TWI529880B - Semiconductor device, semiconductor package and method for making the same - Google Patents

Semiconductor device, semiconductor package and method for making the same Download PDF

Info

Publication number
TWI529880B
TWI529880B TW102121652A TW102121652A TWI529880B TW I529880 B TWI529880 B TW I529880B TW 102121652 A TW102121652 A TW 102121652A TW 102121652 A TW102121652 A TW 102121652A TW I529880 B TWI529880 B TW I529880B
Authority
TW
Taiwan
Prior art keywords
layer
thermal interface
interface material
metal layer
copper
Prior art date
Application number
TW102121652A
Other languages
Chinese (zh)
Other versions
TW201501257A (en
Inventor
蕭友享
楊秉豐
李長祺
Original Assignee
日月光半導體製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日月光半導體製造股份有限公司 filed Critical 日月光半導體製造股份有限公司
Priority to TW102121652A priority Critical patent/TWI529880B/en
Priority to CN201310400313.1A priority patent/CN103441109B/en
Priority to CN201610317373.0A priority patent/CN105932004B/en
Publication of TW201501257A publication Critical patent/TW201501257A/en
Application granted granted Critical
Publication of TWI529880B publication Critical patent/TWI529880B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Description

半導體元件,半導體封裝結構及其製造方法 Semiconductor component, semiconductor package structure and method of manufacturing same

本發明係關於一種半導體元件,半導體封裝結構及其製造方法。詳言之,本發明係關於一種具有背側鍍金屬(Back Side Metallization,BSM)及熱介面材料(Thermal Interface Material,TIM)之半導體元件,半導體封裝結構及其製造方法。 The present invention relates to a semiconductor device, a semiconductor package structure, and a method of fabricating the same. In particular, the present invention relates to a semiconductor device having a back side metallization (BSM) and a thermal interface material (TIM), a semiconductor package structure, and a method of fabricating the same.

習知半導體封裝結構中,通常會覆蓋一散熱片,以接觸基板上之晶片之背面且將晶片產生之熱排出。由於該散熱片之材質係為銅,且該晶片之材質係為矽,因此,二者之接合效果及散熱效果皆不佳。為了改善上述缺點,一種解決方案係在該晶片背面增設背側鍍金屬(Back Side Metallization,BSM)及熱介面材料(Thermal Interface Material,TIM),且該散熱片先接觸該熱介面材料,再經過回銲製程使得該散熱片接合至該熱介面材料。 In a conventional semiconductor package structure, a heat sink is usually covered to contact the back surface of the wafer on the substrate and to discharge the heat generated by the wafer. Since the material of the heat sink is copper, and the material of the wafer is 矽, the bonding effect and heat dissipation effect of the two are not good. In order to improve the above disadvantages, a solution is to add a back side metallization (BSM) and a thermal interface material (TIM) on the back surface of the wafer, and the heat sink first contacts the thermal interface material, and then passes through The reflow process causes the heat sink to bond to the thermal interface material.

該背側鍍金屬包含複數層金屬層,且該熱介面材料包含至少一金屬層。目前已知有數種之該背側鍍金屬及該熱介面材料之材質組合被提出,然而目前習知技術中,皆不可避免地在回銲製程中,會在熱介面材料內產生空孔(Void),因而影響接合效果及散熱效果。此外,目前習知技術之回銲製程所需之溫度相當高。 The backside metallization comprises a plurality of metal layers, and the thermal interface material comprises at least one metal layer. Several combinations of the backside metallization and the thermal interface material are known. However, in the prior art, it is inevitable that voids will be generated in the thermal interface material during the reflow process (Void ), thus affecting the bonding effect and heat dissipation effect. In addition, the temperatures required for the reflow process of the prior art are quite high.

本揭露之一方面係關於一種半導體元件。在一實施例中,該半導體元件包括一半導體晶粒、一背側鍍金屬(Back Side Metallization,BSM)、一熱介面材料(Thermal Interface Material,TIM)及一第一介金屬化合物(Intermetallic Compound,IMC)。該半導體晶粒具有一第一表面及一第二表面。該背側鍍金屬位於該半導體晶粒之第二表面。該熱介面材料位於該背側鍍金屬上,且包含銦鋅合金(In-Zn alloy)。該第一介金屬化合物位於該背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅。 One aspect of the disclosure relates to a semiconductor component. In one embodiment, the semiconductor device includes a semiconductor die, a backside metallization (BSM), a thermal interface material (TIM), and a first intermetallic compound (Intermetallic Compound, IMC). The semiconductor die has a first surface and a second surface. The backside metallization is on the second surface of the semiconductor die. The thermal interface material is on the backside metallization and comprises an In-Zn alloy. The first intermetallic compound is between the backside metallization and the thermal interface material and comprises indium and no zinc.

本揭露之另一方面係關於一種半導體封裝結構。在一實施例中,該半導體封裝結構包括一基板、一半導體晶粒、一背側鍍金屬、一熱介面材料、一散熱片、一第一介金屬化合物及第二介金屬化合物。該半導體晶粒具有一第一表面及一第二表面,該半導體晶粒之第一表面係電性連接至該基板。該背側鍍金屬位於該半導體晶粒之第二表面。該熱介面材料位於該背側鍍金屬上,且包含銦鋅合金。該散熱片覆蓋該半導體晶粒以接觸該熱介面材料,且至少包含一銅層。該第一介金屬化合物位於該背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅。該第二介金屬化合物位於該熱介面材料及該散熱片之間,且包含銦而不包含鋅。 Another aspect of the disclosure relates to a semiconductor package structure. In one embodiment, the semiconductor package structure includes a substrate, a semiconductor die, a backside metallization, a thermal interface material, a heat sink, a first intermetallic compound, and a second intermetallic compound. The semiconductor die has a first surface and a second surface, and the first surface of the semiconductor die is electrically connected to the substrate. The backside metallization is on the second surface of the semiconductor die. The thermal interface material is on the backside metallization and comprises an indium zinc alloy. The heat sink covers the semiconductor die to contact the thermal interface material and includes at least one copper layer. The first intermetallic compound is between the backside metallization and the thermal interface material and comprises indium and no zinc. The second intermetallic compound is between the thermal interface material and the heat sink and comprises indium without zinc.

本揭露之另一方面係關於一種半導體封裝結構之製造方法。在一實施例中,該製造方法包括以下步驟:(a)形成一背側鍍金屬於一半導體晶粒之一第二表面上;(b)將該半導體晶粒之一第一表面電性連接至一基板;(c)提供一去除氧化物之材料至該背側鍍金屬;(d)形成一熱介面材料於該背側鍍金屬上,其中該熱介面材料包含銦鋅合金;(e)將一散熱片覆蓋該半導體晶粒以接觸該熱介面材料,其中該散熱片至少包含一銅層;及(f)進行回銲(Reflow),以生成一第一介金屬化合物及一第二介金屬化合物,其中該第一介金屬化合物位於該 背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅;該第二介金屬化合物位於該熱介面材料及該散熱片之間,且包含銦而不包含鋅。 Another aspect of the disclosure is directed to a method of fabricating a semiconductor package structure. In one embodiment, the method of manufacturing includes the steps of: (a) forming a backside metallization on a second surface of a semiconductor die; (b) electrically connecting a first surface of the semiconductor die to a substrate; (c) providing an oxide-removing material to the backside metallization; (d) forming a thermal interface material on the backside metallization, wherein the thermal interface material comprises an indium-zinc alloy; (e) a heat sink covering the semiconductor die to contact the thermal interface material, wherein the heat sink comprises at least a copper layer; and (f) performing reflow to form a first intermetallic compound and a second intermetallic metal a compound wherein the first intermetallic compound is located The backside metallization and the thermal interface material comprise between indium and no zinc; the second intermetallic compound is between the thermal interface material and the heat sink and comprises indium and no zinc.

在本實施例中,由於該銦鋅合金會有固液共存之狀態。因此,在回銲製程中,如果該熱介面材料內產生空孔(Void),則該液態之銦鋅合金可以馬上填滿該空孔,使得在回銲製程後,該熱介面材料中不會存有任何空孔,而可增加該熱介面材料與該散熱片間之接合效果及散熱效果。 In the present embodiment, since the indium zinc alloy has a state in which solid and liquid coexist. Therefore, in the reflow process, if a void (Void) is formed in the thermal interface material, the liquid indium zinc alloy can fill the void immediately, so that the thermal interface material does not exist after the reflow process. There are any holes, and the bonding effect and heat dissipation effect between the heat interface material and the heat sink can be increased.

1‧‧‧本發明半導體封裝結構之一實施例 1‧‧‧An embodiment of the semiconductor package structure of the present invention

1a‧‧‧本發明半導體封裝結構之另一實施例 1a‧‧‧Another embodiment of the semiconductor package structure of the present invention

10‧‧‧半導體元件 10‧‧‧Semiconductor components

12‧‧‧基板 12‧‧‧Substrate

14‧‧‧半導體晶粒 14‧‧‧Semiconductor grain

15‧‧‧凸塊 15‧‧‧Bumps

16‧‧‧背側鍍金屬 16‧‧‧ Back side metallization

17‧‧‧還原氣體 17‧‧‧Reducing gas

18‧‧‧熱介面材料 18‧‧‧Hot interface materials

20‧‧‧散熱片 20‧‧‧ Heat sink

21‧‧‧鎳層 21‧‧‧ Nickel layer

31‧‧‧曲線 31‧‧‧ Curve

32‧‧‧曲線 32‧‧‧ Curve

121‧‧‧基板之第一表面 121‧‧‧The first surface of the substrate

122‧‧‧基板之第二表面 122‧‧‧Second surface of the substrate

141‧‧‧半導體晶粒之第一表面 141‧‧‧ First surface of the semiconductor die

142‧‧‧半導體晶粒之第二表面 142‧‧‧Second surface of the semiconductor die

161‧‧‧第一金屬層 161‧‧‧First metal layer

162‧‧‧第二金屬層 162‧‧‧Second metal layer

163‧‧‧第三金屬層 163‧‧‧ Third metal layer

164‧‧‧助銲劑 164‧‧‧ Flux

181‧‧‧第一介金屬化合物 181‧‧‧First intermetallic compound

182‧‧‧第二介金屬化合物 182‧‧‧Secondary metal compound

182a‧‧‧第二介金屬化合物 182a‧‧‧Secondary metal compound

183‧‧‧助銲劑 183‧‧‧ Flux

圖1顯示本發明半導體封裝結構之一實施例之剖視示意圖。。 1 shows a schematic cross-sectional view of one embodiment of a semiconductor package structure of the present invention. .

圖2顯示圖1之區域A之局部放大示意圖。 Fig. 2 is a partially enlarged schematic view showing a region A of Fig. 1.

圖3及圖4顯示本發明半導體封裝結構之製造方法之一實施例之示意圖。 3 and 4 are schematic views showing an embodiment of a method of fabricating a semiconductor package structure of the present invention.

圖5顯示本發明半導體封裝結構之製造方法之另一實施例之示意圖。 FIG. 5 is a schematic view showing another embodiment of a method of fabricating a semiconductor package structure of the present invention.

圖6顯示銦鋅合金之固液平衡相圖。 Figure 6 shows a solid-liquid equilibrium phase diagram of an indium zinc alloy.

圖7顯示鋅在銦鋅合金中所佔的比例、液相線溫度與回銲時間之關係圖,其中回銲溫度為200℃。 Figure 7 is a graph showing the ratio of zinc in the indium-zinc alloy, the liquidus temperature, and the reflow time, wherein the reflow temperature is 200 °C.

圖8顯示鋅在銦鋅合金中所佔的比例、液相線溫度與回銲時間之關係圖,其中回銲溫度為250℃。 Figure 8 is a graph showing the ratio of zinc in the indium-zinc alloy, the liquidus temperature, and the reflow time, wherein the reflow temperature is 250 °C.

圖9顯示本發明半導體封裝結構之另一實施例之剖視示意圖。 Figure 9 is a cross-sectional view showing another embodiment of the semiconductor package structure of the present invention.

圖10顯示圖9之區域B之局部放大示意圖。 Fig. 10 is a partially enlarged schematic view showing a region B of Fig. 9.

參考圖1,顯示本發明半導體封裝結構之一實施例之剖視示意圖。該半導體封裝結構1包括一基板12、一半導體元件10及一散熱片20。該基板12係為一封裝基板,其包含一第一表面121、一第二表面122及複數個內部電性連接元件(圖中未示)。該等內部電性連接元件 係用以電性連接該第一表面121及該第二表面122。 Referring to Figure 1, there is shown a cross-sectional schematic view of one embodiment of a semiconductor package structure of the present invention. The semiconductor package structure 1 includes a substrate 12, a semiconductor component 10, and a heat sink 20. The substrate 12 is a package substrate comprising a first surface 121, a second surface 122 and a plurality of internal electrical connection elements (not shown). Internal electrical connecting elements The first surface 121 and the second surface 122 are electrically connected.

該半導體元件10包括一半導體晶粒14、複數個凸塊15、一背側鍍金屬(Back Side Metallization,BSM)16及一熱介面材料18。 The semiconductor device 10 includes a semiconductor die 14 , a plurality of bumps 15 , a back side metallization (BSM) 16 , and a thermal interface material 18 .

該半導體晶粒14包含一第一表面141及一第二表面142。 The semiconductor die 14 includes a first surface 141 and a second surface 142.

該等凸塊15係位於該半導體晶粒14之第一表面141,且電性連接該半導體晶粒14之第一表面141至該基板12之第二表面122。亦即,該半導體晶粒14係覆晶接合至該基板12。 The bumps 15 are located on the first surface 141 of the semiconductor die 14 and electrically connected to the first surface 141 of the semiconductor die 14 to the second surface 122 of the substrate 12. That is, the semiconductor die 14 is flip-chip bonded to the substrate 12.

