TWI503285B - 水溶液處理製程及實施處理製程用之電化學電池 - Google Patents

水溶液處理製程及實施處理製程用之電化學電池 Download PDF

Info

Publication number
TWI503285B
TWI503285B TW098117568A TW98117568A TWI503285B TW I503285 B TWI503285 B TW I503285B TW 098117568 A TW098117568 A TW 098117568A TW 98117568 A TW98117568 A TW 98117568A TW I503285 B TWI503285 B TW I503285B
Authority
TW
Taiwan
Prior art keywords
anode
cathode
treatment
battery
titanium
Prior art date
Application number
TW098117568A
Other languages
English (en)
Other versions
TW201002628A (en
Inventor
Andrea Gulla
Mariachiara Benedetto
Original Assignee
Industrie De Nora Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrie De Nora Spa filed Critical Industrie De Nora Spa
Publication of TW201002628A publication Critical patent/TW201002628A/zh
Application granted granted Critical
Publication of TWI503285B publication Critical patent/TWI503285B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46165Special power supply, e.g. solar energy or batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hybrid Cells (AREA)

Description

水溶液處理製程及實施處理製程用之電化學電池
本發明係關於減少有機物品之電化學方法,尤指可用於工業廢料之處理。
有多種電化學處理用來處理工業和市民排放物類:在最通常的應用中,已知有製成活性氯、臭氧、過氧化物和其他活性自由基物類之方法,此外,電氧化性方法可供減少微生物類,且破壞大部份有機物類。以有機高濃度之水溶性廢料而言,電化學氧化處理在大多數情況下,只是焚化方法之選項,成本高昂,因為水溶性部份蒸發所耗能量大,在任何情況下,隨後還需處理氣態排出物。惟工業方法中常排出廣泛的有機物類族群,不能加以電化學氧化,因在陽極有聚合傾向,形成結實、粘著且非導電性薄膜,使其功能快速失活。不適於陽極電氧化處理之最通常物類,有例如呈現共軛或芳族不飽和鍵之有機分子,其有關聚合之反應性,因有去電子取代物同時存在而顯著提高,在與同類其他分子之鏈聚合過程起始的親核取代反應中,可例如有殘基的作用。苯甲酸或三氟苯之環上的氯化衍生物,只是工業廢料內存在物質之最典型例,目前尚無適當減少之策略,經電氧化時會形成瀝青,會使工業用陽極失活。此等化合物可原般利用,或在製藥工業中做為高度氟化芳族化合物之合成中間物,形成除草劑和染料,合成螯合聚合物,或製造液晶。
