TWI537005B - 抗病毒藥劑之目標細胞內投遞 - Google Patents

抗病毒藥劑之目標細胞內投遞 Download PDF

Info

Publication number
TWI537005B
TWI537005B TW103103269A TW103103269A TWI537005B TW I537005 B TWI537005 B TW I537005B TW 103103269 A TW103103269 A TW 103103269A TW 103103269 A TW103103269 A TW 103103269A TW I537005 B TWI537005 B TW I537005B
Authority
TW
Taiwan
Prior art keywords
virus
receptor
drug
conjugate
crm197
Prior art date
Application number
TW103103269A
Other languages
English (en)
Other versions
TW201417832A (zh
Inventor
派特 價普 蓋拉德
Original Assignee
to BBB控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by to BBB控股公司 filed Critical to BBB控股公司
Publication of TW201417832A publication Critical patent/TW201417832A/zh
Application granted granted Critical
Publication of TWI537005B publication Critical patent/TWI537005B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

抗病毒藥劑之目標細胞內投遞
本發明是有關於目標藥物投遞。本發明是有關於抗病毒藥劑的接合物,所述抗病毒藥劑的接合物選擇性地包括於醫藥學上可接受之載體中,且具有介導內飲作用或轉胞飲作用之受體的配位體。所述接合物用於治療或預防病毒感染以及相關病狀之方法中。
病毒為可感染有機體細胞之微觀粒子。病毒僅可藉由感染宿主細胞而複製,故不能自行複製。簡單來看,病毒由包含於保護性蛋白質外殼(稱作衣殼)內之遺傳物質DNA以及/或RNA組成。病毒經由與特異性受體結合而連接至細胞表面上,以進入細胞中。隨後,病毒藉由直接與細胞膜融合(使用細胞穿透肽)或經由內飲囊泡而被細胞攝取。病毒使用宿主細胞的機制以及代謝而藉由溶解以及/或溶源性週期進行複製。經釋放的病毒粒子可經由直接接觸(通常經由體液)或經由載體而在宿主之間傳遞。在水性環境中,病毒自由漂浮於水中。
目前,治療病毒病狀的方法相當有限。其中,抗病毒療 法在病毒進入細胞前靶向病毒(如在被動免疫(亦即,抗體療法)與主動免疫或疫苗接種之情況下)或干擾病毒之細胞內攝取以及/或複製週期,後者可藉I型干擾素以及其誘導物增強身體之天然抗病毒機制。
抗病毒藥物為了能到達其細胞內目標,其需要穿過親脂性細胞膜以進入親水性細胞質中。上述的親脂性與親水性之間的轉運為抗病毒藥物之設計以及投遞構成挑戰所需克服的問題。
目前有效且已市售的細胞內活性化合物類別之抗病毒藥物(如核苷類似物、蛋白酶抑制劑以及核酸基藥物)為親水性藥物且因此通常細胞內攝取效率極差,但由於其具有良好的藥物動力學以及安全性,故其暴露於生物體系統中無安全上疑慮。在一些情況下,此等藥物經由內源性攝取載體(諸如核苷或陰離子轉運體)而選擇性地積聚於具有高表現量的此等攝取載體之細胞以及器官中。然而,上述現象可能妨礙抗病毒藥物在目標細胞(亦即遭病毒感染之細胞)之細胞內區室中達到有效濃度,以及/或在具有高表現量的此等攝取載體之細胞以及器官中呈現劑量限制性毒性。
增加藥物之親脂性將使得其更加分配於富含脂質之膜中以及對可藥物誘導之多藥物流出泵之親和性增大,兩者均導致藥物之胞內濃度降低且可變,以及增大由藥物劑量造成的系統性毒性的可能性。
投與非磷酸化形式之藥物可改良藥物之細胞進入性,因 為細胞膜對磷酸化藥物之透過性較差。隨後,藥物可藉由胸苷激酶將其磷酸化以形成活性形式。然而,組織(包括中樞神經系統(CNS))可進行非特異性的藥物攝取。此外,可能需花費長達4週給藥時間才能達到藥物之穩態血漿含量。以目前療程而言,在24-48週中,每日須投與高劑量(每天800mg-1200mg)。這樣的療程對於非慢性病狀(諸如(亞)急性病毒誘發疾病)而言過遲。再者,在此等治療中通常有毒性上的考量,因其最常見的副作用為溶血性貧血或腎損害,故在某些患者中需要減少劑量或停用,以降低上述的不良反應。事實上,即使使用活體外檢定來確定此等藥物對特定病毒具有效用,但使用此等藥物且達到持續的抗病毒反應的患者至多為50%-60%。
總之,在抗病毒治療以及療法中,需要在適當時期內向所需部位投遞有效量之藥物,同時使副作用最小。而向具有障壁保護之部位(諸如中樞神經系統(CNS)、視網膜以及睾丸)適時投遞抗病毒藥物為一大挑戰。
目前的醫療然未能減少罹患嚴重致殘性或威脅生命之神經病症或中樞神經系統(CNS)病症(如病毒性腦炎)之迅速成長且已經受治療之(衰老)患者群體。因為大多數藥物都難以穿越血腦障壁。腦為人體中最複雜且最敏感之器官,而神經元根據其周圍所存在的離子與神經傳遞素之間的平衡而作用,但有許多內源性以及外源性潛在的神經毒性化合物不斷地威脅腦部中上述的平衡。正如防火牆保護電腦免於來自網際網路之潛在有害侵入者 一樣,腦部血管內的生理性與功能性障壁用以保護神經元。此等障壁藉由將潛在的神經毒性化合物(包括血漿蛋白質、細胞因子、抗體、藥物、細菌以及病毒)自血液以及腦部排除、流出以及代謝而進行保護。此所謂血腦障壁(BBB)之特徵在於覆蓋腦中最小血管(毛細管)之獨特特化緊密內皮細胞層。然而,為攝取基本營養物,血腦障壁具有特殊載體系統以及攝取受體。正如電腦防火牆具有與網際網路通信之專用端口一樣。因為幾乎每一神經元皆由其特有毛細管覆蓋,所以向腦部投遞藥物之最有效途徑將經由此等毛細管達成。事實上,人腦中毛細管之總長度為驚人的(約600km),對於藥物之有效交換而言,其具有相當大的表面積(約20m2)。因此目前市售之CNS藥物通常為極小且有效的水溶性化合物(約300Da)或高脂質水溶性化合物,以便此等化合物可藉由擴散穿越血腦障壁。然而,強親脂性藥物之主要侷限在於此等化合物的類藥物性質差,其通常為藥物流出轉運體的強受質且通常存在劑量限制性毒性。或者,市售小分子藥物模擬攝取載體之內源性受質(例如,帕金森(Parkinson)藥物左旋多巴(L-dopa)使用胺基酸載體來穿越血腦障壁)。市面上尚無以特異性攝取受體為靶向的CNS藥物。大部分用於治療神經病症(如中風、偏頭痛以及MS)之市售藥物實際上是以腦外部為目標(例如腦脈管系統或免疫系統)。與小分子不同,生醫藥物不太可能藉由進行化學改質來增強其穿過血腦障壁之透過性。此等化合物目前是藉由對患者具侵入性且有害的技術來投遞,如直接以及局部定向注射、鞘 內輸液以及甚至(藥理學)破壞血腦障壁。由於此等技術具有嚴重損傷神經的後果,故此等技術僅獲准用於特定威脅生命之疾病中。此外,局部投藥的方式無法在整個人腦內有效地投遞藥物。因此,極需創新性的CNS藥物投遞技術。
此外,至今此等方法仍無法投遞許多新穎的安全性CNS藥物。簡要概括而言,首先,目前市售之“天然”CNS活性藥物可能替代其他CNS,其中,根據先進的藥物化學,已建立(電腦模擬)可提供新穎CNS藥物的CNS透過性化合物篩檢文庫。其次,正根據病毒載體以及肽載體開發出許多細胞透過性載體。第三,正研究血腦障壁繞過技術(如定向注射、ICV/鞘內輸液泵、封裝藥物產生單元、經鼻投藥以及吸入器)以向腦中(局部)投遞(生物醫學)藥物。第四,對於小分子(包括RMP-7、滲透性破壞以及藥物流出泵(P-醣蛋白)抑制劑)而言,藉由突破血腦障壁以增加腦對其吸收的技術均已在臨床試驗中經廣泛研究,儘管相當有效但基於安全性考慮而被迫放棄。再者,對具有潛力的CNS藥物進行化學改質/調配(如合成血腦障壁透過性前藥或將藥物脂質化)為可增強小分子CNS藥物之腦投遞的策略。此等技術主要僅改變藥物在體內之分佈,同樣的其能增加腦的攝取。如此一來可能增大對周邊產生副作用之可能性。與小分子不同,生物醫學藥物不太可能進行化學改質來增強其穿過血腦障壁之透過性(但陽離子化除外)。然而,由於此不利於血腦障壁之神經保護性性質,且增加的吸附性介導之內飲作用(肽載體所用之作用機制)以及 陽離子化可導致神經毒性副作用。其他技術對患者而言效果有限或因有害而僅允許應用於選定威脅生命之疾病中。儘管選定CNS適應症無疑將自此等方法獲益,但藥物最佳是可在不破壞神經保護性血腦障壁之情況下,藉由靶向腦中毛細管上內源性內化攝取(轉運)受體而穿越血腦障壁進行特異性且廣泛分佈之投遞。
目前市面上尚無應用CNS藥物靶向技術的藥物。但有許多根據攝取載體(如由左旋多巴所用)之內源性受質所開發的目標小分子CNS藥物。然而,由於此等攝取載體可容許的內源性受質的化學改質程度相當小,故此方法僅適用於少數且不可預測數目之潛在CNS藥物。
本發明之一目的在於提供一種載體(諸如含有藥物以及基因之大蛋白質以及脂質體),其可穿越細胞膜且穿越血液-組織障壁(諸如血腦障壁),以進行安全、有效且通用之CNS藥物靶向方法。
如本文中所用之術語“寡核苷酸”以及“聚核苷酸”包括能夠以常規單體-單體相互作用模式(例如核苷-核苷)(諸如沃森-克里克(Watson-Crick)型鹼基配對、胡斯汀(Hoogsteen)型或反胡斯汀型鹼基配對或其類似作用)之方式與目標聚核苷酸特異性結合之天然或經修飾單體或鍵聯(包括去氧核苷、核苷、其α-向差異構形式、聚醯胺核酸以及其類似物)之線性寡聚物以及聚合物。通常單體藉由磷酸二酯鍵或其類似物連接以形成大小在幾 個單體單元(例如3-4)至數百個單體單元之範圍內之寡核苷酸。當寡核苷酸由一串字母(諸如“ATGCCTG”)表示時,應瞭解除非另外說明,否則核苷酸自左至右為5'->3'次序且“A”表示去氧腺苷,“C”表示去氧胞苷,“G”表示去氧鳥苷,且“T”表示胸苷。磷酸二酯鍵之類似物包括硫代磷酸酯、二硫代磷酸酯、硒代磷酸酯、二硒代磷酸酯、苯胺硫代磷酸酯、苯胺磷酸酯(phosphoranilidate)、氨基磷酸酯、N3'→P5'氨基磷酸酯以及其類似物。聚核苷酸可實質上具有任何長度,通常約10個核苷酸至約1×109個核苷酸或更大。如本文中所用,“寡核苷酸”經定義為長度為4至100個核苷酸之聚核苷酸。因此,寡核苷酸為聚核苷酸之子集。
如本文中所用,術語“特異性結合”意謂與非特異性相互作用顯著不同之結合。舉例而言,可藉由測定與對照分子(配位體)之結合相比分子(配位體)之結合來量測特異性結合,所述對照分子(配位體)通常為不具有結合活性之類似結構之分子,例如缺乏特異性結合序列之類似大小之肽。若配位體具有比對照配位體顯著較高之受體親和性,則存在特異性結合。可藉由(例如)與已知與目標結合之對照配位體之競爭來測定結合特異性。如本文中所用,術語“特異性結合”包括低親和性與高親和性特異性結合。可藉由(例如)具有至少約10-4M之Kd之低親和性靶向劑來顯示特異性結合。例如,若受體具有一個以上配位體結合位點,則具有低親和性之配位體可適用於靶向微血管內皮。特異 性結合亦可由高親和性配位體(例如具有至少約10-7M、至少約10-8M、至少約10-9M、至少約10-10M之Kd之配位體)顯示,或可具有至少約10-11M或10-12M或更大之Kd。低親和性與高親和性靶向配位體適於併入本發明之接合物中。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1繪示CRM197-FITC在LLC-PK1細胞中之受體特異性攝取以及細胞(周)核內體的定位之代表圖。
圖2繪示負載RBV之CRM197-PEG-脂質體(經Rho-PE標記)於LLC-PK1細胞中之受體特異性攝取以及細胞(周)核內體定位之代表圖。
圖3繪示在BCEC中,麩胱甘肽-PEG-脂質體(經Rho-PE標記)之攝取之代表圖。
圖4繪示在倉鼠的單一靜脈內快速注射CRM197-FITC接合物90分鐘後,CRM197-FITC(以及與HRP-FITC相比)之受體特異性靶向所示倉鼠組織以及器官之代表圖。
圖5繪示在對倉鼠進行連續8天的經靜脈每日快速注射CRM197-FITC接合物的最後一日注射的24小時後,CRM197-PEG-脂質體(以及與對照PEG-脂質體相比)之受體特異性靶向所示倉 鼠組織以及器官之代表圖。
圖6繪示在對倉鼠進行連續9天的經靜脈每日快速注射CRM197-FITC接合物的最後一日注射的24小時後,麩胱甘肽-PEG-脂質體(以及與對照PEG-脂質體相比)之受體特異性靶向所示倉鼠組織以及器官之代表圖。
本發明是基於此機制(安全、內源性(無毒)轉運機制,稱作受體介導之內飲作用)來載運治療性部分(諸如含有藥物以及基因之大蛋白質以及脂質體)穿越細胞膜或穿越血液-組織障壁(諸如血腦障壁),以進行(例如)其腦部投遞。多種已確定且熟知之內化受體存在於供本發明之實施例使用之細胞以及血腦障壁上。此等受體包括(但不限於)硫胺轉運體、α(2,3)-唾液酸醣蛋白受體、運鐵蛋白受體、清道夫受體(scavenger receptor)、LDL受體、LRP1B、LRP2、DTR、胰島素受體、IGF受體、瘦素(leptin)受體、甘露糖6-磷酸酯受體。因此,本發明關於一種特異性投遞藥物至細胞且穿越血腦障壁之安全且有效之方式,其是在不破壞神經保護性血腦障壁之情況下藉由靶向腦中毛細管上內源性內化攝取(轉運)受體而達成。
在第一態樣中,本發明關於一種接合物,其包含:a)目標細胞上之受體之配位體,其中所述受體為介導內飲作用以及轉胞飲作用中之至少一者之受體;以及b)抗病毒藥劑以及包含抗病毒藥劑之醫藥學上可接受之載體中的至少一者;其中a)中之配位體較佳與b)中之 藥劑以及載體中之至少一者接合。
“接合物”在本文中定義為由結合在一起之兩種實體組成。兩種實體較佳藉由非特異性或特異性蛋白質-蛋白質相互作用、藉由共價鍵結、藉由非共價鍵結或藉由配位化學鍵結接合。在本發明之上下文中,第一實體可為如下文所定義之抗病毒藥劑或包含抗病毒藥劑之醫藥學上可接受之載體,而第二實體通常將為如下文所定義之目標細胞上之受體的配位體。
抗病毒藥劑
本發明之接合物包含至少一種抗病毒藥劑。“抗病毒藥劑”(或抗病毒化合物或藥物)在本文中定義為殺死病毒或抑制其複製以抑制其增殖以及生殖能力之藥劑。在本發明之一接合物中,抗病毒藥劑為細胞內活性抗病毒藥劑。“細胞內活性抗病毒藥劑”在本文中理解為意謂:與能夠中和細胞外循環之病毒粒子的中和抗體的作用相反,其為用以抑制病毒感染且較佳抑制病毒於其感染細胞內進行複製的藥劑。通常細胞內活性抗病毒藥劑干擾病毒複製機制中之必需步驟。
用於併入本發明之接合物中之較佳的細胞內活性抗病毒藥劑為化學抗病毒藥劑。化學抗病毒藥劑在本文中理解為至少部分有機、通常可藉由化學合成獲得且不包含寡核苷酸或聚核苷酸的特定化學分子、通常為較小的非聚合物分子(例如小於2kDa)。用於併入本發明之接合物中之較佳化學抗病毒藥劑為作為核苷類似物、逆轉錄酶抑制劑、蛋白酶抑制劑以及神經胺酸酶抑制劑中之至少一者之藥劑。用於併入本發明之接合物中之化學抗病毒藥劑之適合實例包括(例如) 核苷酸逆轉錄酶抑制劑(NtRTI)福韋酯(tenofovir disoproxil fumarate);非核苷逆轉錄酶抑制劑(NNRTI)奈韋拉平(nevirapine)、地拉韋啶(delavirdine)以及依發韋侖(efavirenz);蛋白酶抑制劑沙奎那韋(saquinavir)、利托那韋(ritonavir)、茚地那韋(indinavir)、奈非那韋(nelfinavir)、安普那韋(amprenavir)、洛匹那韋(lopinavir)、地瑞那韋(darunavir)以及阿紮那韋(atazanavir);神經胺酸酶抑制劑帕拉米韋(peramivir)、紮那米韋(zanamivir)(達菲(Tamiflu))以及奧司他韋(oseltamivir)(瑞樂沙(Relenza));三環癸胺(amantadine)以及金剛乙胺(rimantadine);以及阿德福韋二吡呋酯(adefovir dipivoxil)、泛昔洛韋(famciclovir)、噴昔洛韋(penciclovir)、咪喹莫特(imiquimod)、多可沙諾(docosanole)、膦甲酸(foscarnet)(PFA)、馬立巴韋(maribavir)、BAY 38-4766、GW275175X、MVE-1、MVE-2、AM-3、AM-5、mannozym、溴匹立明(bropirimine)、3,6-雙(2-對哌啶基乙氧基)吖啶三鹽酸鹽、苯二胺(phenyleneamine)、2-胺基-5-鹵基-6-芳基-4(3H)-嘧啶酮、2-胺基-5-溴-6-甲基-4(3H)-嘧啶酮、7,8-二去氫-7-甲基-8-硫酮基鳥苷、7-去氮鳥苷、褪黑激素(melatonin)、8-氯-7-去氮鳥苷、CL246,738、甘草甜素(glycyrrhizin)、普來可那利(pleconaril)、巴那尼(bananin)、碘巴那尼(iodobananin)、凡尼巴那尼(vanillinbananin)、安撒巴那尼(ansabananin)、由巴那尼(eubananin)、腺嘌呤巴那尼(adeninobananin)、氯喹(cloroquine)、纈胺黴素(valinomycin),以及如WO2006119646、WO2005107742、EP1736478、EP1707571、WO2004062676、EP1674104、WO2006060774、WO2006121767中所詳述之化合物。
用於併入本發明之接合物中之適合抗病毒核苷類似物包括具有改變之糖、鹼基或兩者之核苷類似物。適合核苷類似物之實例包括(例如)碘苷(idoxuridine)、阿昔洛韋(aciclovir)(無環鳥苷(acyclovir)或無環鳥苷(acycloguansoine))、伐昔洛韋(valaciclovir/valacyclovir)、更昔洛韋(ganciclovir)、纈更昔洛韋(valganciclovir)、腺苷阿拉伯糖苷(adenosine arabinoside)(AraA、阿糖腺苷(Vidarabine))、單磷酸阿糖腺苷(AraA monophosphate)、胞嘧啶阿拉伯糖苷(cytosine arabinoside)(AraC、阿糖胞苷(cytarabine))、單磷酸阿糖胞苷(cytosine arabinoside monophosphate,Ara-CMP)、疊氮基胸苷(azidothymidine,AZT)、1-β-D-呋喃核糖基-1,2,4-三唑-3-甲醯胺(病毒唑(ribavirin)或RBV)、5-乙炔基-1-β-D-呋喃核糖基咪唑-4-甲醯胺(EICAR)、EICAR-單磷酸酯、利巴咪定(ribamidine)、2',3',5'-乙酸病毒唑、5'-胺基磺酸病毒唑、5'-三磷酸病毒唑、5'-單磷酸病毒唑、ZX-2401、黴酚酸(mycophenolic acid)、噻唑呋啉(tiazofurin)、5'-單磷酸噻唑呋啉、2',3',5'-乙酸噻唑呋啉、7-硫-8-側氧基鳥苷、硒唑呋喃(selenazofurin)、吡唑呋喃菌素(pyrazofurin)、呋喃並萘醌(furanonaphthoquinone)衍生物、美泊地布(merimepodib,VX497)、偉拉咪定(viramidine)、6-氮尿苷(6-azauridine)、9-(2-膦醯基甲氧基乙基)鳥嘌呤(PMEG)、(S)-9-(3-羥基-2-膦醯基甲氧基丙基)腺嘌呤(HPMPA)、9-(2-膦醯基甲氧基乙基)腺嘌呤(PMEA)、9-(2-膦醯基甲氧基乙基)-2,6-二胺基嘌呤(PMEDAP)、雙去氧腺苷(didenosine,DDI)、雙去氧胞苷(dideoxycytosine,DDC)、司他夫定(stavudine,d4T)、速汰滋(Epivir,3TC)、阿巴卡韋(abacavir, ABC)、碘-去氧尿苷(DU)以及溴乙烯基去氧尿苷(BVDU或溴呋啶(brivudin))、(S)-1-(3-羥基-2-膦醯基甲氧基丙基)胞嘧啶(HPMPC、西多夫韋(cidofovir)、CDV或Vistide®)、環狀HPMPC、十六烷基氧基丙基-西多夫韋(HDP-CDV或CMX001)、3-去氮鳥嘌呤(3-deazaguanine,3-DG)、3-去氮尿苷(3-deazauridine)、9-(S)-(2,3-二羥基丙基)腺嘌呤((S)-DHPA)、齊多夫定(zidovudine)、去羥肌苷(didanosine)、紮西他濱(zalcitabine)、司他夫定、拉米夫定(lamivudine)、阿巴卡韋以及安卓西他賓(emtricitabine)。
