TWI495872B - 整合流體擾動之電化學生物親和性感測晶片及其操作方法 - Google Patents

整合流體擾動之電化學生物親和性感測晶片及其操作方法 Download PDF

Info

Publication number
TWI495872B
TWI495872B TW102146211A TW102146211A TWI495872B TW I495872 B TWI495872 B TW I495872B TW 102146211 A TW102146211 A TW 102146211A TW 102146211 A TW102146211 A TW 102146211A TW I495872 B TWI495872 B TW I495872B
Authority
TW
Taiwan
Prior art keywords
electrode
electrochemical
ring electrode
sensing
integrated
Prior art date
Application number
TW102146211A
Other languages
English (en)
Other versions
TW201522959A (zh
Inventor
Ching Chou Wu
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW102146211A priority Critical patent/TWI495872B/zh
Priority to US14/296,399 priority patent/US20150168333A1/en
Publication of TW201522959A publication Critical patent/TW201522959A/zh
Application granted granted Critical
Publication of TWI495872B publication Critical patent/TWI495872B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/026Dielectric impedance spectroscopy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

整合流體擾動之電化學生物親和性感測晶片及其操作方法
本發明是有關於一種生物感測晶片及其操作方法,且特別是有關於一種適用於感測目標物的整合流體擾動之電化學生物親和性感測晶片及其操作方法。
生物親和性感測器為一種常見的生物感測技術,其是利用接受器(receptor)/配體(ligand)、抗體(antibody)/抗原(antigen)或核酸(nucleic acid)雜合(hybridization)等生物親和性結合(bioaffinity binding)發生時,以電極表面生物分子的形狀、電荷、阻抗特性、質量、熱量或空間障礙等變化來進行量測的感測器。相較於例如結合紫外光或螢光法的高效液相層析法(high performance liquid chromatography,HPLC)以及酵素連結免疫吸附分析法(enzyme-linked immunosorbent assay,ELISA)之其他感測方法,電化學式親和性感測器可在樣本的前處理程序與儀器需求 上,節省不少成本與時間。然而,電化學式親和性感測器在目標物與修飾於電極表面探針間的親和反應步驟,可能受限於目標物本身的布朗運動與過慢的濃度梯度擴散方式而使雜合效率不佳,若目標物的結構太小或濃度太低,則目標物與探針的結合量更是有限,以致無法進一步降低檢測極限(detection limit)。
近幾年,已發展微流體晶片技術,其中利用電動力學控技術例如交流電滲流(alternating current-electroosmotic flow,ACEOF)、介電泳(dielectrophoresis,DEP)、電熱流(electrothermal flow,ETF)與誘導電荷電滲流(induced-charge electroosmotic,ICEO)等技術,對流體、生物樣本或膠體粒子等微小物質進行控制的研究更是備受矚目。在電流體動力學(electrohydrodynamics)技術中,由於ACEOF適用於低導電度溶液中進行液體擾動,而ACETF適合於高導電度溶液中進行液體擾動,故目前已有研究將電動力學之交流電流體動力控制技術整合於親和性感測系統中來降低檢測極限。然而,由於此感測方式為透過光學或需要使用經標定之探針或標定之目標物,使得不論是前處理程序或儀器需求的成本皆過高。因此,亟需一種可成功將電流體動力擾動電極與電化學感測電極整合於同一電極組以及同一基材的生物親和性感測晶片,以同時降低檢測極限並提高檢測速度。
本發明提供一種整合流體擾動之電化學生物親和性感測 晶片,可縮短感測時間並降低檢測極限。
本發明另提供一種整合流體擾動之電化學生物親和性感測晶片的操作方法,用以操作上述整合流體擾動之電化學生物親和性感測晶片。
本發明的整合流體擾動之電化學生物親和性感測晶片適用於感測目標物,其包括基材以及多個電化學感測電極組。電化學感測電極組設置於基材上且用於進行電化學感測,其中各電化學感測電極組包括盤電極(disk electrode,DE)、第一環電極(ring electrode,RE)以及第二環電極。盤電極呈盤狀且其電極表面固定生物探針。第一環電極呈弧形並環繞盤電極。第二環電極呈弧形並環繞第一環電極。第一環電極與第二環電極產生交流電流體動力(alternating current electrohydrodynamic,ACEHD)擾動。
