例如是金屬矽化物,所述金屬矽化物可例如是矽化鎢(WSi x),其形成方法可以是化學氣相沈積法。介電層114、116可例如是單層結構、雙層結構或多層結構。在本實施例中,介電層114的材料可例如是氮化矽;介電層116的材料可例如是氧化矽、四乙氧基矽烷(TEOS)氧化物或其組合。介電層114、116的形成方法可以是化學氣相沈積法。 Next, a plurality of stacked structures 102 are formed on the substrate 100. In detail, the stacked structure 102 is sequentially formed by the tunneling dielectric layer 104, the floating gate 106, the inter-gate dielectric layer 108, the first control gate 110, the second control gate 112, and the dielectric layers 114, 116. Stacked. In the present embodiment, the material of the tunneling dielectric layer 104 may be, for example, cerium oxide, and the forming method may be a chemical vapor deposition method, a thermal oxidation method, or the like. The material of the floating gate 106 may be, for example, a doped polysilicon, an undoped polysilicon or a combination thereof, which may be formed by chemical vapor deposition. The inter-gate dielectric layer 108 can be, for example, a composite layer composed of an oxide layer/nitride layer/oxide layer (Oxide/Nitride/Oxide, ONO), and the composite layer can be three or more layers, and the present invention does not To be limited thereto, the formation method thereof may be, for example, a chemical vapor deposition method. The material of the first control gate 110 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method may be chemical vapor deposition. A second control gate material 112 may be, for example, a metal silicide, the metal silicide may be, for example, tungsten silicide (WSi x), which may be a method of forming a chemical vapor deposition method. The dielectric layers 114, 116 can be, for example, a single layer structure, a two layer structure, or a multilayer structure. In this embodiment, the material of the dielectric layer 114 may be, for example, tantalum nitride; the material of the dielectric layer 116 may be, for example, ruthenium oxide, tetraethoxy decane (TEOS) oxide, or a combination thereof. The method of forming the dielectric layers 114, 116 may be a chemical vapor deposition method.

之後,在堆疊結構102的兩側形成間隙壁118。詳細地說,間隙壁118可例如是單層結構、雙層結構或多層結構。在本實施例中,間隙壁118可例如是三層結構,從堆疊結構102的內側往外延伸可依序為氧化層120、氮化層122以及氧化層124。氧化層120的材料可例如是高溫氧化物(HTO);氮化層122的材料可例如是氮化矽;氧化層124的材料可例如是四乙氧基矽烷(TEOS)氧化物。氧化層120、氮化層122以及氧化層124的形成方法為本領域具有通常知識者所習知,於此便不再詳述。Thereafter, spacers 118 are formed on both sides of the stacked structure 102. In detail, the spacers 118 may be, for example, a single layer structure, a two layer structure, or a multilayer structure. In the present embodiment, the spacers 118 may be, for example, a three-layer structure, and the oxide layer 120, the nitride layer 122, and the oxide layer 124 may be sequentially extended from the inner side of the stacked structure 102. The material of the oxide layer 120 may be, for example, a high temperature oxide (HTO); the material of the nitride layer 122 may be, for example, tantalum nitride; the material of the oxide layer 124 may be, for example, a tetraethoxy decane (TEOS) oxide. Methods of forming oxide layer 120, nitride layer 122, and oxide layer 124 are well known to those of ordinary skill in the art and will not be described in detail herein.

然後,在堆疊結構102上分別形成頂蓋層126。頂蓋層126的材料可例如是氮化矽、氧化物或其組合,其形成方法可以是化學氣相沈積法。Then, a cap layer 126 is formed on the stacked structure 102, respectively. The material of the cap layer 126 may be, for example, tantalum nitride, an oxide, or a combination thereof, which may be formed by chemical vapor deposition.

接著,在堆疊結構102與頂蓋層126上共形形成阻障層128。阻障層128的材料可例如是鈦(Ti)、氮化鈦(TiN)或其組合,其形成方法可以是化學氣相沈積法、物理氣相沈積法或原子層沈積法(ALD)。Next, a barrier layer 128 is conformally formed on the stacked structure 102 and the cap layer 126. The material of the barrier layer 128 may be, for example, titanium (Ti), titanium nitride (TiN), or a combination thereof, which may be formed by chemical vapor deposition, physical vapor deposition, or atomic layer deposition (ALD).

之後,於基底100上形成導體材料層130。導體材料層130填入堆疊結構102之間的空間且覆蓋堆疊結構102與頂蓋層126的表面。導體材料層130的材料可例如是鎢(W),其形成方法可以是物理氣相沈積法。Thereafter, a conductive material layer 130 is formed on the substrate 100. The layer of conductive material 130 fills the space between the stacked structures 102 and covers the surfaces of the stacked structures 102 and the cap layer 126. The material of the conductor material layer 130 may be, for example, tungsten (W), which may be formed by physical vapor deposition.