在本發明之接合物之另一實施例中,抗病毒藥劑為包含寡核苷酸或聚核苷酸之藥劑。包含寡核苷酸或聚核苷酸之抗病毒藥劑可為DNA疫苗、反義寡核苷酸、核糖核酸酶、催化性DNA(DNA酶)或RNA分子、siRNA或編碼其之表現構築體中之任一者。DNA疫苗在本文中理解為意謂包含編碼病毒抗原之序列之核酸構築體,其能夠在將構築體引入欲經DNA疫苗接種之宿主有機體之細胞中之後表現抗原。
包含寡核苷酸或聚核苷酸之適合細胞內活性抗病毒藥劑包括(例如)DNA疫苗(US20050163804)、反義寡核苷酸(ISIS 13312、ISIS 2922(福米韋生(fomivirsen))、ISIS 3383、ISIS 5320、GEM 132)、核糖核酸酶、催化性DNA(DNA酶)或RNA分子(如(但不限於)WO2006064519、WO2005085442中所詳述)、siRNA或編碼其之質體(如例如(但不限於)WO2006042418、WO2006041290、WO2006074346、WO2006062596、WO2006110688、WO2005056021、WO2005076999、WO2006121464、WO2005019410、WO03079757、WO2006096018、 WO2006129961、WO2006031901、WO02081494、WO2005028650、WO03070750中所詳述),或其組合以及其類似物。
根據本發明適用之較佳抗病毒藥劑為特異性藥劑或對病毒感染細胞具有高特異性且同時對未感染的宿主細胞的毒性最小之藥劑。藥劑對感染細胞的特異性可用“選擇性指數”來表示,其在本文中定義為抑制50%的目標細胞生長的濃度(CC50)除以對50%的病毒具有毒性的有效濃度(EC50)。可根據選擇性指數而選擇使用最有利的抗病毒劑。在一較佳實施例中,選擇性指數為約1至約100000、更佳約10至約100000、甚至更佳約100至約100000、最佳約1000至約100000。因此,選擇性指數較佳為至少約1、10、100、1000、10000或100000。
在一較佳實施例中,根據本發明使用之抗病毒藥劑為病毒唑、西多夫韋、更昔洛韋、阿昔洛韋、紮那米韋以及奧司他韋中之至少一者。
病毒唑
病毒唑(最初亦稱作三氮唑核苷(Virazole);Copegus®;Rebetol®;Ribasphere®;Vilona®;Virazole®,亦通稱為Sandoz、Teva、Warrick)為不存在自然界中的合成化學劑。其於1970年首先由ICN Pharmaceuticals,Inc.(後來之Valeant Pharmaceuticals International)合成。發現病毒唑為系統性ICN研究中具有部分抗病毒以及抗腫瘤活性之能力的合成核苷。此發現與已知天然存在之類嘌呤核苷抗生素(如焦土黴素(showdomycin)、助間型黴素(coformycin)以及吡唑黴素 (pyrazomycin))具有抗病毒活性(20世紀60年代)有一定程度的關係。上述藥劑在臨床使用中有過大的毒性(且其抗病毒活性可能為此毒性的附加效果),但其引起醫藥化學家對抗病毒以及抗代謝化學治療劑的興趣。1972年,據報導,病毒唑對培養細胞以及動物中之多種RNA以及DNA病毒具活性,且無不當毒性。病毒唑降低小鼠由於A型以及B型流感菌株所導致的死亡率,且ICN最初計劃以抗流感藥物形式銷售之。然而,針對感染流感之人類所進行的試驗結果是混亂的,且FDA最終未批准病毒唑用於人類中之此適應症。儘管ICN於1980年經允許以吸入劑形式銷售病毒唑,以用於兒童呼吸道融合病毒(RSV)感染,但此適應症在美國的市場較小。至1998年,口服病毒唑最終經FDA批准作為C型肝炎之組合治療(與干擾素一起)時,ICN所具有的與病毒唑相關的專利權已過期,且(不管隨後專利爭議)病毒唑已基本上變為普通藥物。
病毒唑為對多種DNA以及RNA病毒具有活性的抗病毒藥物。其為一種核苷抗代謝物藥物,可干擾病毒的遺傳物質進行複製。儘管其無法有效地毒殺所有病毒,但病毒唑以其為應用範圍廣泛(包括抵抗流感、黃病毒(flavivirus)之重要活性)以及可應用於多種病毒性出血熱的小分子而著稱。病毒唑為由細胞激酶(其將病毒唑變為5'三磷酸核苷酸)活化之前藥。病毒唑以此形式干擾與病毒繁殖相關之RNA代謝之方面。不希望受限於任何理論,已關於此提出多種機制,但此等中無一者經證實。一種以上機制可具活性。在美國,將病毒唑之口服(膠囊或錠劑)形式與干擾素藥物組合用於治療C型肝炎。使 用氣霧劑形式來治療兒童之呼吸道融合病毒相關疾病。在墨西哥,病毒唑(“三氮唑核苷”)銷售以用於抵抗流感。
病毒唑之主要的嚴重不良作用為溶血性貧血,其可使心臟疾病惡化。此作用具劑量依賴性且有時可藉由降低劑量來抵消,但關於不良作用之機制尚未知。病毒唑實質上並非併入DNA中,而是對DNA的合成具有劑量依賴性抑制作用,以及對基因表現具有其他作用。不希望受限於任何理論,但其作用可能與其對非靈長類動物造成致畸效應之原因。雖然病毒唑在狒狒中使用未發現上述缺點,但並不代表在人類中的安全性。因此,在任一搭配物之治療期間推薦兩種同時形式之出生控制且其在治療後持續6個月。已懷孕或計劃懷孕之女性不建議服用病毒唑。關於致畸性而言,尤其關注病毒唑在體內之長半衰期。紅血細胞(紅血球)可聚集藥物且無法將其代謝,故其堆積需直至所有紅細胞已轉換才完全消除,估計過程耗時長達6個月。因此理論上,在藥物過程結束後,病毒唑對生產的危險性長達6個月。在美國如今藥物包裝資訊材料反映此警告。
實驗資料指示病毒唑對於對抗許多病毒(包括(禽)流感、B型肝炎、小兒麻痹、麻疹以及天花)具有有用活性。病毒唑為治療多種病毒性出血熱(包括埃博拉病毒(Ebola virus)、馬堡病毒(Marburg virus)、拉薩熱(Lassa fever)、克里米亞-剛果出血熱(Crimean-Congo hemorrhagic fever)以及漢坦病毒(Hantavirus)感染)的唯一療法。病毒唑在黃熱病倉鼠模型中具活性,考慮到黃熱病與作為黃病毒科(flaviviridae)之C型肝炎病毒之關係,故所述發現並不驚人。病毒唑 對其他重要黃病毒(諸如西尼羅河病毒(West Nile virus)以及登革熱(dengue fever))具活性。
病毒唑之甲醯胺基團根據其旋轉而類似於腺嘌呤或鳥苷,因此,當病毒唑併入RNA中時,其與胞嘧啶或尿苷同樣良好配對,誘發RNA病毒中RNA依賴性複製之突變。此超突變對RNA病毒可為致命的。另外,5'單磷酸病毒唑、5'二磷酸病毒唑以及5'三磷酸病毒唑均作為某些RNA病毒(除反轉錄病毒外)之病毒RNA依賴性RNA聚合酶的抑制劑。此等機制中無一者說明病毒唑對許多DNA病毒之效應,其確實造成迷惑。5'-單磷酸病毒唑抑制細胞次黃嘌呤核苷單磷酸酯脫氫酶,進而耗盡細胞內GTP池。不希望受限於任何理論,此機制可用於說明藥物之一般細胞毒性以及抗DNA複製作用(亦即其毒性)以及對DNA病毒複製之一些效應。病毒唑為一些病毒之RNA鳥苷醯基轉移酶以及(鳥嘌呤-7N-)-甲基轉移酶的抑制劑,且此可有助於產生病毒mRNA轉錄物的缺陷性5'-帽結構以及因此造成某些DNA病毒(諸如疫苗病毒(複合DNA病毒))的無效病毒轉譯。因此,將病毒唑併入mRNA轉錄物之5'末端中相似於細胞mRNA之7-甲基鳥苷末端帽,故造成此等轉錄物無法進行轉譯。此為細胞毒性作用,因而病毒唑在用於治療時的濃度似乎不重要。用以處理病毒唑之mRNA轉錄物的細胞酶以及病毒酶之間的調控可以影響病毒(包括DNA病毒)的轉譯,故可能為病毒唑的作用機制。最後,已知病毒唑經由輔助將宿主T細胞表型自2型轉換為1型而增強宿主T細胞介導之抵抗病毒感染之免疫性。此可解釋當在不干擾素存在下使用病毒唑時,雖不確定病毒唑干擾病毒 複製之劑量,病毒唑仍具有抵抗一些病毒(諸如C型肝炎)之抗病毒活性。
病毒唑可能在胃腸道中由核苷轉運體吸收。吸收率為約45%,且脂肪膳食能適當地增加其吸收(至約75%)。一旦病毒唑處於血漿中,其亦可由核苷轉運體轉運穿過細胞膜。在每日投藥若干週後,病毒唑廣泛分佈於所有組織(包括CSF以及腦)中。病毒唑之藥物動力學受制於其磷酸酯化形式在細胞(尤其紅血細胞(RBC))內部之截留,當所述細胞缺乏移除磷酸酯基的酶時,能獲得高濃度之藥物。大多數將藥物轉化為具有活性的核苷酸形式的激酶是腺嘌呤激酶。此激酶在病毒感染細胞中具有較高活性。病毒唑之分佈體積較大(2000L/kg)且截留藥物之時間長度隨著不同組織而極大改變。多重劑量在體內之平均半衰期為約12天(在單一劑量後30分鐘),但極長期動力學受制於RBC之動力學(半衰期40天)。RBC在整個細胞壽命中儲存病毒唑,當老細胞在脾中分解時,RBC將病毒唑釋放入身體系統中。約三分之一所吸收之病毒唑以未改變形式排泄入尿液中,且其餘以去核糖基化鹼1,2,4-三唑3-甲醯胺形式以及其氧化產物1,2,4-三唑3-甲酸形式排泄入尿液中。
西多夫韋
西多夫韋(HPMPC或維泰寧(Vistide))為對多種DNA病毒具有廣泛性活性之無環核苷膦酸酯,所述DNA病毒包括疱疹病毒(1型單純疱疹病毒(HSV-1)以及2型單純疱疹病毒(HSV-2)、水痘-帶狀疱疹病毒(VZV)、巨細胞病毒(CMV)、艾伯斯坦-巴爾病毒 (Epstein-Barr virus;EBV)、人類疱疹病毒6型(HHV-6)以及馬以及牛疱疹病毒)、乳多空病毒(人類多瘤病毒以及人類乳頭瘤病毒(HPV))、腺病毒、虹彩病毒、肝病毒以及痘病毒。西多夫韋已證實可有效抵抗不同細胞培養物系統以及/或動物模型中之此等病毒。西多夫韋之作用機制是基於其活性細胞內代謝物-二磷酸化HPMPC衍生物(HPMPCpp)與病毒DNA聚合酶之間的相互作用。已證明HPMPCpp藉由在DNA鏈之3'端處併入兩個連續HPMPC分子以終止DNA鏈,而阻斷CMV DNA合成。
西多夫韋提供延長的抗病毒作用,其持續若干天或若干週,因此可間隔長時間給藥(亦即每週或每兩週)。此延長之抗病毒作用可能是由於HPMPC代謝物(尤其HPMPCp-膽鹼加合物)具有極長的細胞內半衰期。在臨床研究中,在靜脈內注射(3mg/kg或5mg/kg,每隔一週)與玻璃體內注射西多夫韋(每隻眼睛單次劑量為20微克)之後,已證實其可有效治療CMV視網膜炎。初始臨床試驗亦針對全身性(靜脈內)與局部西多夫韋(1%軟膏)在治療無環鳥苷抗性HSV感染中之功效,以及局部西多夫韋(軟膏或注射劑)在治療咽部、喉部以及肛門生殖器之HPV感染中之功效。西多夫韋如今正推行用於由CMV、HSV、VZV、EBV、HPV、多瘤病毒、腺病毒以及痘病毒造成之各種感染之局部以及/或全身性(靜脈內)治療中。
有趣的是,西多夫韋為具有抵抗JC病毒活性的唯一目前市售之抗病毒藥物,所述JC病毒為免疫低落患者中PML的致病病毒,所述患者包括近來報導以那他珠單抗(Tysabri)以及美羅華(Rituxan) 之免疫抑制藥物治療之患者。西多夫韋之主要副作用為其可危害腎臟。西多夫韋在治療無環鳥苷抗性疱疹中亦顯示功效。西多夫韋可具有抗天花功效且在一定程度上用於涉及天花病例之生物恐怖事件中。
更昔洛韋
更昔洛韋(GCV)為獲准用於治療CMV疾病之第一種抗病毒藥劑,且目前仍為移植接受者之CMV感染以及CMV疾病的第一線治療藥物。GCV為2′-去氧鳥苷之無環核苷類似物。藉由病毒酶與細胞酶的多步驟作用過程中,更昔洛韋轉化為對CMV具有活性的三磷酸更昔洛韋形式。其中,初始的磷酸化是由在CMV UL97開放閱讀框架編碼中不常見的同源蛋白激酶物進行催化。細胞酶則催化三磷酸酯形式的產生。三磷酸更昔洛韋競爭性抑制由病毒DNA聚合酶(由UL54基因編碼)所催化的DNA合成,其中三磷酸更昔洛韋替代dGTP併入生長之病毒DNA鏈中,以減緩鏈延長。
更昔洛韋的口服形式吸收率極有限,在禁食情況下為約5%,在攝取食物之情況下為約8%。其在中樞神經系統中達到約50%血漿含量之濃度。約90%之血漿更昔洛韋以未改變形式於尿液中消除,視腎功能而定,其半衰期為2-6小時(在末期腎病中消除耗時24小時以上)。呈靜脈內(IV)調配物形式之GCV(Cytovene-IV®,Roche)在1989年獲准用於治療AIDS患者之CMV視網膜炎。所述IV調配物後來獲准用於預防實體器官移植物(SOT)接受者以及處於CMV疾病風險下之患有晚期HIV感染之個體的CMV疾病。
GCV之副作用包括嚴重血液學不良作用(常見不良藥物反應 (1%之患者),其包括:顆粒性白血球減少症、嗜中性白血球減少症、貧血、血小板減少症、發熱、噁心、嘔吐、消化不良、腹瀉、腹痛、胃腸脹氣、厭食症、肝酶升高、頭痛、精神混亂、幻覺、抽搐、注射部位之疼痛以及靜脈炎(由於高pH值)、發汗、皮疹、發癢、血清肌酸酐以及血尿素濃度增大以及(根據臨床前毒理學研究)可能之長期生殖毒性。在動物研究中,GCV具有致癌性與致畸性且造成精子生成缺乏症。
為解決GCV用於靜脈內投藥中留置導管等風險以及不便,開發出其口服調配物。口服GCV(250mg以及500mg GCV膠囊;Cytovene®,Roche)於1994年獲准用於治療CMV視網膜炎,但由於認為所述口服調配物之低生物可用性(約5%)不足以用於誘導療法,故其僅作為維持療法。口服GCV是維持療法以及預防之治療選擇中的一大進展。然而,由於考量其低生物可用性以及高劑量的負擔,需以每天三次(t.i.d.)方案來進行口服療程。此外,由於口服GCV可能因全身性暴露於藥物的濃度過低而導致無法充分抑制病毒以及抗藥性。為了解決溶解性差或低生物可用性之問題,開發前藥為有價值之策略。
迄今(2007年),未有抗CMV藥劑獲准用於治療CMV誘發之腦炎。然而,儘管口服GCV調配物能避免與IV投藥相關之風險以及缺點,但其仍存在血液毒性以及生殖毒性,而限制了所述療法對於嚴重感染者的功效。
阿昔洛韋
阿昔洛韋或無環鳥苷為主要用於治療單純疱疹病毒感染之 鳥嘌呤類似物抗病毒藥物。其為最常用抗病毒藥物中之一者,且以諸如Zovirax以及Zovir(GSK)之商標名銷售。阿昔洛韋被視為是抗病毒療法之新紀元的開始,因為其極具細胞選擇性且細胞毒性較低。無環鳥苷為2′-去氧鳥苷之類似物。如同GCV,無環鳥苷須在宿主細胞中在多步驟過程中經磷酸化為活化三磷酸酯形式。阿昔洛韋與先前核苷類似物之不同之處在於其僅含有部分核苷結構,糖環被開鏈結構置換。病毒胸苷激酶選擇性地將其轉化為單磷酸酯形式,其中所述病毒胸苷激酶的磷酸化作用遠比細胞胸苷激酶的磷酸化作用有效(3000倍)。隨後,細胞激酶進一步將單磷酸酯形式磷酸化為具有活性的三磷酸酯形式-三磷酸無環鳥苷(aciclo-GTP)。三磷酸無環鳥苷為極有效的病毒DNA聚合酶抑制劑;其對病毒DNA聚合酶之親和力比對細胞聚合酶之親和力高約100倍。其單磷酸酯形式亦併入病毒DNA中,使得鏈終止。亦已證明病毒酶不能將單磷酸無環鳥苷(aciclo-GMP)自鏈中移除,故得以進一步抑制DNA聚合酶之活性。三磷酸無環鳥苷在細胞內可能被細胞磷酸酯酶迅速地代謝。因此,阿昔洛韋可視作前藥,其以非活性形式(或較低活性形式)投與且在投藥後代謝為活性更高之物質。
阿昔洛韋對疱疹病毒家族中之大多數種類具活性。以活性遞減次序排列為:I型單純疱疹病毒(HSV-1)、II型單純疱疹病毒(HSV-2)、水痘-帶狀疱疹病毒(VZV)、艾伯斯坦-巴爾病毒(EBV)、巨細胞病毒(CMV)。其活性主要為針對HSV之活性,且在較小程度上為針對VZV之活性。其僅具有有限之針對EBV以及CMV之功效。 其對神經節中之潛伏病毒不具活性。CMV編碼之蛋白激酶pUL97催化此嘌呤類似物之初始磷酸化步驟,與GCV單磷酸酯一樣,所述嘌呤類似物隨後藉由宿主激酶進行二磷酸化以及三磷酸化。ACV為效率低於GCV之受質,此部分說明與GCV相比,在感染CMV的細胞中,ACV的活體外功效較差。此外,在感染細胞中,ACV與GCV顯著的不同在於ACV-TP之半衰期比GCV-TP之半衰期短4至5倍,使得活性ACV-TP在細胞內的含量較低。如同GCV,對ACV的抗藥性來自病毒DNA聚合酶或UL97基因之突變。
阿昔洛韋之水溶性較差且經口的生物可用性(10%-20%)差,因此若需要高濃度,則必需以靜脈內投藥。當經口投藥時,在1-2小時後出現峰值血漿濃度。阿昔洛韋具有高的分佈速率,僅30%為結合於血漿中之蛋白質。阿昔洛韋之消除半衰期約為3小時。其部分藉由腎小球過濾且部分藉由腎小管分泌作用經腎排泄。
與全身性阿昔洛韋療法(經口或IV)相關之常見不良藥物反應(1%之患者)包括:噁心、嘔吐、腹瀉以及/或頭痛。在高劑量下,已報導幻覺。不常見不良作用(0.1%-1%之患者)包括:激動、眩暈、精神混亂、頭暈、水腫、關節痛、喉嚨痛、便秘、腹痛、皮疹以及/或虛弱。罕見不良作用(<0.1%之患者)包括:昏迷、抽搐、嗜中性白血球減少症、白血球減少症、晶尿症、厭食症、疲乏、肝炎、史蒂芬-瓊森症候群(Stevens-Johnson syndrome)、中毒性表皮壞死以及/或過敏反應。當經靜脈內投與阿昔洛韋時,其他常見不良作用包括腦病(1%之患者)以及注射部位反應。注射調配物為鹼性(pH 11),其滲出可 造成局部組織疼痛以及刺激。已報導當經靜脈內以快速且高劑量投與阿昔洛韋時,阿昔洛韋在腎中結晶而造成腎損傷。由於阿昔洛韋可併入細胞DNA中,故其亦為染色體誘變劑,因此在懷孕期間應避免其使用。然而,其未證明造成任何致畸或致癌作用。由於低經口生物可用性,當經口投與時,阿昔洛韋之急性毒性(LD50)大於1mg/kg。已報導個別病例,其中極高(高達80mg/kg)劑量經靜脈內意外投與而未造成任何嚴重不良作用。
紮那米韋(瑞樂沙)
紮那米韋(5-乙醯胺基-4-胍基-6-(1,2,3-三羥基丙基)-5,6-二氫-4H-哌喃-2-甲酸)為用於治療以及預防A型流感病毒與B型流感病毒之神經胺酸酶抑制劑。紮那米韋為商業開發之第一種神經胺酸酶抑制劑。
其生物可用性為2%(經口)且蛋白質結合<10%。排泄是藉由可忽略之腎代謝進行且半衰期為2.5-5.1小時。儘管紮那米韋經證實為流感神經胺酸酶之有力且有效抑制劑以及活體外與活體內流感病毒複製之抑制劑,但此未必轉化為流感之成功臨床治療。在臨床試驗中,發現紮那米韋能夠將症狀緩解時間縮短1.5天,其限制條件為療法開始於症狀發作之48小時內。另一限制因素在於紮那米韋的經口生物可用性差。此意謂經口給藥為不可行的,須以非經腸途徑投藥。因此,紮那米韋是藉由吸入(為患者與療法之順應性而選擇之途徑)投與。但此投藥途徑仍為群體中眾多者所不可接受。
紮那米韋為第一種神經胺酸酶抑制劑。儘管此藥物之商業成 功有限,但在開發此類別之其他成員(包括奧塞米韋(oseltamivir)以及候選藥物RWJ-270201(I期試驗))時,在開發紮那米韋中所用之操作以及策略為重要的最初步驟。因此,在未來可開發出用於流感之更有效且有力之治療。
奧塞米韋(達菲)
奧塞米韋((3R,4R,5S)-4-乙醯胺基-5-胺基-3-(1-乙基丙氧基)-1-環己烯-1-甲酸乙酯)為用於治療以及預防A型流感病毒與B型流感病毒之抗病毒藥物。如同紮那米韋,奧塞米韋為神經胺酸酶抑制劑。其作為流感神經胺酸酶之過渡型態的類似物抑制劑,防止病毒在感染細胞中變種為新病毒。奧塞米韋亦似乎具有抵抗犬小病毒、貓瘟(feline panleukopenia)、稱作“犬舍咳”之犬呼吸道疾病症候群以及綽號為“犬流感”之新興疾病(於2005年開始感染犬之馬病毒)之活性。其用於犬小病毒以及犬流感之用途之獸醫研究正在進行,但許多收容救援群體已報導在此等疾病之早期階段中使用奧塞米韋之巨大成功。
奧塞米韋為商業開發之第一種經口活性神經胺酸酶抑制劑。其為前藥,其經肝水解為活性代謝物-奧塞米韋之游離羧酸鹽(GS4071)。其生物可用性為75%(經口),且GS4071之排泄是先藉由肝代謝再經腎進行排泄,其半衰期為6-10小時。奧塞米韋經指示用於治療年齡為至少1歲之人由於A型流感病毒以及B型流感病毒而造成之感染,且用於預防至少1歲或更大之人之流感。用於治療流感之正常成人劑量為75mg(每日兩次,歷時5天),其於症狀出現之兩天內使用,且對於兒童以及具有腎損傷之患者需降低劑量。在群體爆發期 間或在與感染個體密切接觸後,奧塞米韋可以預防性措施形式提供。對於年齡為13歲以及年齡更大之患者而言,標準預防劑量為75mg(每日一次),已證明其在6週內為安全且有效。亦已發現在至少一些患有H5N1禽流感之患者中,標準推薦劑量不完全抑制病毒複製,使得療法無效且增大病毒抗性之風險。因此,應使用更高劑量以及更長持續時間之療法來治療具有H5N1病毒之患者。其中,奧塞米韋與丙磺舒(probenecid)之共投藥可延長奧塞米韋的半衰期。丙磺舒可以減少奧塞米韋之活性代謝物被腎排泄。一研究顯示每6小時提供500mg丙磺舒使奧塞米韋之峰值血漿濃度(Cmax)與半衰期加倍,使總體全身暴露(AUC)增加2.5倍。