本發明的整合流體擾動之電化學生物親和性感測晶片的操作方法適用於感測目標物,其包括下列步驟:提供包括多個電化學感測電極組之整合流體擾動之電化學生物親和性感測晶片,其中各電化學感測電極組包括盤電極、第一環電極以及第二環電極;盤電極呈盤狀且其表面固定生物探針;第一環電極呈弧形並環繞盤電極;第二環電極呈弧形並環繞第一環電極。將目標物載於整合流體擾動之電化學生物親和性感測晶片上。對第一環電極與第二環電極施加一電壓以產生交流電流體動力擾動,使目標物與生物探針形成生物親和性結合。移除未與生物探針結合之目標物,並將溶液載於整合流體擾動之電化學生物親和性感測晶片 上。對結合目標物之整合流體擾動之電化學生物親和性感測晶片進行電化學感測。
在本發明的一實施例中,上述交流電流體動力擾動包括交流電滲流(alternating current-electroosmotic flow,ACEOF)、直流偏壓式交流電滲流(DC-biased ACEOF)、交流電熱流(AC electrothermal flow)或交流電動流(AC electrokinetic flow),且上述電化學感測包括電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS)或伏安法(voltammetry)。
在本發明的一實施例中,交流電流體動力擾動使目標物自第二環電極移向第一環電極,並依流體慣性移向固定生物探針之盤電極。
在本發明的一實施例中,電化學感測是以盤電極作為工作電極(working electrode),且第一環電極與第二環電極中之一者是輔助電極(counter electrode)而另一者是參考電極(reference electrode)。
在本發明的一實施例中,上述生物探針包括去氧核醣核酸、核醣核酸、抗體或適體(aptamer),上述目標物包括去氧核醣核酸、核醣核酸、抗原、適體或藥物,且生物探針與目標物之間為生物親和性結合。
在本發明的一實施例中,盤電極與第一環電極之間具有第一間距,第一環電極與第二環電極之間具有第二間距,且第一間距與第二間距介於1μm至100μm之間。
在本發明的一實施例中,第一環電極寬度介於10μm至700μm之間,第二環電極寬度介於5μm至100μm之間,且盤電極直徑介於10μm至1000μm之間。
在本發明的一實施例中,第一環電極寬度大於所述第二環電極寬度,且第一環電極寬度為第二環電極寬度的2至7倍。
在本發明的一實施例中,盤電極、第一環電極與第二環電極的材質包括金(Au)、鉑(Pt)或鈀(Pd)。
在本發明的一實施例中,第一環電極表面與第二環電極表面覆蓋一保護層,使第一環電極與第二環電極形成法拉第充電(Faradaic charging)現象,其中保護層的材質與盤電極的材質不相同。
在本發明的一實施例中,上述保護層包括鈀層、鉑層或氧化銥層。
基於上述,本發明之整合流體擾動之電化學生物親和性感測晶片的電化學感測電極組為雙環-單盤電極(double ring-single disk electrode)的設計而可將工作電極、輔助電極與參考電極整合於同一晶片。換言之,本發明之感測晶片將驅動ACEHD之電極與電化學感測電極整合於同一電極組與同一晶片,除了可縮短感測時間並降低感測極限之外,更可降低電極製作成本,進而有利於生物感測晶片的微小化與量產。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
10‧‧‧電化學感測電極組
100‧‧‧整合流體擾動之電化學生物親和性感測晶片
110‧‧‧基材
112、114、116‧‧‧開口圖案
120‧‧‧黏著層
120’‧‧‧黏著層圖案
130‧‧‧電極層
130’‧‧‧電極圖案
140‧‧‧絕緣層
150‧‧‧保護層
a、b、c、d、e、f、g、h‧‧‧曲線
D‧‧‧盤電極直徑
DE‧‧‧盤電極
I-I’‧‧‧線
P‧‧‧生物探針
PR’‧‧‧圖案化光阻層
RE1‧‧‧第一環電極
RE2‧‧‧第二環電極
S1、S2‧‧‧間距
S410、S420、S430、S440、S450‧‧‧步驟
Vw ‧‧‧盤電極電壓
VRE1 ‧‧‧第一環電極電壓
VRE2 ‧‧‧第二環電極電壓
W1‧‧‧第一環電極寬度
W2‧‧‧第二環電極寬度
圖1是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片的示意圖。
圖2是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之未固定有生物探針之單一電化學感測電極組的示意圖。
圖3是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之固定有生物探針之單一電化學感測電極組的示意圖。
圖4是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之操作方法的方塊流程圖。
圖5A至圖5G是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之製作方法之沿著圖2之線I-I’的剖面示意圖。
圖6是以習知外插式Ag/AgCl電極為三極式電化學感測系統之參考電極的循環伏安圖。
圖7是以本發明一實施例之鍍有Pd之第二環電極為三極式電化學感測系統之參考電極的循環伏安圖。
圖8是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片分別以ACEOF與直流偏壓式ACEOF擾動之經時雜合曲線圖。
圖9是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片分別以ACEOF與直流偏壓式ACEOF擾動雜合之校正曲 線圖。
圖1是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片的示意圖。圖2是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之未固定有生物探針之單一電化學感測電極組的示意圖。圖3是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之固定有生物探針之單一電化學感測電極組的示意圖。請同時參照圖1至圖3。