請參照圖2A與圖2B,進行平坦化製程,移除部分導體材料層130、部分阻障層128以及部分頂蓋層126,以於堆疊結構102之間分別形成導體結構132、134。在一實施例中,所述平坦化製程可例如是化學機械研磨製程、回蝕刻製程或其組合。在本實施例中,可藉由調整化學機械研磨製程的過蝕刻步驟,以控制頂蓋層126a的厚度。當由氮化矽所構成的頂蓋層126a的厚度愈厚,所屬記憶元件的高溫資料保持能力愈佳。在一實施例中,頂蓋層126a的厚度T1可介於30 nm至70 nm之間。Referring to FIG. 2A and FIG. 2B, a planarization process is performed to remove a portion of the conductive material layer 130, a portion of the barrier layer 128, and a portion of the cap layer 126 to form conductor structures 132, 134 between the stacked structures 102, respectively. In an embodiment, the planarization process can be, for example, a chemical mechanical polishing process, an etch back process, or a combination thereof. In this embodiment, the thickness of the cap layer 126a can be controlled by adjusting the overetching step of the CMP process. When the thickness of the cap layer 126a composed of tantalum nitride is thicker, the high temperature data retention capability of the memory element is better. In an embodiment, the thickness T1 of the cap layer 126a may be between 30 nm and 70 nm.

值得注意的是,在本實施例中,導體結構132可視為汲極結構(以下稱之為汲極結構132);而導體結構134可視為源極結構(以下稱之為源極結構134)。雖然圖2A並未繪示出汲極結構132與源極結構134的佈局,但從上視方向來看,汲極結構132可例如多個柱狀結構,沿著垂直於紙面的方向排列。從上視方向來看,源極結構134可例如是片狀結構,沿著垂直於紙面的方向延伸,其中源極結構134與汲極結構132沿著平行於紙面的方向相互排列。在本實施例中,每128個柱狀結構的汲極結構132對應1個片狀結構的源極結構134。每兩個片狀結構的源極結構134之間具有1個柱狀結構的源極結構134,以電性連接至後續的金屬內連線中。從另一方面來看,導體結構132可視為位元線(Bit Line);而堆疊結構102則可視為字元線(Word Line)。It should be noted that in the present embodiment, the conductor structure 132 can be regarded as a drain structure (hereinafter referred to as a drain structure 132); and the conductor structure 134 can be regarded as a source structure (hereinafter referred to as a source structure 134). Although FIG. 2A does not illustrate the layout of the drain structure 132 and the source structure 134, the drain structure 132 may be, for example, a plurality of columnar structures arranged in a direction perpendicular to the plane of the paper, as viewed from above. From the top view, the source structure 134 can be, for example, a sheet-like structure extending in a direction perpendicular to the plane of the paper, wherein the source structure 134 and the drain structure 132 are aligned with each other in a direction parallel to the plane of the paper. In the present embodiment, the gate structure 132 of every 128 columnar structures corresponds to the source structure 134 of one sheet structure. A source structure 134 having a columnar structure between the source structures 134 of each two sheet structures is electrically connected to the subsequent metal interconnects. On the other hand, the conductor structure 132 can be regarded as a bit line; and the stacked structure 102 can be regarded as a word line.

請參照圖2B與圖2C,於基底100上依序形成氧化層136與圖案化罩幕層138。圖案化罩幕層138具有開口140。開口140至少暴露源極結構134的頂面。在一實施例中,開口140的寬度W可藉由微影曝光機台的關鍵尺寸曝光能力來進行調整。從圖2C可知,此寬度W亦可大於源極結構134的頂面寬度。在一實施例中,圖案化罩幕層138的材料可例如是光阻材料或是相較於氧化層136具有高度蝕刻選擇比的材料。圖案化罩幕層138的形成方法可例如是旋轉塗佈法或是化學氣相沈積法。Referring to FIG. 2B and FIG. 2C, an oxide layer 136 and a patterned mask layer 138 are sequentially formed on the substrate 100. The patterned mask layer 138 has an opening 140. The opening 140 exposes at least the top surface of the source structure 134. In one embodiment, the width W of the opening 140 can be adjusted by the critical dimension exposure capability of the lithography exposure station. As can be seen from FIG. 2C, the width W can also be greater than the top surface width of the source structure 134. In one embodiment, the material of the patterned mask layer 138 can be, for example, a photoresist material or a material having a high etching selectivity compared to the oxide layer 136. The method of forming the patterned mask layer 138 may be, for example, a spin coating method or a chemical vapor deposition method.

請參照圖2C與圖2D,以圖案化罩幕層138為罩幕,進行蝕刻製程,移除部分氧化層136、部分源極結構134與部分頂蓋層126a,以形成凹陷開口142。在一實施例中,蝕刻製程可例如是乾式蝕刻製程,所述乾式蝕刻製程可以是反應性離子蝕刻法(Reactive Ion Etching,RIE)。詳細地說,凹陷開口142位於開口140下方,且凹陷開口142至少暴露出間隙壁118a(或氮化層122a)的表面。凹陷開口142的底面可至少低於堆疊結構102的頂面;另一方面,凹陷開口142的底面亦可高於第二控制閘極112的頂面。在一實施例中,此凹陷開口142的深度D(亦即從頂蓋層126b的頂面至凹陷開口142的底面之間的距離)可介於80 nm至120 nm之間。在一實施例中,凹陷開口142的形狀可例如是半圓形、矩形或其組合。值得注意的是,在本實施例中,凹陷開口142可移除先前技術中的尖角10(如圖1所示),以解決字元線漏電問題。Referring to FIG. 2C and FIG. 2D , an etching process is performed by patterning the mask layer 138 as a mask to remove a portion of the oxide layer 136 , a portion of the source structure 134 and a portion of the cap layer 126 a to form the recess opening 142 . In an embodiment, the etching process may be, for example, a dry etching process, which may be Reactive Ion Etching (RIE). In detail, the recessed opening 142 is located below the opening 140, and the recessed opening 142 exposes at least the surface of the spacer 118a (or the nitrided layer 122a). The bottom surface of the recessed opening 142 may be at least lower than the top surface of the stacked structure 102; on the other hand, the bottom surface of the recessed opening 142 may also be higher than the top surface of the second control gate 112. In an embodiment, the depth D of the recessed opening 142 (ie, the distance from the top surface of the cap layer 126b to the bottom surface of the recessed opening 142) may be between 80 nm and 120 nm. In an embodiment, the shape of the recessed opening 142 can be, for example, a semicircle, a rectangle, or a combination thereof. It should be noted that in the present embodiment, the recessed opening 142 can remove the sharp corners 10 of the prior art (as shown in FIG. 1) to solve the word line leakage problem.