與奧塞米韋療法相關之常見不良藥物反應(ADR)包括:噁心、嘔吐、腹瀉、腹痛以及頭痛。罕見ADR包括:肝炎以及肝酶升高、皮疹、過敏性反應(包括過敏症)以及史蒂芬-瓊森症候群。在上市後監測中已報導各種其他ADR,其包括:中毒性表皮壞死、心律不整、抽搐、精神混亂、糖尿病惡化以及出血性結腸炎。在2004年5月,日本衛生部安全處(safety division of Japan's health ministry)命令將奧塞米韋的文獻改變為可能增加神經性以及心理性病症等不良作用,其包括:受損意識、異常行為以及幻覺。在2000年至2004年間,有多個心理病症之病例宣稱與奧塞米韋療法相關,其包括若干死亡病例。在2005年11月18日,美國食品與藥物管理局(United States Food and Drug Administration;FDA)發布關於奧塞米韋之兒科安全性之報導,其聲明無充分證據證實奧塞米韋的使用與12名日本兒童死亡(僅兩名兒童是 由於神經學問題)之間的因果關係。然而,建議在產品資訊中添加奧塞米韋療法可能造成相關的皮疹的警語。在2006年11月,關於日本兒童異常行為(包括三起由於墜落而造成的死亡)的報導,導致FDA修改警告標籤以包括精神錯亂、幻覺或其他相關行為之可能副作用。
配位體
本發明接合物中之第二種實體為目標細胞上受體之配位體,其中所述受體為介導(配位體之)內飲作用以及轉胞飲作用中之至少一種作用的受體。受體介導投遞為近來來開發之目標藥物投遞技術之一。載體上的配位體使得載體所攜帶的藥物對具有受體的細胞具有投遞藥物之高度特異性。經由使用受體介導投遞,能增強低分子量以及多肽以及核酸基治療性抗病毒藥劑對細胞以及組織的特異性靶向。此外,血腦障壁之內皮細胞以及腦實質細胞(神經元以及神經膠質)上所表現之攝取受體也能實現將目標抗病毒藥劑特異性投遞至中樞神經系統(CNS)中以治療(例如)病毒性腦炎的方式。受體介導靶向可進一步與非特異性藥物投遞系統(如蛋白質接合物、PEG化、奈米粒子、脂質體以及其類似物)組合,以改良藥物之藥物動力學以及生物分佈性質,如此一來,可顯著地以特異性的方式將藥物再導向至表現受體之細胞、組織以及器官(包括由特定血液-組織障壁保護者,如(例如)CNS、血腦障壁(BBB)、視網膜以及睾丸)上。
因此,在一實施例中,本發明接合物中之配位體為目標細胞上之內源性受體的配位體。配位體較佳為脊椎動物目標細胞之受體的配位體,更佳為哺乳動物目標細胞之受體的配位體,且最佳為人類目 標細胞之受體的配位體。配位體較佳為與受體特異性結合的配位體。配位體與受體之特異性結合較佳如上文所定義。
此項技術中已知相當多的攝取受體以及載體,甚至更大量的受體特異性配位體。根據本發明,適用之介導內飲作用以及/或轉胞飲作用之受體的較佳配位體包括(例如)以下物質的配位體或與以下物質特異性結合的配位體:硫胺轉運體、葉酸受體、維生素B12受體、去唾液酸糖蛋白受體、α(2,3)-唾液酸糖蛋白受體(具有(例如)作為受體特異性配位體之由駱駝單域抗體(sdAb)組成之FC5以及FC44奈米抗體)、運鐵蛋白-1受體以及運鐵蛋白-2受體、清道夫受體(A類或B類,I型、II型或III型,或CD36或CD163)、低密度脂蛋白(LDL)受體、LDL相關蛋白1受體(LRP1,B型)、LRP2受體(亦稱作兆蛋白(megalin)或醣蛋白330)、白喉毒素受體(DTR,其為肝素結合表皮生長因子樣生長因子(HB-EGF)之膜結合前驅物)、胰島素受體、胰島素樣生長因子(IGF)受體、瘦素受體、物質P受體、麩胱甘肽受體、麩胺酸受體以及甘露糖6-磷酸酯受體。
根據本發明,適用且與受體結合的較佳配位體包括(例如)由以下各物所構成的族群中選出的配位體:脂蛋白脂肪酶(LPL)、α 2-巨球蛋白(α 2M)、受體締合蛋白(RAP)、乳鐵傳遞蛋白、去氨普酶(desmoteplase)、組織型以及尿激酶型血漿素原活化劑(tPA/uPA)、血漿素原活化劑抑制劑(PAI-1)、tPA/uPA:PAI-1複合物、黑素運鐵蛋白(melanotransferrin)(或P97)、凝血栓蛋白1以及凝血栓蛋白2、肝脂肪酶、因子VIIa/組織因子路徑抑制劑(TFPI)、因子VIIIa、因子IXa、 A β 1-40、類澱粉蛋白β前驅蛋白質(APP)、C1抑制劑、補體C3、載脂蛋白E(apoE)、假單胞菌(pseudomonas)外毒素A、CRM66、HIV-1Tat蛋白、鼻病毒、基質金屬蛋白酶9(MMP-9)、MMP-13(膠原酶-3)、鞘脂激活蛋白(SAP)、妊娠區帶蛋白、抗凝血酶III、肝素輔因子II、α 1-抗胰蛋白酶、熱休克蛋白96(HSP-96)、血小板源生長因子(PDGF)、載脂蛋白J(apoJ或凝聚素)、與apoJ以及apoE結合之A β、抗蛋白酶、血管-pep1、極低密度脂蛋白(VLDL)、運鐵蛋白、胰島素、瘦素、胰島素樣生長因子、表皮生長因子、凝集素、肽模擬物以及/或人源化單株抗體或對所述受體具特異性之肽(例如,與人類運鐵蛋白受體或抗人類運鐵蛋白受體(TfR)單株抗體A24結合之序列HAIYPRH以及THRPPMWSPVWP)、血色素、白喉毒素多肽鏈之無毒部分、白喉毒素B鏈之全部或一部分(包括DTB-His(如由Spilsberg等人,2005,Toxicon.,46(8):900-6所述))、白喉毒素CRM197之無毒突變體之全部或一部分、載脂蛋白B、載脂蛋白E(例如,在與塗佈於奈米粒子上之有機聚合物擔體-80(polysorb-80)結合後)、維生素D結合蛋白、維生素A/視黃醇結合蛋白、維生素B12/鈷胺素血漿載體蛋白質、麩胱甘肽以及鈷胺傳遞蛋白-B12。
在本發明之一實施例中,配位體為LRP1受體與LRP2受體之間共用之大量配位體中之一者,其包括(例如)脂蛋白脂肪酶(LPL)、α 2-巨球蛋白(α 2M)、受體締合蛋白(RAP)、乳鐵傳遞蛋白、去氨普酶、組織型以及尿激酶型血漿素原活化劑(tPA/uPA)、血漿素原活化劑抑制劑(PAI-1)以及tPA/uPA:PAI-1複合物。
在本發明之另一實施例中,配位體對LRP1受體更具特異性,所述配位體包括(但不限於)黑素運鐵蛋白(或P97)、凝血栓蛋白1以及凝血栓蛋白2、肝脂肪酶、因子VIIa/組織因子路徑抑制劑(TFPI)、因子VIIIa、因子IXa、A β 1-40、類澱粉蛋白β前驅蛋白質(APP)、C1抑制劑、補體C3、載脂蛋白E(apoE)、假單胞菌外毒素A、CRM66、HIV-1Tat蛋白、鼻病毒、基質金屬蛋白酶9(MMP-9)、MMP-13(膠原酶-3)、鞘脂激活蛋白(SAP)、妊娠區帶蛋白、抗凝血酶III、肝素輔因子II、α 1-抗胰蛋白酶、熱休克蛋白96(HSP-96)以及血小板源生長因子(PDGF,主要參與信號轉導中)(154-156),而載脂蛋白J(apoJ或凝聚素)、與apoJ以及apoE結合之A β、血管-pep1以及極低密度脂蛋白(VLDL)對LRP2受體更具特異性。
根據本發明,其他較佳配位體為運鐵蛋白、胰島素、瘦素、胰島素樣生長因子、表皮生長因子、凝集素、肽模擬物以及/或人源化單株抗體或對所述受體具特異性之肽(例如,與人類運鐵蛋白受體或抗人類運鐵蛋白受體(TfR)單株抗體A24結合之序列HAIYPRH以及THRPPMWSPVWP)、血色素、白喉毒素多肽鏈之無毒部分、白喉毒素B鏈之全部或一部分(包括DTB-His)、白喉毒素CRM197之無毒突變體之全部或一部分、載脂蛋白B、載脂蛋白E(例如,在與塗佈於奈米粒子上之有機聚合物擔體-80結合後)、麩胱甘肽、維生素D結合蛋白、維生素A/視黃醇結合蛋白、維生素B12/鈷胺素血漿載體蛋白質或鈷胺傳遞蛋白-B12。
載體
本發明接合物中之配位體可與抗病毒藥劑直接接合,或者配位體可與包含抗病毒藥劑之醫藥學上可接受之載體接合。在此等接合物中,抗病毒藥劑可(例如)囊封於奈米包覆體(諸如奈米粒子、脂質體或奈米凝膠)中,使得配位體與此奈米包覆體具有較佳的接合性偶合。可直接或經由任何熟知聚合物接合劑(諸如鞘磷脂、聚乙二醇(PEG)或其他有機聚合物)來接合配位體與奈米包覆體。製備包含目標(PEG)脂質體之此等醫藥組合物之細節描述於美國專利第6,372,250號中。因此,在一實施例中,根據本發明,接合物為醫藥學上可接受之載體,包含載體蛋白質、奈米包覆體、脂質體、聚合物複合體系統(polyplex system)、脂複合體系統(lipoplex system)以及聚乙二醇中之至少一者之接合物。
在抗病毒藥劑包含聚核苷酸或寡核苷酸之本發明接合物中,醫藥學上可接受之載體較佳為包含陽離子脂質或兩性脂質中之至少一者之脂複合體系統(如WO2002/066012中所述)或包含聚L-離胺酸、聚L-鳥胺酸、聚乙二亞胺以及聚醯胺基胺中之至少一者之聚合物複合體系統。存在兩種主要種類之用於細胞內投遞核酸基抗病毒藥物(如DNA疫苗、反義寡核苷酸、核糖核酸酶、催化性DNA(DNA酶)或RNA分子、siRNA或編碼其之質體)之非病毒投遞系統,其包含脂複合體系統(含有DNA之陽離子脂質體)以及聚合物複合體系統(與陽離子聚合物連接之DNA)。在本發明之一較佳實施例中,醫藥學上可接受之載體為脂複合體系統或聚合物複合體系統。另外,醫藥學上可接受之載體此外可較佳包含蛋白質接合物、聚乙二醇(聚乙二醇 化)、奈米粒子或脂質體。聚合物複合體系統包含陽離子聚合物(諸如聚L-離胺酸(PLL)、聚L-鳥胺酸(POL)、聚乙二亞胺(PEI)以及聚醯胺基胺(PAM))或其與DNA之組合。聚陽離子系統主要藉由吸附或流體相內飲作用進入細胞中。陽離子聚合物(包括PEI)具有壓縮DNA且使膜電位去穩定之能力。此外,已顯示可藉由控制複合物之物理化學以及生物性質來達成由PEI聚合物複合體系統進行之質體投遞。然而,與病毒轉導系統相比,轉染效率以及基因表現較有限。因為PEI系統可擾動膜,所以其亦可產生與聚合物之分子量以及核濃度相關之毒性。在此方面中,線性PEI(22kDa)比分枝PEI(25kDa)的毒性更大且亦與聚合物複合體系統中所用的PEI量有關,其中聚合物複合體系統以氮磷比(N/P ration,與DNA量相關之聚合物中氮之量)表示。有人聲稱線性PEI聚合物複合體系統能改良細胞活力以及更高轉染效率。近來已合成各種可生物降解PEI衍生物,其具有比線性PEI更佳之轉染性質以及更小毒性。
總之,一般而言,PEI之功效以及聚陽離子系統之功效仰賴於分子量、總體陽離子電荷以及支化度。當與DNA連接時,如DNA量、粒度以及ζ電位之其他因素為重要特徵。此外,正電荷聚陽離子系統在經靜脈內投與時易於與負電荷血漿蛋白質相互作用,且在與血液蛋白質(其靶向正電荷聚陽離子系統以由網狀內皮系統(RES)清除)結合後發生調理作用。特定言之,聚集體可以由吞噬細胞攝取且由毛細管網路(在靜脈內投藥後主要為肺)截留,使得其自血漿區室迅速清除而產生目標組織/器官之不良轉染。然而,上述現象可藉由聚乙二 醇化而顯著降低。此外,應用靶向/內化配位體能避免使用具有大氮磷比且因而具有高的總正電荷之聚合物複合體系統,故可減少與陽離子聚合物相關之許多問題(諸如毒性、與血液成份結合)。
裸脂複合體系統亦易於由血清組份調理且藉由與聚合物複合體系統類似之機制(例如藉由網狀內皮系統(RES))清除。此外,儘管脂複合體系統之未甲基化CpG經掩蔽以防止固有免疫反應,但一旦其處於總循環中,則與聚合物複合體系統類似,脂複合體系統可由血液蛋白質(C3、IgG、脂蛋白以及纖維結合蛋白)調理,在肺以及肝中產生炎性反應(由TNF-α、IL-6以及IL-12介導)。另外,已發現複合物活化以及T細胞、B細胞、NK細胞以及巨噬細胞之活化,且其與脂複合體之注射劑量有關。在減少未甲基化CpG之數目之後,可藉由此等系統之聚乙二醇化或藉由使用免疫抑制劑(例如地塞米松(dexamethasone))來限制此等相互作用。另外,此等系統之動力學由聚乙二醇化顯著改良,降低其全身性清除且增大靶向效率(藉由應用選擇性/特異性靶向配位體)。此外,降低脂複合體系統之大小似乎為其組織分佈以及細胞攝取之關鍵因素且增大其轉染效率。一般而言,與非經腸投藥後之小分子藥物相似,脂複合體以及聚合物複合體系統之組織分佈以及表現之持續亦主要依賴於藥物動力學(清除率、分佈體積)、調配物(大小、電荷、聚乙二醇化等)以及給藥方案(高體積大丸劑、連續注射、恆速輸液)。關於給藥方案,有趣的是脂複合體以及質體DNA之連續注射產生較高表現,但亦使細胞因子誘導最小。此外,目標組織/器官之投遞依賴於血液流動以及組織/器官攝取或透過性 以及目標組織/器官與非目標組織/器官之清除率之平衡。因此應根據藥物動力學參數設計適當給藥方案以最優化對器官以及組織之投遞/靶向。另外,此應關於細胞內藥物動力學進行協調。
在細胞攝取後,脂複合体以及聚合物複合体系統之細胞內藥物動力學(分佈、消除)為重要問題。除受體介導之攝取外,尤其非目標PEI系統之內化(經由網格蛋白(clathrin)或質膜微囊(caveolae)依賴性途徑)似乎與細胞株以及PEI-聚合物複合體類型(線性PEI對分枝PEI)息息相關。通常,此等系統終止於晚期核內體中,因此其需要脫離此等細胞器官以進入細胞質中以最終到達核。如聚合物複合體系統之陽離子系統可脫離核內體/溶酶體,因為根據所謂“質子海綿介導脫離”理論,其具有緩衝pH值且使得此等細胞器官滲透溶脹之能力。然而,似乎小部分內化系統脫離進入細胞質中且大部分留在核內體/溶酶體中且降解。然而,將融合脂質或陽離子肽(蜂毒肽(mellitin))併入此等系統中可增強其核內體脫離。
一旦處於細胞溶質中,則線性質體易於被核酸酶降解,而環狀質體更穩定。因此環狀(去氧)核酸分子較佳。尤其是鈣敏感性核酸酶造成上述降解。最終質體不得不經由核孔複合物(NPC)(其形成穿過核膜之水性通道)轉運入核中,且據估計約0.1%之質體能夠自細胞溶質進入核中。小於40kDa之分子可被動穿過NPC,而較大分子(>60kDa)需要特定核定位信號(NLS)以經由NPC主動轉運從而允許轉運高達25-50MDa之分子。實際上已證明NLS與質體之偶合能增強質體DNA之核聚集以及表現。因此,較佳將NLS與適用於本發明接 合物中之任何表現構築體偶合。
此項技術中已知將配位體與藥劑或載體接合之多種方法。此等方法(例如)描述於Hermanson(1996,Bioconjugate Techniques,Academic Press)、U.S.6,180,084以及U.S.6,264,914中,且包括(例如)如應用免疫學中通常所用之用於將半抗原與載體蛋白質連接之方法(參見Harlow以及Lane,1988,"Antibodies:A laboratory manual",Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。公認在一些情況下,視(例如)接合程序或其中所利用之化學基團而定,配位體或藥劑在接合後可失去功效或功能性。然而,倘若存在多種接合方法,則熟習此項技術者能夠找出不影響或最小程度影響待接合實體之功效或功能性之接合方法。將配位體與藥劑或載體接合之適合方法包括(例如)碳化二亞胺接合(Bauminger以及Wilchek,1980,Meth.Enzymol.70:151-159)。或者,藥劑或載體可如以下文獻中所述與配位體偶合:Nagy等人,Proc.Natl.Acad.Sci.USA 93:7269-7273(1996);以及Nagy等人,Proc.Natl.Acad.Sci.USA 95:1794-1799(1998),其每一者是以引用的方式併入本文中。可適用之其他接合方法為(例如)高碘酸鈉氧化,接著進行適當反應物之還原性烷基化以及戊二醛交聯。當配位體以及藥劑或載體均為(多)肽時,可應用尤其有利之接合方法。在此等情況下,兩種實體可合成為包含配位體與肽藥劑或載體之胺基酸序列之單一(多)肽鏈。除共價鍵結之外,在根據本發明之接合物中,藥劑或載體亦可藉由非特異性或特異性蛋白質-蛋白質相互作用、非共價鍵結以及/或配位化學鍵結而與配位體分子直接接合,所述接合可視情況經 由與藥劑以及配位體結合之間隔子或連接子實現。
在另一態樣中,本發明關於一種適用於治療以及/或預防病毒感染之如上文所定義之本發明接合物。根據本發明,本發明接合物用於製造供治療以及/或預防病毒感染之藥物。類似地,本發明關於治療以及/或預防病毒感染之方法,其中將有效劑量之本發明接合物投與有需要之個體中。需要治療或預防病毒感染之個體可為脊椎動物、哺乳動物,或較佳為人。
病毒感染以及相關病狀
以下段落提供各種病毒、病毒性疾病以及相關病狀之描述,在本發明之各種實施例中,所述病毒性疾病以及相關病狀可藉由包含細胞內活性抗病毒藥劑之本發明接合物來治療以及/或預防。許多病毒編碼其特有RNA/DNA聚合酶或其他蛋白質或其複製或功能所必需之酶(諸如蛋白酶、mRNA加帽酶(capping enzyme)、神經醯胺酶、核糖核酸酶以及激酶)且同樣適於藉由細胞內活性抗病毒藥劑來治療。此外,100種以上能夠引起急性病毒性腦炎之病毒尤其需要藉由可到達CNS中之細胞群體、進入且穿過血腦障壁之細胞內活性抗病毒藥劑來治療。此等病毒之熟知實例為蟲媒病毒(黃病毒科、布尼亞病毒科(bunyaviridae)、披膜病毒科(togaviridae))、腸道病毒、腮腺炎病毒、流感病毒、狂犬病病毒以及疱疹病毒(如水痘、單純疱疹病毒、巨細胞病毒)。因此,在一較佳實施例中,本發明接合物用於治療以及/或預防CNS之細胞之病毒感染的方法中。CNS之病毒感染可(例如)為病毒性腦膜炎、腦炎、腦脊髓炎以及進行性多病灶腦白質病中之至少 一者。
在本發明之一較佳實施例中,病毒感染是由選自以下各科中之一者之蟲媒病毒引起:黃病毒科、布尼亞病毒科以及披膜病毒科。黃病毒為包膜、正單鏈RNA病毒,其與肝病毒屬以及瘟疫病毒屬(C型肝炎病毒(HCV)、B型肝炎病毒(HBV)、牛病毒性腹瀉病毒(BVDV)、古典型豬瘟病毒(CSFV)、邊界病病毒(BDV)以及G型肝炎病毒/C型GB-病毒(HGV/GBV-C))一起屬於黃病毒科。黃病毒屬含有(i)由蚊子或蜱傳播之病毒(節肢動物傳播型)以及(ii)具有未知載體(NKV)之病毒,如摩多克病毒(Modoc virus)以及蒙大拿州蝙蝠腦白質炎病毒(Montana Myotis leukoencephalitis virus)。
引起人類疾病之最重要黃病毒中之一者為登革病毒(dengue virus,DENV),其引起幾十萬例登革出血熱(dengue hemorrhagic fever,DHF)或登革休克症候群(dengue shock syndrome,DSS)病例,後者具有約5%之總體病死率。
即使有高效疫苗可用,但黃熱病毒(YFV)仍為世界範圍內病毒性出血熱(VHF)之主要病因。世界衛生組織(World Health Organization)估計每年存在200,000例黃熱病,其包括30,000例死亡,其中90%以上發生於非洲。
日本腦炎(JE)(蚊蟲傳播型蟲媒病毒感染)為亞洲病毒性腦炎之主要病因。根據世界衛生組織,每年報導約50,000例散發性以及流行性日本腦炎。感染導致高死亡率(30%),且約一半倖存者產生長期神經性續發症。
墨萊溪谷腦炎病毒(Murray Valley encephalitis virus;MVEV)以及西尼羅河病毒、聖路易腦炎(St.Louis encephalitis)病毒、阿爾弗(Alfuy)病毒、卡西帕克(Cacipacore)病毒、科坦戈(Koutango)病毒、昆金(Kunjin)病毒、羅西奧(Rocio)病毒、斯特福(Stratford)病毒、尤蘇它(Usutu)病毒以及雅溫得(Yaounde)病毒均屬於JE抗原複合物且在人類中引起腦炎。儘管由MVEV造成之最近大流行病發生於1974年,但經常報導新的MVEV感染病例,尤其在西澳大利亞。1996年在羅馬尼亞報導爆發西尼羅河(WN)腦炎,其中有373例病例以及17例死亡。1999年,所述疾病首次出現於美國東北部且繼續蔓延至整個美國以及加拿大。2003年,在美國報導9388例人類西尼羅河熱、西尼羅河(腦膜)腦炎以及246例死亡。在2007年初,死亡總數已達到934例。近年來西尼羅河腦炎之爆發亦出現於俄羅斯南部以及以色列。聖路易腦炎病毒(SLEV)為美國西部之地方流行病且造成嚴重神經性疾病。