在本實施例中,如圖1至圖3所示,整合流體擾動之電化學生物親和性感測晶片100包括基材110以及多個電化學感測電極組10。基材110的材質例如是玻璃或覆蓋二氧化矽或氮化矽之矽層,然本發明不限於此。電化學感測電極組10設置於基材110上。在本實施例中,水平方向與垂直方向上各有四個電化學感測電極組10,從而於基材110上形成一電極陣列,然本發明不限於此。各電化學感測電極組10包括一盤電極DE、一第一環電極RE1以及一第二環電極RE2。盤電極DE、第一環電極RE1與第二環電極RE2的材質例如是金(Au)、鉑(Pt)、鈀(Pd)或其類似導體材質。盤電極DE呈盤狀,盤電極直徑D例如是介於10μm至1000μm之間,且較佳為介於100μm至500μm之間。第一環電極RE1呈弧形並環繞盤電極DE,第一環電極寬度W1例如是介於10μm至700μm之間,且較佳為介於20μm至500μm之間。第二環電極 RE2呈弧形並環繞第一環電極RE1,第二環電極寬度W2例如是介於5μm至100μm之間,且較佳為介於10μm至100μm之間。值得一提的是,在本實施例中,第一環電極寬度W1例如是第二環電極寬度W2的2至7倍,且較佳是5倍。此外,盤電極DE與第一環電極RE1之間具有第一間距S1而彼此電性絕緣,第一環電極RE1與第二環電極RE2之間具有第二間距S2而彼此電性絕緣。第一間距S1與第二間距S2暴露出下方的基材110。第一間距S1與第二間距彼此可以相同也可以不相同,且其例如是介於1μm至100μm之間,然本發明不限於此。
應注意,圖2與圖3唯一的差異在於,圖2中的電化學感測電極組10之盤電極DE表面還未固定有生物探針P,而圖3中的電化學感測電極組10之盤電極DE表面已固定有生物探針P。在本實施例中,生物探針P包括去氧核醣核酸、核醣核酸、抗體或適體,而其對應的感測目標物包括去氧核醣核酸、核醣核酸、抗原、適體或藥物,然本發明不限於此。生物探針P與目標物之間為生物親和性結合,例如抗原-抗體作用力、去氧核醣核酸之間的雜合作用力(hybridization)等。在本實施例中,進行電化學感測時,以盤電極DE作為工作電極,其連接到外部電源而具有盤電極電壓Vw ,並以第一環電極RE1作為輔助電極而第二環電極RE2作為參考電極。在其他實施例中,電化學感測電極組10亦可設計成將盤電極DE作為工作電極,第一環電極RE1作為參考電極,而第二環電極RE2作為輔助電極。在本實施例中,進行電流體動 力擾動時,第一環電極RE1與第二環電極RE2連接至外部電源而分別具有第一環電極電壓VRE1 與第二環電極電壓VRE2 。如圖1至圖3所示,絕緣層140配置於各第二環電極RE2的外圍,以定義電化學感測電極組10的工作面積,並且遮蔽盤電極DE、第一環電極RE1與第二環電極RE2的連接線部分。換言之,於進行電化學感測時,實質工作面積為雙環-單盤電極部分。
值得一提的是,本實施例中的第一環電極寬度W1大於第二環電極寬度W2,在此情況下進行電流體動力擾動時,基於上述寬度不對稱的雙環-單盤設計,可使含有目標物之液體由寬度較小的第二環電極RE2流往寬度較大的第一環電極RE1,再依流體慣性流往固定有生物探針P的盤電極DE,從而可加速生物親和性結合。此外,基於上述寬度不對稱的雙環-單盤設計,於進行電流體動力擾動來促進盤電極DE上之生物探針P與液體中目標物形成生物親和性結合時,不需於盤電極DE上施加電壓,如此可避免電流體動力電壓對固定於盤電極DE表面之生物探針P的影響。
本發明不限定盤電極DE、第一環電極RE1與第二環電極RE2的材質,只要其可導電即可,其材質例如是金屬、合金或金屬氧化物。由於金可與硫形成鍵結而有助於帶硫基的生物分子吸附,因此,盤電極DE、第一環電極RE1與第二環電極RE2的材質較佳為金(Au)。
值得注意的是,為了使第一環電極RE1與第二環電極RE2具有法拉第充電(Faradic charging,FC)能力,且為了避免其於 後續將生物探針P固定於盤電極DE的過程中受到污染,第一環電極RE1與第二環電極RE2的表面更可覆蓋保護層,且保護層的材質與盤電極DE的材質不相同。在本發明之一實施例中,保護層例如是鈀層、鉑層或氧化銥層等。覆蓋有保護層的第一環電極RE1與第二環電極RE2可於電化學感測過程中提供穩定的表面電位,因此其是有效率的參考電極與輔助電極。以下將參照圖式詳細說明本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100的操作方法。
圖4是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片之操作方法的方塊流程圖。請同時參照圖1至圖3。首先,在步驟S410中,提供包括多個電化學感測電極組10之整合流體擾動之電化學生物親和性感測晶片100,且電化學感測電極組10之盤電極DE表面已固定生物探針P。生物探針P包括去氧核醣核酸、核醣核酸、抗體或適體,然本發明不限於此,只要可進行親和性反應的生物分子即可。
接著,在步驟S420中,將含目標物之溶液載於(load)整合流體擾動之電化學生物親和性感測晶片100上,上述方式例如是以針管滴加方式,本發明不限定載入目標物的方式。目標物例如是去氧核醣核酸、核醣核酸、抗體、適體或藥物等,本發明亦不限定目標物的種類,只要可與上述生物探針P形成生物親和性結合即可。
然後,在步驟S430中,對第一環電極RE1與第二環電極 RE2施加交流電流體動力(ACEHD)擾動,以加速目標物與生物探針P之間形成生物親和性結合。在本實施例中,ACEHD例如是交流電滲流(alternating current-electroosmotic flow,ACEOF)、直流偏壓式交流電滲流(DC-biased ACEOF)、交流電熱流(AC electrothermal flow)或交流電動流(AC electrokinetic flow)等。