該背側鍍金屬16係位於該半導體晶粒14之第二表面142上。 The backside metallization 16 is located on the second surface 142 of the semiconductor die 14.

該熱介面材料18係位於該背側鍍金屬16上。 The thermal interface material 18 is located on the backside metallization 16.

該散熱片20覆蓋該半導體晶粒14以接觸該熱介面材料18。在本實施例中,該散熱片20其更接合至該基板12之第二表面122,用以將該半導體晶粒14產生之熱排出。該散熱片20至少包含一銅層,在本實施例中,該散熱片20之材質係為銅。 The heat sink 20 covers the semiconductor die 14 to contact the thermal interface material 18. In this embodiment, the heat sink 20 is further bonded to the second surface 122 of the substrate 12 for discharging heat generated by the semiconductor die 14. The heat sink 20 includes at least one copper layer. In the embodiment, the heat sink 20 is made of copper.

參考圖2,顯示圖1之區域A之局部放大示意圖。如圖所示,該背側鍍金屬16包含複數層金屬層,亦即,該背側鍍金屬16可以是一層金屬層、二層金屬層或三層以上金屬層。在本實施例中,該背側鍍金屬16依序包含一第一金屬層161、一第二金屬層162及一第三金屬層163。該第一金屬層161係位於該半導體晶粒14之第二表面142上,且係為鋁層、鈦層或鉻層。該第二金屬層162係位於該第一金屬層161上,且係為鎳層或鎳釩合金層。該第三金屬層163係位於該第二金屬層162上,且係為銅層。換言之,該背側鍍金屬16最上方金屬層係為銅層。較佳地,該第一金屬層161及該第二金屬層162係由濺鍍而成,該第三金屬層163之銅層係由一濺鍍銅及一電鍍銅所組成,其中該電鍍銅係位於濺鍍銅上,且其厚度約為5μm。 Referring to Figure 2, a partial enlarged view of area A of Figure 1 is shown. As shown, the backside metallization 16 comprises a plurality of metal layers, that is, the backside metallization 16 can be a metal layer, a two metal layer, or a metal layer of three or more layers. In this embodiment, the backside metallization 16 sequentially includes a first metal layer 161, a second metal layer 162, and a third metal layer 163. The first metal layer 161 is located on the second surface 142 of the semiconductor die 14 and is an aluminum layer, a titanium layer or a chromium layer. The second metal layer 162 is located on the first metal layer 161 and is a nickel layer or a nickel vanadium alloy layer. The third metal layer 163 is located on the second metal layer 162 and is a copper layer. In other words, the uppermost metal layer of the backside metallization 16 is a copper layer. Preferably, the first metal layer 161 and the second metal layer 162 are sputtered, and the copper layer of the third metal layer 163 is composed of a sputtered copper and an electroplated copper. It is located on sputtered copper and has a thickness of approximately 5 μm.

該熱介面材料18係位於該第三金屬層163上,且包含至少一金屬層。在本實施例中,該熱介面材料18係為單層金屬層,其材質係為銦 鋅合金(In-Zn alloy),且該銦鋅合金中鋅的重量百分比為5wt%至30wt%。然而,在其他實施例中,該熱介面材料18之材質係為鉍銦鋅合金(Bi-In alloy)。該散熱片20之銅層係直接接觸該熱介面材料18。 The thermal interface material 18 is located on the third metal layer 163 and includes at least one metal layer. In this embodiment, the thermal interface material 18 is a single metal layer, and the material is indium. In-Zn alloy, and the weight percentage of zinc in the indium zinc alloy is 5 wt% to 30 wt%. However, in other embodiments, the material of the thermal interface material 18 is Bi-In alloy. The copper layer of the heat sink 20 is in direct contact with the thermal interface material 18.

在經過回銲製程後,該散熱片20會和該熱介面材料18緊密接合,同時在該熱介面材料18中會成一第一介金屬化合物(Intermetallic Compound,IMC)181及一第二介金屬化合物182。該第一介金屬化合物181位於該背側鍍金屬16之第三金屬層163及該熱介面材料18之間,其係由該熱介面材料18中之銦與該第三金屬層163之銅反應而形成之Cu11In9。因此,該第一介金屬化合物181包含銦而不包含鋅。該第二介金屬化合物182位於該熱介面材料18及該散熱片20之間,其係由該熱介面材料18中之銦與該散熱片20之銅反應而形成之Cu11In9。因此,該第二介金屬化合物182包含銦而不包含鋅。 After the reflow process, the heat sink 20 is in close contact with the thermal interface material 18, and a first intermetallic compound (IMC) 181 and a second intermetallic compound are formed in the thermal interface material 18. 182. The first intermetallic compound 181 is located between the third metal layer 163 of the backside metallization 16 and the thermal interface material 18, and the indium of the thermal interface material 18 reacts with the copper of the third metal layer 163. And formed Cu 11 In 9 . Therefore, the first intermetallic compound 181 contains indium and does not contain zinc. The second intermetallic compound 182 is located between the thermal interface material 18 and the heat sink 20, and is formed by the reaction of indium in the thermal interface material 18 with copper of the heat sink 20 to form Cu 11 In 9 . Therefore, the second intermetallic compound 182 contains indium and does not contain zinc.

由於該銦鋅合金會有固液共存之狀態。因此,在回銲製程中,如果該熱介面材料18內產生空孔(Void),則該液態之銦鋅合金可以馬上填滿該空孔,使得在回銲製程後,該熱介面材料18中不會存有任何空孔,而可增加該熱介面材料18與該散熱片20間之接合效果及散熱效果。 Since the indium zinc alloy has a state in which solid and liquid coexist. Therefore, in the reflow process, if a void is formed in the thermal interface material 18, the liquid indium zinc alloy can immediately fill the void, so that the thermal interface material 18 is after the reflow process. There is no void, and the bonding effect and heat dissipation effect between the thermal interface material 18 and the heat sink 20 can be increased.

參考圖3及圖4,顯示本發明半導體封裝結構之製造方法之一實施例之示意圖。參考圖3,形成一背側鍍金屬16於一半導體晶粒14之第二表面142。該背側鍍金屬16包含複數層金屬層。在本實施例中,該背側鍍金屬16依序包含一第一金屬層161、一第二金屬層162及一第三金屬層163(圖2)。該第一金屬層161(例如:鋁層、鈦層或鉻層)係先形成於該半導體晶粒14之第二表面142上。接著,該第二金屬層162(例如:鎳層或鎳釩合金層)形成於該第一金屬層161上。接著,該第三金屬層163(例如:銅層)形成於該第二金屬層162上。較佳地,該第一金屬層161及該第二金屬層162係由濺鍍而成,該第三金屬 層163之銅層係先形成一濺鍍銅於該第二金屬層162上,再形成一電鍍銅於該濺鍍銅上,且該電鍍銅之厚度約為5μm。 Referring to Figures 3 and 4, there is shown a schematic diagram of one embodiment of a method of fabricating a semiconductor package structure of the present invention. Referring to FIG. 3, a backside metallization 16 is formed on the second surface 142 of a semiconductor die 14. The backside metallization 16 comprises a plurality of metal layers. In this embodiment, the backside metallization 16 sequentially includes a first metal layer 161, a second metal layer 162, and a third metal layer 163 (FIG. 2). The first metal layer 161 (eg, an aluminum layer, a titanium layer, or a chromium layer) is formed on the second surface 142 of the semiconductor die 14 first. Next, the second metal layer 162 (for example, a nickel layer or a nickel vanadium alloy layer) is formed on the first metal layer 161. Next, the third metal layer 163 (eg, a copper layer) is formed on the second metal layer 162. Preferably, the first metal layer 161 and the second metal layer 162 are sputtered, and the third metal The copper layer of layer 163 is first formed with a sputtered copper on the second metal layer 162, and then an electroplated copper is formed on the sputtered copper, and the thickness of the electroplated copper is about 5 μm.

接著,將該半導體晶粒14電性連接至一基板12。在本實施例中,該基板12係為一封裝基板,其包含一第一表面121、一第二表面122及複數個內部電性連接元件(圖中未示)。該等內部電性連接元件係用以電性連接該第一表面121及該第二表面122。該半導體晶粒14更包含一第二表面142及複數個凸塊15。該等凸塊15係位於該半導體晶粒14之第一表面141。該半導體晶粒14利用該等凸塊15覆晶接合至該基板12,使得該半導體晶粒14之第一表面141電性連接至該基板12之第二表面122。 Next, the semiconductor die 14 is electrically connected to a substrate 12. In this embodiment, the substrate 12 is a package substrate including a first surface 121, a second surface 122, and a plurality of internal electrical connection elements (not shown). The internal electrical connection components are used to electrically connect the first surface 121 and the second surface 122. The semiconductor die 14 further includes a second surface 142 and a plurality of bumps 15. The bumps 15 are located on the first surface 141 of the semiconductor die 14. The semiconductor die 14 is flip-chip bonded to the substrate 12 by the bumps 15 such that the first surface 141 of the semiconductor die 14 is electrically connected to the second surface 122 of the substrate 12.

參考圖4,提供一去除氧化物之材料至該背側鍍金屬16,以防止該背側鍍金屬16因氧化而無法接合。在本實施例中,該去除氧化物之材料係為助銲劑(Flux)164,其係形成於該背側鍍金屬16之背面。接著,提供一熱介面材料18。在本實施例中,該熱介面材料18係為單層金屬箔,其材質係為銦鋅合金(In-Zn alloy),且該銦鋅合金中鋅的重量百分比為5wt%至30wt%。然而,在其他實施例中,該熱介面材料18之材質係為鉍銦鋅合金(Bi-In alloy)。為了去除該熱介面材料18之氧化物,該熱介面材料18上下表面皆形成一助銲劑183。可以理解的是,該助銲劑164與該助銲劑183之材質可為不同組成。 Referring to Figure 4, an oxide-removing material is provided to the backside metallization 16 to prevent the backside metallization 16 from being bonded due to oxidation. In the present embodiment, the oxide-removing material is a flux 164 formed on the back side of the backside metallization 16. Next, a thermal interface material 18 is provided. In the present embodiment, the thermal interface material 18 is a single-layer metal foil, the material of which is an in-Zn alloy, and the weight percentage of zinc in the indium-zinc alloy is 5 wt% to 30 wt%. However, in other embodiments, the material of the thermal interface material 18 is Bi-In alloy. In order to remove the oxide of the thermal interface material 18, a flux 183 is formed on the upper and lower surfaces of the thermal interface material 18. It can be understood that the material of the flux 164 and the flux 183 can be different compositions.

接著,將該熱介面材料18配置於該背側鍍金屬16上。接著,將一散熱片(Lid)20(圖1)覆蓋該半導體晶粒14以接觸該熱介面材料18。在本實施例中,該散熱片20係為一散熱片,其更接合至該基板12之第二表面122。該散熱片20至少包含一銅層,在本實施例中,該散熱片20之材質係為銅,且該散熱片20之銅層係直接接觸該熱介面材料18。 Next, the thermal interface material 18 is placed on the backside metallization 16. Next, a heat sink (Lid) 20 (FIG. 1) is placed over the semiconductor die 14 to contact the thermal interface material 18. In the present embodiment, the heat sink 20 is a heat sink that is further bonded to the second surface 122 of the substrate 12. The heat sink 20 includes at least one copper layer. In the embodiment, the heat sink 20 is made of copper, and the copper layer of the heat sink 20 directly contacts the heat interface material 18.

接著,進行回銲(Reflow),以形成一半導體封裝結構1,如圖1 所示。在經過回銲製程後,該散熱片20會和該熱介面材料18緊密接合,同時在該熱介面材料18中會成一第一介金屬化合物(Intermetallic Compound,IMC)181及一第二介金屬化合物182(圖2)。該第一介金屬化合物181位於該背側鍍金屬16之第三金屬層163及該熱介面材料18之間,其係由該熱介面材料18中之銦與該第三金屬層163之銅反應而形成之Cu11In9。因此,該第一介金屬化合物181包含銦而不包含鋅。該第二介金屬化合物182位於該熱介面材料18及該散熱片20之間,其係由該熱介面材料18中之銦與該散熱片20之銅反應而形成之Cu11In9。因此,該第二介金屬化合物182包含銦而不包含鋅。 Next, reflow is performed to form a semiconductor package structure 1, as shown in FIG. After the reflow process, the heat sink 20 is in close contact with the thermal interface material 18, and a first intermetallic compound (IMC) 181 and a second intermetallic compound are formed in the thermal interface material 18. 182 (Figure 2). The first intermetallic compound 181 is located between the third metal layer 163 of the backside metallization 16 and the thermal interface material 18, and the indium of the thermal interface material 18 reacts with the copper of the third metal layer 163. And formed Cu 11 In 9 . Therefore, the first intermetallic compound 181 contains indium and does not contain zinc. The second intermetallic compound 182 is located between the thermal interface material 18 and the heat sink 20, and is formed by the reaction of indium in the thermal interface material 18 with copper of the heat sink 20 to form Cu 11 In 9 . Therefore, the second intermetallic compound 182 contains indium and does not contain zinc.

參考圖5,顯示本發明半導體封裝結構之製造方法之另一實施例之示意圖。本實施例之製造方法與圖3至圖4之製造方法大致相同,其不同處僅在於,在本實施例中,該去除氧化物之材料係為還原氣體(Forming Gas)17(例如:氫氣、氮氣、氟氣或氯氣),而不需使用助銲劑。詳言之,該背側鍍金屬16連同該半導體晶粒14及該基板12先置放於充滿該還原氣體17之隧道(Channel)中。接著,將該熱介面材料18配置於該背側鍍金屬16上。接著,將該散熱片20(圖1)覆蓋該半導體晶粒14以接觸該熱介面材料18。接著,進行回銲(Reflow)。要注意的是,上述所有製程皆在充滿該還原氣體17之隧道中進行。 Referring to Figure 5, there is shown a schematic diagram of another embodiment of a method of fabricating a semiconductor package structure of the present invention. The manufacturing method of the present embodiment is substantially the same as the manufacturing method of FIGS. 3 to 4, except that in the present embodiment, the material for removing oxide is a reducing gas (for example, hydrogen gas, Nitrogen, fluorine or chlorine) without the use of flux. In detail, the backside metallization 16 together with the semiconductor die 14 and the substrate 12 are placed in a channel filled with the reducing gas 17. Next, the thermal interface material 18 is placed on the backside metallization 16. Next, the heat sink 20 (FIG. 1) covers the semiconductor die 14 to contact the thermal interface material 18. Next, reflow is performed. It is to be noted that all of the above processes are carried out in a tunnel filled with the reducing gas 17.

參考圖6,顯示銦鋅合金之固液平衡相圖。圖中橫座標係為鋅在銦鋅合金中所佔的莫耳數比例,縱座標係為溫度。如圖所示,曲線31(對應溫度為413K)係為固相線,在曲線31以下時,銦鋅合金係為固態;曲線32係為液相線,在曲線32以上時,銦鋅合金係為液態;在曲線31及曲線32之間,銦鋅合金係為固液共存。而且,隨著鋅在銦鋅合金中所佔的莫耳數比例越高,該固液共存之區域越大,亦即,固液共存之情況越容易發生。在本實施例中,在回銲製程中,由於該熱介 面材料18中之銦會與該第三金屬層163之銅及該散熱片20之銅反應,形成一介金屬化合物(Cu11In9),而鋅不會與銅反應。因此,該熱介面材料18中之鋅在銦鋅合金中所佔的莫耳數比例會越來越高,此時,溫度只要超過413K,該銦鋅合金即呈現固液共存之狀態。在此情況下,如果該熱介面材料18內產生空孔,則該液態之銦鋅合金可以馬上填滿該空孔,使得在回銲製程後,該熱介面材料18中不會存有任何空孔,而可增加該熱介面材料18與該散熱片20間之接合效果及散熱效果。 Referring to Figure 6, a solid-liquid equilibrium phase diagram of an indium-zinc alloy is shown. In the figure, the abscissa is the ratio of the number of moles of zinc in the indium-zinc alloy, and the ordinate is the temperature. As shown in the figure, the curve 31 (corresponding temperature is 413K) is a solid phase line, when the curve 31 is below, the indium zinc alloy is solid; the curve 32 is a liquidus, and when the curve 32 is above, the indium zinc alloy is It is a liquid state; between the curve 31 and the curve 32, the indium zinc alloy is a solid-liquid coexistence. Further, as the proportion of the molar amount of zinc in the indium-zinc alloy is higher, the area where the solid-liquid coexists is larger, that is, the coexistence of solid-liquid is more likely to occur. In this embodiment, in the reflow process, since the indium in the thermal interface material 18 reacts with the copper of the third metal layer 163 and the copper of the heat sink 20 to form a intermetallic compound (Cu 11 In 9 ). And zinc does not react with copper. Therefore, the ratio of the number of moles of zinc in the indium-zinc alloy in the hot interface material 18 is higher and higher. At this time, as long as the temperature exceeds 413 K, the indium-zinc alloy exhibits a state in which solid and liquid coexist. In this case, if voids are formed in the thermal interface material 18, the liquid indium zinc alloy can immediately fill the voids, so that there is no void in the thermal interface material 18 after the reflow process. The hole can increase the bonding effect and heat dissipation effect between the thermal interface material 18 and the heat sink 20.

參考圖7,其為設定回銲溫度為200℃時,顯示鋅在銦鋅合金中所佔的比例、液相線溫度與回銲時間之關係圖。圖中橫座標係為回銲時間,左邊縱座標係為鋅在銦鋅合金中所佔的原子百分比(at.%),右邊縱座標係為銦鋅合金的液相線的溫度。圖中顯示二種起始成分比例的銦鋅合金,第一種:鋅為10 wt%(重量百分比)的銦鋅合金(等同於鋅為16.3 at.%(原子百分比)的銦鋅合金),及第二種:鋅為20 wt%(重量百分比)的銦鋅合金(等同於鋅為30.5 at.%(原子百分比)的銦鋅合金)。圖中四條曲線代表如下:第一種:■代表起始成分中鋅為16.3原子百分比(at.%)的銦鋅合金隨時間變化的液相線溫度;◆代表起始成分中鋅為16.3原子百分比(at.%)的銦鋅合金隨時間變化的鋅成分;第二種:×代表起始成分中鋅為30.5原子百分比(at.%)的銦鋅合金隨時間變化的液相線溫度;▲代表起始成分中鋅為30.5原子百分比(at.%)的銦鋅合金隨時間變化的鋅成分。由圖中可看出,在回銲溫度為200℃情況下,隨著時間增加,鋅在銦鋅合金中所佔的比例隨之增加,同時銦鋅合金的液相線溫度也隨之增加。舉例而言,當經過300秒後,銦鋅合金的液相線溫度增加了約15℃。 Referring to Fig. 7, it is a graph showing the relationship between the proportion of zinc in the indium-zinc alloy, the liquidus temperature, and the reflow time when the reflow temperature is set to 200 °C. In the figure, the abscissa is the reflow time, the left ordinate is the atomic percentage (at.%) of zinc in the indium-zinc alloy, and the right ordinate is the temperature of the liquidus of the indium-zinc alloy. The figure shows two indium-zinc alloys with a ratio of starting components. The first one: zinc is 10 wt% (in weight percent) of indium zinc alloy (equivalent to 16.3 at.% (atomic percent) of indium zinc alloy). And the second: zinc is 20 wt% (by weight) of indium zinc alloy (equivalent to 30.5 at.% (atomic percent) of zinc indium zinc alloy). The four curves in the figure are represented as follows: The first one: ■ represents the liquidus temperature of the indium zinc alloy with a zinc content of 16.3 atomic percent (at.%) in the starting composition as a function of time; ◆ represents a zinc content of 16.3 atoms in the starting component. Percent (at.%) of the zinc component of the indium zinc alloy as a function of time; second: x represents the liquidus temperature of the indium zinc alloy with a zinc content of 30.5 atomic percent (at.%) in the starting composition as a function of time; ▲ represents the zinc component of the indium zinc alloy with a zinc content of 30.5 atomic percent (at.%) in the starting composition as a function of time. It can be seen from the figure that at the reflow temperature of 200 ° C, the proportion of zinc in the indium zinc alloy increases with time, and the liquidus temperature of the indium zinc alloy also increases. For example, after 300 seconds, the liquidus temperature of the indium zinc alloy increased by about 15 °C.