引起腦炎之其他重要黃病毒亦造成高死亡率或神經性續發症,其包括蜱傳播腦炎病毒(TBEV),咸信其每年在俄羅斯引起至少11,000例人類腦炎且在歐洲其他地區引起約3000例人類腦炎。同一組內之相關病毒為跳躍病病毒(Louping ill virus;LIV)、蘭加特病毒(Langat virus;LGTV)、俄羅斯春夏腦炎病毒(Russian spring-summer encephalitis virus;RSSEV)以及波瓦森病毒(Powassan virus;POWV)。已知LIV主要為綿羊病,但亦已證明其感染鹿、牛、山羊、紅松雞以及(偶而)人且在其中引起疾病。LGTV以及POWV亦引起人類腦炎,但相對於 LIV而言,其很少產生流行性規模。同一組內之三種其他病毒鄂木斯克出血熱病毒(Omsk hemorrhagic fever virus;OHFV)、科薩努爾森林病病毒(Kyasanur Forest disease virus;KFDV)以及奧克呼瑪病毒(Alkhurma virus;ALKV)與TBE複合病毒緊密相關且造成致命出血熱而非腦炎。
其他黃病毒科病毒包括戈基溪谷病毒(Gadgets Gully virus;GGYV)、凱丹姆病毒(Kadam virus;KADV)、皇家農場病毒(Royal Farm virus;RFV)、美芙病毒(Meaban virus;MEAV)、索馬瑞礁病毒(Saumarez Reef virus;SREV)、圖雷尼病毒(Tyuleniy virus;TYUV)、阿茹病毒(Aroa virus;AROAV)、柯都革病毒(Kedougou virus;KEDV)、卡西帕克病毒(Cacipacore virus;CPCV)、科坦戈病毒(Koutango virus;KOUV)、尤蘇它病毒(Usutu virus;USUV)、雅溫得病毒(Yaounde virus;YAOV)、科科貝拉病毒(Kokobera virus;KOKV)、巴加紮病毒(Bagaza virus;BAGV)、伊恆斯病毒(Ilheus virus;ILHV)、以色列火雞腦膜腦脊髓炎病毒(Israel turkey meningoencephalomyelitis virus;ITV)、納塔亞病毒(Ntaya virus;NTAV)、坦布蘇病毒(Tembusu virus;TMUV)、齊卡病毒(Zika virus;ZIKV)、班奇病毒(Banzi virus;BANV)、布布病毒(Bouboui virus;BOUV)、邊山病毒(Edge Hill virus;EHV)、具加病毒(Jugra virus;JUGV)、薩博亞病毒(Saboya virus;SABV)、塞皮克病毒(Sepik virus;SEPV)、烏干達S病毒(Uganda S virus;UGSV)、韋塞爾斯布朗病毒(Wesselsbron virus;WESSV)、恩特伯蝙蝠病毒(Entebbe bat virus;ENTV)、橫瀨病毒(Yokose virus;YOKV)、毒刺病毒(Apoi virus; APOIV)、牛骨山脊病毒(Cowbone Ridge virus;CRV)、具鐵帕病毒(Jutiapa virus;JUTV)、薩維加病毒(Sal Vieja virus;SVV)、聖培里塔病毒(San Perlita virus;SPV)、布卡拉沙蝙蝠病毒(Bukalasa bat virus;BBV)、凱莉島病毒(Carey Island virus;CIV)、達喀爾蝙蝠病毒(Dakar bat virus;DBV)、金邊蝙蝠病毒(Phnom Penh bat virus;PPBV)以及熱伯維病毒(Rio Bravo virus;RBV)。
布尼亞病毒科包括裂谷熱(Rift Valley fever)病毒、克里米亞-剛果出血熱(Crimean-Congo hemorrhagic fever;CCHF)病毒、拉克魯絲(La Crosse;LAC)病毒、漢坦病毒(hanta,引起韓國出血熱)、公牛岬(Punta Toro)病毒、詹姆斯敦坎寧(Jamestown Canyon;JTC)病毒、加利福尼亞腦炎(California encephalitis)病毒、三帶(Trivittatus)病毒、凱斯通(Keystone)病毒、雪鞋野兔(snowshoe hare)病毒、腐肉(Slough)病毒、美勞(Melao)病毒、奧羅普切(Oropouche)病毒、波托西(Potosi)病毒、聖安吉洛(San Angelo)病毒以及白蛉熱(sandfly fever)病毒。CCHF為由蜱傳播之人畜共同傳染病,其在人類中產生嚴重爆發,但其對反芻動物(其擴增宿主)並無致病性。儘管CCHF病毒在動物中並無致病性,但由於其高病死率(10%-40%)以及其醫院傳播之可能性,已知所述疾病為最重要VHF中之一者。CCHF為遍及北緯50º(其蜱貯主璃眼蜱屬(genus Hyalomma)之界限)之非洲、巴爾幹半島、中東以及南亞地區之地方流行病。關於散發性人類病例以及有限爆發之報導逐年增加。近來CCHF在阿富汗(Afghanistan,2001年-2006年)、伊朗(Iran,2001年)、哈薩克斯坦(Kazakhstan,2005 年)、科索沃(Kosovo,2001年)、毛利塔尼亞(Mauritania,2002年-2003年)、巴基斯坦(Pakistan,2001年-2006年)、俄羅斯(Russia,2006年)、塞內加爾(Senegal,2004年,其中一人類病例進入法國)、南非(South Africa,2006年)、蘇丹(Sudan,2004年)、塔吉克斯坦(Tajikistan,2002年-2004年)以及土耳其(Turkey,2003年-2006年)之爆發已引起國際上對此新出現問題之注意。在此等地方性區域中,生態變化、貧窮以及社會不穩定、醫學設備不足以及不存在感染控制標準預防措施均造成CCHF病毒在其自然環境、群體或醫院環境中之傳播增加。不存在可用且可支付療法仍限制爆發控制行為。目前不存在對CCHF之特異性抗病毒療法。然而,已證明病毒唑抑制非洲綠猴腎細胞(Vero cell)中之活體外病毒複製且縮短CCHF哺乳小鼠模型之平均死亡時間。另外,已公開提出經口或靜脈內病毒唑可有效治療CCHF感染之若干病例報導。所有公開報導展示以病毒唑(靜脈內以及經口投藥)治療確診患有CCHF之患者的明顯益處。不存在與病毒唑治療相關之嚴重副作用或死亡率。所有此等研究之結果受到其設計以及樣品大小限制。
出血熱伴隨腎症候群(HFRS)為一組由來自布尼亞病毒科病毒之漢坦病毒引起之臨床類似疾病。HFRS包括(諸如)韓國出血熱、流行性出血熱以及流行性腎病之疾病。引起HFRS之病毒包括漢坦病毒、杜不拉瓦型(Dobrava-Belgrade)病毒、漢城型(Seoul)病毒以及普馬拉(Puumala)病毒。HFRS發現於整個世界範圍內。漢坦病毒廣泛分佈於東亞(尤其中國、俄羅斯)以及朝鮮半島。普馬拉病毒發現 於斯堪的納維亞、西歐以及俄羅斯。杜不拉瓦型病毒主要發現於巴爾幹半島,且漢城型病毒發現於世界範圍內。病毒唑經證實在活體外與活體內均具有抗漢坦病毒作用。在中國通常使用病毒唑來治療HFRS且臨床試驗已證明病毒唑療法可顯著降低HFRS相關之死亡率。在中華人民共和國在242名經血清確診患有出血熱伴隨腎症候群(HFRS)之患者中進行靜脈內病毒唑之前瞻性、隨機化、雙盲、並行、安慰劑對照臨床試驗。在經病毒唑治療之患者中死亡率顯著降低(風險降低7倍)。病毒唑療法使得進入少尿期且經歷出血之風險顯著降低。唯一病毒唑相關副作用為在療法完成後之完全可逆貧血。不同中國研究人員亦證實病毒唑療法對於HFRS之有效性。
在披膜病毒科中尤其關注之彼等病毒包括委內瑞拉馬腦脊髓炎(Venezuelan equine encephalomyelitis;VEE)病毒、東部馬腦炎(Eastern equine encephalitis;EEE)病毒以及西部馬腦炎(Western equine encephalitis;EEE)病毒。
需要藉由細胞內以及/或CNS活性抗病毒藥劑治療之其他病毒為沙狀病毒科(arenaviridae)(皮齊得病毒(Pichinde virus)、淋巴球性脈絡叢腦膜炎病毒(Lymphocytic Choriomeningitis Virus;LCMV)、拉薩病毒(Lassa virus)(引起拉薩熱(Lassa fever))以及阿根廷出血熱(Argentine hemorrhagic fever;AHF)病毒)、副黏病毒科(paramyxoviridae)(呼吸道融合病毒(RSV)、麻疹病毒(引起亞急性硬化性全腦炎)、腮腺炎病毒)、疱疹病毒科(herpesviridae)(水痘-帶狀疱疹病毒(VZV)、單純疱疹病毒(HSV)、人類疱疹病毒6型 (HHV-6)、巨細胞病毒(CMV)以及艾伯斯坦-巴爾病毒(EBV))、正黏液病毒科(orthomyxoviridae)(A型流感病毒以及B型流感病毒)、微小病毒科(picornaviridae)(腸病毒(3型小兒麻痹病毒(PV)、28型衣科病毒(ECV)、23型A型柯沙奇病毒以及6型B型柯沙奇病毒(分別為CVA以及CBV)以及泰勒氏病毒(Theiler's virus),以及4號腸病毒)、痘病毒科(poxviridae)(天花(smallpox/variola)病毒、牛痘病毒(cowpox virus;CV)、駱駝痘病毒(camelpox virus)、猴痘病毒(monkeypox virus)以及牛痘病毒(vaccinia viruse))、呼腸孤病毒科(reoviridae)(藍舌病病毒(bluetongue virus)、輪狀病毒(rotavirus)、猿(SA11)輪狀病毒(simian(SA11)rotavirus)以及科羅拉多蜱熱病毒(Colorado tick fever virus;CTFV))、多瘤病毒科(polyomaviridae)(JC病毒(JCV,在免疫功能受損患者中引起PML)、BK病毒(BKV)以及猿病毒40(SV40))、絲狀病毒科(filoviridae)(馬堡病毒、埃博拉病毒)、桿狀病毒科(rhabdoviridae)(狂犬病病毒)、反轉錄病毒科(retroviridae)(人類T淋巴細胞病毒(HTLV,I型以及II型)、人類免疫缺乏病毒(Human immunodeficiency virus;HIV,I型以及II型))、冠狀病毒科(coronaviridae)(冠狀病毒(coronavirus,引起SARS)、托羅病毒(torovirus))、腺病毒科(adenoviridae)以及虹彩病毒科(iridoviridae)。
拉薩病毒出血熱為出現於西非之急性疾病。病毒為屬於沙狀病毒科之單鏈RNA病毒。已知拉薩熱為幾內亞(Guinea)(科納克里(Conakry))、利比里亞(Liberia)、塞拉里昂(Sierra Leone)以及尼日 利亞(Nigeria)部分地區之地方病,但亦可能存在於其他西非國家中。一些研究指出在整個西非地區每年出現300 000至500 000例拉薩熱以及5000例死亡。在群體中總體病死率為1%-2%,在就醫患者中病死率高達15%-25%,且在爆發期間高達50%-60%。記載在大於25%-30%之已恢復患者中出現耳聾。在致死病例中通常在發作14天內出現死亡。所述疾病在妊娠晚期尤其嚴重,其中在80%以上之病例中在晚期妊娠期間出現母親死亡或胎兒流產。在塞拉里昂之拉薩熱之前瞻性研究中,評估病毒唑(靜脈內以及經口投藥)之功效且使用拉薩病毒恢復期血漿來治療拉薩熱。據推斷病毒唑可有效治療拉薩熱且可在疾病中任何時刻使用,但較佳在發作後前六天內使用。
阿根廷出血熱(AHF)是由齧齒動物傳播且由胡寧病毒(Junin virus)(一種沙狀病毒科之成員)引起。自1955年首次確認所述疾病以來,已不間斷地通報每年爆發,其中在1993年報導大於24,000例病例。疾病之地方性流行區域位於濕潤的南美大草原(阿根廷最肥沃之農田)。AHF為嚴重急性病毒性疾病,其特徵在於具有血液學、神經學、腎以及心血管變化之發熱症候群。若不經治療,則病死率為15%-30%。自1992年以來,已可利用針對AHF之減毒活疫苗。所述疫苗已用於高風險成人群體中,其中疾病發病率顯著降低。然而,即使利用有效疫苗,但仍出現散發性病例以及爆發。利用AHF恢復期血漿之早期治療極有效且將死亡率降至1%。然而,僅在症狀發作後前8天時期內提供此治療才有效。另外,血漿療法伴有輸液傳播疾病以及呈現後神經症候群(LNS)(其已出現於10%之經治療倖存者中)之風險。僅存在 很少關於病毒唑在治療新世界沙狀病毒科(New World Arenaviridae)中之臨床有效性之動物以及人類研究。此等有限臨床資料指示具有良好耐受性以及藥物安全性之病毒唑治療之明顯益處。
考慮到目前市售藥物病毒唑(具有抵抗(例如)黃病毒科、桿狀病毒科、披膜病毒科、布尼亞病毒科、沙狀病毒科、絲狀病毒科、痘病毒科、呼腸孤病毒科、微小病毒科以及正黏液病毒科之確定活性)以及西多夫韋(具有抵抗(例如)疱疹病毒科、多瘤病毒科以及痘病毒科之確定活性)之廣譜抗病毒活性,尤其藉由改良細胞內以及/或CNS可用性之速率,此等藥物為用於改良目標投遞以及毒性概況之極適合藥物。對於更具特異性、廣泛使用之抗病毒藥物無環鳥苷與更昔洛韋(確定之選擇性抵抗疱疹病毒科)以及紮那米韋與奧塞米韋(確定之選擇性抵抗副黏病毒科)而言,亦為如此。
在本發明之一實施例中,病毒感染引起非慢性病狀,諸如(亞)急性病毒誘發疾病,如腦膜炎、腦炎、腦脊髓炎、進行性多病灶腦白質病(PML)、視網膜炎、腎炎、胃腸炎、細支氣管炎、肺炎、嚴重急性呼吸道症候群(SARS)、出血熱以及其類似疾病。在本發明之另一實施例中,病毒感染引起神經病症或中樞神經系統(CNS)病症。非慢性病狀(諸如(亞)急性病毒誘發疾病,如腦膜炎、腦炎、腦脊髓炎、進行性多病灶腦白質病(PML)、視網膜炎、腎炎、胃腸炎、細支氣管炎、肺炎、嚴重急性呼吸道症候群(SARS)、出血熱以及其類似疾病)之傳統治療通常並不及時。此外,此等傳統治療通常受毒性限制,其中最常見副作用為產生溶血性貧血或腎損傷,在某些患者 中需要減小劑量或停用,隨之對療法之反應降低。在本發明之一較佳實施例中,病症為亞急性或急性疾病。在一更佳實施例中,病症為病毒性腦炎。
考慮到不同作用機制,細胞內活性抗病毒藥劑可與其他種類之抗病毒藥物(如I型干擾素或其誘導劑)、病毒進入以及融合抑制劑、疫苗接種程式或抗發炎療法(如糖皮質激素以及其類似物)一起有效共投與/治療。
在一較佳實施例中,CRM197-RBV接合物、包含RBV之CRM197-PEG-脂質體或CRM197-PEG-PEI抗JEV DNA酶聚合物複合體是與地塞米松或干擾素α-2a或兩者一起共投與。
靶向以及/或穿透血液-組織障壁
在本發明之另一態樣中,提供一種將有效量之抗病毒藥劑或包含抗病毒藥劑之醫藥學上可接受之載體目標藥物投遞至由如(例如)CNS、血腦障壁(BBB)、視網膜以及睾丸之受特定血液-組織障壁保護之目標部位的方法,其中:a)使抗病毒藥劑或醫藥學上可接受之載體與促進與目標部位之內化攝取受體特異性結合且由其內化的配位體接合,進而形成如上文所定義之接合物;以及b)抗病毒藥劑是在向有需要的人員投藥後約第1天至約第5天之時期內在目標部位投遞。在一較佳實施例中,所述方法中之血液-組織障壁(例如血腦障壁)並未因投與破壞血液-組織障壁之藥劑而破壞。在另一較佳實施例中,時期為約第1天至約第7天,更佳為約第1天至約第10天,甚至更佳為約第1天至約第14天,最佳為約第1天至約第21天。
以下段落涉及關於藉由受體介導轉胞飲作用主動靶向受如(例如)CNS、血腦障壁(BBB)、視網膜以及睾丸之特定血液-組織障壁保護之目標部位的各種本發明實施例。在本發明之一較佳實施例中,介導內飲作用與轉胞飲作用中之至少一者之受體位於腦中毛細管(之管腔側)中。一般而言,不希望受限於任何理論,受體介導轉胞飲作用以三個步驟發生:在管腔(血液)側之藥劑之受體介導內飲作用,運動穿過內皮細胞質,以及在腦毛細管內皮之近腔(腦)側藥物之胞泌作用。在受體-配位體內化後,形成披網格蛋白小泡,其直徑約為120nm。此等小泡可將其內含物轉運至細胞之另一側或進入導致蛋白質降解之途徑中。實際上,已鑑別出至少兩種降解蛋白質之重要途徑,其包括溶酶體途徑以及泛素-蛋白酶體途徑。因此,為脫離核內體溶酶體系統,已應用機制來確保藥物釋放入細胞溶質中。此等機制包括應用pH值敏感性脂質體或陽離子分子。亦可用作靶向配位體且稍後論述之白喉毒素具有固有溶酶體脫離機制。然而,在應用或不應用溶酶體脫離機制之情況下,已證明向腦部進行蛋白質投遞為有效的。因此,受體介導轉胞飲作用允許較大藥物分子或攜帶藥物之粒子(諸如脂質體、聚合物系統、奈米粒子)向腦部之特異性靶向。在一較佳實施例中,介導內飲作用以及轉胞飲作用中之至少一者之受體、配位體以及醫藥學上可接受之載體中之至少一者經選擇以避開細胞中抗病毒藥劑之溶酶體降解。
運鐵蛋白受體
用於將藥物靶向腦部之最廣泛表徵之受體介導轉胞飲系統 為運鐵蛋白受體(TfR)。TfR為由兩個90kDa次單位組成之跨膜醣蛋白。二硫鍵連接此等次單位,且各次單位可結合一個運鐵蛋白分子。TfR主要表現於肝細胞、紅血球、腸細胞以及單核細胞上,以及BBB之內皮細胞上。此外,在腦中,TfR表現於脈絡叢上皮細胞以及神經元上。TfR介導與運鐵蛋白結合之鐵之細胞攝取。
可藉由使用內源性配位體運鐵蛋白或藉由使用針對TfR之抗體(例如OX-26抗大鼠TfR或其人源化形式)來達成對TfR之藥物靶向。此等靶向載體中之每一者具有其優點以及缺點。對於運鐵蛋白而言,當試圖將內源性運鐵蛋白替代為外源性應用之含運鐵蛋白系統時,由於血漿中運鐵蛋白之高內源性濃度以及可能超劑量之鐵,活體內應用受到限制。然而,近來研究已證明即使在存在血清之情況下,經運鐵蛋白標記之脂質體亦適於活體外對BBB內皮細胞之藥物投遞。OX-26不與運鐵蛋白結合位點結合且因此未經內源性運鐵蛋白置換。
較佳地,針對TfR之靶向載體將較小、為非免疫原性,且在結合後應啟始TfR之內化。已開發出針對人類TfR之單鏈抗體Fv片段(Xu等人,2001,Mol.Med.7(10):723-34),其經脂質錨標記以供插入脂質體雙層中。此抗體片段(包括脂質錨)之分子量約為30kDa。另外,使用噬菌體呈現技術來找出人類TfR之小肽配位體,此獲得與不同於運鐵蛋白之結合位點結合且由TfR內化之7聚肽以及12聚肽(Lee等人,2001,Eur.J.Biochem.268(7):2004-12)。儘管此等小肽亦可在人類中產生免疫原性反應,但其為用於藥物靶向BBB上之人類TfR之有前景的配位體。
胰島素受體
用於將藥物靶向腦部之另一廣泛表徵之傳統受體介導轉胞飲系統為胰島素受體。胰島素受體為大的300kDa蛋白質且為兩個細胞外α次單位與兩個跨膜β次單位之異四聚體。各β鏈在其胞內擴展中含有酪胺酸激酶活性。α次單位以及β次單位是由單一基因編碼且由二硫鍵連接以形成圓柱體。首先,胰島素與受體結合且改變受體之形狀以形成管道,允許諸如葡萄糖之分子進入細胞中。胰島素受體為酪胺酸激酶受體且藉由使其酪胺酸殘基上之蛋白質磷酸化而誘導複雜細胞反應。單一胰島素分子結合入由兩個α鏈產生之口袋中實現胰島素受體之構型變化,以便β鏈彼此接近且其在酪胺酸殘基上進行轉磷酸化作用。此自體磷酸化對於內化入核內體中之受體而言為必要的。已證明核內體系統為調控胰島素信號轉導之部位,且亦為核內體胰島素發生降解之部位。大多數胰島素降解,但在內皮細胞中很少如此,而受體大部分再循環至細胞表面上。內飲作用對於胰島素作用並不必要,但可能對於將胰島素自細胞移除為重要的,因此胰島素之目標細胞以限時方式應答激素。已開發用於將藥物靶向腦部之胰島素受體之此內飲作用機制。
就運鐵蛋白而言,胰島素作為載體蛋白質之活體內應用為有限的,主要由於所需胰島素之高濃度以及所得致命胰島素超劑量。因此,利用與人類胰島素受體之α次單位上之面向外抗原決定基結合的鼠類83-14 MAb來進行向(例如)恆河猴之藥物或基因投遞。在靈長類動物中,在人類TfR中MAb具有比鼠類MAb大9倍之BBB透過性 表面積(PS)乘積。使用此MAb,已成功建構放射性標記類澱粉-β(A β)肽1-40(A β 1-40),其充當阿茲海默氏病(Alzheimer's disease)之診斷探針,以及含有編碼β半乳糖苷酶之質體DNA之聚乙二醇化免疫脂質體,其使得此構築體可用於靈長類動物之腦部。