接著,為了避免後續感測時的干擾,在步驟S440中,移除未與生物探針P結合之目標物,並將含有氧化還原對之中性緩衝溶液載於整合流體擾動之電化學生物親和性感測晶片100上。上述溶液例如是含有赤血鹽(potassium ferricyanide,K3 [Fe(CN)6 ])與黃血鹽(potassium ferrocyanide,K4 [Fe(CN)6 ])之磷酸緩衝溶液,然本發明不限於此。
最後,在步驟S450中,對結合目標物之整合流體擾動之電化學生物親和性感測晶片進行電化學感測。在本實施例中,電化學感測例如是電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS)或伏安法(voltammetry),然本發明不限於此。
以下將參照圖式詳細說明本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100之製作方法。
圖5A至圖5G是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100之製作方法之沿著圖2之線I-I’的的剖面示意圖。首先,如圖5A所示,提供清潔處理過的基材110。基材110的材料例如是玻璃或覆蓋二氧化矽或氮化矽之矽層,基材的厚度例如是介於200μm至2mm的範圍內,然本發明不限於此。 清潔處理例如是在溶劑中以超音波震盪的方式進行,上述溶劑例如是丙酮、異丙醇、二次水等,然本發明不限於此。
接著,於基材110上形成光阻層(未繪示),形成的方法例如是旋轉塗佈法,光阻層例如是正光阻層,但本發明不限於此。為了增加光阻層與基材110之間的附著力,可對形成有光阻層的基材110進行軟烤(soft bake)處理,以移除光阻層中的溶劑。再來,如圖5B所示,使用設計有本發明之一實施例的雙環-單盤電極圖案的光罩對光阻層進行圖案化而形成具有多個開口圖案112、114、116之圖案化光阻層PR1’,其中多個開口圖案112、114、116暴露基材110,且開口圖案112、114、116具有雙環-單盤電極之圖案。接下來,請參照圖5C,於基材110上形成黏著層120,其形成方法例如是蒸鍍或濺鍍等方式,然本發明不限於此。接著如圖5D所示,於基材110上形成電極層130,其形成方法例如是蒸鍍或濺鍍等方式,然本發明不限於此。然後,如圖5E所示,移除圖案化光阻層PR1’,以形成多個黏著層圖案120’與多個電極圖案130’。多個電極圖案130’包括多個電化學感測電極組10,為方便說明,在此僅繪示一個電化學感測電極組10,其中單一電化學感測電極組10包括一盤電極DE、一第一環電極RE1以及一第二環電極RE2。盤電極DE呈盤狀;第一環電極RE1呈弧形並環繞盤電極DE;第二環電極RE2呈弧形並環繞第一環電極RE1。盤電極DE與第一環電極RE1之間具有第一間距S1而暴露出基材110,且第一環電極RE1與第二環電極RE2之間具有第二間距S2而暴 露出基材110。
接著,為了定義電化學感測電極組10的工作面積,如圖5F所示,於第二環電極RE2的外圍形成絕緣層140。絕緣層140較佳為光阻層,且更佳為負光阻層,然本發明不限於此。在絕緣層是光阻層的情況下,為了提高光阻的交聯程度,可對曝光後的絕緣層140進行曝後烤(post bake)處理,此外,更可於顯影後進行硬烤(hard bake)處理,強化光阻層與基材110之間的附著力。形成絕緣層140的方法例如是旋轉塗佈法,然本發明不限於此。最後,如圖5G所示,在本實施例中,更可於第一環電極RE1與第二環電極RE2表面形成保護層150,其中保護層150的材質與盤電極DE的材質不相同,且保護層150較佳為鈀層、鉑層或氧化銥層等。基於上述圖5A至圖5G所示的製作方法而可完成本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100。
本發明將就以下實例來進一步說明,但應瞭解的是,這些實例僅用於例示說明,而不應被解釋為限制本發明。以下實例是以需要三極式感測之電化學阻抗頻譜(electrochemical impedance spectroscopy,EIS)感測晶片為例,並使用ACEOF與直流偏壓式ACEOF擾動技術,說明可將電流體動力(electrohydrodynamic,EHD)驅動電極共同整合至電化學式生物親和性感測電極組中,並在同一晶片基材上執行快速的雜合與電化學感測,但本發明不限於此。
[實例1:電極組的製作]
(1)將玻片浸入二次水中,用超音波震盪5分鐘3次。取出乾燥後,將玻片放入異丙醇中超音波震盪30分鐘,再放入二次水中超音波震盪5分鐘重複3至5次,移除殘留的異丙醇。取出乾燥後,將玻片放入3:1的硫酸與過氧化氫溶液(piranha溶液)中,隔水加熱到80℃後,超音波震盪30分鐘,接著取出玻片放入二次水中,超音波震盪5分鐘重複3至5次,移除殘餘的piranha溶液。將清潔好的玻片取出於95℃下烘烤5分鐘,去除玻片上殘餘的水分。
(2)以旋轉塗佈方式塗佈上正光阻(AZ4620,Shipley),條件為第一轉500rpm 10秒,第二轉3000rpm 40秒,形成的正光阻厚度約為2μm。將塗佈好的玻片置於95℃加熱板上軟烤10分鐘,之後退火到室溫。
(3)將玻片曝於波長365nm的紫外光下,曝光劑量為135mJ/cm2 ,並使用具有如圖2所示的電極圖案的光罩,藉由光微影蝕刻方式形成正光阻犧牲層。
(4)將顯影原液與二次水以1:2稀釋,進行顯影約2分鐘,利用二次水去除殘餘顯影液。
(5)以蒸鍍或濺鍍方式,在晶片上先沉積20nm的鈦層作為黏著層,再沉積200nm的金層。將蒸鍍後的電極浸入丙酮溶液中移除正光阻犧牲層,得到金電極圖案。將清潔好的電極於95℃下烘烤5分鐘,去除殘餘水分,進行後續定義金薄膜電極面積的 處理。