必須檢驗有機物類減少的有效而廉價方法之另一場域,是從園藝處理衍生污染物類(尤指除草劑)的帶水層之開拓。例如2-吡啶甲酸衍生物族之系統性除草劑(諸如苦醯胺(picloram)或4-胺基-3,5,6-三氯-2-吡啶羧酸),有對土壤粘性不良的傾向,會瀝出,直到帶水層為止。又,為減少此類分子,做為相關合成製程之工業排放物和水污染物,必須識別有效而廉價之處理,因目前不存在任何適當焚化的替代項,不論是化學或電化學型式。
本發明有若干要旨,列於所附申請專利範圍。
在一具體例中,本發明係關於含有機物類的水溶液之處理方法,該有機物類中至少一陽離子係視情形在具有吸電子取代基的芳族共軛不飽和鍵處,此方法包括在電化學電池陰極之還原步驟,和同時或隨後之氧化步驟,亦可具有電化學性能。無意把本發明限於特殊理論,一般假設電化學還原步驟傾向於準確進攻吸電子取代基,使其軛不飽和鍵在氧化階段易於聚合;以芳族類而言,從環上去除吸電子取代基,有使要破壞的分子脫穩定化之效應,而處理可藉氧化步驟完成,包含令溶液簡單暴露於空氣。其他情形,則可在實施還原步驟的同樣電池內,或在前者下游的第二電池內,進行電化學陽極氧化處理。
在一具體例中,還原和氧化步驟同時在裝設適當陰極和陽極的不分開電池內進行。
在一具體例中,氧化步驟接在還原步驟之後,二步驟在設有適當陰極和陽極之同樣未分電池內進行,在還原步驟完成時提高電池密度。
在一具體例中,還原步驟在不超出1kA/m2 的低電流密度進行。
在一具體例中,還原步驟在不超出1kA/m2 的低電流密度進行,接著氧化步驟,在例如介於1-3kA/m2 間之較高電流密度為之。測試顯示事實上,在例如0.6kA/m2 之限制電流密度進行還原,得以把還原本身完成之前,同時發生陽極聚合過程減到最少。
選擇更適當具體力可由精於此道之士,視所處理物類為之;上述製程可應用於具有共軛不飽和鍵之廣泛有機分子,例如芳族;以非限制例而言,製程可應用於在芳族環上有至少一吸電子取代基之苯基、吡啶、吡咯、噻吩環之物質。吸電子取代基可包括(不限於)鹵素或腈、硫代氰酸塩、異硫代氰酸塩、醯胺、硝醯基、碳醯基、羧基、次硫醯基、甲磺醯基和乙醯基。
在一具體例中,進行上述處理過程用之電化學電池,包括銀、鎳、鈦或石墨之金屬陰極,或陶瓷陰極,例如基於次氧化鈦。
在一具體例中,進行上述處理過程用之電化學電池,包括例如鈦等閥金屬之陽極,塗佈貴金屬氧化物,例如釕和/或銥氧化物。
在一具體例中,進行上述處理過程用之電化學電池,包含未分開反應室,即陰極和陽極間無隔板;欲在陰極和陽極間隙內處理的溶液之加料機構;陰極和陽極間直流電在控制下應用之機構。
陰極可配置成具有開孔之結構,例如形成網或拉撐片材。此優點是(尤其是在具有同時還原和氧化步驟之製程情況下)主要在陰極背側,而非在陰極/陽極間隙內側,釋出氫;如此即可保持陰極和陽極間之間隙減小,不會過份擾亂氧化步驟所用陽極之效能。
在一具體例中,應用直流電之機構,經控制或程式規劃,至少在還原步驟之際,令電流密度低於1KA/m2 ,在隨後氧化步驟中,視需要提高電流密度,例如在1和3KA/m2 之間。
實施例1
取樣苦醯胺(picloram)(4-胺基-3,5,6-三氯-2-吡啶羧酸,其結構式如下)製造廠相當單位釋放的二種工業廢料。
第一種廢料樣品200毫升,取自周圍溫度,pH 14,泥狀,暗橘色,加料至第一不分隔電化學電池,裝有銀板做為陰極,有Industrie De Nora製陽極,由鈦板組成,塗佈層鈦和鉭氧化物質之保護層,以及鉭和銥氧化物層質之催化層。施以有限程度(相當於0.6KA/m2 )之直流電,開始苦醯胺之陰極還原,而非有感程度的陽極氧化;記錄電池電壓3.5V。傳送27Ah的電荷時,溶液鹼度降到pH 9;溶液再轉送至第二不分隔電化學電池,裝設有拉張的鈦片,做為陰極,使用Industrie De Nora的陽極,由拉張鈦片組成,塗佈鈦和釕氧化物之催化層。施以直流電2KA/m2 ,電池電壓4V。傳送84.5Ah電荷時,溶液達中性pH,色很淺,無原先濁度痕跡。未見陽極表面結垢。測試結束時,總有機碳(TOC)測定得168ppm值,原先測定為1990ppm。按照記錄資料,處理過溶液內TOC減少90%所需耗電量,低於2.2kWh/l。
第二種廢料樣品200毫升,取自周圍溫度,pH 3,泥狀,帶黃色,依序加料至二個上述電化學電池,經同樣還原和隨後氧化處理。還原仍在電流密度0.6KA/m2 ,以3.5V電壓進行。傳送27.6Ah電荷時,溶液酸性降到pH 6;在傳送至第二電池後,在2KA/m2 以電池電壓4V進行隨後的氧化步驟。傳送84.0Ah電荷時,溶液已達pH 8,清澈透明;在此情況下,亦未見陽極表面有結垢。測試結束時,總有機碳(TOC)測定得22ppm值,原先廢料檢測為2310ppm。按照記錄資料,處理過溶液內TOC減少99%所需耗電量,低於2.2kWh/l。
實施例2
取實施例1之二廢料,在第二不分隔電化學電池內,經同時氧化和還原處理,裝設拉張鈦片,做為陰極,並有Industrie De Nora的陽極,由拉張鈦片組成,塗佈催化層,為鈦和釕氧化物質。選用陽極型,對於在面朝陰極的預還原唯一物類,即使很有限電流密度,仍得以開始陽極反應。
在pH 14之第一種廢料即加料,應用直流電0.6kA/m2 ,電池電壓從起初3.5V逐漸上升至4.5V。傳送50Ah電荷時,溶液已達pH 8.5,清澈,稍有淺色;測試結束,總有機碳(TOC)測定得232ppm值,原先廢料檢測為1990ppm。
pH 3的第二種廢料加料,應用直流電0.6kA/m2 ,電池電壓從起初3.5V逐漸上升至4.5V。傳送48Ah電荷時,溶液達中性pH,清澈無色;測試結束,總有機碳(TOC)測定得54ppm值,原先廢料檢測為2310ppm。
二項測試均未見陽極表面有任何結垢。
比較例1
取實施例1的第一種廢料200毫升,加料於管狀電化學電池,裝設Industrie De Nora的陽極,由鈦筒組成,塗佈催化層,為鈦和釕氧化物質,以不銹鋼網的共軸陰極包裹多層,表面積等於陽極表面積的50倍。電池供以直流電,陽極電流密度2kA/m2 ,在無明顯還原情形下,完成苦醯胺之直接氧化。溶液外觀在反應起先30分鐘即明顯變化,此時電池電壓從初值4V上升到超過6.5V。因此,必須停工,拆開電池;測試結束,陽極表面覆以結實的棕橘色膜,不損壞催化層,無法除去。
實施例3
取樣工業廢料,來自苯氧化衍生物之製造工廠,在80%硫酸溶液內,含各種量的如下有機物類:
原有樣品的總有機碳(TOC)是5610ppm。總體外觀不透明且帶黑色的樣品200毫升,加料至第一不分隔的電化學電池,裝設Atranova的陶質陰極,為未改質之次氧化鈦,而陽極與陰極相等,但塗佈氧化銥質之催化層。施以有限程度的直流電(相當於0.6kA/m2 ),開始待處理物類的陰極還原,而不啟動明顯實體的同時陽即氧化過程;記錄起初電池電壓6V,在22Ah電荷轉移過程中,逐漸降至4V;電流密度則上升至1.5kA/m2 ,電池電壓5V。在傳送22.75Ah電荷時,溶液呈現透明外觀,有強黃色。測試結束,總有機碳(TOC)測定得483ppm值。陽極表面未見結垢。
比較例2
取實施例3之廢料200毫升,加料至裝設電極之同樣電池。電極間施以電流密度1.5kA/m2 ;電池電壓起先在6.5V以上,快速上升至製程無法持續,強制停工。拆電池時,看見陽極表面佈滿帶黑色的結實薄膜,不損壞催化層,無法去除。
上述無限制本發明之意,可按不同具體例實施,不離其範圍,而其程度純以所附申請專利範圍為準。
本案說明和申請專利範圍中,「包括」及其相關語並無排除其他元素或添加物之意。
本案內容提及文件、作為、材料、裝置、文章等,旨在提供本發明之內文。並非意味或代表任何或全部此等事物形成先前技術基本之一部份,或是本發明在各申請專利範圍優先權日之前相關領域之常識。

Claims (14)

  1. 一種消除水溶液內一或以上有機物類之方法,該有機物類有至少一碳原子涉入視情形為芳族之共軛不飽和鍵,該碳原子有吸電子取代基,此方法包括步驟為:令水溶液在第一電化電池之陰極,經還原處理;令處理過之水溶液,在第二電化電池之陽極,經氧化處理者。
  2. 一種消除水溶液內一或以上有機物類之方法,該有機物類有至少一碳原子涉入視情形為芳族之共軛不飽和鍵,該碳原子有吸電子取代基,此方法包括步驟為令水溶液:在不分隔電池之陰極經還原處理,得預還原有機物類;隨即令該預還原有機物類,在不分隔電池之陽極,經氧化處理者。
  3. 如申請專利範圍第1項之方法,其中該氧化處理係在第二電化電池之陽極進行電化處理者。
  4. 如申請專利範圍第1或2項之方法,其中該陰極係由銀、鎳、石墨、鈦金屬或鈦次氧化物質製成者。
  5. 如申請專利範圍第1或2項之方法,其中該陽極係塗佈貴金屬氧化物之閥金屬質者。
  6. 如申請專利範圍第1或2項之方法,其中該吸電子取代基係選自包含鹵素、腈、硫代氰酸塩、異硫代氰酸塩、醯胺、硝醯基、碳醯基、羧基、次硫醯基、甲磺醯基和乙醯基者。
  7. 如申請專利範圍第1或2項之方法,其中要處理溶液內所含該有機物類係選自包含苦咪酸、苯甲酸和苯三氟化物之鹵化衍生物組成之基團者。
  8. 如申請專利範圍第1或2項之方法,其中至少該還原處理係在低於1kA/m2 之電流密度進行者。
  9. 一種執行前述申請專利範圍第1至8項任一項處理方法之電化電池,包括不分隔反應室;至少一陰極和至少一陽極;在該陰極和該陽極間之加料機構,供加料欲處理之水溶液,含 一或以上之有機物類,有至少一碳原子涉入隨意芳族共軛不飽和鍵,該碳原子有吸電子取代基;處理過溶液之抽除機構,在控制下施加直流電之機構,該控制下施加直流電之機構經調節,以該有機物類之還原步驟和同時或隨後氧化步驟,處理該水溶液者。
  10. 如申請專利範圍第9項之電池,其中陰極係銀、鎳、鈦金屬、石墨或鈦次氧化物質,而陽極係塗佈貴金屬氧化物之閥金屬質者。
  11. 如申請專利範圍第10項之電池,其中該閥金屬係鈦,而該貴金屬包括釕和/或銥者。
  12. 如申請專利範圍第9至11項任一項之電池,其中陰極形成網或拉張片材者。
  13. 如申請專利範圍第9至11項任一項之電池,其中在控制下施以直流電之機構經調節,至少在還原步驟中,可使電流密度低於1kA/m2 者。
  14. 如申請專利範圍第9至11項任一項之電池,其中在控制下施以直流電之機構經調節,在還原步驟中,使電流密度低於1kA/m2 ,而在隨後步驟中,使電流密度在1至3kA/m2 之間者。
TW098117568A 2008-07-15 2009-05-27 水溶液處理製程及實施處理製程用之電化學電池 TWI503285B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001282A ITMI20081282A1 (it) 2008-07-15 2008-07-15 Processo di trattamento di reflui industriali

Publications (2)

Publication Number Publication Date
TW201002628A TW201002628A (en) 2010-01-16
TWI503285B true TWI503285B (zh) 2015-10-11

Family

ID=40738190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098117568A TWI503285B (zh) 2008-07-15 2009-05-27 水溶液處理製程及實施處理製程用之電化學電池

Country Status (18)

Country Link
US (1) US10099946B2 (zh)
EP (2) EP3640218B1 (zh)
JP (1) JP5756402B2 (zh)
KR (2) KR101921045B1 (zh)
CN (1) CN102099301A (zh)
AU (1) AU2009272818B2 (zh)
BR (1) BRPI0916799B1 (zh)
CA (1) CA2729884C (zh)
DK (1) DK3640218T3 (zh)
EA (1) EA022654B1 (zh)
ES (1) ES2905154T3 (zh)
IL (1) IL209820B (zh)
IT (1) ITMI20081282A1 (zh)
MX (1) MX2011000551A (zh)
PT (1) PT3640218T (zh)
TW (1) TWI503285B (zh)
WO (1) WO2010007038A1 (zh)
ZA (1) ZA201008958B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120158A1 (it) * 2012-02-07 2013-08-08 Industrie De Nora Spa Elettrodo per l¿abbattimento elettrochimico della domanda chimica di ossigeno in reflui industriali
CN106379965A (zh) * 2016-11-21 2017-02-08 北京益清源环保科技有限公司 具有电催化去除噻吩功能的改性陶瓷粒子电极及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432014B (en) * 1996-09-18 2001-05-01 Konishiroku Photo Ind Water treating apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2449588C2 (de) * 1974-10-18 1985-03-28 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Zersetzung einer wäßrigen, radioaktiven Abfallösung mit gelösten, anorganischen und organischen Inhaltsstoffen
US4072596A (en) * 1975-04-30 1978-02-07 Westinghouse Electric Corporation Apparatus for removal of contaminants from water
US4422917A (en) * 1980-09-10 1983-12-27 Imi Marston Limited Electrode material, electrode and electrochemical cell
NL8006412A (nl) * 1980-11-25 1982-06-16 Tno Werkwijze voor het detoxificeren van chemische afvalstoffen.
JPS6128493A (ja) * 1984-07-19 1986-02-08 Osaka Soda Co Ltd ハロゲン化炭化水素の分解方法
JPS61204082A (ja) * 1985-03-07 1986-09-10 Tsutomu Kagitani 有機ハロゲン化合物汚染水の浄化法
US4702804A (en) * 1987-02-02 1987-10-27 Pcb Sandpiper, Inc. Methods for electrochemical reduction of halogenated organic compounds
JP2569110B2 (ja) * 1988-03-03 1997-01-08 三井東圧化学株式会社 有機沃素化合物を含有する廃液から沃素を回収する方法
US5292409A (en) * 1990-04-10 1994-03-08 Cape Cod Research, Inc. Cathode and process for degrading halogenated carbon compounds in aqueous solvents
US5587058A (en) * 1995-09-21 1996-12-24 Karpov Institute Of Physical Chemicstry Electrode and method of preparation thereof
US5855760A (en) * 1997-02-05 1999-01-05 Zen; Jyh-Myng Process for electrochemical decomposition of organic pollutants
US6342150B1 (en) * 1998-09-09 2002-01-29 Thomas Clay Sale Redox water treatment system
US6315886B1 (en) * 1998-12-07 2001-11-13 The Electrosynthesis Company, Inc. Electrolytic apparatus and methods for purification of aqueous solutions
JP4116726B2 (ja) * 1999-02-04 2008-07-09 ペルメレック電極株式会社 電気化学的処理方法及び装置
PL195415B1 (pl) * 2000-01-14 2007-09-28 Dow Agrosciences Sposób wytwarzania kwasu 4-amino-3-halopikolinowego
JP4000508B2 (ja) * 2001-10-22 2007-10-31 株式会社オメガ 廃液又は排水の処理方法
US6802956B2 (en) * 2002-06-05 2004-10-12 Aquatic Technologies Electrolytic treatment of aqueous media
KR200342619Y1 (ko) * 2003-11-28 2004-02-21 장인봉 전해방식 수처리용 전극구조체 및 이를 적용한 수처리장치
WO2006061192A1 (de) * 2004-12-06 2006-06-15 Basf Aktiengesellschaft Verfahren und vorrichtung zur behandlung von pflanzenschutzmittelhaltigem abwasser
IL184046A (en) * 2007-06-19 2012-07-31 Lev Gurevich Method and systems with cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432014B (en) * 1996-09-18 2001-05-01 Konishiroku Photo Ind Water treating apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王文德,電極及反應媒子對氯酚電解氧化影響之探討,輔英科技大學環境工程衛生系碩士論文,2004年6月 *

Also Published As

Publication number Publication date
IL209820B (en) 2018-05-31
KR101921045B1 (ko) 2018-11-23
IL209820A0 (en) 2011-02-28
TW201002628A (en) 2010-01-16
EA201170192A1 (ru) 2011-06-30
EP3640218B1 (en) 2021-11-10
CA2729884A1 (en) 2010-01-21
CA2729884C (en) 2019-06-04
BRPI0916799A2 (pt) 2018-02-27
EP3640218A1 (en) 2020-04-22
EA022654B1 (ru) 2016-02-29
PT3640218T (pt) 2022-01-26
US20110108436A1 (en) 2011-05-12
DK3640218T3 (da) 2022-01-17
US10099946B2 (en) 2018-10-16
KR20110034000A (ko) 2011-04-04
JP2011527937A (ja) 2011-11-10
AU2009272818A1 (en) 2010-01-21
AU2009272818B2 (en) 2014-10-02
ITMI20081282A1 (it) 2010-01-16
ES2905154T3 (es) 2022-04-07
BRPI0916799B1 (pt) 2020-02-18
EP2300376A1 (en) 2011-03-30
ZA201008958B (en) 2012-03-28
WO2010007038A1 (en) 2010-01-21
JP5756402B2 (ja) 2015-07-29
CN102099301A (zh) 2011-06-15
MX2011000551A (es) 2011-03-15
KR20170033903A (ko) 2017-03-27

Similar Documents

Publication Publication Date Title
Cheng et al. Enhancement of mineralization of metronidazole by the electro-Fenton process with a Ce/SnO2–Sb coated titanium anode
Zhang et al. Electrochemical degradation of ethidium bromide using boron-doped diamond electrode
Vaghela et al. Laboratory studies of electrochemical treatment of industrial azo dye effluent
de Oliveira et al. Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters
Bagastyo et al. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes
Meijide et al. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions
Bruguera-Casamada et al. Advantages of electro-Fenton over electrocoagulation for disinfection of dairy wastewater
Garcia-Segura et al. Anodic oxidation, electro-Fenton and photoelectro-Fenton degradations of pyridinium-and imidazolium-based ionic liquids in waters using a BDD/air-diffusion cell
dos Santos et al. A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices
Komtchou et al. Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process
Zainal et al. Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films
Li et al. Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge
Zhang et al. Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with Nano-ZnO coated electrodes
Vasilie et al. Dual use of boron-doped diamond electrode in antibiotics-containing water treatment and process control
Han et al. Mechanism and kinetics of electrochemical degradation of isothiazolin-ones using Ti/SnO2–Sb/PbO2 anode
Martín de Vidales et al. Electrolysis of progesterone with conductive‐diamond electrodes
Espinoza-Quiñones et al. Insights into brewery wastewater treatment by the electro-Fenton hybrid process: How to get a significant decrease in organic matter and toxicity
TWI503285B (zh) 水溶液處理製程及實施處理製程用之電化學電池
Ajeel et al. p-Benzoquinone anodic degradation by carbon black diamond composite electrodes
US9296629B2 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
Li et al. A novel method Hybrid Photo-electrocatalytic Oxidation for the treatment of 3, 4-dimethyaniline wastewater: Degradation mechanism and synergistic effect
EP3348521A1 (en) Process of electrochemical oxidation
Lugo-Bueno et al. Biocatalysis assisted by electrochemical processes for the removal of bisphenol A and triclosan in wastewater
Feng Advanced oxidation processes for the removal of residual non-steroidal anti-inflammatory pharmaceuticals from aqueous systems