不幸的是,由於此小鼠蛋白質之免疫原性反應,故83-14 MAb不能用於人類中。然而,如今已製備出MAb之遺傳工程化有效形式,其可允許藥物以及基因投遞至人腦中(Boado等人,2007,Biotechnol Bioeng.,96(2):381-91)。此外,可證明投與針對參與葡萄糖體內平衡中之此重要機制之抗體對人類應用造成風險。
LRP1以及LRP2受體
在過去數年中,LRP1以及LRP2(亦稱作兆蛋白或醣蛋白330)受體已經開發以與運鐵蛋白以及胰島素受體類似之方式來將藥物靶向腦部。LRP1與LRP2受體均屬於結構緊密相關之細胞表面LDL受體基因家族。兩種受體均具有多功能性、為多配位體清道夫以及信號轉導受體。兩種受體之間共用多種受質,如脂蛋白脂肪酶(LPL)、α 2-巨球蛋白(α 2M)、受體締合蛋白(RAP)、乳鐵傳遞蛋白、組織型以及尿激酶型血漿素原活化劑(tPA/uPA)、血漿素原活化劑抑制劑(PAI-1)以及tPA/uPA:PAI-1複合物。LRP1受體之更具特異性配位體為(例如)黑素運鐵蛋白(或P97)、凝血栓蛋白1以及凝血栓蛋白2、肝脂肪酶、因子VIIa/組織因子路徑抑制劑(TFPI)、因子VIIIa、因子IXa、A β 1-40、類澱粉蛋白β前驅蛋白質(APP)、C1抑制劑、補體C3、載脂蛋白E(apoE)、假單胞菌外毒素A、HIV-1 Tat蛋白、鼻病毒、基質金屬蛋白 酶9(MMP-9)、MMP-13(膠原酶-3)、鞘脂激活蛋白(SAP)、妊娠區帶蛋白、抗凝血酶III、肝素輔因子II、α 1-抗胰蛋白酶、熱休克蛋白96(HSP-96)以及血小板源生長因子(PDGF,主要參與信號轉導中),而載脂蛋白J(apoJ或凝聚素)、與apoJ以及apoE結合之A β、抗蛋白酶以及極低密度脂蛋白(VLDL)對LRP2受體更具特異性。
據報導黑素運鐵蛋白P97主動轉胞飲穿透BBB且暗示此是由LRP1受體所介導。黑素運鐵蛋白為膜結合運鐵蛋白同源物,其亦可以可溶形式存在且與正常黑素細胞相比,其高度表現於黑素瘤細胞上。經靜脈內施用之黑素運鐵蛋白將其結合鐵之大部分投遞至肝以及腎,其中僅一小部分由腦攝取。在動物研究中,在與黑素運鐵蛋白接合後,阿黴素(doxorubicin)被成功投遞至腦腫瘤中。此黑素運鐵蛋白介導之藥物靶向技術(如今稱作NeuroTransTM)正處於BioMarin Pharmaceuticals Inc.(Novato,CA)之開發中以將酶替代療法投遞至腦中。有趣的是,Pan等人以及BioMarin之研究人員近來報導RAP藉助於LRP1/LRP2受體穿透BBB之有效轉移,暗示向腦部進行蛋白質基藥物投遞之新穎方式。RAP為39kDa蛋白質,其充當輔助LDL受體家族成員摺疊以及通行之特化內質網伴隨蛋白。NeuroTransTM以及RAP技術目前正由Raptor Pharmaceuticals Corp.(Novato,CA)之前BioMarin員工開發。另外,已報導LRP2特異性配位體抗蛋白酶以及更特定言之其功能性衍生物(例如血管-pep1)提供用於將化合物或藥物轉運穿透BBB之非侵襲性且靈活之方法以及載體。已知抗蛋白酶(Trasylol®)為絲胺酸蛋白酶(諸如胰蛋白酶)、纖溶酶、組織以及血漿胰舒血管素之有效抑制劑,且其 為由美國食品與藥物管理局(FDA)批准用於減少冠狀動脈旁路移植術中輸血之唯一藥理學治療。
除作為腫瘤標誌物蛋白質之外,黑素運鐵蛋白亦與阿茲海默氏病之腦病變相關且為所述病症之潛在標誌物。另外,所提出之黑素運鐵蛋白之受體LRP1在遺傳學上與阿茲海默氏病相關,且可經由α 2M(α 2M為緊接於(例如)apoE、apoJ、轉甲狀腺蛋白(transthyretin)以及白蛋白之A β載體蛋白質中之一者)藉由神經元來影響APP加工以及代謝以及A β攝取。此外,已描述在使A β穿梭穿透BBB中與RAGE(晚期糖基化終末產物之受體)之密切關係。另外,亦已描述LRP2受體介導穿透BBB之與apoJ以及apoE複合之A β的攝取。與阿茲海默氏病之此複雜相互作用使得使用LRP1LRP2受體以將藥物靶向腦部之安全性在人類中難以預測,尤其當此等受體之複雜信號轉導功能包括於評估中時(例如,BBB透過性之控制、血管張力以及MMP之表現,以及兩種受體關鍵性參與凝血-纖維蛋白溶解系統中之事實)。另外,亦報導黑素運鐵蛋白直接參與纖溶酶原之活化中,且需要高血漿濃度之黑素運鐵蛋白來將藥物投遞至腦部,或許由於體內之高鐵負載量而產生劑量限制。關於在攝取受體層面相互作用之相同推理路線可應用於RAP以及抗蛋白酶(衍生物)之使用。另一方面,後者已在人類中成功試驗,通常不產生嚴重副作用,實際上使得肽衍生物成為潛在安全之藥物載體。然而,最新研究(Mangano等人,2007,JAMA,297:471-479)確實指出抗蛋白酶之嚴重短期以及長期副作用,包括腎毒性、心肌梗塞、心臟衰竭、腦病以及晚期死亡率增加。就RAP而言, 尚無抗蛋白酶肽作為藥物載體之功效或能力之可用結果。
白喉毒素受體
近來,新穎的人類可用載體蛋白質(稱作CRM197)經鑑定可用於接合蛋白質穿透BBB之靶向投遞。特別的是,CRM197已長期用作人類疫苗中之安全且有效之載體蛋白質,且近來作為抗癌試驗中之全身性活性治療蛋白質。此已產生大量關於載體蛋白質之先前知識,包括其轉運受體以及作用機制、受體結合域、接合以及製造方法,以及在動物以及人類中之動力學與安全性概況。CRM197藉由充分表徵之安全且有效之機制(稱作受體介導轉胞飲作用)穿透BBB來投遞藥物。此項技術中已已知CRM197使用肝素結合表皮生長因子樣生長因子(HB-EGF)之膜結合前驅物作為其轉運受體。此前驅物亦稱作白喉毒素受體(DTR)。實際上,CRM197為白喉毒素之無毒突變體。膜結合HB-EGF於BBB、神經元以及膠質細胞中原構性表現。HB-EGF表現在腦血管中(例如藉由缺血性中風)以及於神經膠質瘤中受到強烈上調,此可產生目標藥物在腦中之治療功效之位點選擇性改良。
CRM197接合物與脂質體之CRM197靶向且白喉毒素受體介導之攝取由血腦障壁內皮細胞展示。在內化後,系統藉由CRM197之固有核內體脫離機制隨後自核內體/溶酶體區室釋放入細胞之細胞溶質中。(接合)藥物最有可能藉由非特異性胞泌機制在腦側釋放。
白喉毒素(包括CRM197)之一顯著特徵為其演變之固有核內體脫離機制,其允許蛋白質進入細胞之細胞溶質中而避開溶酶體降解系統。此提供使親水性藥物或生物藥物(諸如酶、RNAi以及基因) 有效細胞內靶向之引人關注之機會。藉助於BBB之動態細胞培養物模型,已證實DTR經功能性表現,CRM197載體蛋白質為安全的,且證實與40kDa酶(辣根過氧化物酶,HRP,充當模型蛋白質藥物)以及含有HRP之DTR靶向聚乙二醇化脂質體接合之CRM197載體蛋白質的特異性轉運功效。另外,藉由DTR靶向HRP在豚鼠中之特異性腦部攝取證實此新穎腦部藥物靶向技術之活體內原理求證。
儘管HB-EGF以類似組織分佈在許多物種(包括人類、猴、倉鼠、大鼠以及小鼠)中表現,但由於HB-EGF上受體結合域中之胺基酸取代降低白喉毒素與齧齒動物HB-EGF之結合,僅大鼠以及小鼠對白喉毒素具抗性。幸運的是,近來產生條件性表現人類以及猿DTR之轉殖基因小鼠,其允許腦部藥物投遞技術在小鼠中之特定研究。
細菌CRM197蛋白質之另一已知併發症為抗白喉毒素之中和抗體可由於先前疫苗接種而形成或已存在於接受者之血清中,進而降低藥物投遞系統之功效。此等中和抗體較佳在應用藥物投遞系統之前藉由使接受者暴露於有效最小量之游離CRM197或與中和抗體上之DT結合域(如DT(之部分)(B片段或DTB-His)或CRM197之CRM197片段(之部分)、小分子、肽、模擬物、抗遺傳型抗體等)特異性結合之任何其他化合物而失活。
然而,若干條證據暗示對CRM197之此免疫反應可不為臨床中之問題,至少並非急性適應症治療中之問題。臨床研究指示在用CRM197重複治療後30天,先前存在中和抗體之含量實際上降低。似乎主要在皮下注射以及肌肉內注射後出現對此等抗原之抗體反應,但 在靜脈內投藥後對此等抗原之抗體反應似乎減少。因此包含白喉毒素受體之配位體之接合物的較佳投藥途徑為靜脈內途徑。
DTR之另一關注態樣為此受體在諸如許多腦部疾病(諸如阿茲海默氏病、帕金森氏病(Parkison's disease)、多發性硬化症、局部缺血、腦炎、癲癇症、腫瘤、溶酶體貯積症等)中存在之發炎疾病狀態下受到強烈上調。此可藉由疾病誘導靶向來增強治療作用。
在一較佳實施例中,本發明接合物為CRM197-RBV接合物、包含RBV之CRM197-PEG-脂質體或CRM197-PEG-PEI抗JEV DNA酶聚合物複合體。
基因療法
本發明之一些態樣涉及包含編碼如上文所定義之包含寡核苷酸或聚核苷酸之抗病毒藥劑的核苷酸序列之表現載體之用途,其中所述載體為適於基因療法之載體。適於基因療法之載體描述於Anderson 1998,Nature 392:25-30;Walther以及Stein,2000,Drugs 60:249-71;Kay等人,2001,Nat.Med.7:33-40;Russell,2000,J.Gen.Virol.81:2573-604;Amado以及Chen,1999,Science 285:674-6;Federico,1999,Curr.Opin.Biotechnol.10:448-53;Vigna以及Naldini,2000,J.Gene Med.2:308-16;Marin等人,1997,Mol.Med.Today 3:396-403;Peng以及Russell,1999,Curr.Opin.Biotechnol.10:454-7;Sommerfelt,1999,J.Gen.Virol.80:3049-64;Reiser,2000,Gene Ther.7:910-3;以及其中所引用之參考文獻中。尤其適合之基因療法載體包括腺病毒載體以及腺相關病毒(AAV)載體。此等載體感染多種分裂以及未分裂細胞類型。另外,腺病毒載 體能夠具有高轉殖基因表現量。然而,由於腺病毒以及AAV載體在細胞進入後之游離基因型性質,此等病毒載體最適於如上文所述之僅需要轉殖基因之瞬間表現之治療應用(Russell,2000,J.Gen.Virol.81:2573-2604)。如Russell(2000,如前)所回顧,較佳腺病毒載體經修飾以降低宿主反應。
通常,在基因療法載體包含編碼待表現之抗病毒藥劑之核苷酸序列之意義上,基因療法載體將作為上述表現載體,藉此使所述核苷酸序列與如上文所述之適當調控序列可操作性連接。此調控序列將至少包含啟動子序列。如本文中所用,術語“啟動子”是指用於控制一或多種關於基因之轉錄起始位點之轉錄方向位於上游的基因之轉錄且藉由DNA依賴性RNA聚合酶之結合位點、轉錄起始位點以及任何其他DNA序列(包括但不限於轉錄因子結合位點、阻遏子以及活化蛋白結合位點以及熟習此項技術者已知之任何其他核苷酸序列)之存在而在結構上鑑別以直接或間接作用以調控自啟動子轉錄之量的核酸片段。“原構性”啟動子為在大多數生理以及發育條件下具活性之啟動子。“可誘導”啟動子為根據生理或發育條件得以調控之啟動子。“組織特異性”啟動子僅在特定類型之分化細胞/組織中具活性。用於表現編碼基因療法載體之多肽之核苷酸序列的適合啟動子包括(例如)巨細胞病毒(CMV)中早期啟動子、病毒長末端重複啟動子(LTR)(諸如來自鼠類莫洛尼氏白血病病毒(moloney leukaemia virus;MMLV)、勞斯肉瘤病毒(rous sarcoma virus)或HTLV-1者)、猿病毒40(SV 40)早期啟動子以及單純疱疹病毒胸苷激酶啟動子。
已描述可藉由投與小有機或無機化合物來誘導之若干可誘導啟動子系統。此等可誘導啟動子包括由重金屬控制者,諸如金屬硫蛋白(metallothionine)啟動子(Brinster等人,1982 Nature 296:39-42;Mayo等人,1982 Cell 29:99-108)、RU-486(孕酮拮抗劑)(Wang等人,1994 Proc.Natl.Acad.Sci.USA 91:8180-8184)、類固醇(Mader以及White,1993 Proc.Natl.Acad.Sci.USA 90:5603-5607)、四環素(Gossen以及Bujard,1992 Proc.Natl.Acad.Sci.USA 89:5547-5551;美國專利第5,464,758號;Furth等人,1994 Proc.Natl.Acad.Sci.USA 91:9302-9306;Howe等人,1995 J.Biol.Chem.270:14168-14174;Resnitzky等人,1994 Mol.Cell.Biol.14:1669-1679;Shockett等人,1995 Proc.Natl.Acad.Sci.USA 92:6522-6526)以及基於由作為VP16之活化域之tetR多肽以及雌激素受體之配位體結合域組成的多重嵌合反式激活因子之tTAER系統(Yee等人,2002,US 6,432,705)。
基因療法載體可視情況包含編碼第二蛋白質或其他蛋白質之第二核苷酸序列或一或多種其他核苷酸序列。第二蛋白質或其他蛋白質可為允許鑑別、選擇以及/或篩檢含有表現構築體之細胞之(可選擇)標誌蛋白質。就此目的而言之適合標誌蛋白質為(例如)螢光蛋白(諸如綠色GFP),以及可選擇標誌基因HSV胸苷激酶(以供在HAT培養基上選擇)、細菌潮黴素(hygromycin)B磷酸轉移酶(以供用潮黴素B選擇)、Tn5胺基糖苷磷酸轉移酶(以供用G418選擇)以及二氫葉酸還原酶(DHFR)(以供用甲胺喋呤選擇)、CD20、低親和性神經生長因子基因。獲得此等標誌基因之來源以及其使用方法提供於 Sambrook以及Russel(2001)"Molecular Cloning:A Laboratory Manual(第3版),Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,New York中。
或者,第二核苷酸序列或其他核苷酸序列可編碼提供失敗-安全機制之蛋白質,在認為必要之情況下,所述機制可以治癒轉殖基因細胞之個體。此核苷酸序列(通常稱作自殺基因)編碼能夠將前藥轉化為毒性物質之蛋白質,所述毒性物質能夠殺死蛋白質表現於其中之轉殖基因細胞。此等自殺基因之適合實例包括(例如)大腸桿菌(E.coli)胞嘧啶去胺酶基因或來自單純疱疹病毒、巨細胞病毒以及水痘-帶狀疱疹病毒之胸苷激酶基因中之一者,在此情況下更昔洛韋可用作前藥以殺死個體中之IL-10轉殖基因細胞(例如參見Clair等人,1987,Antimicrob.Agents Chemother.31:844-849)。基因療法載體較佳調配於包含如下文所定義之適合醫藥載體之醫藥組合物中。
抗體
抗體或抗體片段可為本發明接合物之組份部分。抗體或其片段較佳為單株抗體(MAb)。可使用此項技術中已知之多種技術(包括使用融合瘤、重組體以及噬菌體呈現技術或其組合)來製備補體組份之MAb。舉例而言,可使用融合瘤技術來製備單株抗體,所述融合瘤技術包括此項技術中已知者以及(例如)Harlow等人,Antibodies:A Laboratory Manual,(Cold Spring Harbor Laboratory Press,第2版,1988);Hammerling等人,Monoclonal Antibodies and T-Cell Hybridomas 563-681(Elsevier,N.Y.,1981)中所教示者。對於治療人類而言,抗補體MAb較 佳將以嵌合抗體、去免疫型抗體、人源化或人類抗體形式使用。此等抗體可降低免疫原性且因此避免人類抗小鼠抗體(HAMA)反應。抗體較佳為IgG4、IgG2或不增強抗體依賴性細胞毒性(S.M.Canfield以及S.L.Morrison,J.Exp.Med.,1991:173:1483-1491)以及補體介導細胞溶解(Y.Xu等人,J.Biol.Chem.,1994:269:3468-3474;V.L.Pulito等人,J.Immunol.,1996;156:2840-2850)之其他遺傳突變型IgG或IgM。嵌合抗體是由此項技術中熟知之重組方法製備,且具有動物可變區以及人類恆定區。人源化抗體具有比嵌合抗體更大程度之人類肽序列。在人源化抗體中,僅負責抗原結合以及特異性之互補判定區(CDR)為動物來源且具有對應於動物抗體之胺基酸序列,且分子之實質上所有剩餘部分(在一些情況下,除可變區內框架區之小部分外)為人類來源且胺基酸序列對應於人類抗體。參見L.Riechmann等人,Nature,1988;332:323-327;G.Winter,美國專利第5,225,539號;C.Queen等人,U.S.5,530,101。如WO9852976中所述,去免疫型抗體為已消除T細胞抗原決定基以及B細胞抗原決定基之抗體。當活體內應用時,其具有降低之免疫原性。可由若干不同方式來製備人類抗體,其包括藉由使用人類免疫球蛋白表現文庫(Stratagene Corp.,La Jolla,California)來製備人類抗體之片段(VH、VL、Fv、Fd、Fab或(Fab')2),以及使用與製備嵌合抗體類似之技術使用此等片段來建構全人類抗體。亦可於具有人類免疫球蛋白基因組之轉殖基因小鼠中製備人類抗體。此小鼠是獲自Abgenix,Inc.,Fremont,California以及Medarex,Inc.,Annandale,New Jersey。亦可製造重鏈Fv區與輕鏈Fv區相連接之單肽鏈結合分子。單 鏈抗體(“ScFv”)以及其建構方法描述於美國專利第4,946,778號中。或者,Fab可由類似方式建構以及表現(M.J.Evans等人,J.Immunol.Meth.,1995;184:123-138)。可用於本發明情形中之另一類抗體為重鏈抗體以及其衍生物。此等單鏈重鏈抗體天然存在於(例如)駱駝科(Camelidae)中且其分離可變域通常稱作“VHH域”或“奈米抗體”。獲得重鏈抗體以及可變域之方法提供於以下參考文獻中:WO 94/04678、WO 95/04079、WO 96/34103、WO 94/25591、WO 99/37681、WO 00/40968、WO 00/43507、WO 00/65057、WO 01/40310、WO 01/44301、EP 1134231、WO 02/48193、WO 97/49805、WO 01/21817、WO 03/035694、WO 03/054016、WO 03/055527、WO 03/050531、WO 01/90190、WO 03/025020、WO 04/041867、WO 04/041862、WO04/041865、WO 04/041863、WO 04/062551。所有全人類抗體以及部分人類抗體之免疫原性小於全鼠類MAb(或其他非人類動物之MAb)之免疫原性,且片段以及單鏈抗體亦具較小免疫原性。因此所有此等類型之抗體較不易引起免疫或過敏反應。因此,其比全動物抗體更適於人類中之活體內投藥,尤其當必須進行重複或長期投藥時。另外,較小大小之抗體片段可有助於改良組織生物可用性,此對於急性疾病適應症(諸如腫瘤治療或一些病毒感染)中之較佳劑量積聚可為關鍵的。
醫藥組合物
本發明進一步關於包含作為活性成份之如上文所定義之接合物之醫藥製劑。除活性成份(接合物)之外,組合物較佳至少包含醫藥學上可接受之載劑(不同於接合物中之載體)。在一些方法中,接 合物包含如自哺乳動物、昆蟲或微生物細胞培養物、自轉殖基因哺乳動物之乳汁或其他來源純化之本發明之多肽或抗體,其是以純化形式與醫藥載劑一起作為醫藥組合物投與。製造包含多肽之醫藥組合物之方法描述於美國專利第5,789,543號以及第6,207,718號中。較佳形式視預期投藥模式以及治療應用而定。醫藥載劑可為適於向患者投遞多肽、抗體或基因療法載體之任何相容性無毒物質。無菌水、醇、脂肪、蠟以及惰性固體可用作載劑。醫藥學上可接受之佐劑、緩衝劑、分散劑以及其類似物亦可併入醫藥組合物中。醫藥組合物中本發明接合物之濃度可廣泛變化,亦即自小於約0.1重量%(通常為至少約1重量%)至多達20重量%或更大。對於經口投藥而言,活性成份可以諸如膠囊、錠劑以及散劑之固體劑型或諸如酏劑、糖漿以及栓劑之液體劑型投與。一或多種活性組份可與非活性成份以及粉末狀載劑(諸如葡萄糖、乳糖、蔗糖、甘露糖醇、澱粉、纖維素或纖維素衍生物、硬脂酸鎂、硬脂酸、糖精鈉、滑石、碳酸鎂以及其類似物)一起囊封於明膠膠囊中。可添加以提供所需顏色、味道、穩定性、緩衝能力、分散度或其他已知所需特徵之其他非活性成份之實例為氧化鐵紅、矽膠、月桂基硫酸鈉、二氧化鈦、可食用白墨水以及其類似物。類似稀釋劑可用於製造壓縮錠劑。錠劑與膠囊可經製造為持續釋放產品以在數小時之時期內提供藥物之連續釋放。壓縮錠劑可經糖包衣或薄膜包衣以掩蔽任何令人不快之味道且保護錠劑遠離空氣,或包覆腸衣以在胃腸道中選擇性崩解。用於經口投藥之液體劑型可含有著色劑以及調味劑以增加患者接受性。本發明接合物較佳非經腸投與。用於非經腸投藥之具有 接合物之製劑須為無菌的。在凍乾以及復水之前或之後,易於藉由經無菌過濾膜過濾來實現滅菌。接合物之非經腸投藥途徑與已知方法(例如靜脈內注射或輸液、腹膜內、肌肉內、動脈內、病灶內、顱內、鞘內、經皮、經鼻、經頰、經直腸或經陰道途徑)相一致。藉由輸液或藉由快速注射來連續投與接合物。用於靜脈內輸液之典型組合物可經組成以含有10ml至50ml無菌0.9% NaCl或5%葡萄糖,視情況補充20%白蛋白溶液以及所需劑量之接合物。用於肌肉內注射之典型醫藥組合物將經組成以含有(例如)1ml-10ml無菌緩衝水以及所需劑量之本發明接合物。此項技術中熟知用於製備可非經腸投與之組合物之方法且其更詳細描述於各種來源中,包括(例如)Remington's Pharmaceutical Science(第15版,Mack Publishing,Easton,PA,1980)(出於所有目的以引用的方式全部併入本文中)。
對於治療應用而言,將足以降低症狀之嚴重性以及/或預防或阻滯症狀進一步發展之量之醫藥組合物投與罹患病毒感染或相關病狀之患者中。足以實現此作用之量經定義為“治療有效劑量”或“預防有效劑量”。此等有效劑量將視病狀之嚴重性以及患者之一般健康狀態而定。
在此文件以及其申請專利範圍中,動詞“包含”以及其變形形式以其非限制性意義使用以意謂包括所述詞語之後的項目,但不排除未特定提及之項目。另外,除非上下文明確需要存在一且僅存在一要素,否則由不定冠詞“一”提及之要素不排除存在一個以上要素之可能性。因此不定冠詞“一”通常意謂“至少一”。
實例
實例1
抗病毒藥劑與受體特異性配位體之接合
作為受體特異性配位體之抗病毒接合之實例,揭示使病毒唑與CRM197接合之較佳方法。
病毒唑與CRM197之接合是修改自Brookes等人,(2006,Bioconjugate Chem.,17:530-537),藉由RBV與氧氯化磷(POCl3)以及磷酸三甲酯(TMP)之反應來製備,其中反應進程是由C18逆相HPLC監控。使RBV(2mmol)與於8.3mL TMP中之POCl3(8mmol)以及純水(2mmol)反應。在反應完成(5小時)後,將產物傾至20g冰上且添加2N氫氧化鈉溶液以使pH值達到3。使產物在室溫下水解一晚。用2×20mL份之氯仿萃取水解產物。將於氯仿中之產物RBV-P與10g精細木炭(100-400目)混合。將反應混合物/木炭漿料在2000g下離心15分鐘,且回收上清液。重複洗滌步驟,直至藉由C18逆相HPLC或藉由Ames法在上清液中無法偵測到無機磷酸鹽(Pi)為止。用乙醇/水/氫氧化銨(10:10:1)將木炭萃取三次,且將所匯集的萃取物蒸發至乾燥。使用BioRAD AG 50W-X2(H形式)樹脂藉由離子交換將所得RBV-P銨鹽轉化為游離酸且根據Streeter法用水溶離產物。純化後之分離產率為70%。使用兩種檢定來表徵RBV-P:使用酸性磷酸酶(酸性磷酸酶檢定)藉由C18逆相HPLC量化由酶促裂解釋放之RBV,以及藉由Ames法量化總無機磷酸鹽(Pi)。根據具有細微更改之Fiume程序將所純化之RBV-P轉化為病毒唑-5'-單磷酸咪唑鎓 (ribavirin-5'-monophosphorimidazolide;RBV-P-Im)。使用無水溶劑在乾燥氮氣下進行反應。將RBV-P(324mg,1mmol)溶解於10mL N,N'-二甲基甲醯胺(DMF)中。在攪拌下將溶解於5mL DMF中之羰基二咪唑(CDI,5mmol)添加至RBV-P溶液中,接著添加新鮮預溶解於5mL DMF中之5mmol咪唑中。將反應混合物在室溫下攪拌45分鐘,接著藉由蒸發移除DMF。將所得蠟狀固體溶解於2mL乙醇中,接著藉由緩慢添加20mL乙醚使RBV-P-Im產物沈澱。用乙醚將沈澱物洗滌兩次,且使用平緩乾燥氮氣流蒸發殘餘乙醚。分離出大於90%產率之RBV-P-Im且立即用於與CRM197之接合。將CRM197(667nmol,40mg)(10mL之於純水中之4mg/mL溶液)與10μmol(3.74mg)溶解於860μL 0.1M碳酸氫鈉(pH 9.5)緩衝液中之RBV-P-Im混合(RBV-P-Im與CRM197比率為150:1)。藉由按照需要添加0.2M碳酸鈉溶液而在第一小時內將反應混合物之pH值保持在pH 9.5-9.6下。藉由陰離子交換HPLC監控CRM197修飾程度。將最終反應混合物藉由以PBS(3×0.5L交換)透析(10kDa分子量截斷)來純化,無菌過濾(0.2μm過濾器)且在4℃下儲存。
將類似接合化學應用於本文中所揭示之其他核苷類似物以及類似抗病毒藥劑,以及用於細胞內靶向之本文中所揭示之其他受體特異性配位體。
為觀測受體特異性細胞攝取,以及與親水性抗病毒藥劑(如大多數核苷類似物,包括病毒唑以及其類似物)接合之CRM197之活體內藥物動力學以及生物分佈,用親水性螢光染料異硫氰酸螢光素 (FITC)標記CRM197。為此,將CRM197(100nmol,6mg)溶解於1.2mL PBS以及120μL 1M NaHCO3 pH 9.0中。添加FITC(2μmol,78μl新鮮製備之10mg/mL DMSO儲備液)且在室溫下將溶液在黑暗中攪拌1小時。藉由超速離心(ZebraTM,Pierce,Rockford,USA)移除過量FITC,隨後將溶液在黑暗中在4℃下儲存。藉由在494nm下量測溶液來測定每分子CRM197之FITC分子數目(3至6)。將相同標記程序應用於作為對照蛋白質之辣根過氧化物酶(HRP)。
實例2
受體特異性配位體與含有抗病毒藥劑之奈米包覆體之接合
作為經受體特異性配位體塗佈之含抗病毒藥劑之奈米包覆體的實例,揭示使CRM197與負載RBV之聚乙二醇化脂質體接合之較佳方法。
脂質體由莫耳比為2.0:1.5之1,2-二軟脂醯基-sn-甘油基-3-磷酸膽鹼(DPPC)與膽固醇(Chol)組成。將組份溶解於CHCl3:MeOH(1:1 v:v)中。藉由在減壓下蒸發溶劑由DPPC(50μmol)與Chol(37.5μmol)來製備脂質薄膜。必要時,將磷酸二鯨蠟酯(DP)(莫耳比0.22)添加至混合物中。將脂質於1mL含有3.5mol% DSPE-PEG-MAL(Mw 3400)以及3.5mol% DSPE-mPEG(Mw 2000)之於PBS中之100至120mg/mL RBV(或藉由將溶液加熱至50℃而達到大於500mg/ml)中水合。在渦旋後,在42℃之溫度下將微脂粒擠壓穿過兩個200nm孔徑(9次)、100nm(9次)以及最終50nm(9次)之聚碳酸酯膜。脂質體直接用於與CRM197接合。至此為止,在室溫下於含有1mM EDTA之160 mM硼酸鹽緩衝液(pH 8.0)中將CRM197用Traut試劑(2-亞胺基硫埬.HCl=2-IT,15當量)修飾1小時。藉由超速離心(ZebraTM管柱,Pierce,Rockford,USA)移除過量2-IT。以每μmol磷脂計添加50-100μg經修飾CRM197以在4℃下在混合情況下接合一晚。或者,在使用DSPE-PEG-MAL以及2-IT修飾CRM197製備脂質體之前合成DSPE-PEG-CRM197。在擠壓之前或在擠壓之後將DSPE-PEG-CRM197添加至水合脂質混合物中,藉由在25℃至55℃下培育2小時至24小時(視有效負載之溫度敏感性而定),以獲得靶向部分向脂質體中之最佳併入程度。使用Sephrose CL 4B管柱或經由超速離心移除未結合CRM197以及游離RBV。藉由量測粒度(100-119nm p.i.0.07-0.19,藉由Malvern Zetasizer 300 HAS)、ζ電位(-18/-9mV±6.5,藉由Malvern Zetasizer 300 HAS)、磷脂含量(14-21mM,使用Wako Chemicals GmbH之磷脂B套組)以及蛋白質含量(0.2-0.6mol% CRM197,基於Pierce之修飾Lowry套組)以及藥物(RBV)負載(5%-21%,藉由Agilent 8453 UV/VIS光譜儀於異丙醇溶液中在206nm-210nm下測定)來表徵脂質體。
或者,用DSPE-PEG-麩胱甘肽替代DSPE-PEG-CRM197,其是在製備脂質體之前使用DSPE-PEG-MAL與還原型麩胱甘肽之新鮮溶液(提供三肽之半胱胺酸部分中之MAL反應性硫醇基團)來合成。
將類似脂質體包裹應用於本文中所揭示之其他核苷類似物以及類似抗病毒藥劑,且將類似接合化學應用於用於細胞內靶向之本文中所揭示之其他受體特異性配位體。另外,將類似脂質體包裹應用 於核酸基抗病毒藥物,其中如Gao以及Huang,1991,Biochem Biophys Res Commun.179(1):280-5中所詳述藉由向脂質體中添加膽固醇之陽離子衍生物(DC-Chol)或如WO2002/066012中所詳述藉由使用兩性脂質體,進行核酸包裹之額外富集。
為觀測受體特異性細胞攝取,以及與填充有抗病毒藥劑(如核苷類似物,包括RBV以及其類似物)之脂質體接合之CRM197或麩胱甘肽的活體內藥物動力學以及生物分佈,在製備脂質體期間將1,2-二油醯基-sn-甘油基-3-磷酸乙醇胺-N-麗絲胺羅丹明B磺醯基(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine Rhodamine B sulfonyl;Rho-PE,0.1mol%)添加至脂質混合物中。或者,用放射性示蹤劑分子標記脂質體。
實例3
受體特異性配位體與核酸基抗病毒藥物之載體之接合
作為藉助於受體介導攝取機制之核酸基抗病毒藥物之非病毒投遞系統的實例,揭示聚乙二醇化CRM197與聚伸乙基亞胺(PEI)之較佳接合方法。
如下製備聚乙二醇化複合物。將PEI(25kDa,分枝,3.3mg,133nmol)以5mg/mL之濃度溶解於PBS中。將聚乙二醇-α-順丁烯二醯亞胺-ω-NHS(NHS-PEG-VS,Mw 5000,266nmol,1.4mg)添加至此溶液中且在室溫下培育1小時同時混合。藉由超速離心(ZebraTM管柱,Pierce,Rockford,USA)移除過量NHS-PEG-VS。將PEI-PEG-VS直接用於與CRM197接合。至此為止,在室溫下將CRM197(133nmol, 8mg,於1.6mL含有1mM EDTA之160mM硼酸鹽緩衝液(pH 8.0)中)用2-IT(2.66μmol,183μl,於160mM硼酸鹽緩衝液(pH 8.0)中之14.5mM溶液)修飾1小時。藉由超速離心(ZebraTM管柱,Pierce,Rockford,USA)移除過量2-IT。使用1:1莫耳比率將經硫醇活化之CRM197與PEI-PEG-VS在4℃下接合一晚。添加PBS(4mL)且使用Vivaspin管柱(Sartorius,Epsom,UK)來濃縮溶液以移除未反應之CRM197或PEI-PEG-VS。藉由SDS PAGE測定接合物之純度。若適用(且在與抗病毒核酸基藥物複合之後),則將構築體經Sephrose CL 4B管柱進一步純化。將相同接合程序應用於作為對照蛋白質之HRP。
實例4
受體特異性細胞攝取以及/或目標抗病毒藥劑之轉細胞轉運
藉由分析CRM197-FITC接合物之特異性攝取且與HRP-FITC以及游離螢光素鈉之攝取量相比來觀測CRM197-RBV接合物之受體特異性細胞攝取。使用來自若干物種以及來源(包括豬腎上皮細胞(LLC-PK1)、牛腦毛細管內皮細胞(BCEC)、猴腎纖維母細胞(COS-1)以及人神經膠母細胞瘤細胞)之具有已知DTR表現之細胞。詳言之,將LLC-PK1細胞於24孔培養盤中於補充有100微克/毫升肝素之400微升DMEM+FCS上培育1小時,隨後將5微克CRM197-FITC或HRP-FITC添加至孔中。兩小時後將細胞洗滌3次且將細胞於100微升0.1N NaOH中溶解,且藉由fluostar培養盤讀取器在480/530nm下測定螢光。藉由Biorad DC檢定測定每孔之細胞蛋白質且以每毫克細胞蛋白質計來計算細胞溶菌液之螢光。在另一組細胞中,將過量之100微克 游離CRM197添加至孔中,30分鐘後將CRM197-FITC接合物添加至培養基中。LLC-PK1細胞含有以每毫克細胞蛋白質計0.54 +/- 0.02微克CRM197-FITC,其在細胞經游離CRM197預培育後顯著降至以每毫克細胞蛋白質計0.35 +/- 0.04微克CRM197-FITC。在細胞溶菌液中未發現HRP-FITC。此等實驗證明CRM197-FITC由表現於LLC-PK1細胞上之DTR特異性攝取。在另一組實驗中,將LLC-PK1細胞在類似條件下於蓋玻片上培養且暴露於CRM197-FITC、HRP-FITC或螢光素鈉中。在固定且安裝具有DAPI之vectashield以進行核染色後,藉由螢光顯微鏡分析蓋玻片且拍照。圖1繪示CRM197-FITC在此等細胞中之受體特異性攝取以及細胞(周)核體的定位之代表圖。在經HRP-FITC以及螢光素鈉培育之細胞中未發現螢光信號。在BCEC、COS-1以及人神經膠母細胞瘤細胞發現相同結果,在若干時間點後(長達暴露後24小時)亦相同。有趣的是,當在2小時後,移除含有CRM197-FITC之培育培養基且用DMEM+FCS替代後,在4小時後,螢光標記在整個細胞溶質內均勻分佈,指示接合物已脫離核內體。
另外,在一組關於由Gaillard等人,(2001,Eur J Pharm Sci.12(3):215-222)所描述之BBB模型之類似實驗中,暴露於負載RBV(應用濃度介於5%與25%之間;約18mg/mL脂質體溶液)之CRM197-PEG-脂質體(經Rho-PE標記,大小介於50nm與200nm之間,含有介於5與1000之間之CRM197蛋白)中長達2小時之BCEC由BCEC特異性攝取,其中在細胞中不可偵測到負載RBV之PEG-脂質體。在此BBB模型中,未觀測到負載RBV之脂質體(含有相當於1.8mg/mL之RBV) 或游離RBV(高達1mg/mL)對BBB完整性之影響(如由跨內皮細胞電阻所測定)。在關於LLC-PK1細胞之MTT檢定中,在5小時後發現10mg/mL RBV具毒性(60%細胞活力)。圖2繪示在DMEM+FCS中培育4小時後,負載RBV之CRM197-PEG-脂質體於LLC-PK1細胞中之受體特異性(“加點標記”)攝取之代表圖。在經HRP-PEG-脂質體培育之細胞中未發現受體特異性螢光信號。另外,於BCEC中以麩胱甘肽-PEG-脂質體獲得類似特異性攝取結果,而在LLC-PK1細胞中未觀測到攝取,指示攝取由表現於BCEC上之受體特異性介導。圖3繪示在DMEM+FCS培育4小時以及24小時後,BCEC中負載RBV之麩胱甘肽-PEG-脂質體攝取之代表圖。
實例5
目標抗病毒藥劑之藥物動力學以及生物分佈
藉由在倉鼠中靜脈內快速注射後分析CRM197-FITC接合物且與HRP-FITC接合物比較來觀測CRM197-RBV接合物之藥物動力學以及生物分佈。在對每隻倉鼠(n=4)靜脈內注射劑量為1mg之FITC標記蛋白質60分鐘後,經計算CRM197-FITC之血漿半衰期顯著較高(對於CRM197-FITC而言為12小時,相比之下,HRP-FITC為38分鐘),其中此時AUC基本上相同(+/- 7000微克*分鐘/毫升)。與之相比,測得於大鼠中經靜脈內快速注射1mg螢光素鈉之半衰期以及AUC分別為35分鐘以及13微克*分鐘/毫升。CRM197接合物之此等藥物動力學性質提供抗病毒藥劑之有利投遞特徵。另外,目標接合物在所分析之所選組織(包括腦、心、肺、肝、脾(亦即淋巴細胞)以及腎, 但在肌肉組織中並不多)中展示特異性積聚,相比之下,對照(HRP)接合物在注射90分鐘後在此等組織中不可(或幾乎不可)偵測(代表圖繪示於圖4中)。
另外,在兩組類似實驗中,藉由在倉鼠中8次或9次重複靜脈內快速注射後分析Rho-PE標記且與對照(未靶向)PEG-脂質體相比來觀測負載病毒唑之麩胱甘肽以及CRM197-PEG-脂質體(經Rho-PE標記)之生物分佈。就CRM197-FITC接合物而言,CRM197靶向脂質體在所分析之所選組織(包括腦、心、肺、肝、脾(亦即淋巴細胞)、肌肉以及腎)中展示特異性積聚,相比之下,對照脂質體在最後注射24小時後在腦中不可(或幾乎不可)偵測,且在此等組織中偵測到更小程度。圖5繪示此等組織之代表圖。
麩胱甘肽靶向脂質體在灌注倉鼠腦中展示較高且特異性之積聚,且在所分析之所選其他組織(包括心、肺、肝、脾以及腎)中較少積聚,相比之下,對照脂質體在最後注射24小時後在腦中不可(或幾乎不可)偵測,但在肺、腎以及肝組織中偵測到相對較高程度。圖6繪示所選此等組織之代表圖。
考慮到已知PEI自身對細胞以及動物有毒性之實情,在於倉鼠中靜脈內快速注射後兩天內評估CRM197-PEG-PEI LacZ質體聚合物複合體之毒性概況,且與對照(HRP-PEG-PEI LacZ質體)聚合物複合體進行比較。倉鼠未展示由注射(50微克DNA,以1.2之N/P比)造成之不適或疾病跡象,因此動物對聚合物複合體良好耐受。
實例6
目標抗病毒藥劑在活體外之抗病毒活性
為例示說明所述發明之效力,在非洲綠猴腎細胞中評估受體特異性抗病毒活性(主要根據Leyssen等人,2005,J Virol.,79:1943-1947)。測定RBV、CRM197-RBV接合物、負載有RBV之CRM197-PEG-脂質體以及具有病毒特異性核酸聚合物複合體之CRM197-PEG-PEI對相關病毒藥劑(包括JEV以及WNV(具有siRNA序列FvE J,5′-GGA TGT GGA CTT TTC GGG A-3′(JEV nt 1287-1305);FvE JW,5′-GGG AGC ATT GAC ACA TGT GCA-3′(JEV nt 1307-1328);以及FvE W,5′-GGC TGC GGA CTG TTT GGA A-3′(WNV nt 1287-1305),如Kumar等人,2006,PloS Med.,3(4):e96中所詳述);以及3Dz抗JEV DNA酶(具有序列5'-CCT CTA AGG CTA GCT ACA ACG ACT CTA GT-3'(JEV nt 10749-10763以及10827-10841),如WO2006064519中所詳述)以及RSV(具有抗NS1目標5'-GGC AGC AAT TCA TTG AGT ATG CTT CTC GAA ATA AGC ATA CTC AAT GAA TTG CTG CCT TTT TG-3'之siRNA莖環序列,如Kong等人,2007,Genet Vaccines Ther,5:4中所詳述))樣品複製之劑量反應影響。在不存在或存在經連續稀釋之各別抗病毒藥劑之情況下以0.1之病毒感染劑量(multiplicity of infection;MOI)將生長於96孔微量滴定盤中之1天齡長滿之非洲綠猴腎細胞單層用各別病毒感染。將培養物在37℃下培育5天,在感染後,未經處理之培養物顯示明顯細胞病變效應(CPE)。對於各條件而言,彙集兩個至四個孔之上清液,且隨後萃取總RNA(QIAamp病毒RNA微型套組)。使用一步反轉錄定量PCR(RT-qPCR) 來量化病毒RNA。各化合物均引起所測試病毒藥劑之合成之濃度依賴性抑制作用。目標RBV化合物證實最有效,且RBV為效力最小之化合物(舉例而言,對於YFV而言,病毒唑之RNA合成之抑制作用的EC50[EC50 RNA]為12.3±5.6μg/ml)。
實例7
目標抗病毒藥劑在活體內之抗病毒活性
使用MODV,在人類黃病毒感染(表現為急性腦炎、類脊髓灰質炎症候群以及神經學續發症)之倉鼠模型中測定受體特異性抗病毒活性(Leyssen等人,2003,Brain Pathol.,13:279-290)。在此模型中觀測到CRM197-RBV接合物以及具有RBV之CRM197-PEG-脂質體顯著降低發病率以及神經學續發症。儘管糖皮質激素以及干擾素對於治療日本腦炎而言在臨床上無效(Hoke等人,1992,J Infect Dis.,165:631-637;以及Solomon等人,2003,Lancet,361:821-826),但觀測到地塞米松與干擾素α-2a單獨或兩者之共同藥物治療結合用CRM197-RBV接合物以及具有RBV之CRM197-PEG-脂質體治療進一步降低發病率以及神經學續發症。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。

Claims (12)

  1. 一種接合物,可藉由使二硬脂醯基磷脂醯乙醇胺-聚乙二醇-順丁烯二醯亞胺(DSPE-PEG-MAL)與還原型麩胱甘肽反應獲得。
  2. 如申請專利範圍第1項所述之接合物,其中所述二硬脂醯基磷脂醯乙醇胺-聚乙二醇-順丁烯二醯亞胺(DSPE-PEG-MAL)的分子量為3400Da。
  3. 一種微脂體,包括如申請專利範圍第1項或第2項所述之接合物。
  4. 如申請專利範圍第3項所述之微脂體,更包括藥物。
  5. 如申請專利範圍第4項所述之微脂體,其中所述藥物為抗病毒藥物。
  6. 如申請專利範圍第5項所述之微脂體,其中所述抗病毒藥物為病毒唑。
  7. 一種接合物的合成方法,所述接合物如申請專利範圍第1項或第2項所述,所述方法包括使二硬脂醯基磷脂醯乙醇胺-聚乙二醇-順丁烯二醯亞胺(DSPE-PEG-MAL)與還原型麩胱甘肽反應的步驟。
  8. 一種微脂體的製備方法,所述微脂體包括如申請專利範圍第1項或第2項所述之接合物,所述方法包括將如申請專利範圍第1項或第2項所述之接合物偶合至微脂體。
  9. 一種如申請專利範圍第1項或第2項所述之接合物,用於傳遞藥物穿透血腦障壁。
  10. 如申請專利範圍第9項所述之接合物,用於攜帶藥物穿透所述血腦障壁。
  11. 一種如申請專利範圍第1項或第2項所述之接合物用於製備藥物製劑的用途,其中所述藥物製劑用於傳遞藥物穿透血腦障壁。
  12. 如申請專利範圍第11項所述之接合物用於製備藥物製劑的用途,其中所述藥物製劑用於攜帶藥物穿透所述血腦障壁。
TW103103269A 2007-03-23 2008-03-24 抗病毒藥劑之目標細胞內投遞 TWI537005B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90717607P 2007-03-23 2007-03-23

Publications (2)

Publication Number Publication Date
TW201417832A TW201417832A (zh) 2014-05-16
TWI537005B true TWI537005B (zh) 2016-06-11

Family

ID=39485128

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103103269A TWI537005B (zh) 2007-03-23 2008-03-24 抗病毒藥劑之目標細胞內投遞
TW097110407A TWI434699B (zh) 2007-03-23 2008-03-24 抗病毒藥劑之目標細胞內投遞

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097110407A TWI434699B (zh) 2007-03-23 2008-03-24 抗病毒藥劑之目標細胞內投遞

Country Status (11)

Country Link
US (4) US20100129437A1 (zh)
EP (2) EP2308514B1 (zh)
CY (1) CY1114116T1 (zh)
DK (1) DK2308514T3 (zh)
ES (1) ES2426684T3 (zh)
HR (1) HRP20130547T1 (zh)
PL (1) PL2308514T3 (zh)
PT (1) PT2308514E (zh)
SI (1) SI2308514T1 (zh)
TW (2) TWI537005B (zh)
WO (1) WO2008118013A2 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249838T3 (es) * 1997-07-11 2006-04-01 The Government Of The Usa As Represented By The Secretary Of The Depar. Of Health And Human Services Inmunogenos quimericos similares a la exotoxina a de pseudomonas.
US20050158296A1 (en) 2002-01-11 2005-07-21 Starr Christopher M. Use of p97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
JP2008512445A (ja) * 2004-09-09 2008-04-24 イッスム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム 炎症状態の治療のためのリポソーム性グルココルチコイドの使用
US8642577B2 (en) 2005-04-08 2014-02-04 Chimerix, Inc. Compounds, compositions and methods for the treatment of poxvirus infections
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
WO2008147526A1 (en) * 2007-05-23 2008-12-04 The Trustees Of The University Of Pennsylvania Targeted carriers for intracellular drug delivery
AU2009206673B2 (en) 2008-01-25 2015-04-23 Chimerix, Inc. Methods of treating viral infections
EP2318832B1 (en) 2008-07-15 2013-10-09 Academia Sinica Glycan arrays on ptfe-like aluminum coated glass slides and related methods
ES2919563T3 (es) * 2009-02-20 2022-07-27 Enhanx Biopharm Inc Sistema de administración de medicamentos a base de glutatión
US8614200B2 (en) 2009-07-21 2013-12-24 Chimerix, Inc. Compounds, compositions and methods for treating ocular conditions
US20130072458A1 (en) * 2009-10-30 2013-03-21 Chimerix, Inc. Methods of Treating Viral Associated Diseases
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
PT2534150T (pt) 2010-02-12 2017-05-02 Chimerix Inc Métodos para tratar uma infecção viral
US10338069B2 (en) * 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
EP2563367A4 (en) 2010-04-26 2013-12-04 Chimerix Inc METHODS OF TREATING RETROVIRAL INFECTIONS AND ASSOCIATED DOSAGE REGIMES
PT2646470T (pt) 2010-11-30 2017-05-03 Hoffmann La Roche Anticorpos anti-recetor da transferrina de baixa afinidade e a sua utilização na transferência de scfv terapêuticos através da barreira hematoencefálica
CN102172348B (zh) * 2011-02-12 2013-02-20 北京博康宁生物医药科技有限公司 固体的磷酸奥司他韦药物组合物
US8877722B2 (en) * 2011-03-25 2014-11-04 Idera Pharmaceuticals, Inc. Compositions for inhibiting gene expression and uses thereof
JP6208658B2 (ja) 2011-07-05 2017-10-04 バイオアシス テクノロジーズ インコーポレイテッド p97−抗体結合体および使用方法
US8466159B2 (en) 2011-10-21 2013-06-18 Abbvie Inc. Methods for treating HCV
US8809265B2 (en) 2011-10-21 2014-08-19 Abbvie Inc. Methods for treating HCV
GB2506086A (en) 2011-10-21 2014-03-19 Abbvie Inc Methods for treating HCV comprising at least two direct acting antiviral agent, ribavirin but not interferon
US8492386B2 (en) 2011-10-21 2013-07-23 Abbvie Inc. Methods for treating HCV
DK2828284T3 (da) 2012-03-20 2019-06-11 Biogen Ma Inc Jcv-neutraliserende antistoffer
WO2013142300A2 (en) 2012-03-20 2013-09-26 Biogen Idec Ma Inc. Jcv neutralizing antibodies
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
KR102434075B1 (ko) 2012-05-17 2022-08-19 익스텐드 바이오사이언시즈, 인크. 개선된 약물 전달용 캐리어
CA3140358A1 (en) 2012-07-31 2014-02-06 Bioasis Technologies, Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
AU2013306098A1 (en) 2012-08-18 2015-02-12 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
CA2906003C (en) 2013-03-13 2021-07-06 Bioasis Technologies Inc. Fragments of p97 and uses thereof
US10287578B2 (en) 2013-06-14 2019-05-14 The University Of Notre Dame DNAzyme-nanoparticle conjugates and methods of use thereof
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
EP3013347B1 (en) 2013-06-27 2019-12-11 Academia Sinica Glycan conjugates and use thereof
JP2016530294A (ja) 2013-09-03 2016-09-29 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. キメラポリヌクレオチド
WO2015035337A1 (en) 2013-09-06 2015-03-12 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS
EP3052521A1 (en) 2013-10-03 2016-08-10 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
EP3068431A4 (en) * 2013-11-15 2017-08-23 President and Fellows of Harvard College Methods and compositions for the treatment of hcmv
AU2015206370A1 (en) 2014-01-16 2016-07-07 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
CA2935195A1 (en) 2014-02-03 2015-08-06 Bioasis Technologies, Inc. P97 fusion proteins
ES2762672T3 (es) 2014-02-19 2020-05-25 Bioasis Technologies Inc Proteínas de fusión de P97-IDS
WO2015148915A1 (en) 2014-03-27 2015-10-01 Academia Sinica Reactive labelling compounds and uses thereof
JP6847664B2 (ja) * 2014-05-01 2021-03-24 バイオアシス テクノロジーズ インコーポレイテッド P97−ポリヌクレオチド複合体
EP3149161B1 (en) 2014-05-27 2021-07-28 Academia Sinica Fucosidase from bacteroides and methods using the same
AU2015267047A1 (en) 2014-05-27 2017-01-05 Academia Sinica Anti-CD20 glycoantibodies and uses thereof
EP4116329A1 (en) 2014-05-27 2023-01-11 Academia Sinica Anti-her2 glycoantibodies and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
JP7063538B2 (ja) 2014-05-28 2022-05-09 アカデミア シニカ 抗TNFα糖操作抗体群およびその使用
CA2960712A1 (en) 2014-09-08 2016-03-17 Academia Sinica Human inkt cell activation using glycolipids
WO2016065052A1 (en) 2014-10-22 2016-04-28 Extend Biosciences, Inc. Insulin vitamin d conjugates
US9789197B2 (en) 2014-10-22 2017-10-17 Extend Biosciences, Inc. RNAi vitamin D conjugates
CA2964463C (en) 2014-10-22 2024-02-13 Extend Biosciences, Inc. Therapeutic vitamin d conjugates
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
TWI736523B (zh) 2015-01-24 2021-08-21 中央研究院 新穎聚醣結合物及其使用方法
CA2984252A1 (en) * 2015-04-29 2016-11-03 Foresight Biotherapeutics, Inc. Therapeutic combinations of antiviral and anti-inflammatory therapies
EP3426693A4 (en) 2016-03-08 2019-11-13 Academia Sinica PROCESS FOR MODULAR SYNTHESIS OF N-GLYCANES AND ARRANGEMENTS THEREOF
WO2017189978A1 (en) 2016-04-28 2017-11-02 Emory University Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto
CN109963868B (zh) 2016-08-22 2023-11-14 醣基生医股份有限公司 抗体、结合片段及使用方法
EP3556399A1 (en) * 2016-12-19 2019-10-23 Hanmi Pharm. Co., Ltd. Brain targeting long-acting protein conjugate
US10842755B2 (en) 2018-03-23 2020-11-24 University Of South Carolina Nanoparticles for brain targeted drug delivery
EA202092718A1 (ru) * 2018-05-15 2021-04-29 ФЛЭГШИП ПАЙОНИРИНГ ИННОВЕЙШНЗ VI, ЭлЭлСи Композиции для контроля патогенов и пути их применения
CN111068069B (zh) * 2018-10-18 2022-05-20 中国医学科学院药物研究所 一种免疫靶向功能性脂质体及其制备方法与用途
EP3715374A1 (en) * 2019-03-23 2020-09-30 Ablevia biotech GmbH Compound for the sequestration of undesirable antibodies in a patient
CA3106735A1 (en) * 2019-05-21 2020-11-26 Universite Laval Crimean-congo hemorrhagic fever virus immunogenic compositions
EP4118085A2 (en) 2020-03-12 2023-01-18 Gilead Sciences, Inc. Methods of preparing 1'-cyano nucleosides
TW202203941A (zh) 2020-05-29 2022-02-01 美商基利科學股份有限公司 瑞德西韋之治療方法
EP4221757A1 (en) 2020-09-29 2023-08-09 CRM Therapeutics B.V. Target mediated endocytotic drug delivery
NL2026569B1 (en) * 2020-09-29 2022-05-30 Crm Therapeutics B V Target mediated endocytotic drug delivery
NL2027601B1 (en) * 2021-02-19 2022-09-19 Crm Therapeutics B V Target mediated endocytotic drug delivery
WO2023049762A1 (en) * 2021-09-21 2023-03-30 Washington University Compositions and methods to modulate transfer across the blood-brain barrier
WO2023183628A2 (en) * 2022-03-25 2023-09-28 Judo Bio Inc. Targeted delivery
CN115252760B (zh) * 2022-03-30 2024-05-31 厦门大学 一种广谱抗冠状病毒的制剂及其制备方法

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668255A (en) * 1984-06-07 1997-09-16 Seragen, Inc. Hybrid molecules having translocation region and cell-binding region
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
JP3444885B2 (ja) 1992-08-21 2003-09-08 フリーイェ・ユニヴェルシテイト・ブリュッセル L鎖欠落免疫グロブリン
US6838254B1 (en) 1993-04-29 2005-01-04 Conopco, Inc. Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of camelidae
US5464758A (en) 1993-06-14 1995-11-07 Gossen; Manfred Tight control of gene expression in eucaryotic cells by tetracycline-responsive promoters
FR2708622B1 (fr) 1993-08-02 1997-04-18 Raymond Hamers Vecteur recombinant contenant une séquence d'un gène de lipoprotéine de structure pour l'expression de séquences de nucléotides.
US5789543A (en) 1993-12-30 1998-08-04 President And Fellows Of Harvard College Vertebrate embryonic pattern-inducing proteins and uses related thereto
EP0739981A1 (en) 1995-04-25 1996-10-30 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
CA2258518C (en) 1996-06-27 2011-11-22 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Recognition molecules interacting specifically with the active site or cleft of a target molecule
US6133027A (en) 1996-08-07 2000-10-17 City Of Hope Inducible expression system
EP0971747B1 (en) 1996-10-28 2005-12-28 Amersham Health AS Contrast agents
DE69833755T2 (de) 1997-05-21 2006-12-28 Biovation Ltd. Verfahren zur herstellung von nicht-immunogenen proteinen
FR2766193B1 (fr) * 1997-07-18 2001-09-14 Inst Curie Polypeptide chimerique comprenant le fragment b de la toxine shiga et des peptides d'interet therapeutique
US6180084B1 (en) 1998-08-25 2001-01-30 The Burnham Institute NGR receptor and methods of identifying tumor homing molecules that home to angiogenic vasculature using same
WO1999037681A2 (en) 1998-01-26 1999-07-29 Unilever Plc Method for producing antibody fragments
US20050059576A1 (en) * 1998-04-30 2005-03-17 Adamson J. Gordon Targeted delivery of antiviral compounds through hemoglobin bioconjugates
US7227011B2 (en) 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
DK0978285T3 (da) 1998-08-07 2006-03-27 Curis Inc Stabilt farmaceutisk præparat af hedgehogproteiner og anvendelse deraf
US6312734B1 (en) * 1998-11-23 2001-11-06 Novelos Therapeutics, Inc. Methods for production of the oxidized glutathione composite with cis-diamminedichloroplatinum and pharmaceutical compositions based thereof regulating metabolism, proliferation, differentiation and apoptotic mechanisms for normal and transformed cells
MXPA01006201A (es) * 1998-12-18 2003-06-06 Hadasit Med Res Service Metodo para administrar un compuesto a celulas resistentes a multiples medicamentos.
US6652864B1 (en) * 1998-12-21 2003-11-25 Asilomar Pharmaceuticals, Inc. Compounds for intracellular delivery of therapeutic moieties to nerve cells
AU3041100A (en) 1999-01-05 2000-07-24 Unilever Plc Binding of antibody fragments to solid supports
EP1144616B2 (en) 1999-01-19 2009-01-14 Unilever Plc Method for producing antibody fragments
AU3223900A (en) * 1999-02-08 2000-08-25 University Of Maryland At Baltimore Nucleic acid uptake and release vehicle
OA11862A (en) 1999-04-22 2006-03-02 Unilever Nv Inhibition of viral infection using monovalent antigen-binding proteins.
US6479280B1 (en) 1999-09-24 2002-11-12 Vlaams Interuniversitair Institutuut Voor Biotechnologie Vzw Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
ES2275563T3 (es) 1999-11-29 2007-06-16 Unilever N.V. Inmovilizacion de proteinas mediante el uso de un segmento polipeptidico.
ES2331051T3 (es) 1999-11-29 2009-12-21 Bac Ip B.V. Inmovilizacion de moleculas de union de antigenos de un dominio.
EP1134231B1 (en) 2000-03-14 2009-04-15 Unilever N.V. Antibody heavy chain variable domains against human dietary lipases, and their uses
US6372250B1 (en) * 2000-04-25 2002-04-16 The Regents Of The University Of California Non-invasive gene targeting to the brain
CA2380443C (en) 2000-05-26 2013-03-12 Ginette Dubuc Single-domain antigen-binding antibody fragments derived from llama antibodies
JP5230052B2 (ja) 2000-05-26 2013-07-10 イデニクス(ケイマン)リミテツド フラビウイルスおよびペスチウイルス治療のための方法および組成物
US20020098999A1 (en) * 2000-10-06 2002-07-25 Gallop Mark A. Compounds for sustained release of orally delivered drugs
DK1360207T3 (da) 2000-12-13 2011-09-05 Bac Ip B V Proteinarray af variable domæner af tunge immunoglobulinkæder fra kameler
NZ526703A (en) 2001-01-22 2004-12-24 Merck & Co Inc Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
DE10109897A1 (de) 2001-02-21 2002-11-07 Novosom Ag Fakultativ kationische Liposomen und Verwendung dieser
EP1383782A1 (en) 2001-03-26 2004-01-28 Sirna Therpeutics, Inc. Oligonucleotide mediated inhibition of hepatitis b virus and hepatitis c virus replication
WO2003025020A1 (fr) 2001-09-13 2003-03-27 Institute For Antibodies Co., Ltd. Procede pour creer une banque d'anticorps de chameaux
JP2005289809A (ja) 2001-10-24 2005-10-20 Vlaams Interuniversitair Inst Voor Biotechnologie Vzw (Vib Vzw) 突然変異重鎖抗体
US20050214857A1 (en) 2001-12-11 2005-09-29 Algonomics N.V. Method for displaying loops from immunoglobulin domains in different contexts
AU2002360068B2 (en) 2001-12-21 2009-09-03 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Method for cloning of variable domain sequences
WO2003055527A2 (en) 2002-01-03 2003-07-10 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Immunoconjugates useful for treatment of tumours
GB2397062B (en) 2002-02-20 2005-06-15 Sirna Therapeutics Inc RNA interference mediated inhibition of hepatitis c virus (HCV) gene expression using short interfering nucleic acid (siNA)
WO2003079757A2 (en) 2002-03-20 2003-10-02 Massachusetts Institute Of Technology Hiv therapeutic
MXPA05004955A (es) 2002-11-08 2005-11-17 Ablynx Nv Anticuerpos de region unica dirigidos contra el factor-alfa de necrosis de tumor y usos de estos.
EP1558646A2 (en) 2002-11-08 2005-08-03 Ablynx N.V. Single domain antibodies directed against interferon- gamma and uses thereof
AU2003300544A1 (en) 2003-01-09 2004-08-10 F. Hoffmann-La Roche Ag -modified nucleoside derivatives for treating flaviviridae infections
AU2004204262B2 (en) 2003-01-10 2010-11-04 Ablynx N.V. Recombinant VHH single domain antibody from camelidae against von willebrand factor (vWF) or against collagen
WO2004069870A2 (en) * 2003-02-10 2004-08-19 To-Bbb Holding B.V. Differentially expressed nucleic acids in the blood-brain barrier under inflammatory conditions
CA2523658A1 (en) 2003-04-25 2005-03-03 Intradigm Corporation Rnai agents for anti-sars coronavirus therapy
US7693315B2 (en) * 2003-06-25 2010-04-06 Siemens Medical Solutions Usa, Inc. Systems and methods for providing automated regional myocardial assessment for cardiac imaging
JP2007505606A (ja) 2003-09-16 2007-03-15 サーナ・セラピューティクス・インコーポレイテッド 低分子干渉核酸(siNA)を使用したC型肝炎ウィルス(HCV)発現のRNA干渉媒介性抑制
DE10355559A1 (de) * 2003-11-21 2005-06-23 Orthogen Ag Transskin
WO2005056021A1 (en) 2003-12-04 2005-06-23 University Of South Florida Polynucleotides for reducing respiratory syncytial virus gene expression
AU2005213485A1 (en) 2004-02-05 2005-08-25 Intradigm Corporation Methods and compositions for combination RNAi therapeutics
EP1574572B1 (en) 2004-03-09 2007-05-23 Prosensa B.V. Compounds for hydrolysing ribonucleic acids (RNAs)
CN1980657A (zh) 2004-05-05 2007-06-13 耶鲁大学 新颖的抗病毒赛菊宁黄质类似物
WO2006031901A2 (en) 2004-09-10 2006-03-23 Somagenics, Inc. SMALL INTERFERING RNAs THAT EFFICIENTLY INHIBIT VIRAL GENE EXPRESSION AND METHODS OF USE THEREOF
EP1647595A1 (en) 2004-10-15 2006-04-19 Academisch Medisch Centrum bij de Universiteit van Amsterdam Nucleic acids against viruses, in particular HIV
EP1802643A1 (en) 2004-10-19 2007-07-04 Replicor Inc. Antiviral oligonucleotides
US7592322B2 (en) 2004-10-22 2009-09-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US8691781B2 (en) 2004-11-05 2014-04-08 Sirnaomics, Inc. Compositions for treating respiratory viral infections and their use
WO2006060774A2 (en) 2004-12-02 2006-06-08 Board Of Regents, The University Of Texas System Agents that inhibit flavivirus replication and uses thereof
US20090010907A1 (en) 2004-12-14 2009-01-08 National Institute Of Immunology Dnazymes for Inhibition of Japanese Encephalitis Virus Replication
EP1674104A1 (en) 2004-12-24 2006-06-28 Institut National De La Sante Et De La Recherche Medicale (Inserm) Uridine derivatives as antiviral drugs against a flaviviridae, especially HCV
EP2487243A3 (en) 2005-01-07 2013-08-28 Alnylam Pharmaceuticals Inc. RNAI modulation of RSV and therapeutic uses thereof
WO2006096018A1 (en) 2005-03-09 2006-09-14 Mogam Biotechnology Research Institute Small interfering rna and pharmaceutical composition for treatment of hepatitis b comprising the same
CA2603842A1 (en) 2005-04-08 2006-10-19 Nastech Pharmaceutical Company Inc. Rnai therapeutic for respiratory virus infection
US20090221624A1 (en) 2005-05-06 2009-09-03 Olivo Paul D 4-aminoquinoline compounds for treating virus-related conditions
KR20080016597A (ko) 2005-05-13 2008-02-21 바이로켐 파마 인코포레이티드 플라비바이러스 감염의 예방 또는 치료용 화합물 및 그의예방 또는 치료 방법
KR100733186B1 (ko) 2005-05-31 2007-06-27 재단법인 목암생명공학연구소 Hcv 유전자에 특이적인 작은 간섭 rna 및 그를유효성분으로 포함하는 c형 간염 치료제
US7446096B2 (en) * 2005-12-19 2008-11-04 Industrial Technology Research Institute Glutathione based delivery system
US8067380B2 (en) * 2005-12-19 2011-11-29 Industrial Technology Research Institute Glutathione-based delivery system

Also Published As

Publication number Publication date
EP2125024A2 (en) 2009-12-02
TWI434699B (zh) 2014-04-21
CY1114116T1 (el) 2016-07-27
US20150290234A1 (en) 2015-10-15
WO2008118013A3 (en) 2009-02-19
EP2308514A2 (en) 2011-04-13
EP2308514B1 (en) 2013-06-05
US20100129437A1 (en) 2010-05-27
WO2008118013A2 (en) 2008-10-02
EP2308514A3 (en) 2011-04-20
SI2308514T1 (sl) 2013-09-30
ES2426684T3 (es) 2013-10-24
PT2308514E (pt) 2013-09-06
TW200900081A (en) 2009-01-01
PL2308514T3 (pl) 2013-11-29
DK2308514T3 (da) 2013-09-02
HRP20130547T1 (hr) 2013-08-31
TW201417832A (zh) 2014-05-16
EP2125024B1 (en) 2013-02-13
US20200390794A1 (en) 2020-12-17
US20130216612A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
TWI537005B (zh) 抗病毒藥劑之目標細胞內投遞
Abet et al. Prodrug approach: An overview of recent cases
Cheetham et al. Self-assembling prodrugs
Zangabad et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger
Zhou et al. Nanotechnology for virus treatment
Jiang et al. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles
Nasrolahi Shirazi et al. Cyclic peptide–selenium nanoparticles as drug transporters
Figueroa et al. Biomedical nanoparticle design: What we can learn from viruses
Song et al. Design and development of nanomaterial-based drug carriers to overcome the blood–brain barrier by using different transport mechanisms
Jiang et al. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug
Saleemi et al. An overview of recent development in therapeutic drug carrier system using carbon nanotubes
Bian et al. Awakening p53 in vivo by D-peptides-functionalized ultra-small nanoparticles: Overcoming biological barriers to D-peptide drug delivery
Shoari et al. Delivery of various cargos into cancer cells and tissues via cell-penetrating peptides: a review of the last decade
Yan et al. A general-purpose nanohybrid fabricated by polymeric Au (I)-peptide precursor to wake the function of peptide therapeutics
Mura et al. From poly (alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines
Madni et al. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine
She et al. De novo supraparticle construction by a self-assembled Janus cyclopeptide to tame hydrophilic microRNA and hydrophobic molecule for anti-tumor cocktail therapy and augmented immunity
Zhan et al. Diversity of DNA nanostructures and applications in oncotherapy
Warren et al. Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors
Hawryłkiewicz et al. Gemcitabine peptide-based conjugates and their application in targeted tumor therapy
Monroe et al. Harnessing nanostructured systems for improved treatment and prevention of HIV disease
Voltà-Durán et al. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles
Varghese et al. Nanocarriers for brain specific delivery of anti-retro viral drugs: challenges and achievements
Rahman et al. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma
Ren et al. Functionalized nanoparticles in prevention and targeted therapy of viral diseases with neurotropism properties, special insight on COVID-19