(6)以旋轉塗佈方式,塗佈負光阻SU-3010,條件為第一轉500rpm 10秒,第二轉2500rpm 40秒,形成的負光阻厚度約為6至8μm。將塗佈好的晶片置於加熱板上進行軟烤處理,於65℃下持續3秒後,加熱至95℃持續10秒,之後退火回至室溫。
(7)將電極置於波長365nm的紫外光下,曝光劑量為320mJ/cm2 。將曝光後的晶片置於加熱板上進行曝後烤。
(8)利用負光阻顯影原液進行顯影約2分鐘,再以乾淨的負光阻顯影原液、異丙醇沖洗後,將晶片置於150℃加熱板上進行硬烤10分鐘。
[實例2:鈀層的製作]
將Au電極置於1mM的鈀鍍液(含1mM K2 PdCl6 與0.1M的硫酸,pH 1.10)中,配合外接式Ag/AgCl參考電極與白金(Pt)輔助電極進行電沉積,並將雙環電極連接多功能恆電位儀(型號CHI 7051B,Austin,TX,來自CHI Instruments公司),評估電極於電沉積時的電位穩定度。
沉積參數如下:
步驟1:以線性掃描伏安法(linear sweep voltammetry,LSV)設定電位於+0.6V至0V,掃描速率50mV/s,進行5次掃描。
步驟2:將電位設於半峰電位(half peal potential,Ep/2 )沉積900秒,本實例中的Ep/2 約為0.43V。
對上述鍍有鈀層的雙環電極(以下簡稱Pd/Au電極)在含有5mM之赤血鹽(K3 [Fe(CN)6 ])與黃血鹽(K4 [Fe(CN)6 ])的液體中進行開回路電位量測法(open circuit potential,OCP)分析,結果顯示相對於外插式Ag/AgCl電極,Pd/Au第一環電極與Pd/Au第二環電極之OCP分別約在+188.1mV與+187.5mV。此外,結果還顯示Pd/Au電極經探針DNA(pDNA)/MCH修飾前後,在30分鐘內的電位漂移量僅約0.2mV,且不受pDNA/MCH修飾的影響。由此可知,Pd/Au電極經過pDNA/MCH修飾後,仍可維持穩定的電位而不受修飾程序的影響。
[實例3:雙生病毒核酸的感測]
將所使用的核酸序列(Bio Basic Inc.公司合成)以HPLC方式純化,滴入105μL的二次水到含有DNA粉末之管內,並離心脫附黏於管壁上的DNA,量測其OD值(optical density)後,再以含有1M NaCl的三羥甲基氨基甲烷((Tris(hydroxymethyl)aminomethane,簡稱為Tris))(pH7.0)(以下簡稱Tris(NaCl))調配成100μM的DNA溶液。以下詳細說明DNA修飾與親合性實驗流程。
步驟1:在電極上滴上15μL的0.1μM至10μM之探針(probe)DNA(序列請見下表1)(Tris(NaCl))溶液進行修飾2小時,硫醇分子藉由金-硫鍵結而固定於金電極表面,以二次水清洗電極表面後,滴上20μL的Tris(NaCl)10分鐘,讓未鍵結的DNA游離至電極表面後,以二次水清洗。使用EIS與CV分析電極表面所修飾 之探針的量。
步驟2:滴上20μL的1mM巰基己醇(mercaptohexanol,MCH)(製備於二次水中)溶液1小時,以二次水潤濕後,再滴上20μL的二次水10分鐘,讓未鍵結之MCH游離於電極表面後,以二次水清洗。使用EIS與CV分析作為與目標DNA雜合反應(hybridization)前的背景參數值。
步驟3:滴上20μL不同濃度的目標DNA(配製於1mM的Tris溶液(pH 9.3)中),進行ACEOF電控下的雜合反應。
步驟3’:在步驟2後,滴上20μL不同濃度的目標DNA(配製於1mM的Tris溶液(pH9.3)中),進行直流偏壓式ACEOF電控下的雜合反應。
以鍍鈀環電極為參考電極之電化學量測
以循環伏安法(cyclic voltammetry,CV)對外插式Ag/AgCl 電極與根據本發明一實施例之鍍有Pd的Au外環電極(以下簡稱Pd/Au-外環電極)為參考電極時,進行電活性物質5mM之赤血鹽與黃血鹽的電化學量測,以分析不同參考電極對電化學量測的影響,其結果分別示於圖6與圖7。圖6是以習知外插式Ag/AgCl電極為三極式電化學感測系統之參考電極的循環伏安圖,掃瞄速率為20mV/s。圖7是以本發明一實施例之鍍有Pd之第二環電極為三極式電化學感測系統之參考電極的循環伏安圖,掃瞄速率為20mV/s。橫軸表示電位(V),縱軸表示電流(μA)。在圖6中,曲線a表示以裸露之盤電極DE為工作電極,進行5mM之赤血鹽與黃血鹽的電化學量測;曲線b表示已修飾上pDNA的盤電極DE為工作電極;曲線c表示已修飾pDNA後再經MCH修飾的盤電極DE為工作電極;而曲線d表示已修飾pDNA/MCH後再與1nM之目標DNA雜合後的盤電極DE為工作電極。在圖7中,曲線e表示以裸露之盤電極DE為工作電極,進行5mM之赤血鹽與黃血鹽的電化學量測;曲線f表示已修飾上pDNA的盤電極DE為工作電極;曲線g表示已修飾pDNA後再經MCH修飾的盤電極DE為工作電極;而曲線h表示已修飾pDNA/MCH後再與1nM之目標DNA雜合的盤電極DE為工作電極。
此外,以盤電極DE作為工作電極,並分別使用外插式Ag/AgCl電極以及Pd/Au-外環電極作為參考電極,在5mM之赤血鹽與黃血鹽溶液中進行EIS量測,分別比較其經等效電路模擬分析所得之電子交換電阻值(electron transfer resistor,Ret ),並將Ret 值列於下表2, 其中Ret 值表示盤電極DE上的電極/電解質介面之電化學狀態。
在表2中,「裸露電極」表示未經任何修飾的盤電極。「pDNA」表示修飾上pDNA的盤電極。「pDNA/MCH」表示已修飾pDNA後,再經MCH修飾的盤電極。「pDNA/MCH/目標DNA」表示經過pDNA/MCH修飾後,再與目標DNA雜合的盤電極。
首先,比較以外插式Ag/AgCl電極與Pd/Au-外環電極為參考電極的CV分析結果,請同時參照圖6、圖7與表2,以Pd/Au-外環電極為參考電極所得的波峰電流數值(曲線e至h)與使用Ag/AgCl電極為參考電極的量測結果(曲線a至d)無顯著差異,且EIS量測所得之Ret 值幾乎一致。由此可知,在本發明一實施例的生物親和性感測晶片100之電化學感測系統中,可使用Pd/Au-外環電極作為準參考電極(pseudo-RefE)。
值得注意的是,於上述步驟2中,修飾MCH是為了填補(blocking)電極表面未修飾上pDNA的裸露區域,而此現象可從CV 圖的分析結果(示於圖6、圖7與表2)得到驗證。在電極表面形成pDNA/MCH複合層後,其波峰電流較僅修飾pDNA的電極之波峰電流大,且如表2所示,pDNA/MCH電極的電阻值較僅修飾pDNA電極的Ret 值小。由此可知,MCH修飾後,可使未以Au-S共價鍵結的pDNA脫離電極表面,進而減少電極表面非專一性(non-specific)鍵結(例如Au-N鍵結)的DNA分子。
除此之外,更可以從Ret 值的變化來判斷目標DNA是否進行雜合反應。如表2所示,pDNA/MCH/目標DNA電極的Ret 值較pDNA/MCH電極的Ret 值大,這是因為當pDNA與目標DNA雜合成雙股DNA後,於電極表面形成了更緻密的分子層,進一步抑制了赤血鹽與黃血鹽的氧化還原峰電流訊號,故其波峰電流值較pDNA/MCH電極之波峰電流值小。
以ACEOF與直流偏壓式ACEOF擾動後之生物感測器特性
分別以操控條件為振幅3.0Vpp 且頻率380Hz之ACEOF與額外施加+0.7V DC之ACEOF(亦即直流偏壓式ACEOF)進行雜合反應時的液體擾動。具體而言,於已修飾有pDNA/MCH複合層的電極晶片上滴加約20μL之含有1nM之目標DNA的1mM Tris(pH 9.3)溶液,接著,以ACEOF或是直流偏壓式ACEOF每驅動30秒後,以Pd/Au-第一環電極為輔助電極、Pd/Au-第二環電極為參考電極,並使用EIS量測盤電極DE在雜合後之經時Ret 值變化量。
圖8是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片分別以ACEOF與直流偏壓式ACEOF擾動之經時雜合曲線圖。橫軸表示時間(秒),縱軸表示Ret 值變化(△Ret =pDNA/MCH/目標DNA電極之Ret 值一pDNA/MCH電極之Ret 值)(kΩ)。虛線表示ACEOF擾動方式,實線表示直流偏壓式ACEOF擾動方式。首先參照圖8中的虛線,在ACEOF擾動下進行的生物感測中,其△Ret 值隨著每30秒之ACEOF擾動持續上升,直至270秒後轉趨和緩,此時△Ret 值約145.17±1.55kΩ,在300秒後,其△Ret 值可達146.17±0.61kΩ,並已驅於飽和,經計算,在ACEOF擾動下達到90%飽和量所需的反應時間約256秒。接著,參照圖8中的實線,在直流偏壓式ACEOF擾動下進行之生物感測中,其△Ret 值隨著每30秒持續上升,直至150秒後轉為和緩,其△Ret 值約168.6±3.89kΩ,在180秒後,其△Ret 值可達171.8±4.25kΩ,並已驅於飽和,經計算,在直流偏壓式ACEOF擾動下達到90%飽和量所需的時間約為148秒。根據上述結果可知,相較於ACEOF擾動,直流偏壓式ACEOF擾動可更有效地將散佈於液體四周之目標DNA帶到電極表面與pDNA進行雜合反應,進而可得到較短的飽和雜合時間與較佳的雜合密度。另外,施加更高的交流電位與合適的直流偏壓皆可產生更快的液體流速,從而有利於雜合反應的發生。
圖9是本發明一實施例之整合流體擾動之電化學生物親和性感測晶片分別以ACEOF與直流偏壓式ACEOF擾動雜合之校 正曲線圖。橫軸表示目標DNA的濃度對數值(M),縱軸表示Ret 值變化(△Ret =pDNA/MCH/目標DNA電極之Ret 數值一pDNA/MCH電極之Ret 數值)(kΩ)。使用ACEOF飽和雜合時間270秒與直流偏壓式ACEOF飽和雜合時間150秒,來分析不同濃度的目標DNA之檢量線。其結果如圖9所示,對直流偏壓式ACEOF擾動雜合(見圖9中的實心圓)所得之線性範圍在1aM至10pM,其迴歸方程式為△Ret (kΩ)=22.73 Log[目標DNA](M)+418.44,其R2 值為0.9979。對ACEOF擾動雜合(見圖9中的空心圓)所得之線性範圍在1aM至10pM,其迴歸方程式為△Ret (kΩ)=19.34 Log[目標DNA](M)+354.91,其R2 值為0.9945。根據上述結果可知,在直流偏壓式ACEOF擾動下雜合所得之靈敏度大於在ACEOF擾動下雜合之靈敏度,此現象可歸因於直流偏壓式ACEOF相較於ACEOF可以產生更快的液體流速與較大的流場。
值得注意的是,根據本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100,其雙環-單盤的電極設計搭配直流偏壓式ACEOF擾動方式所獲得的檢測極限(0.4aM)遠低於單環-單盤設計之感測晶片的檢測極限(10aM)。由此可知,根據本發明一實施例之整合流體擾動之電化學生物親和性感測晶片100的雙環-單盤電化學感測電極組10可更有效的進行DNA雜合反應並降低檢測之背景雜訊。
綜上所述,本發明提供整合流體擾動之電化學生物親和性感測晶片以及其操作方法,以雙環-單盤之電極設計,將ACEHD 技術與電化學感測技術整合於同一電極組與同一晶片中,不僅可大幅提升生物親和性結合效率、降低檢測極限與縮短感測時間,本發明之整合流體擾動之電化學生物親和性感測晶片更可直接在同一雙環-單盤之電極組中進行電化學感測而不須外插式電極的輔助,從而可實現生物感測晶片的微型化。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10‧‧‧電化學感測電極組
100‧‧‧整合流體擾動之電化學生物親和性感測晶片
110‧‧‧基材
140‧‧‧絕緣層
DE‧‧‧盤電極
RE1‧‧‧第一環電極
RE2‧‧‧第二環電極
P‧‧‧生物探針
Vw ‧‧‧盤電極電壓
VRE1 ‧‧‧第一環電極電壓
VRE2 ‧‧‧第二環電極電壓