請參照圖2E與圖2F,在移除圖案化罩幕層138之後,於基底100上共形形成介電材料層144,且覆蓋凹陷開口142與氧化層136a的表面。在一實施例中,介電材料層144可例如是氮化矽,其厚度可例如是100 Å至400 Å之間。介電材料層144的形成方法可以是化學氣相沈積法或原子層沈積法(ALD)。之後,於介電材料層144上形成介電材料層146。在一實施例中,介電材料層146可例如是氧化矽、TEOS氧化矽、旋塗式氧化矽(Spin-on silicon oxide)、氮化矽或其組合,其厚度可例如是1000 Å至1500 Å之間。介電材料層146的形成方法可以是化學氣相沈積法。順帶一提的是,由於介電材料層146填入凹陷開口142中,使得介電材料層146對應於凹陷開口142上方的表面上具有凹陷148。Referring to FIG. 2E and FIG. 2F, after the patterned mask layer 138 is removed, a dielectric material layer 144 is conformally formed on the substrate 100 and covers the surface of the recess opening 142 and the oxide layer 136a. In an embodiment, the dielectric material layer 144 may be, for example, tantalum nitride, and may have a thickness of, for example, between 100 Å and 400 Å. The method of forming the dielectric material layer 144 may be chemical vapor deposition or atomic layer deposition (ALD). Thereafter, a layer of dielectric material 146 is formed over dielectric material layer 144. In one embodiment, the dielectric material layer 146 can be, for example, hafnium oxide, TEOS antimony oxide, spin-on silicon oxide, tantalum nitride, or a combination thereof, and the thickness can be, for example, 1000 Å to 1500. Between Å. The method of forming the dielectric material layer 146 may be a chemical vapor deposition method. Incidentally, since the dielectric material layer 146 is filled in the recessed opening 142, the dielectric material layer 146 has a recess 148 corresponding to the surface above the recessed opening 142.

請參照圖2F與圖2G,進行平坦化製程,移除部分介電材料層146,以暴露出介電材料層144的表面。在一實施例中,所述平坦化製程可例如是化學機械研磨製程、回蝕刻製程或其組合。Referring to FIG. 2F and FIG. 2G, a planarization process is performed to remove a portion of the dielectric material layer 146 to expose the surface of the dielectric material layer 144. In an embodiment, the planarization process can be, for example, a chemical mechanical polishing process, an etch back process, or a combination thereof.

請參照圖2H與圖2I,進行第一蝕刻步驟,移除部分介電材料層144、146a,以暴露出氧化層136a的表面。在一實施例中,第一蝕刻步驟可例如是乾式蝕刻法,其氧化物與氮化物的蝕刻選擇比約為1:1。接著,進行第二蝕刻步驟,移除氧化層136a,以暴露出頂蓋層126b的表面。在一實施例中,第二蝕刻步驟可例如是乾式蝕刻法,其氧化物與氮化物的蝕刻選擇比約為3:1。Referring to FIG. 2H and FIG. 2I, a first etching step is performed to remove portions of the dielectric material layers 144, 146a to expose the surface of the oxide layer 136a. In one embodiment, the first etch step can be, for example, a dry etch process with an oxide to nitride etch selectivity ratio of about 1:1. Next, a second etching step is performed to remove the oxide layer 136a to expose the surface of the cap layer 126b. In one embodiment, the second etch step can be, for example, a dry etch process with an oxide to nitride etch selectivity ratio of about 3:1.

值得注意的是,填入凹陷開口142中的介電材料層144a、146b可視為凹陷結構145。雖然圖2I未繪示出源極結構134a的佈局,但從上視方向來看,凹陷結構145亦與源極結構134a相似,其可例如是條狀結構,其位於片狀結構的源極結構134a上,並沿著垂直於紙面的方向延伸。由於凹陷結構145位於相鄰的堆疊結構102之間的源極結構134a上,其可電性絕緣相鄰的堆疊結構102,以解決字元線漏電問題。另外,凹陷結構145的介電材料層144a可例如是氮化矽,其可增加高溫資料保持(HTDR)能力,並進而提升良率。It should be noted that the dielectric material layers 144a, 146b filled in the recess openings 142 can be considered as recess structures 145. Although FIG. 2I does not illustrate the layout of the source structure 134a, the recess structure 145 is similar to the source structure 134a from the top view direction, which may be, for example, a strip structure located at the source structure of the sheet structure. On 134a, and extending in a direction perpendicular to the plane of the paper. Since the recess structures 145 are located on the source structures 134a between adjacent stacked structures 102, they can electrically insulate adjacent stack structures 102 to account for word line leakage problems. Additionally, the dielectric material layer 144a of the recess structure 145 can be, for example, tantalum nitride, which can increase high temperature data retention (HTDR) capability and thereby increase yield.