參考圖8,其為設定回銲溫度為250℃,顯示鋅在銦鋅合金中所佔的比例、液相線溫度與回銲時間之關係圖。圖中橫座標係為回銲時 間,左邊縱座標係為鋅在銦鋅合金中所佔的原子百分比(at.%),右邊縱座標係為銦鋅合金的液相線的溫度。圖中顯示二種起始成分比例的銦鋅合金,第一種:鋅為10 wt%(重量百分比)的銦鋅合金(等同於鋅為16.3 at.%(原子百分比)的銦鋅合金),及第二種:鋅為20 wt%(重量百分比)的銦鋅合金(等同於鋅為30.5 at.%(原子百分比)的銦鋅合金)。圖中四條曲線代表如下:第一種:■代表起始成分中鋅為16.3原子百分比(at.%)的銦鋅合金隨時間變化的液相線溫度;◆代表起始成分中鋅為16.3原子百分比(at.%)的銦鋅合金隨時間變化的鋅成分;第二種:×代表起始成分中鋅為30.5原子百分比(at.%)的銦鋅合金隨時間變化的液相線溫度;▲代表起始成分中鋅為30.5原子百分比(at.%)的銦鋅合金隨時間變化的鋅成分。由圖中可看出,在回銲溫度為250℃情況下,隨著時間增加,鋅在銦鋅合金中所佔的比例隨之增加,同時銦鋅合金的液相線溫度也隨之增加。舉例而言,當經過300秒後,銦鋅合金的液相線溫度增加了約20℃。 Referring to Fig. 8, the set reflow temperature is 250 ° C, which shows the relationship between the proportion of zinc in the indium zinc alloy, the liquidus temperature and the reflow time. In the figure, the horizontal coordinate system is for reflow The left ordinate is the atomic percentage (at.%) of zinc in the indium-zinc alloy, and the right ordinate is the temperature of the liquidus of the indium-zinc alloy. The figure shows two indium-zinc alloys with a ratio of starting components. The first one: zinc is 10 wt% (in weight percent) of indium zinc alloy (equivalent to 16.3 at.% (atomic percent) of indium zinc alloy). And the second: zinc is 20 wt% (by weight) of indium zinc alloy (equivalent to 30.5 at.% (atomic percent) of zinc indium zinc alloy). The four curves in the figure are represented as follows: The first one: ■ represents the liquidus temperature of the indium zinc alloy with a zinc content of 16.3 atomic percent (at.%) in the starting composition as a function of time; ◆ represents a zinc content of 16.3 atoms in the starting component. Percent (at.%) of the zinc component of the indium zinc alloy as a function of time; second: x represents the liquidus temperature of the indium zinc alloy with a zinc content of 30.5 atomic percent (at.%) in the starting composition as a function of time; ▲ represents the zinc component of the indium zinc alloy with a zinc content of 30.5 atomic percent (at.%) in the starting composition as a function of time. It can be seen from the figure that at the reflow temperature of 250 ° C, the proportion of zinc in the indium zinc alloy increases with time, and the liquidus temperature of the indium zinc alloy also increases. For example, after 300 seconds, the liquidus temperature of the indium zinc alloy increased by about 20 °C.

參考圖9,顯示本發明半導體封裝結構之另一實施例之剖視示意圖。本實施例之半導體封裝結構1a與圖1所示之半導體封裝結構1大致相同,其不同處如下所述。在本實施例之該半導體封裝結構1a中,該散熱片20更包括一鎳層21,位於該散熱片20之銅層上。該鎳層21係直接接觸該熱介面材料18。 Referring to Figure 9, a cross-sectional schematic view of another embodiment of a semiconductor package structure of the present invention is shown. The semiconductor package structure 1a of the present embodiment is substantially the same as the semiconductor package structure 1 shown in FIG. 1, and the differences are as follows. In the semiconductor package structure 1a of the embodiment, the heat sink 20 further includes a nickel layer 21 on the copper layer of the heat sink 20. The nickel layer 21 is in direct contact with the thermal interface material 18.

參考圖10,顯示圖9之區域B之局部放大示意圖。如圖所示,該熱介面材料18中之銦與該散熱片20之該鎳層21反應而形成第二介金屬化合物182a,且該第二介金屬化合物182a係為In27Ni10。因此,該第二介金屬化合物182a包含銦而不包含鋅。本實施例之半導體封裝結構1a之製造方法與圖3及圖4所示之製造方法大致相同,其不同處僅在於該散熱片20之銅層上先行成一鎳層21,再將該該散熱片20覆蓋該半導體晶粒14以接觸該熱介面材料18。接著,進行回銲,以形成一半導體 封裝結構1a。在回銲過程中,該熱介面材料18中之銦與該散熱片20之該鎳層21反應,因此,該熱介面材料18中之鋅所佔比例會隨時間而增加。 Referring to Fig. 10, a partially enlarged schematic view of a region B of Fig. 9 is shown. As shown, the indium in the thermal interface material 18 reacts with the nickel layer 21 of the heat sink 20 to form a second intermetallic compound 182a, and the second intermetallic compound 182a is In 27 Ni 10 . Therefore, the second intermetallic compound 182a contains indium and does not contain zinc. The manufacturing method of the semiconductor package structure 1a of the present embodiment is substantially the same as the manufacturing method shown in FIG. 3 and FIG. 4, except that the nickel layer 21 is first formed on the copper layer of the heat sink 20, and the heat sink is further disposed. The semiconductor die 14 is covered to contact the thermal interface material 18. Next, reflow is performed to form a semiconductor package structure 1a. During the reflow process, the indium in the thermal interface material 18 reacts with the nickel layer 21 of the heat sink 20, so that the proportion of zinc in the thermal interface material 18 increases with time.

惟上述實施例僅為說明本發明之原理及其功效,而非用以限制本發明。因此,習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。 However, the above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims.

1‧‧‧本發明半導體封裝結構之一實施例 1‧‧‧An embodiment of the semiconductor package structure of the present invention

10‧‧‧半導體元件 10‧‧‧Semiconductor components

12‧‧‧基板 12‧‧‧Substrate

14‧‧‧半導體晶粒 14‧‧‧Semiconductor grain

15‧‧‧凸塊 15‧‧‧Bumps

16‧‧‧背側鍍金屬 16‧‧‧ Back side metallization

18‧‧‧熱介面材料 18‧‧‧Hot interface materials

20‧‧‧散熱片 20‧‧‧ Heat sink

121‧‧‧基板之第一表面 121‧‧‧The first surface of the substrate

122‧‧‧基板之第二表面 122‧‧‧Second surface of the substrate

141‧‧‧半導體晶粒之第一表面 141‧‧‧ First surface of the semiconductor die

142‧‧‧半導體晶粒之第二表面 142‧‧‧Second surface of the semiconductor die

Claims (18)