Claims (14)

  1. 一種整合流體擾動之電化學生物親和性感測晶片,適用於感測一目標物,包括:一基材;以及多個電化學感測電極組,設置於所述基材上且用於進行一電化學感測,其中所述各電化學感測電極組包括:一盤電極,呈盤狀;一第一環電極,呈弧形並環繞所述盤電極;以及一第二環電極,呈弧形並環繞所述第一環電極,其中所述第一環電極寬度大於所述第二環電極寬度,且所述第一環電極寬度為所述第二環電極寬度的2至7倍;其中所述盤電極表面固定一生物探針,且所述第一環電極與所述第二環電極產生一交流電流體動力(alternating current electrohydrodynamic,ACEHD)擾動。
  2. 如申請專利範圍第1項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述交流電流體動力擾動包括交流電滲流(alternating current-electroosmotic flow,ACEOF)、直流偏壓式交流電滲流(DC-biased ACEOF)、交流電熱流(AC electrothermal flow)或交流電動流(AC electrokinetic flow),且所述電化學感測包括電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS)或伏安法。
  3. 如申請專利範圍第1項所述的整合流體擾動之電化學生物 親和性感測晶片,其中所述生物探針包括去氧核醣核酸、核醣核酸、抗體或適體,所述目標物包括去氧核醣核酸、核醣核酸、抗原、適體或藥物,且所述生物探針與所述目標物之間為生物親和性結合。
  4. 如申請專利範圍第1項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述盤電極與所述第一環電極之間具有一第一間距,所述第一環電極與所述第二環電極之間具有一第二間距,且所述第一間距與所述第二間距介於1μm至100μm之間。
  5. 如申請專利範圍第1項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述第一環電極寬度介於10μm至700μm之間,所述第二環電極寬度介於5μm至100μm之間,且所述盤電極直徑介於10μm至1000μm之間。
  6. 如申請專利範圍第1項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述盤電極、所述第一環電極與所述第二環電極的材質包括金(Au)、鉑(Pt)或鈀(Pd)。
  7. 如申請專利範圍第1項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述第一環電極表面與所述第二環電極表面覆蓋一保護層,其中所述保護層的材質與所述盤電極的材質不相同。
  8. 如申請專利範圍第7項所述的整合流體擾動之電化學生物親和性感測晶片,其中所述保護層包括鈀層、鉑層或氧化銥層。
  9. 一種整合流體擾動之電化學生物親和性感測晶片的操作 方法,適用於感測一目標物,包括:提供一包括多個電化學感測電極組之整合流體擾動之電化學生物親和性感測晶片,其中所述各電化學感測電極組包括:一盤電極,呈盤狀且其表面固定一生物探針;一第一環電極,呈弧形並環繞所述盤電極;以及一第二環電極,呈弧形並環繞所述第一環電極;其中所述第一環電極寬度大於所述第二環電極寬度,且所述第一環電極寬度為所述第二環電極寬度的2至7倍;將所述目標物載於所述整合流體擾動之電化學生物親和性感測晶片上;對所述第一環電極與所述第二環電極施加一電壓以產生交流電流體動力(alternating current electrohydrodynamic,ACEHD)擾動,使所述目標物與所述生物探針形成生物親和性結合;移除未與所述生物探針結合之目標物,並將一溶液載於所述整合流體擾動之電化學生物親和性感測晶片上;以及對結合所述目標物之所述整合流體擾動之電化學生物親和性感測晶片進行電化學感測。
  10. 如申請專利範圍第9項所述的整合流體擾動之電化學生物親和性感測晶片的操作方法,其中所述交流電流體動力擾動包括交流電滲流(alternating current-electroosmotic flow,ACEOF)、直流偏壓式交流電滲流(DC-biased ACEOF)、交流電熱流(AC electrothermal flow)或交流電動流(AC electrokinetic flow),且所述 電化學感測包括電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS)或伏安法。
  11. 如申請專利範圍第9項所述的整合流體擾動之電化學生物親和性感測晶片的操作方法,其中所述交流電流體動力擾動使所述目標物自所述第二環電極移向所述第一環電極,並依流體慣性移向固定所述生物探針之所述盤電極。
  12. 如申請專利範圍第9項所述的整合流體擾動之電化學生物親和性感測晶片的操作方法,其中所述電化學感測是以所述盤電極作為工作電極,且所述第一環電極與所述第二環電極中之一者是輔助電極而另一者是參考電極。
  13. 如申請專利範圍第9項所述的整合流體擾動之電化學生物親和性感測晶片的操作方法,其中所述第一環電極表面與所述第二環電極表面覆蓋一保護層,使所述第一環電極與所述第二環電極形成法拉第充電(Faradaic charging)現象,其中所述保護層的材質與所述盤電極的材質不相同。
  14. 如申請專利範圍第13項所述的整合流體擾動之電化學生物親和性感測晶片的操作方法,其中所述保護層包括鈀層、鉑層或氧化銥層。
TW102146211A 2013-12-13 2013-12-13 整合流體擾動之電化學生物親和性感測晶片及其操作方法 TWI495872B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102146211A TWI495872B (zh) 2013-12-13 2013-12-13 整合流體擾動之電化學生物親和性感測晶片及其操作方法
US14/296,399 US20150168333A1 (en) 2013-12-13 2014-06-04 Electrochemical affinity sensing chips integrated with fluidic stirring and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102146211A TWI495872B (zh) 2013-12-13 2013-12-13 整合流體擾動之電化學生物親和性感測晶片及其操作方法

Publications (2)

Publication Number Publication Date
TW201522959A TW201522959A (zh) 2015-06-16
TWI495872B true TWI495872B (zh) 2015-08-11

Family

ID=53368088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146211A TWI495872B (zh) 2013-12-13 2013-12-13 整合流體擾動之電化學生物親和性感測晶片及其操作方法

Country Status (2)

Country Link
US (1) US20150168333A1 (zh)
TW (1) TWI495872B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630386B (zh) * 2016-11-25 2018-07-21 財團法人金屬工業研究發展中心 生物檢測裝置
US11686704B2 (en) 2021-02-10 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Biosensor
TWI803097B (zh) * 2021-12-14 2023-05-21 國立成功大學 用於直流偏置交流電動力學之生物晶片與電極單元

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321745A (zh) * 2011-11-24 2013-06-01 Nat Univ Chung Hsing 整合型生物感測晶片系統
TW201413230A (zh) * 2012-09-21 2014-04-01 Nat Applied Res Laboratories 可選擇地濃縮分離待測粒子的方法與晶片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916921A1 (de) * 1999-04-14 2000-10-19 Fraunhofer Ges Forschung Elektrisches Sensorarray
FR2855269B1 (fr) * 2003-05-21 2007-06-08 Commissariat Energie Atomique Dispositif et procedes d'accrochage/decrochage d'une cible ou d'un objet present dans un echantillon
WO2007092253A2 (en) * 2006-02-02 2007-08-16 Massachusetts Institute Of Technology Induced-charge electro-osmotic microfluidic devices
EP2432015A1 (en) * 2007-04-18 2012-03-21 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US20130319880A1 (en) * 2012-06-04 2013-12-05 Ching-Chou Wu Impedimetric Biosensor System With Improved Sensing Efficiency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321745A (zh) * 2011-11-24 2013-06-01 Nat Univ Chung Hsing 整合型生物感測晶片系統
TW201413230A (zh) * 2012-09-21 2014-04-01 Nat Applied Res Laboratories 可選擇地濃縮分離待測粒子的方法與晶片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
-Fang Cheng et al., "A rapid electrochemical biosensor based on an AC electrokinetics enhanced immune-reaction", Analyst. 2013 Aug 21;138, page4656-62 *

Also Published As

Publication number Publication date
US20150168333A1 (en) 2015-06-18
TW201522959A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
JP6928103B2 (ja) 少なくとも1つの流体試料中の少なくとも1つの分析物を検出する分析物検出器
Gupta et al. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor
US9316608B2 (en) Method and apparatus for target detection using electrode-bound viruses
Cavalcanti et al. A label-free immunosensor based on recordable compact disk chip for early diagnostic of the dengue virus infection
Li et al. Impedance labelless detection-based polypyrrole protein biosensor
JP6761474B2 (ja) セロトニン検出用電気化学センサ、セロトニン検出用ストリップ、セロトニン検出用センサ、セロトニン測定キット、及び、アレルゲン確認方法
Ceylan et al. A hand-held point-of-care biosensor device for detection of multiple cancer and cardiac disease biomarkers using interdigitated capacitive arrays
TWI495872B (zh) 整合流體擾動之電化學生物親和性感測晶片及其操作方法
Zhang et al. rhEPO/EPO discrimination with ultrasensitive electrochemical biosensor based on sandwich-type nano-Au/ZnO sol–gel/nano-Au signal amplification
Schwartz et al. Impedimetric sensing of DNA with silicon nanowire transistors as alternative transducer principle
Arya et al. On-chip electrochemical immunoassay platform for specific protein biomarker estimation in undiluted serum using off-surface membrane matrix
JP2009002939A (ja) アンペロメトリック型バイオセンサ
US20210332405A1 (en) Methods for immunoassays using electrochemical measurement
Honda et al. Toward a Practical Impedimetric Biosensor: A Micro-Gap Parallel Plate Electrode Structure That Suppresses Unexpected Device-to-Device Variations
KR20200140165A (ko) 플렉서블 바이오 센서 및 이의 제조 방법
Sen et al. Electrochemical biosensor arrays for multiple analyte detection
Rafat et al. Enhanced Enzymatically Amplified Metallization on Nanostructured Surfaces for Multiplexed Point‐of‐Care Electrical Detection of COVID‐19 Biomarkers
JP7084667B2 (ja) 誘電泳動を用いたマイクロ電極バイオセンサ、及びこれを用いた生体物質検出方法
Reddy et al. Nanomonitors: Protein biosensors for rapid analyte analysis
US10041900B2 (en) Controlled electrochemical activation of carbon-based electrodes
KR20210049459A (ko) 혈청내 IgM 류마티즘 인자를 민감하게 검출하기 위한 비표지 전기화학 임피던스 측정 면역센서 및 그 제조방법
Liu et al. A paper-based all-in-one origami nanobiosensor for point-of-care diagnosis of cardiovascular diseases
JPH102875A (ja) 酵素反応センサー及びその製造方法
Sun et al. A 64× 64 high-density redox amplified coulostatic discharge-based biosensor array in 180nm CMOS
JPH04279854A (ja) 白金被覆カーボンファイバー電極およびこれを用いた            酵素膜センサ

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees