TWI545658B - 閘極結構及其通道之形成方法 - Google Patents

閘極結構及其通道之形成方法 Download PDF

Info

Publication number
TWI545658B
TWI545658B TW103125965A TW103125965A TWI545658B TW I545658 B TWI545658 B TW I545658B TW 103125965 A TW103125965 A TW 103125965A TW 103125965 A TW103125965 A TW 103125965A TW I545658 B TWI545658 B TW I545658B
Authority
TW
Taiwan
Prior art keywords
layer
epitaxial
gate structure
forming
channel layer
Prior art date
Application number
TW103125965A
Other languages
English (en)
Other versions
TW201528383A (zh
Inventor
傅勁逢
陳德芳
李俊鴻
林煥哲
張惠政
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201528383A publication Critical patent/TW201528383A/zh
Application granted granted Critical
Publication of TWI545658B publication Critical patent/TWI545658B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

閘極結構及其通道之形成方法
本揭露係有關於一種半導體技術,特別是有關於一種閘極結構通道之形成方法。
在傳統的閘極結構通道形成製程中,閘極結構溝槽內的磊晶通道層(epitaxial channel layers)之間會發生錯位(dislocation)。當操作閘極結構時,由於錯位,會造成電子與電洞的漏失。
本揭露教示一種閘極結構通道之形成方法。藉由所教示方法的輔助,當形成閘極結構的通道時,可實質上減少閘極結構中磊晶通道層之間的錯位(dislocation),使得通道上電子與電洞的漏失可因此實質上減少。此外,當形成閘極結構的通道時,用於負載磊晶通道層的起始溝槽的深度亦可實質上降低。
本揭露教示一種閘極結構通道之形成方法。在一實施例中,形成一第一磊晶通道層(first epitaxial layer)於一閘極結構之一第一溝槽內。對該第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽。形成一第二磊晶通道層(second epitaxial layer)於該第二溝槽內。
本揭露亦教示一種閘極結構。該閘極結構包括一矽層,一淺溝槽隔離(STI)層,一第一磊晶通道層(first epitaxial layer),以及一第二磊晶通道層(second epitaxial layer)。該淺溝槽隔離(STI)層至少部分地覆蓋該矽層。該淺溝槽隔離(STI)層具有一溝槽,至少部分地為包圍該溝槽之一底部之該矽層所填入。該第一磊晶通道層(first epitaxial layer)形成於該溝槽內。該第一磊晶通道層覆蓋該溝槽內之該矽層。該第二磊晶通道層(second epitaxial layer)形成於該溝槽內。該第二磊晶通道層覆蓋該溝槽內之該第一磊晶通道層。
本揭露亦教示一種閘極結構通道之形成方法。在此方法中,形成一第一磊晶通道層(first epitaxial layer)於一閘極結構之一第一溝槽內。對該第一磊晶通道層實施一化學機械研磨(CMP)製程。對該第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽。形成一第二磊晶通道層(second epitaxial layer)於該第二溝槽內。
為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。
100、1100‧‧‧閘極結構
110、1115‧‧‧淺溝槽隔離(STI)層
115‧‧‧溝槽
120、1120‧‧‧矽層
310‧‧‧第一溝槽
320‧‧‧第一溝槽底部
510、1110‧‧‧第一磊晶通道層
520、1710‧‧‧第二磊晶通道層
710‧‧‧氧化層
910、2110‧‧‧閘金屬層
920、2120‧‧‧層間介電層
1030‧‧‧源極/汲極層
1510‧‧‧第二溝槽
1910‧‧‧第三(磊晶)通道層
2302‧‧‧形成一第一磊晶通道層於閘極結構的第一溝槽內
2304‧‧‧對第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽
2306‧‧‧形成一第二磊晶通道層於第二溝槽內
2308‧‧‧對第一磊晶通道層實施氧化製程,以形成一第三磊晶通道層
2310‧‧‧對閘極結構實施一淺溝槽隔離(STI)層凹陷製程,以 使一淺溝槽隔離(STI)層凹陷,露出至少一部分第三磊晶通道層
2402‧‧‧形成一第一磊晶通道層於閘極結構的第一溝槽內
2404‧‧‧對第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽
2406‧‧‧形成一第二磊晶通道層於第二溝槽內
2408‧‧‧蝕刻第一磊晶通道層
2410‧‧‧實施一環繞式閘極(GAA)製程,以沈積一閘金屬層,包圍第二磊晶通道層
第1~6圖說明在形成閘極結構的通道的過程中,閘極結構的不同剖面示意圖;第7~8圖說明當實施閘極結構的Omega閘極製程時,不同的剖面示意圖; 第9~10圖說明當實施閘極結構的環繞式閘極(GAA)製程時,不同的剖面示意圖;第11~18圖係根據第一實施例,說明在形成閘極結構的通道的過程中,閘極結構的不同剖面示意圖;第19~20圖係根據第二實施例,說明在對閘極結構實施Omega閘極製程的過程中,閘極結構的不同剖面示意圖;第21~22圖係根據第三實施例,說明在對閘極結構實施環繞式閘極(GAA)製程的過程中,閘極結構的不同剖面示意圖;第23圖係根據第一例,揭露閘極結構通道形成方法的流程圖;第24圖係根據第二例,揭露閘極結構通道形成方法的流程圖。
第1~6圖說明在形成閘極結構100的通道的過程中,閘極結構100的不同剖面示意圖。第一方向的實施請參閱第1、3、5圖。第二方向的實施請參閱第2、4、6圖。第一方向垂直於第二方向。
在第1圖與第2圖中,在一後鰭形成製程(post-fin formation process)與一淺溝槽隔離(STI)製程後,閘極結構100包括一淺溝槽隔離(STI)層110與一矽層120。複數個溝槽115形成於矽層120內。淺溝槽隔離(STI)層110以插入方式形成於矽層120的複數個溝槽115內。
在第3圖與第4圖中,在後鰭形成製程(post-fin formation process)與淺溝槽隔離(STI)製程後,實施一凹陷製程 (recess process)。實施凹陷製程(recess process)以移除溝槽115之間至少一部分的矽層120。在移除至少一部分的矽層120後,形成淺溝槽隔離(STI)層110的第一溝槽310。第一溝槽310的底部可為平坦底部,或可為虛線320所指出的凹溝底部(concave bottoms)。
在第5圖與第6圖中,沈積一第一磊晶通道層(first epitaxial channel layer)510與一第二磊晶通道層(second epitaxial channel layer)520於第一溝槽310內。一般來說,第一磊晶通道層510實質上包括鍺或矽鍺(silicon-germanium),第二磊晶通道層520實質上包括矽。
由於第一溝槽310的深寬比(aspect ratio),在第一磊晶通道層510的邊緣可能會出現逐漸變細的角,形成多面。錯位(dislocation)可能產生導致第一磊晶通道層510與第二磊晶通道層520之間的晶格失配(lattice mismatch),也就是鍺與矽之間或矽鍺(silicon-germanium)與矽之間的晶格失配。錯位延伸與第二磊晶通道層520的面相切,導致電子與電洞漏失(leakage)。
當第一磊晶通道層510實質上包括鍺或矽鍺(silicon-germanium),第二磊晶通道層520實質上包括矽,以及閘極結構100的鰭高度(fin height)介於約30奈米至約40奈米時,第3圖與第4圖中第一溝槽310的深度可介於約60奈米至約80奈米。
在第5圖與第6圖的製程後,藉由一Omega閘極製程或一環繞式閘極(gate-all-around,GAA)製程可額外形成閘極結 構100的通道。第7圖與第8圖說明當實施閘極結構100的Omega閘極製程時,不同的剖面示意圖。第9圖與第10圖說明在閘極結構100的環繞式閘極(GAA)製程過程中,不同的剖面示意圖。第一方向的實施請參閱第7、9圖。第二方向的實施請參閱第8、10圖。
在第7圖與第8圖中,實質上對第一磊晶通道層510進行氧化,以形成一氧化層(oxidation layer)710,並使淺溝槽隔離(STI)層110凹陷。使得,實質上形成一通道於第二磊晶通道層520內。
由於上述的錯位(disloc ation),在氧化層710與第二磊晶通道層520之間的介面可能會產生電子與電洞的漏失,使得形成在第二磊晶通道層520範圍內的通道的操作準確性可能降低。
在第9圖與第10圖中,對第一磊晶通道層510進行蝕刻,並形成一閘金屬層(gate metal layer)910,實質上包圍第二磊晶通道層520。形成一通道(channel)於第二磊晶通道層520內。
在第9圖與第10圖中,可額外形成一源極/汲極層(source/drain layer)1030於矽層120上,以及可額外形成一層間介電層(ILD layer)920,至少部分覆蓋源極/汲極層1030與淺溝槽隔離(STI)層110。
根據第一實施例,第11~18圖說明在形成閘極結構1100的通道的過程中,閘極結構1100的不同剖面示意圖。第一方向的實施請參閱關於閘極結構1100的第11、13、15、17圖。 第二方向的實施請參閱第12、14、16、18圖。
在形成如第3、4圖所示的第一溝槽後,可沈積一第一磊晶通道層1110於第一溝槽內或可沈積超出第一溝槽,如第11、12圖所示。第一磊晶通道層1110形成於淺溝槽隔離(STI)層1115之間,位於一矽層1120上。
若第一磊晶通道層1110超出第一溝槽,第13、14圖說明可實施於閘極結構1100上以平坦化第一磊晶通道層1110上表面以及淺溝槽隔離(STI)層1115上表面的化學機械研磨(CMP)製程。
在第15圖與第16圖中,在沈積第一磊晶通道層1110後,可移除至少一部分第一磊晶通道層1110,以形成複數個第二溝槽1510。可藉由乾蝕刻實施移除製程,以借助其等向性的優點。也就是,聚焦在第一磊晶通道層1110的移除伴隨著少量對淺溝槽隔離(STI)層1115的蝕刻。
在一實施例中,可使用氯氣蝕刻第一磊晶通道層1110。可使用三氟化氮(NF3)氣體校準於第一磊晶通道層1110上所實施乾蝕刻製程的範圍。可使用氦氣稀釋氯氣與三氟化氮氣體的密度。
此外,氯氣的流量(flux)可介於約20sccm至約80sccm的範圍,三氟化氮(NF3)氣體的流量可介於約0sccm至約10sccm的範圍,氦氣的流量可介於約300sccm至約1000sccm的範圍。
在第17圖與第18圖中,在使第一磊晶通道層1110凹陷後,可沈積一第二磊晶通道層1710於第二溝槽1510內,或 超出第二溝槽1510。
在第一實施例中,第一磊晶通道層1110可包括鍺或矽鍺(silicon-germanium),第二磊晶通道層1710可包括鍺或矽鍺。藉由第一磊晶通道層1110與第二磊晶通道層1710所使用材料的輔助,將不會形成造成傾斜面的逐漸變細的邊緣。因此,可減少第一磊晶通道層1110與第二磊晶通道層1710之間的錯位。
第17圖與第18圖中負載第一磊晶通道層1110與第二磊晶通道層1710的第一溝槽310的深度可能不會如第3圖與第4圖中第一溝槽310的深度,如此使得在第一磊晶通道層1110邊緣出現多面(facets)的機會降低。在一實施例中,當閘極結構100的鰭高度(fin height)介於約30奈米至約40奈米時,第一溝槽310的深度可介於約40奈米至約50奈米。
在一實施例中,第一磊晶通道層1110中鍺的密度可高於第二磊晶通道層1710中鍺的密度。因此,可更減少第一磊晶通道層1110與第二磊晶通道層1710之間的錯位。
在第17圖與第18圖的製程後,藉由如第一例的Omega閘極製程或藉由如第二例的環繞式閘極(gate-all-around,GAA)製程可形成閘極結構1100的通道。第19圖與第20圖說明在對閘極結構1100實施Omega閘極製程的過程中,閘極結構1100的不同剖面示意圖。第21圖與第22圖說明在對閘極結構1100實施環繞式閘極(GAA)製程的過程中,閘極結構1100的不同剖面示意圖。
在第19圖與第20圖中,對第一磊晶通道層1110實 施氧化製程,以形成一第三通道層1910,其實質上為一氧化層。亦對閘極結構1100實施一淺溝槽隔離(STI)層凹陷製程,以移除至少一部份淺溝槽隔離(STI)層1115。由第19圖與第20圖可看出,移除至少一部份淺溝槽隔離(STI)層1115,使得第三磊晶通道層1910至少一部分露出。因此,形成閘極結構1100的通道於第二磊晶通道層1710中。
由於第一磊晶通道層1110與第二磊晶通道層1710之間的錯位已減少,使得第三磊晶通道層1910與第二磊晶通道層1710之間的錯位亦可減少。因此,在第一例中,閘極結構1100的電子與電洞漏失可實質上減少,並提升閘極結構1100通道的操作準確性。
在第21圖與第22圖中,實質上對第一磊晶通道層1110進行蝕刻,之後,沈積一閘金屬層2110,包圍第二磊晶通道層1710。可額外形成一層間介電層(ILD layer)2120,至少部分覆蓋淺溝槽隔離(STI)層1115。因此,形成閘極結構1100的通道於第二磊晶通道層1710中。
由於第一磊晶通道層1110與第二磊晶通道層1710之間的錯位已減少,使得閘金屬層2110與第二磊晶通道層1710之間的錯位亦可減少。因此,在第二例中,閘極結構1100的電子與電洞漏失可實質上減少,並提升閘極結構1100通道的操作準確性。
在一第三例中,在形成閘極結構100的通道的過程中,可實施以下製程條件。形成閘極結構100的通道的壓力可介於約600mT至約1000mT之間。用來產生第15、16圖所示乾蝕 刻製程電漿的頂部線圈功率(top coil power)可介於約50瓦至約350瓦之間。形成閘極結構100的通道的偏壓介於約0伏至約50伏之間。形成閘極結構100的通道的溫度可介於約攝氏30度至約攝氏80度之間。形成閘極結構100的通道的製程時間可介於約3秒至約50秒之間。
根據第一例,第23圖揭露閘極結構通道形成方法的流程圖。該方法包括下列步驟:2302,形成一第一磊晶通道層於閘極結構的第一溝槽內;2304,對第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽;2306,形成一第二磊晶通道層於第二溝槽內;2308,對第一磊晶通道層實施氧化製程,以形成一第三磊晶通道層;2310,對閘極結構實施一淺溝槽隔離(STI)層凹陷製程,以使一淺溝槽隔離(STI)層凹陷,露出至少一部分第三磊晶通道層。
根據第二例,第24圖揭露閘極結構通道形成方法的流程圖。該方法包括下列步驟:2402,形成一第一磊晶通道層於閘極結構的第一溝槽內;2404,對第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽;2406,形成一第二磊晶通道層於第二溝槽內;2408,蝕刻第一磊晶通道層;2410,實施一環繞式閘極(GAA)製程,以沈積一閘金屬層,包圍第二磊晶通道層。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。
1100‧‧‧閘極結構
1115‧‧‧淺溝槽隔離(STI)層
1120‧‧‧矽層
1710‧‧‧第二磊晶通道層
1910‧‧‧第三(磊晶)通道層

Claims (10)

  1. 一種閘極結構通道之形成方法,包括:形成一第一磊晶通道層(first epitaxial layer)於一閘極結構之一第一溝槽內;對該第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽;以及形成一第二磊晶通道層(second epitaxial layer)於該第二溝槽內。
  2. 如申請專利範圍第1項所述之閘極結構通道之形成方法,更包括:於該第一溝槽內形成該第一磊晶通道層後,對該第一磊晶通道層實施一化學機械研磨(CMP)製程。
  3. 如申請專利範圍第1項所述之閘極結構通道之形成方法,更包括:於形成該第二磊晶通道層後,對該第一磊晶通道層實施一氧化製程,以形成一第三磊晶通道層。
  4. 如申請專利範圍第3項所述之閘極結構通道之形成方法,更包括:對該閘極結構實施一淺溝槽隔離層凹陷製程(shallow trench isolation(STI)layer recessing process),以使一淺溝槽隔離(STI)層凹陷,露出至少一部分之該第三磊晶通道層。
  5. 如申請專利範圍第1項所述之閘極結構通道之形成方法,更包括:蝕刻該第一磊晶通道層;以及 實施一環繞式閘極(gate-all-around,GAA)製程,以沈積一閘金屬層,包圍該第二磊晶通道層。
  6. 一種閘極結構,包括:一矽層;一淺溝槽隔離(STI)層,至少部分地覆蓋該矽層,並具有一溝槽,至少部分地為包圍該溝槽之一底部之該矽層所填入;一第一磊晶通道層(first epitaxial layer),形成於該溝槽內,該第一磊晶通道層覆蓋該溝槽內之該矽層;以及一第二磊晶通道層(second epitaxial layer),形成於該溝槽內,該第二磊晶通道層覆蓋該溝槽內之該第一磊晶通道層。
  7. 一種閘極結構通道之形成方法,包括:形成一第一磊晶通道層(first epitaxial layer)於一閘極結構之一第一溝槽內;對該第一磊晶通道層實施一化學機械研磨(CMP)製程;對該第一磊晶通道層實施一乾蝕刻製程,以形成一第二溝槽;以及形成一第二磊晶通道層(second epitaxial layer)於該第二溝槽內。
  8. 如申請專利範圍第7項所述之閘極結構通道之形成方法,更包括:於形成該第二磊晶通道層後,對該第一磊晶通道層實施一氧化製程,以形成一第三磊晶通道層;以及對該閘極結構實施一淺溝槽隔離層凹陷製程(shallow trench isolation(STI)layer recessing process),以使一淺溝槽隔離 (STI)層凹陷,露出至少一部分之該第三磊晶通道層。
  9. 如申請專利範圍第7項所述之閘極結構通道之形成方法,更包括:蝕刻該第一磊晶通道層;以及實施一環繞式閘極(gate-all-around,GAA)製程,以沈積一閘金屬層,包圍該第二磊晶通道層。
  10. 如申請專利範圍第7項所述之閘極結構通道之形成方法,其中該形成該第一磊晶通道層於該閘極結構之該第一溝槽內之步驟包括形成由鍺或矽鍺(silicon-germanium)所構成之該第一磊晶通道層於該閘極結構之該第一溝槽內;以及其中該形成該第二磊晶通道層於該第二溝槽內之步驟包括形成由鍺或矽鍺(silicon-germanium)所構成之該第二磊晶通道層於該第二溝槽內。
TW103125965A 2014-01-08 2014-07-30 閘極結構及其通道之形成方法 TWI545658B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/150,177 US9590090B2 (en) 2014-01-08 2014-01-08 Method of forming channel of gate structure

Publications (2)

Publication Number Publication Date
TW201528383A TW201528383A (zh) 2015-07-16
TWI545658B true TWI545658B (zh) 2016-08-11

Family

ID=53443226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103125965A TWI545658B (zh) 2014-01-08 2014-07-30 閘極結構及其通道之形成方法

Country Status (3)

Country Link
US (2) US9590090B2 (zh)
DE (1) DE102014118961B4 (zh)
TW (1) TWI545658B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI839471B (zh) * 2019-03-29 2024-04-21 美商英特爾股份有限公司 具有鍺奈米線通道結構的環繞式閘極積體電路結構

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984918B2 (en) 2015-12-31 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481209B1 (ko) 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
WO2008039495A1 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Tri-gate field-effect transistors formed by aspect ratio trapping
US8062963B1 (en) * 2010-10-08 2011-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a semiconductor device having an epitaxy region
US8598675B2 (en) * 2011-02-10 2013-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. Isolation structure profile for gap filling
US9761666B2 (en) 2011-06-16 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel field effect transistor
US8624326B2 (en) * 2011-10-20 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
WO2013101004A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Contact techniques and configurations for reducing parasitic resistance in nanowire transistors
US8557646B2 (en) 2012-03-01 2013-10-15 Rexchip Electronics Corporation Method for fabricating a vertical transistor
US8680576B2 (en) 2012-05-16 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device and method of forming the same
US8765563B2 (en) * 2012-09-28 2014-07-01 Intel Corporation Trench confined epitaxially grown device layer(s)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI839471B (zh) * 2019-03-29 2024-04-21 美商英特爾股份有限公司 具有鍺奈米線通道結構的環繞式閘極積體電路結構
US11978784B2 (en) 2019-03-29 2024-05-07 Intel Corporation Gate-all-around integrated circuit structures having germanium nanowire channel structures

Also Published As

Publication number Publication date
DE102014118961B4 (de) 2024-06-27
US9590090B2 (en) 2017-03-07
US20170162720A1 (en) 2017-06-08
DE102014118961A1 (de) 2015-07-09
TW201528383A (zh) 2015-07-16
US20150194497A1 (en) 2015-07-09
US10276725B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
US20060258116A1 (en) Shallow trench isolation
US9793364B2 (en) Substrate contact having substantially straight sidewalls to a top surface of the substrate
US20170194424A1 (en) Seamless Gap Fill
US10886165B2 (en) Method of forming negatively sloped isolation structures
US10622441B2 (en) Semiconductor apparatus and manufacturing method for same
US20160314969A1 (en) Manufacturing method for forming semiconductor structure
JP2008227360A (ja) 半導体装置の製造方法
US20140273480A1 (en) Method for producing a substrate provided with edge protection
US11329160B2 (en) FinFET gate structure
US20200006529A1 (en) Method for manufacturing isolation structure for ldmos
TWI545658B (zh) 閘極結構及其通道之形成方法
TWI786454B (zh) 半導體裝置的形成方法
CN106856189B (zh) 浅沟槽隔离结构及其形成方法
US10522619B2 (en) Three-dimensional transistor
US8269307B2 (en) Shallow trench isolation structure and method for forming the same
TWI546891B (zh) 半導體裝置及其形成方法
JP6009192B2 (ja) 半導体装置の製造方法
KR100979711B1 (ko) 반도체장치의 트렌치 갭필 방법
CN105826232A (zh) 半导体结构的形成方法
US8765575B2 (en) Shallow trench forming method
US20150243512A1 (en) Method of manufacturing semiconductor device
JP5401818B2 (ja) 半導体装置の製造方法
CN105826234A (zh) 半导体结构的形成方法
KR20090063656A (ko) 소자 분리막 형성 방법
JP2010093158A (ja) 半導体装置の製造方法