一種半導體元件,包括:一半導體晶粒,具有一第一表面及一第二表面;一背側鍍金屬,位於該半導體晶粒之第二表面;一熱介面材料,位於該背側鍍金屬上,且包含銦鋅合金;及一第一介金屬化合物,位於該背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅;其中該熱介面材料之銦鋅合金中鋅的含量為5wt%至30wt%。 A semiconductor device comprising: a semiconductor die having a first surface and a second surface; a backside metallization on the second surface of the semiconductor die; a thermal interface material on the backside metallization And comprising an indium zinc alloy; and a first intermetallic compound between the back side metallization and the thermal interface material, and comprising indium without zinc; wherein the content of zinc in the indium zinc alloy of the thermal interface material It is 5 wt% to 30 wt%. 如請求項1之半導體元件,其中該背側鍍金屬包含複數層金屬層,其中最上方金屬層係為銅層,且該第一介金屬化合物係為Cu11In9The semiconductor device of claim 1, wherein the backside metallization comprises a plurality of metal layers, wherein the uppermost metal layer is a copper layer, and the first intermetallic compound is Cu 11 In 9 . 如請求項2之半導體元件,其中該背側鍍金屬之銅層係由一濺鍍銅及一電鍍銅所組成,且該電鍍銅之厚度約為5μm。 The semiconductor device of claim 2, wherein the backside metallized copper layer is composed of a sputtered copper and an electroplated copper, and the electroplated copper has a thickness of about 5 μm. 如請求項2之半導體元件,其中該背側鍍金屬依序包含一第一金屬層、一第二金屬層及一第三金屬層,該第一金屬層係位於該半導體晶粒之第二表面上,且係為鋁層、鈦層或鉻層;該第二金屬層係位於該第一金屬層上,且係為鎳層或鎳釩合金層;該第三金屬層係位於該第二金屬層上,且係為銅層。 The semiconductor device of claim 2, wherein the backside metallization comprises a first metal layer, a second metal layer and a third metal layer, the first metal layer being located on the second surface of the semiconductor die And being an aluminum layer, a titanium layer or a chromium layer; the second metal layer is on the first metal layer and is a nickel layer or a nickel vanadium alloy layer; the third metal layer is located in the second metal On the layer, and is a copper layer. 一種半導體封裝結構,包括:一基板;一半導體晶粒,具有一第一表面及一第二表面,該半導體晶粒之第一表面係電性連接至該基板;一背側鍍金屬,位於該半導體晶粒之第二表面;一熱介面材料,位於該背側鍍金屬上,且包含銦鋅合金;一散熱片,覆蓋該半導體晶粒以接觸該熱介面材料,且至少 包含一銅層;一第一介金屬化合物,位於該背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅;及一第二介金屬化合物,位於該熱介面材料及該散熱片之間,且包含銦而不包含鋅;其中該熱介面材料之銦鋅合金中鋅的含量為5wt%至30wt%。 A semiconductor package structure comprising: a substrate; a semiconductor die having a first surface and a second surface, the first surface of the semiconductor die being electrically connected to the substrate; and a back side metallization a second surface of the semiconductor die; a thermal interface material on the backside metallization and comprising an indium zinc alloy; a heat sink covering the semiconductor die to contact the thermal interface material, and at least The first intermetallic compound is disposed between the backside metallization and the thermal interface material, and comprises indium instead of zinc; and a second intermetallic compound located in the thermal interface material and the heat dissipation Between the sheets, and containing indium without containing zinc; wherein the content of zinc in the indium zinc alloy of the thermal interface material is from 5 wt% to 30 wt%. 如請求項5之半導體封裝結構,其中該背側鍍金屬包含複數層金屬層,其中最上方金屬層係為銅層,且該第一介金屬化合物係為Cu11In9The semiconductor package of the requested item 5, wherein the back side metallization comprises a plurality of metal layers, wherein the uppermost layer of copper-based metal layer and the first dielectric-based metal compound is Cu 11 In 9. 如請求項6之半導體封裝結構,其中該背側鍍金屬之銅層係由一濺鍍銅及一電鍍銅所組成,且該電鍍銅之厚度約為5μm。 The semiconductor package structure of claim 6, wherein the backside metallized copper layer is composed of a sputtered copper and an electroplated copper, and the electroplated copper has a thickness of about 5 μm. 如請求項6之半導體封裝結構,其中該背側鍍金屬依序包含一第一金屬層、一第二金屬層及一第三金屬層,該第一金屬層係位於該半導體晶粒之第二表面上,且係為鋁層、鈦層或鉻層;該第二金屬層係位於該第一金屬層上,且係為鎳層或鎳釩合金層;該第三金屬層係位於該第二金屬層上,且係為銅層。 The semiconductor package structure of claim 6, wherein the back side metallization comprises a first metal layer, a second metal layer and a third metal layer, the first metal layer being located at the second of the semiconductor die On the surface, and is an aluminum layer, a titanium layer or a chromium layer; the second metal layer is on the first metal layer and is a nickel layer or a nickel vanadium alloy layer; the third metal layer is located in the second layer On the metal layer, it is a copper layer. 如請求項5之半導體封裝結構,其中該散熱片之銅層係直接接觸該熱介面材料,且該第二介金屬化合物係為Cu11In9The semiconductor package structure of claim 5, wherein the copper layer of the heat sink is in direct contact with the thermal interface material, and the second intermetallic compound is Cu 11 In 9 . 如請求項5之半導體封裝結構,其中該散熱片更包括一鎳層,該鎳層係直接接觸該熱介面材料,且該第二介金屬化合物係為In27Ni10The semiconductor package structure of claim 5, wherein the heat sink further comprises a nickel layer, the nickel layer directly contacting the thermal interface material, and the second intermetallic compound is In 27 Ni 10 . 一種半導體封裝結構之製造方法,包括以下步驟:(a)形成一背側鍍金屬於一半導體晶粒之一第二表面上;(b)將該半導體晶粒之一第一表面電性連接至一基板;(c)提供一去除氧化物之材料至該背側鍍金屬; (d)形成一熱介面材料於該背側鍍金屬上,其中該熱介面材料包含銦鋅合金;(e)將一散熱片覆蓋該半導體晶粒以接觸該熱介面材料,其中該散熱片至少包含一銅層;及(f)進行回銲,以生成一第一介金屬化合物及一第二介金屬化合物,其中該第一介金屬化合物位於該背側鍍金屬及該熱介面材料之間,且包含銦而不包含鋅;該第二介金屬化合物位於該熱介面材料及該散熱片之間,且包含銦而不包含鋅。 A method of fabricating a semiconductor package structure, comprising the steps of: (a) forming a backside metallization on a second surface of a semiconductor die; (b) electrically connecting a first surface of the semiconductor die to the first surface a substrate; (c) providing an oxide removing material to the back side metallization; (d) forming a thermal interface material on the backside metallization, wherein the thermal interface material comprises an indium zinc alloy; (e) covering a semiconductor die with a heat sink to contact the thermal interface material, wherein the heat sink is at least And comprising (f) performing reflow soldering to form a first intermetallic compound and a second intermetallic compound, wherein the first intermetallic compound is between the backside metallization and the thermal interface material, And comprising indium without containing zinc; the second intermetallic compound is located between the thermal interface material and the heat sink, and comprises indium instead of zinc. 如請求項11之製造方法,其中步驟(a)中,該背側鍍金屬包含複數層金屬層,其中最上方金屬層係為銅層,且步驟(f)中,該第一介金屬化合物係為Cu11In9The manufacturing method of claim 11, wherein in the step (a), the backside metal plating comprises a plurality of metal layers, wherein the uppermost metal layer is a copper layer, and in the step (f), the first metal compound is For Cu 11 In 9 . 如請求項12之製造方法,其中步驟(a)中,該背側鍍金屬之銅層係由一濺鍍銅及一電鍍銅所組成,且該電鍍銅之厚度約為5μm。 The method of claim 12, wherein in the step (a), the backside metallized copper layer is composed of a sputtered copper and an electroplated copper, and the electroplated copper has a thickness of about 5 μm. 如請求項12之製造方法,其中步驟(a)中,該背側鍍金屬依序包含一第一金屬層、一第二金屬層及一第三金屬層,該第一金屬層係位於該半導體晶粒之第二表面上,且係為鋁層、鈦層或鉻層;該第二金屬層係位於該第一金屬層上,且係為鎳層或鎳釩合金層;該第三金屬層係位於該第二金屬層上,且係為銅層。 The manufacturing method of claim 12, wherein in the step (a), the backside metal plating comprises a first metal layer, a second metal layer and a third metal layer, the first metal layer being located in the semiconductor On the second surface of the crystal grain, and is an aluminum layer, a titanium layer or a chromium layer; the second metal layer is on the first metal layer and is a nickel layer or a nickel vanadium alloy layer; the third metal layer It is located on the second metal layer and is a copper layer. 如請求項11之製造方法,其中步驟(c)中,該去除氧化物之材料係為還原氣體或助銲劑。 The manufacturing method of claim 11, wherein in the step (c), the material for removing the oxide is a reducing gas or a flux. 如請求項11之製造方法,其中步驟(d)中,該熱介面材料之銦鋅合金中鋅的含量為5wt%至30wt%。 The manufacturing method of claim 11, wherein in the step (d), the content of zinc in the indium zinc alloy of the thermal interface material is from 5 wt% to 30 wt%. 如請求項11之製造方法,其中步驟(e)中,該散熱片之銅層係直接接觸該熱介面材料;且步驟(f)中,該第二介金屬化合物係為Cu11In9The manufacturing method of claim 11, wherein in the step (e), the copper layer of the heat sink is in direct contact with the thermal interface material; and in the step (f), the second intermetallic compound is Cu 11 In 9 . 如請求項11之製造方法,其中步驟(e)中,該散熱片更包括一鎳 層,該鎳層係直接接觸該熱介面材料;且步驟(f)中,該第二介金屬化合物係為In27Ni10The manufacturing method of claim 11, wherein in the step (e), the heat sink further comprises a nickel layer directly contacting the thermal interface material; and in the step (f), the second metal intermetallic compound is In 27 Ni 10 .
TW102121652A 2013-06-19 2013-06-19 Semiconductor device, semiconductor package and method for making the same TWI529880B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW102121652A TWI529880B (en) 2013-06-19 2013-06-19 Semiconductor device, semiconductor package and method for making the same
CN201310400313.1A CN103441109B (en) 2013-06-19 2013-09-05 Method for manufacturing semiconductor packaging structure
CN201610317373.0A CN105932004B (en) 2013-06-19 2013-09-05 Semiconductor element, semiconductor packaging structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121652A TWI529880B (en) 2013-06-19 2013-06-19 Semiconductor device, semiconductor package and method for making the same