請參照圖2I與圖2J,於凹陷結構145上依序形成導體層150、金屬層152、導體層154以及罩幕層156、158。在一實施例中,導體層150、金屬層152以及導體層154可例如是金屬內連線。詳細地說,導體層150的材料可例如是鈦(Ti),其形成方法可以是物理氣相沈積法。金屬層152的材料可例如是鋁、銅或其組合,其形成方法可以是物理氣相沈積法。導體層154的材料可例如是鈦(Ti)、氮化鈦(TiN)或其組合,其形成方法可以是物理氣相沈積法或化學氣相沈積法。罩幕層156、158的材料可例如是氮氧化矽、光阻材料或其組合,其形成方法可以是可以是化學氣相沈積法。Referring to FIG. 2I and FIG. 2J, the conductor layer 150, the metal layer 152, the conductor layer 154, and the mask layers 156, 158 are sequentially formed on the recess structure 145. In an embodiment, conductor layer 150, metal layer 152, and conductor layer 154 may be, for example, metal interconnects. In detail, the material of the conductor layer 150 may be, for example, titanium (Ti), which may be formed by physical vapor deposition. The material of the metal layer 152 may be, for example, aluminum, copper, or a combination thereof, and the forming method may be physical vapor deposition. The material of the conductor layer 154 may be, for example, titanium (Ti), titanium nitride (TiN), or a combination thereof, which may be formed by physical vapor deposition or chemical vapor deposition. The material of the mask layers 156, 158 may be, for example, bismuth oxynitride, a photoresist material, or a combination thereof, which may be formed by chemical vapor deposition.

請回到圖2J,本發明第一實施例提供一種記憶元件包括:基底100、多個堆疊結構102、間隙壁118a、頂蓋層126b、汲極結構132、源極結構134a以及凹陷結構145。堆疊結構102位於基底100上。汲極結構132、源極結構134a分別位於堆疊結構102之間。換言之,汲極結構132與源極結構134a之間具有堆疊結構102。凹陷結構145位於源極結構134a上。凹陷結構145的底面至少低於堆疊結構102的頂面,且凹陷結構145的底面亦可高於第二控制閘極112的頂面。在一實施例中,凹陷結構145的厚度T2可介於80 nm至120 nm之間,其中凹陷結構145的頂面與頂蓋層126b的頂面為共平面。另外,本實施例之記憶元件還包括導體層150、金屬層152以及導體層154(可例如是金屬內連線)位於凹陷結構145上。Referring back to FIG. 2J, a first embodiment of the present invention provides a memory device including: a substrate 100, a plurality of stacked structures 102, a spacers 118a, a cap layer 126b, a drain structure 132, a source structure 134a, and a recess structure 145. The stack structure 102 is located on the substrate 100. The drain structure 132 and the source structure 134a are respectively located between the stacked structures 102. In other words, there is a stacked structure 102 between the drain structure 132 and the source structure 134a. The recessed structure 145 is located on the source structure 134a. The bottom surface of the recessed structure 145 is at least lower than the top surface of the stacked structure 102, and the bottom surface of the recessed structure 145 may also be higher than the top surface of the second control gate 112. In an embodiment, the thickness T2 of the recess structure 145 may be between 80 nm and 120 nm, wherein the top surface of the recess structure 145 is coplanar with the top surface of the cap layer 126b. In addition, the memory element of the present embodiment further includes a conductor layer 150, a metal layer 152, and a conductor layer 154 (which may be, for example, a metal interconnect) on the recess structure 145.

圖3A至圖3B是依照本發明第二實施例的記憶元件之製造流程的剖面示意圖。3A to 3B are schematic cross-sectional views showing a manufacturing process of a memory element in accordance with a second embodiment of the present invention.

請參照圖3A與圖3B,依照上述實施例的方法進行至形成圖2J的罩幕層156、158。為簡化圖式,在圖3A至圖3B,僅繪示出沿著垂直於紙面的方向的圖2J之汲極結構132的剖面示意圖,而未繪示出圖2J之堆疊結構102與源極結構134a。在此剖面上,基底100中具有多個隔離結構101。相鄰隔離結構101之間的基底100可視為主動區AA。在一實施例中,隔離結構101的材料可例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、氮氧化矽、旋塗式氧化矽(Spin-on silicon oxide)、低介電常數介電材料(Low-k dielectric)或其組合。隔離結構101可例如是淺溝渠隔離結構。Referring to Figures 3A and 3B, the method according to the above embodiment proceeds to form the mask layers 156, 158 of Figure 2J. In order to simplify the drawing, in FIGS. 3A to 3B, only a schematic cross-sectional view of the gate structure 132 of FIG. 2J along a direction perpendicular to the plane of the paper is illustrated, and the stack structure 102 and the source structure of FIG. 2J are not illustrated. 134a. In this cross section, the substrate 100 has a plurality of isolation structures 101 therein. The substrate 100 between adjacent isolation structures 101 can be considered as the active area AA. In an embodiment, the material of the isolation structure 101 can be, for example, doped or undoped cerium oxide, high density plasma oxide, cerium oxynitride, spin-on silicon oxide, low dielectric. Electrically constant dielectric material (Low-k dielectric) or a combination thereof. The isolation structure 101 can be, for example, a shallow trench isolation structure.

汲極結構132分別位於主動區AA上。汲極結構132之間具有介電層126c。在本實施例中,介電層126c是與圖2A之頂蓋層126同時形成。由於汲極結構132、介電層126c的材料、形成方法已於上述段落說明過,於此便不再贅述。The drain structures 132 are respectively located on the active area AA. There is a dielectric layer 126c between the drain structures 132. In the present embodiment, the dielectric layer 126c is formed simultaneously with the cap layer 126 of FIG. 2A. Since the materials and formation methods of the drain structure 132 and the dielectric layer 126c have been described in the above paragraphs, they will not be described again.

導體層150、金屬層152、導體層154以及罩幕層156從下至上依序形成在介電層126c與汲極結構132上。接著,圖案化罩幕層158,以形成多個開口160。開口160對應於介電層126c的頂面。The conductor layer 150, the metal layer 152, the conductor layer 154, and the mask layer 156 are sequentially formed on the dielectric layer 126c and the gate structure 132 from bottom to top. Next, the mask layer 158 is patterned to form a plurality of openings 160. Opening 160 corresponds to the top surface of dielectric layer 126c.

值得注意的是,在進行上述圖2F至圖2I的化學機械研磨製程所殘留研磨液的顆粒或是金屬氧化物顆粒容易累積在介電層126c的頂面上,所以在進行後續沉積製程後,使得部分介電層126c、部分導體層150、部分金屬層152、部分導體層154以及部分罩幕層156的凸出,而形成凸出部162(如圖3A所示)。It should be noted that the particles or metal oxide particles remaining in the polishing liquid in the CMP process of FIG. 2F to FIG. 2I are easily accumulated on the top surface of the dielectric layer 126c, so after the subsequent deposition process, A portion of the dielectric layer 126c, a portion of the conductor layer 150, a portion of the metal layer 152, a portion of the conductor layer 154, and a portion of the mask layer 156 are caused to protrude, thereby forming a projection 162 (shown in FIG. 3A).

之後,請參照圖3A與圖3B,以圖案化罩幕層158a為幕層,進行蝕刻製程,以移除部分罩幕層156、部分導體層154、部分金屬層152、部分導體層150以及部分介電層126c,使得介電層126d的頂面低於汲極結構132的頂面。在一實施例中,介電層126d的頂面與汲極結構132的頂面之間的距離(或高度差)H可介於10 nm至40 nm之間。在一實施例中,蝕刻製程可例如是乾式蝕刻製程。如圖3B所示,導體層150a、金屬層152a以及導體層154a可例如是金屬內連線M1。換言之,本實施例之汲極結構132是與金屬內連線M1直接接觸,而汲極結構132與金屬內連線M1之間並不具有接觸窗或其類似結構。3A and FIG. 3B, an etching process is performed to pattern a mask layer 158a as a curtain layer to remove a portion of the mask layer 156, a portion of the conductor layer 154, a portion of the metal layer 152, a portion of the conductor layer 150, and portions. The dielectric layer 126c is such that the top surface of the dielectric layer 126d is lower than the top surface of the drain structure 132. In an embodiment, the distance (or height difference) H between the top surface of the dielectric layer 126d and the top surface of the drain structure 132 may be between 10 nm and 40 nm. In an embodiment, the etching process can be, for example, a dry etching process. As shown in FIG. 3B, the conductor layer 150a, the metal layer 152a, and the conductor layer 154a may be, for example, a metal interconnect line M1. In other words, the gate structure 132 of the present embodiment is in direct contact with the metal interconnection M1, and the gate structure 132 and the metal interconnection M1 do not have a contact window or the like.

在本實施例中,可藉由蝕刻製程中的過蝕刻(over etching)步驟,移除所述凸出部162。如此一來,本實施例可藉由上述過蝕刻步驟解決導體層150(鈦金屬)殘留所導致汲極結構132(位元線)短路的問題。In this embodiment, the protrusions 162 can be removed by an over etching step in the etching process. As a result, in the present embodiment, the problem of short-circuiting the drain structure 132 (bit line) caused by the residual of the conductor layer 150 (titanium metal) can be solved by the above-described over-etching step.

此外,本實施例可移除先前技術中的接觸窗CT的製程步驟,其不僅可解決汲極結構132(位元線)之間的介電層126d上的導體層150(鈦金屬)殘留所導致位元線短路的問題,還可減少製程成本並增加良率。In addition, this embodiment can remove the process steps of the contact window CT in the prior art, which can not only solve the residual layer of the conductor layer 150 (titanium metal) on the dielectric layer 126d between the drain structures 132 (bit lines). The problem of shorting the bit line can also reduce process cost and increase yield.

綜上所述,本發明藉由源極結構上的凹陷結構,其可移除先前技術中的尖角,以解決字元線漏電問題。另外,在本發明中,源極結構上的凹陷結構與字元線上的頂蓋層可增加高溫資料保持能力,並進而提升良率。此外,本發明移除先前技術中的接觸窗的製程步驟,其不僅可解決位元線之間的介電層上的鈦金屬殘留所導致位元線短路的問題,還可減少製程成本。In summary, the present invention solves the problem of word line leakage by the recessed structure on the source structure, which can remove the sharp corners of the prior art. In addition, in the present invention, the recess structure on the source structure and the cap layer on the word line can increase the high temperature data retention capability and thereby increase the yield. In addition, the present invention removes the process steps of the prior art contact window, which not only solves the problem of short-circuiting of the bit line caused by the residual titanium metal on the dielectric layer between the bit lines, but also reduces the process cost.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧尖角10‧‧‧ sharp corner

12‧‧‧字元線12‧‧‧ character line

34‧‧‧源極結構34‧‧‧Source structure

100‧‧‧基底100‧‧‧Base

102‧‧‧堆疊結構、字元線102‧‧‧Stack structure, word line

104‧‧‧穿隧介電層104‧‧‧Tunnel dielectric layer

106‧‧‧浮置閘極106‧‧‧Floating gate

108‧‧‧閘間介電層108‧‧‧Interruptor dielectric layer

110‧‧‧第一控制閘極110‧‧‧First control gate

112‧‧‧第二控制閘極112‧‧‧Second control gate

114、116、126c、126d‧‧‧介電層114, 116, 126c, 126d‧‧‧ dielectric layer

118、118a‧‧‧間隙壁118, 118a‧‧ ‧ spacer

120、120a、124、124a、136‧‧‧氧化層120, 120a, 124, 124a, 136‧‧ ‧ oxide layer

122、122a‧‧‧氮化層122, 122a‧‧‧ nitride layer

126、126a、126b‧‧‧頂蓋層126, 126a, 126b‧‧‧ top cover

128、128a‧‧‧阻障層 128, 128a‧‧‧ barrier layer

130‧‧‧導體材料層 130‧‧‧Conductor layer

132‧‧‧汲極結構、導體結構、位元線 132‧‧‧汲pole structure, conductor structure, bit line

134、134a‧‧‧源極結構、導體結構、位元線 134, 134a‧‧‧ source structure, conductor structure, bit line

138、158a‧‧‧圖案化罩幕層 138, 158a‧‧‧ patterned mask layer

140‧‧‧開口 140‧‧‧ openings

142‧‧‧凹陷開口 142‧‧‧ recessed opening

144、144a、146、146b‧‧‧介電材料層 144, 144a, 146, 146b‧‧‧ dielectric material layer

145‧‧‧凹陷結構 145‧‧‧ recessed structure

148‧‧‧凹陷 148‧‧‧ dent

150、154‧‧‧導體層 150, 154‧‧‧ conductor layer

152‧‧‧金屬層 152‧‧‧metal layer

156、158‧‧‧罩幕層 156, 158‧‧ ‧ cover layer

162‧‧‧凸出部 162‧‧‧protrusion

CT‧‧‧接觸窗 CT‧‧‧Contact Window

D‧‧‧深度 D‧‧‧Deep

H‧‧‧距離 H‧‧‧ distance

M1‧‧‧金屬內連線 M1‧‧‧Metal interconnection

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

W‧‧‧寬度 W‧‧‧Width

圖1是習知的一種記憶元件的剖面示意圖。 圖2A至圖2J是依照本發明第一實施例的記憶元件之製造流程的剖面示意圖。 圖3A至圖3B是依照本發明第二實施例的記憶元件之製造流程的剖面示意圖。1 is a schematic cross-sectional view of a conventional memory element. 2A through 2J are schematic cross-sectional views showing a manufacturing process of a memory element in accordance with a first embodiment of the present invention. 3A to 3B are schematic cross-sectional views showing a manufacturing process of a memory element in accordance with a second embodiment of the present invention.

100‧‧‧基底 100‧‧‧Base

102‧‧‧堆疊結構 102‧‧‧Stack structure

104‧‧‧穿隧介電層 104‧‧‧Tunnel dielectric layer

106‧‧‧浮置閘極 106‧‧‧Floating gate

108‧‧‧閘間介電層 108‧‧‧Interruptor dielectric layer

110‧‧‧第一控制閘極 110‧‧‧First control gate

112‧‧‧第二控制閘極 112‧‧‧Second control gate

114、116‧‧‧介電層 114, 116‧‧‧ dielectric layer

118a‧‧‧間隙壁 118a‧‧‧ clearance

120a、124a‧‧‧氧化層 120a, 124a‧‧‧ oxide layer

122a‧‧‧氮化層 122a‧‧‧ nitride layer

126b‧‧‧頂蓋層 126b‧‧‧Top cover

128a‧‧‧阻障層 128a‧‧‧Barrier layer

132‧‧‧汲極結構 132‧‧‧汲polar structure

134a‧‧‧源極結構 134a‧‧‧ source structure

144a、146b‧‧‧介電材料層 144a, 146b‧‧‧ dielectric material layer

145‧‧‧凹陷結構 145‧‧‧ recessed structure

150、154‧‧‧導體層 150, 154‧‧‧ conductor layer

152‧‧‧金屬層 152‧‧‧metal layer

156、158‧‧‧罩幕層 156, 158‧‧ ‧ cover layer

T2‧‧‧厚度 T2‧‧‧ thickness

Claims (19)

一種記憶元件,包括:至少兩個堆疊結構,位於一基底上,其中各該些堆疊結構包括一浮置閘極、一閘間介電層以及一控制閘極;一導體結構,位於該些堆疊結構之間;以及一凹陷結構,位於該導體結構上,其中該凹陷結構的底面至少低於該些堆疊結構的頂面。 A memory device comprising: at least two stacked structures on a substrate, wherein each of the stacked structures comprises a floating gate, an inter-gate dielectric layer and a control gate; a conductor structure located on the stack Between the structures; and a recessed structure on the conductor structure, wherein the bottom surface of the recessed structure is at least lower than the top surface of the stacked structures. 如申請專利範圍第1項所述的記憶元件,其中該凹陷結構的頂面至該底面的厚度介於80nm至120nm之間。 The memory device of claim 1, wherein a thickness from a top surface to a bottom surface of the recess structure is between 80 nm and 120 nm. 如申請專利範圍第1項所述的記憶元件,更包括:兩個頂蓋層,分別位於該些堆疊結構上;一間隙壁,位於該些堆疊結構與該導體結構之間。 The memory device of claim 1, further comprising: two top cover layers respectively located on the stacked structures; a spacer wall between the stacked structures and the conductive structure. 如申請專利範圍第3項所述的記憶元件,其中該凹陷結構的頂面與該些頂蓋層的頂面為共平面。 The memory element of claim 3, wherein the top surface of the recessed structure and the top surface of the cap layers are coplanar. 如申請專利範圍第3項所述的記憶元件,其中該凹陷結構至少暴露出該間隙壁的表面。 The memory element of claim 3, wherein the recessed structure exposes at least a surface of the spacer. 如申請專利範圍第3項所述的記憶元件,其中各該些頂蓋層的厚度介於30nm至70nm之間。 The memory element of claim 3, wherein each of the cap layers has a thickness of between 30 nm and 70 nm. 如申請專利範圍第1項所述的記憶元件,其中各該些堆疊結構更包括一穿隧介電層以及一介電層。 The memory device of claim 1, wherein each of the stacked structures further comprises a tunneling dielectric layer and a dielectric layer. 如申請專利範圍第1項所述的記憶元件,其中該凹陷結構的該底面高於該控制閘極的頂面。 The memory device of claim 1, wherein the bottom surface of the recessed structure is higher than a top surface of the control gate. 如申請專利範圍第1項所述的記憶元件,其中該凹陷結構的形狀為半圓形、矩形或其組合。 The memory element of claim 1, wherein the recessed structure has a semicircular shape, a rectangular shape, or a combination thereof. 如申請專利範圍第1項所述的記憶元件,其中該凹陷結構包括單層結構、兩層結構或多層結構。 The memory element of claim 1, wherein the recessed structure comprises a single layer structure, a two layer structure or a multilayer structure. 如申請專利範圍第1項所述的記憶元件,其中該凹陷結構的材料包括氮化矽、氧化矽或其組合。 The memory element of claim 1, wherein the material of the recessed structure comprises tantalum nitride, tantalum oxide or a combination thereof. 如申請專利範圍第1項所述的記憶元件,其中該導體結構為源極結構。 The memory element of claim 1, wherein the conductor structure is a source structure. 如申請專利範圍第1項所述的記憶元件,更包括一金屬內連線位於該凹陷結構上。 The memory component of claim 1, further comprising a metal interconnect on the recessed structure. 一種記憶元件的製造方法,包括:於一基底上形成至少兩個堆疊結構,其中各該些堆疊結構包括一浮置閘極、一閘間介電層以及一控制閘極;於該些堆疊結構上分別形成兩個頂蓋層;於該些堆疊結構之間形成一導體結構;於該些堆疊結構與該導體結構之間形成一間隙壁;以及於該導體結構上形成一凹陷結構,其中該凹陷結構的底面至少低於該些堆疊結構的頂面。 A method of fabricating a memory device, comprising: forming at least two stacked structures on a substrate, wherein each of the stacked structures comprises a floating gate, an inter-gate dielectric layer, and a control gate; and the stacked structures Forming two top cover layers respectively; forming a conductor structure between the stacked structures; forming a gap between the stacked structures and the conductor structure; and forming a recessed structure on the conductor structure, wherein the The bottom surface of the recessed structure is at least lower than the top surface of the stacked structures. 如申請專利範圍第14項所述的記憶元件的製造方法,其中形成該導體結構的步驟包括:於該基底上形成一導體材料層,該導體材料層填入該些堆疊結構之間的空間且覆蓋該些頂蓋層的表面;以及進行一平坦化製程,以移除部分該導體材料層與部分該些頂蓋層。 The method of manufacturing a memory device according to claim 14, wherein the step of forming the conductor structure comprises: forming a layer of a conductor material on the substrate, the layer of conductor material filling a space between the stacked structures and Covering the surfaces of the cap layers; and performing a planarization process to remove portions of the layer of conductive material and portions of the cap layers. 如申請專利範圍第15項所述的記憶元件的製造方法,其中該平坦化製程包括化學機械研磨製程、回蝕刻製程或其組合。 The method of manufacturing a memory device according to claim 15, wherein the planarization process comprises a chemical mechanical polishing process, an etch back process, or a combination thereof. 如申請專利範圍第14項所述的記憶元件的製造方法,其中形成該凹陷結構的步驟包括:於該基底上形成一圖案化罩幕層,該圖案化罩幕層具有一開口,該開口至少暴露該導體結構的頂面;進行一蝕刻製程,移除部分該導體結構與部分該些頂蓋層,以形成一凹陷開口,該凹陷開口至少暴露出該間隙壁的表面;以及形成至少一介電材料層並填入該凹陷開口中。 The method of manufacturing the memory device of claim 14, wherein the forming the recessed structure comprises: forming a patterned mask layer on the substrate, the patterned mask layer having an opening, the opening being at least Exposing a top surface of the conductor structure; performing an etching process to remove a portion of the conductor structure and a portion of the cap layers to form a recess opening, the recess opening exposing at least a surface of the spacer; and forming at least one A layer of electrically material is filled into the recessed opening. 一種記憶元件的製造方法,包括:於一基底上形成多個導體結構;於該些導體結構之間形成多個介電層;於該些導體結構與該些介電層上形成一金屬層;於該金屬層上形成一圖案化罩幕層,該圖案化罩幕層具有多個開口,該些開口分別對應該些介電層的頂面;以及以該圖案化罩幕層為幕層,移除部分該些介電層,使得該些介電層的頂面低於該些導體結構的頂面,其中該些介電層的該頂面與該些導體結構的該頂面之間的距離介於10nm至40nm之間。 A method for manufacturing a memory device, comprising: forming a plurality of conductor structures on a substrate; forming a plurality of dielectric layers between the conductor structures; forming a metal layer on the conductor structures and the dielectric layers; Forming a patterned mask layer on the metal layer, the patterned mask layer having a plurality of openings respectively corresponding to the top surfaces of the dielectric layers; and the patterned mask layer as a curtain layer Removing a portion of the dielectric layers such that a top surface of the dielectric layers is lower than a top surface of the conductor structures, wherein between the top surface of the dielectric layers and the top surface of the conductor structures The distance is between 10 nm and 40 nm. 如申請專利範圍第18項所述的記憶元件的製造方法,其中該些導體結構為位元線。 The method of manufacturing a memory device according to claim 18, wherein the conductor structures are bit lines.
TW105100168A 2016-01-05 2016-01-05 Memory device and method of manufacturing the same TWI588973B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105100168A TWI588973B (en) 2016-01-05 2016-01-05 Memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105100168A TWI588973B (en) 2016-01-05 2016-01-05 Memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI588973B true TWI588973B (en) 2017-06-21
TW201725699A TW201725699A (en) 2017-07-16

Family

ID=59688120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100168A TWI588973B (en) 2016-01-05 2016-01-05 Memory device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI588973B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721546B (en) * 2019-08-30 2021-03-11 華邦電子股份有限公司 Memory device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166513B2 (en) * 2003-05-22 2007-01-23 Powerchip Semiconductor Corp. Manufacturing method a flash memory cell array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166513B2 (en) * 2003-05-22 2007-01-23 Powerchip Semiconductor Corp. Manufacturing method a flash memory cell array

Also Published As

Publication number Publication date
TW201725699A (en) 2017-07-16

Similar Documents

Publication Publication Date Title
CN109256382B (en) Dynamic random access memory and manufacturing method thereof
US7342275B2 (en) Semiconductor device and method of manufacturing the same
US9196609B2 (en) Semiconductor device
US10439048B2 (en) Photomask layout, methods of forming fine patterns and method of manufacturing semiconductor devices
JP2004064083A (en) Semiconductor device having self-aligning junction region contact hole and its manufacturing method
TWI640064B (en) Dynamic random access memory and method of manufacturing the same
US8164119B2 (en) Semiconductor device including conductive lines with fine line width and method of fabricating the same
JP2002313955A (en) Method of forming metal contact of semiconductor element
US10734390B1 (en) Method of manufacturing memory device
US7928494B2 (en) Semiconductor device
CN111834301B (en) Method for manufacturing memory element
US7217618B2 (en) Semiconductor device and method for fabricating the same using damascene process
JP2004128395A (en) Semiconductor device and method of manufacturing semiconductor device
TWI588973B (en) Memory device and method of manufacturing the same
US20100148228A1 (en) Semiconductor and manufacturing method of the same
TW201706988A (en) Memory device and method of fabricating the same
US11665888B2 (en) Semiconductor device and method for fabricating the same
CN106992178B (en) Memory element and manufacturing method thereof
KR100439038B1 (en) Bitline of semiconductor device having stud type capping layer and method for fabricating the same
TWI469269B (en) Method of forming word line of embedded flash memory
KR20070038225A (en) Method of manufacturing semiconductor device
JP3688703B2 (en) Semiconductor memory device and manufacturing method thereof
TW202320065A (en) Semiconductor memory devices
TW202247359A (en) Semiconductor memory structure and the method for forming the same
CN115346982A (en) Dynamic random access memory and manufacturing method thereof