Publications (2)

Publication Number Publication Date
TW201501257A TW201501257A (en) 2015-01-01
TWI529880B true TWI529880B (en) 2016-04-11

Family

ID=49694797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121652A TWI529880B (en) 2013-06-19 2013-06-19 Semiconductor device, semiconductor package and method for making the same

Country Status (2)

Country Link
CN (2) CN103441109B (en)
TW (1) TWI529880B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356341A (en) * 2016-08-31 2017-01-25 华为技术有限公司 Semiconductor device and manufacture method
CN111602233B (en) * 2018-02-26 2023-06-20 新电元工业株式会社 Method for manufacturing semiconductor device
CN110648987B (en) * 2019-10-11 2022-09-06 宁波施捷电子有限公司 Interface heat conduction material layer and application thereof
WO2021142766A1 (en) * 2020-01-17 2021-07-22 Tianjin Laird Technologies Limited Systems for applying materials to components
CN112708400A (en) * 2020-12-17 2021-04-27 上海先方半导体有限公司 Thermal interface material and manufacturing method thereof
TWI829986B (en) * 2020-12-28 2024-01-21 財團法人工業技術研究院 Laminate and method for manufacturing laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI237363B (en) * 2003-12-31 2005-08-01 Advanced Semiconductor Eng Semiconductor package
US8030757B2 (en) * 2007-06-29 2011-10-04 Intel Corporation Forming a semiconductor package including a thermal interface material
CN101420835B (en) * 2007-10-26 2011-03-30 财团法人工业技术研究院 Low melting point alloy thermal interface material and radiating module applying same
CN101315913A (en) * 2008-06-12 2008-12-03 上海芯光科技有限公司 Light packaging member of power machine with high heat transfer efficiency
CN102324409B (en) * 2011-10-11 2013-11-20 日月光半导体制造股份有限公司 Semiconductor package with heat dispersion structure and manufacturing method for semiconductor package
CN102856273A (en) * 2012-09-06 2013-01-02 日月光半导体制造股份有限公司 Semiconductor assembly structure with radiating fin and assembling method thereof

Also Published As

Publication number Publication date
CN103441109B (en) 2016-06-08
CN105932004B (en) 2019-03-15
TW201501257A (en) 2015-01-01
CN103441109A (en) 2013-12-11
CN105932004A (en) 2016-09-07

Similar Documents

Publication Publication Date Title
TWI529880B (en) Semiconductor device, semiconductor package and method for making the same
CN102917835B (en) Junction material, manufacturing method thereof, and manufacturing method of junction structure
JP6111764B2 (en) Power module substrate manufacturing method
TWI575680B (en) Substrate for power module, substrate for power module with heat sink, method for manufacturing power module and substrate for power module
US20130043594A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP5672324B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
JP5549118B2 (en) Manufacturing method of semiconductor device
CN103715178B (en) Dual-phase metal interconnection structure and manufacturing method thereof
TW201503300A (en) Power module substrate, power module substrate having heatsink, and power module
CN106165087A (en) Power module substrate, flange-cooled power module substrate and flange-cooled power model
JP2009147111A (en) Bonding material, method of manufacturing the same, and semiconductor apparatus
JP5922523B2 (en) Method for inhibiting growth of intermetallic compounds
JP6256176B2 (en) Manufacturing method of joined body, manufacturing method of power module substrate
JP2006066716A (en) Semiconductor device
KR101359733B1 (en) Bump including diffusion barrier bi-layer for the 3d integration applications and manufacturing method thereof
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
KR102454265B1 (en) Laminate bonding materials, semiconductor packages and power modules
JP6303420B2 (en) Power module substrate
TWI708754B (en) Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate
JP5723225B2 (en) Bonding structure
JP7310482B2 (en) Bonding structure and liquid phase diffusion bonding method
JP6572810B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
WO2011036829A1 (en) Semiconductor device and process for production thereof
TWI555125B (en) Method for manufacturing package of power module
JP6237058B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate