TWI491043B - 化合物半導體裝置及其製造方法 - Google Patents

化合物半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI491043B
TWI491043B TW101150053A TW101150053A TWI491043B TW I491043 B TWI491043 B TW I491043B TW 101150053 A TW101150053 A TW 101150053A TW 101150053 A TW101150053 A TW 101150053A TW I491043 B TWI491043 B TW I491043B
Authority
TW
Taiwan
Prior art keywords
layer
compound semiconductor
semiconductor device
hole
electron supply
Prior art date
Application number
TW101150053A
Other languages
English (en)
Other versions
TW201340324A (zh
Inventor
Kenji Imanishi
Original Assignee
Transphorm Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transphorm Japan Inc filed Critical Transphorm Japan Inc
Publication of TW201340324A publication Critical patent/TW201340324A/zh
Application granted granted Critical
Publication of TWI491043B publication Critical patent/TWI491043B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

化合物半導體裝置及其製造方法
本發明係論述關於一種化合物半導體裝置及其製造方法。
近年來,一直蓬勃發展的電子裝置(化合物半導體裝置)係具有依序形成於基板上之氮化鎵(GaN)層與鋁鎵氮(AlGaN)層,其中,該氮化鎵層係作為電子傳輸層(electron transport layer)。該化合物半導體裝置之一係稱為基於氮化鎵(GaN-based)之高電子遷移率電晶體(high electron mobility;HEMT)。該基於氮化鎵之高電子遷移率電晶體係智慧地使用高密度之二維電子氣體(two-dimensional gas;2DEG),該氣體產生於該鋁鎵氮與該氮化鎵間之異質接合介面(heterojunction interface)。
氮化鎵之能帶隙(band gap)為3.4 eV(電子伏特),其大於矽(Si)為1.1 eV之能帶隙與砷化鎵(GaAs)為1.4 eV之能帶隙。換言之,氮化鎵具有高崩潰電場強度(high breakdown field strength),氮化鎵亦具有高電子飽和速度(high saturation electron velocity)。因此,氮化鎵係為用於 化合物半導體裝置之巨大潛力的材料,可操作於高電壓下並能產出較大的輸出。所以,該基於氮化鎵之高電子遷移率電晶體可望作為電動車等之高效率開關裝置與高崩潰電壓電源裝置(high-breakdown-voltage power device)。
大部分基於氮化鎵之高電子遷移率電晶體係利用高密度之二維電子氣體執行常開操作。總之,電流可以流動,即使該閘極電壓是關閉的,原因是有許多的電子存在通道內。另一方面,基於無故障保障(fail-safe),常閉操作對用在高崩潰電壓電源裝置上之基於氮化鎵之高電子遷移率電晶體而言是很重要的。
因此,各種技術之調查已指向使該基於氮化鎵之高電子遷移率電晶體能夠達到常閉操作。例如,有一種結構,其中包括有諸如鎂(Mg)之類的p型雜質的p型氮化鎵層係形成於閘極電極與活化區之間。
然而,漏電流可能流入習知提供有p型半導體層之該基於氮化鎵之高電子遷移率電晶體內。
[專利文獻1]日本公開專利公告第2004-273486號。
[非專利文獻1]松下技術雜誌2009年第55卷第2號。
本發明之目的係提供化合物半導體裝置及其製造方法,俾能達到常閉操作以抑制漏電流。
依據實施例之一方面,化合物半導體裝置係包括:基板;電子傳輸層與電子供給層,係形成於該基 板上;閘極電極、源極電極與汲極電極,係形成於該電子供給層上;p型半導體層,係形成於該電子供給層與該閘極電極之間;以及電洞消除層(hole canceling layer),係形成於該電子供給層與該p型半導體層之間,該電洞消除層係包括供體(donor)或復合中心(recombination center)並消除電洞(hole)。
依據實施例之另一方面,化合物半導體裝置之製造方法係包括:形成電子傳輸層與電子供給層於基板上;形成閘極電極、源極電極與汲極電極於該電子供給層上;在形成該閘極電極前,形成一位於該電子供給層與該閘極電極間之p型半導體層;以及在形成該p型半導體層前,形成一位於該電子供給層與該p型半導體層間之電洞消除層,該電洞消除層係包括供體或復合中心並消除電洞。
11‧‧‧基板
12‧‧‧緩衝層
13‧‧‧電子傳輸層
14‧‧‧間隔層
15‧‧‧電子供給層
16‧‧‧含供體層
17‧‧‧覆蓋層
18‧‧‧化合物半導體堆疊結構
19‧‧‧元素隔離區
20d‧‧‧汲極電極
20g‧‧‧閘極電極
20s‧‧‧源極電極
21‧‧‧絕緣膜
210‧‧‧高電子遷移率電晶體晶片
22‧‧‧開口
226d‧‧‧汲極接墊
226g‧‧‧閘極接墊
226s‧‧‧源極接墊
23‧‧‧絕緣膜
231‧‧‧模造樹脂
232d‧‧‧汲極引腳
232g‧‧‧閘極引腳
232s‧‧‧源極引腳
233‧‧‧平面
234‧‧‧晶片黏著劑
235d、235g、235s‧‧‧導線
250‧‧‧功率因數校正電路
251‧‧‧開關元件
252‧‧‧二極體
253‧‧‧扼流線圈
254、255‧‧‧電容
256‧‧‧二極體電橋
257‧‧‧交流電源
26‧‧‧含復合中心層
260‧‧‧全橋式逆變器電路
261‧‧‧一次側電路
262‧‧‧二次側電路
263‧‧‧變壓器
264a、264b、264c、264d‧‧‧開關元件
265a、265b、265c‧‧‧開關元件
271‧‧‧數位預失真電路
272a、272b‧‧‧混合器
273‧‧‧功率放大器
31‧‧‧電洞阻障層
32a‧‧‧混合器
32d、32s‧‧‧凹部
第1A圖係依據第一實施例繪示化合物半導體裝置之結構之剖視示意圖;第1B圖係依據第一實施例繪示化合物半導體裝置之能帶結構之示意圖;第2A圖係繪示參考例之結構之剖視示意圖;第2B圖係繪示參考例之能帶結構之示意圖;第3A圖係依據第一實施例繪示於化合物半導體裝置之閘極電壓與汲極電流間之關聯示意圖;第3B圖係繪示於參考例之閘極電壓與汲極電流間之 關聯示意圖;第4A圖係依據第一實施例繪示化合物半導體裝置之汲極電壓與漏電流間之關聯示意圖;第4B圖係繪示參考例之汲極電壓與漏電流間之關聯示意圖;第5A圖至第5H圖係依據第一實施例依序繪示化合物半導體裝置之製造方法之剖視示意圖;第6A圖係依據第二實施例繪示化合物半導體裝置之結構之剖視示意圖;第6B圖係依據第二實施例繪示化合物半導體裝置之能帶結構之示意圖;第7A圖係依據第三實施例繪示化合物半導體裝置之結構之剖視示意圖;第7B圖係依據第四實施例繪示化合物半導體裝置之結構之剖視示意圖;第8A圖至第8F圖係依據第四實施例依序繪示化合物半導體裝置之製造方法之剖視示意圖;第9A圖係依據第五實施例繪示化合物半導體裝置之結構之剖視示意圖;第9B圖係依據第六實施例繪示化合物半導體裝置之結構之剖視示意圖;第10圖係依據第七實施例繪示離散封裝件之示意圖;第11圖係依據第八實施例繪示功率因數校正(PFC)電路之線路圖; 第12圖係依據第九實施例繪示電源供應裝置之線路圖;以及第13圖係依據第十實施例繪示高頻放大器之線路圖。
本發明人廣泛地調查在習知技術中,當提供p型半導體層時,為何漏電流可能流動的原因。之後,發現電洞(holes)係產生於p型半導體層之下表面附近作為施加至汲極之高電壓,且該些電洞在通道區域感應電子,其中,二維電子氣體已藉由p型半導體層予以消除。該漏電流係由於被感應之電子而流動,並惡化崩潰電壓特性。於是,本發明人產生構想而提供電洞消除層,其可消除並減少p型半導體層之下表面附近之電洞。
請參照附圖之圖式,將以實施例詳述如下。
(第一實施例)
第一實施例將予以說明,第1A圖係依據第一實施例繪示基於氮化鎵之高電子遷移率電晶體(化合物半導體裝置)之結構之剖視示意圖,而第1B圖係依據第一實施例繪示該基於氮化鎵之高電子遷移率電晶體之能帶結構之示意圖。
在第一實施例中,如第1圖所示,化合物半導體堆疊結構18係形成於諸如矽基板之類的基板11上。該化合物半導體堆疊結構18係包括緩衝層12、電子傳輸層13、間隔層14、電子供給層15、含供體層(donor containing layer)16以及覆蓋層(cap layer)17。該緩衝層12 可為例如大約10 nm(奈米)至2000 nm厚之氮化鋁(AlN)層及/或鋁鎵氮層。該電子傳輸層13可為例如大約1000 nm至3000 nm厚之i-GaN層,且無意摻雜有雜質。該間隔層14可為例如大約5 nm厚之i-Al0.25 Ga0.75 N層,且無意摻雜有雜質。該電子供給層15可為例如大約30 nm厚之n型n-Al0.25 Ga0.75 層,且該電子供給層15可摻雜有大約5×1018 cm-3 之矽作為n型雜質。
定義元素區之元素隔離區(element isolation region)19係形成於該電子供給層15、間隔層14、電子傳輸層13與緩衝層12內。源極電極20s與汲極電極20d係形成於該元素區內之電子供給層15上。該含供體層16與該覆蓋層17在平面視圖中係形成於該源極電極20s與該汲極電極20d間之部分電子供給層15上。該覆蓋層17可為例如大約30 nm厚之p型p-GaN層,該覆蓋層17可摻雜有例如大約5×1019 cm-3 之鎂作為p型雜質,該覆蓋層17可為p型半導體層之例子。該含供體層16係位於該覆蓋層17與該電子供給層15之間,並可為例如含有供體連同p型雜質而大約30 nm厚之p型p-GaN層。相似於該覆蓋層17,該含供體層16可例如摻雜有大約5×1019 cm-3 之鎂作為p型雜質,並更一步摻雜有大約1×1017 cm-3 之矽作為該供體。該含供體層16可為電洞消除層之例子。
絕緣膜21係形成於該電子供給層15上以便覆蓋該源極電極20s與該汲極電極20d。開口22係形成於該絕緣膜21內以便外露出該覆蓋層17,且閘極電極20g 係形成於該開口22內。絕緣膜23係形成於該絕緣膜21上以便覆蓋該閘極電極20g。但用於該絕緣膜21與23之材料並未特別的限制,例如矽之氮化物膜(nitride film)亦可使用。該絕緣膜21與23係為終止膜(termination film)之例子。
第1B圖係繪示如此構成基於氮化鎵之高電子遷移率電晶體在閘極電極20g下方之能帶結構之示意圖,第2B圖係繪示已繪於第2A圖中之參考例之能帶結構之示意圖,其中,該含供體層16並未設置。如第2B圖所示,在參考例中,該覆蓋層17內之受體(acceptor)以一定的速度(激活效率)發射電洞,其中,該含供體層16並未設置。被發射之電洞係產生於價帶內。另一方面,如第1B圖所示,在第一實施例中,電洞係發射自該含供體層16與該覆蓋層17內之受體,但該些電洞與發射自該含供體層16內之供體之電子復合並消失不見。於是,可能產生於價帶內之電洞極度下降,而在某些情況下,該些電洞根本未產生。因此,由於電洞的產生而會在該通道區域內顯著地抑制感應電子,且該漏電流亦會顯著地被抑制,另可改善崩潰電壓特性。
第3A圖與第3B圖係分別繪示在各種汲極電壓時於閘極電壓與汲極電流間之關聯示意圖,第3A圖係繪示第一實施例之關聯,而第3B圖係繪示已繪於第2A圖之參考例之關聯。由第3A圖與第3B圖之比較可明顯看出,參考例比第一實施例具有較大汲極電流之流動,即使在閘極電壓為0V(伏特)的情況下。此外,該汲極電流之急 驟上升稱為“突起(hump)”,其可在參考例之低閘極電壓範圍內觀察到。當該汲極電壓為高位準(high)時,該突起是很顯著的。另一方面,即使在第一實施例之高汲極電壓Vd範圍內,該突起並無法被觀察到。1V之閘極電壓之汲極電流主要變化在參考例上,而在第一實施例基本上是不變的。因此,當臨界值(threshold)設定為第一實施例中1V之閘極電壓時,開/關(ON/OFF)可以正確地互相區別,但是當臨界值設定為參考例中1V之閘極電壓時,則開/關很難正確地互相區別,亦會感應失靈。
第4A圖與第4B圖係分別繪示在0V之閘極電壓時,汲極電壓與漏電流之關聯示意圖,第4A係繪示第一實施例之關聯,而第4B圖係繪示已繪於第2B圖之參考例之關聯。如第4B圖之參考例所示,即使在非常低之汲極電壓下,亦有較大漏電流流動。但是,如第4A圖之第一實施例所示,漏電流之上升係漸近地隨同汲極電壓而上升。附帶地,第4A圖與第4B圖之每一圖形係繪示基於氮化鎵之高電子遷移率電晶體之複數個結果,其製造於基板(晶圓)內。
下一者,依據第一實施例,該基於氮化鎵之高電子遷移率電晶體(化合物半導體裝置)之製造方法將予以說明。第5A圖至第5H圖係依據第一實施例依序繪示該基於氮化鎵之高電子遷移率電晶體(化合物半導體裝置)之製造方法之剖視示意圖。
首先,如第5A圖所示,該緩衝層12、 電子傳輸層13、間隔層14、電子供給層15、含供體層16與覆蓋層17,可藉由諸如金屬有機氣相磊晶法(metal organic vapor phase epitaxy;MOVPE)或分子束磊晶法(molecular beam epitaxy;MBE)之類的長晶製程(crystal growth process)形成於該基板11上。在藉由金屬有機氣相磊晶法形成該氮化鋁層、鋁鎵氮層與氮化鎵之製程中,將三甲基鋁(trimethylaluminum;TMA)氣體作為鋁源、三甲基鎵(trimethylgallium;TMG)氣體作為鎵源、以及氨(ammonia;NH3 )氣作為氮源之混合氣體皆可使用。在該製程中,供給之開/關以及三甲基鋁氣體與三甲基鎵氣體之流量,係依據該化合物半導體層之組成物的增長而適當地設定。氨氣係所有化合物半導體層中常見的,且其流量可設定為大約100 sccm(每分鐘標準立方公分)至100 SLM(每分鐘標準公升)。增長壓力可調整為例如大約50托耳(Torr)至300托耳,而增長溫度可調整為例如大約1000℃至1200℃。在增長該化合物半導體層之製程中,例如藉由增加含有矽之矽甲烷氣體至預定流量之混合氣體內,以摻入矽至該化合物半導體層中。矽之劑量可調整為例如大約1×1018 cm-3 至1×1020 cm-3 、以及至5×1018 cm-3 或左右。鎂之劑量於進入該含供體層16與該覆蓋層17中可調整為例如大約1×1019 cm-3 至1×1020 cm-3 、以及至5×1019 cm-3 或左右。矽之劑量於進入該含供體層16中可調整為例如大約1×1016 cm-3 至1×1018 cm-3 、以及至1×1017 cm-3 或左右。在形成該覆蓋層17後,存在p型雜質之鎂係藉由退火處理(annealing)而激活。該化合物半導體結構18係如此構成。
然後,如第5B圖所示,定義該元素區之元素隔離區19係形成於該化合物半導體堆疊結構18內。在形成該元素隔離區19之製程中,例如,光阻圖案(photoresist pattern)係形成於該覆蓋層17上,以便選擇性地外露出該元素隔離區19所形成之區域,而諸如氬(Ar)離子(ion)之類的離子則通過作為遮罩用之光阻圖案予以植入。另外,乾式蝕刻(dry etching)可採含氯氣體(chlorine-containing gas)通過作為蝕刻遮罩用之光阻圖案予以執行。
隨後,如第5C圖所示,該覆蓋層17與該含供體層16被蝕刻以便保留該閘極電極所形成之區域。在圖案化該覆蓋層17與該含供體層16之製程中,例如,光阻圖案係形成於該覆蓋層17上,以便覆蓋該覆蓋層17與該含供體層16所保留之區域,而乾式蝕刻(dry etching)則可採含氯氣體通過作為蝕刻遮罩用之光阻圖案予以執行。
接著,如第5D圖所示,該源極電極20s與該汲極電極20d係形成於該電子供給層15上,以使被保留之覆蓋層17與被保留之含供體層16位於該元 素區之源極電極20s與汲極電極20d之間。該源極電極20s與該汲極電極20d可藉由例如剝離(lift-off)製程而形成。更具體而言,光阻圖案被形成以便外露出該源極電極20s與該汲極電極20D所形成之區域,當使用該光阻圖案作為例如增長遮罩(growth mask)時,金屬膜(metal film)藉由蒸鍍(evaporation)製程形成於整個表面上,然後該光阻圖案連同沉積於其上之金屬膜部分一併被移除。在形成該金屬膜之製程中,例如,大約20 nm厚之鉭(Ta)膜可被形成,而大約20 nm厚之鋁膜可隨後被形成。之後,該金屬膜被退火處理,例如,在氮氣氣壓下400℃至1000℃(如550℃),藉以確保其歐姆特性(ohmic characteristic)。
然後,如5E圖所示,該絕緣膜21係形成於整個表面上。該絕緣膜21較佳地藉由原子層沉積法(atomic layer deposition;ALD)、電漿輔助化學氣相沈積(plasma-assisted chemical vapor deposition;CVD)、或濺鍍(sputtering)而形成。
隨後,如第5F圖所示,該開口22係形成於該絕緣膜21內,以便外露出在平面視圖中於該源極電極20s與該汲極電極20d間之位置之覆蓋層17。
接著,如第5G圖所示,該閘極電極20g係形成於該開口22內。該閘極電極20g可藉由例如剝離製程而形成。更具體而言,光阻圖案被形成以便外露出該閘極電極20g所形成之區域,當例如使用該光 阻圖案作為增長遮罩時,金屬膜藉由蒸鍍製程形成於整個表面上,然後該光阻圖案連同沉積於其上之金屬膜部分一併被移除。在形成該金屬膜之製程中,例如,大約30 nm厚之鎳(Ni)膜可被形成,而大約400 nm厚之金(Au)膜可隨後被形成。之後,如第5H圖所示,該絕緣膜23係形成於該絕緣膜21上以便覆蓋該閘極電極20g。
(第二實施例)
下一者,第二實施例將予以說明。第6A圖係依據第二實施例繪示基於氮化鎵之高電子遷移率電晶體(化合物半導體裝置)之剖視示意圖,而第6B圖係依據第二實施例繪示該基於氮化鎵之高電子遷移率電晶體之能帶結構之示意圖。
在第二實施例中,含復合中心層26被形成以代替第一實施例之含供體層16。該含復合中心層26係位於該覆蓋層17與該電子供給層15之間,並可為例如含有復合中心連同p型雜質而大約30 nm厚之p型p-GaN層。相似於該覆蓋層17,例如,該含復合中心層26可摻雜有大約5×1019 cm-3 之鎂作為p型雜質,並進一步摻雜有大約1×1018 cm-3 之鐵(Fe)作為該復合中心。該含復合中心層26可為電洞消除層之例子。其他結構則相似於第一實施例。
第6B圖係繪示如此構成該基於氮化鎵之高電子遷移率電晶體在閘極電極20g下方之能帶結 構之示意圖。如第6B圖所示,在第二實施例中,電洞係發射自該含復合中心層26與該覆蓋層17內之受體,但因藉由在該含復合中心層26內復合中心之補獲或復合,使得該些電洞消失不見。於是,可能產生於價帶內之電洞極度下降,而在某些情況下,該些電洞根本未產生。因此,由於電洞的產生,其會顯著地在該通道區域內抑制以感應電子,而該漏電流亦會顯著地被抑制,另改善崩潰電壓特性。
鉻(Cr)、鈷(Co)、鎳(Ni)、鈦(Ti)、釩(V)與鈧(Sc)亦是除了鐵(Fe)之外,作為復合中心之元素之例子。該含復合中心層26可包括該些元素之一或多種。
(第三實施例)
下一者,第三實施例將予以說明。第7A圖係依據第三實施例繪示化合物半導體裝置之結構之剖視示意圖。
相較於第一實施例,具有閘極電極20g帶入蕭特基(Schottky)以接觸該化合物半導體堆疊結構18,第三實施例係採用在該閘極電極20g與該覆蓋層17間之絕緣膜21,以便容許該絕緣膜21充當閘極絕緣膜(gate insulating film)。總之,該開口22並未形成於該絕緣膜21內,而採用金屬-絕緣層-半導體式(MIS-type)結構。其他結構則相似於第一實施例。
相似於第一實施例,在該含供體層16之存在下,如此構成之第三實施例,亦成功地達到抑制該漏電流並改善該崩潰電壓特性之功效。
用於絕緣膜21之材料並未特別的限制,其中,較佳的例子包括矽(Si)、鋁(Al)、鉿(Hf)、鋯(Zr)、鈦(Ti)、鉭(Ta)與鎢(W)之氧化物(oxide)、氮化物(nitride)或氮氧化合物(oxynitride),尤其是氧化鋁為最佳的。該絕緣膜21之厚度可例如為2 nm至200 nm、與10 nm或左右。
(第四例實施例)
下一者,第四實施例將予以說明。第7B圖係依據第四實施例繪示化合物半導體裝置之結構之剖視示意圖。
在第四實施例中,如第7B圖所示,電洞阻障層31係形成於該電子供給層15上,而該含供體層16、覆蓋層17與閘極電極20g係形成於該電洞阻障層31上。該絕緣膜21與該絕緣膜23亦形成於該電洞阻障層31上。用於源極電極之凹部32s與用於汲極電極之凹部32d係形成於該電洞阻障層31內,該源極電極20s係通過該凹部32s而形成於該電子供給層15上,該汲極電極20d係通過該凹部32d而形成於該電子供給層15上。該電洞阻障層31可為大約2 nm厚之氮化鋁層。該凹部32s與32d可被省略,而該電洞阻障層31可保留於該電子供給層15、源極電極20s與汲極電極20d之 間。當該源極電極20s與該汲極電極20d直接接觸該電子供給層15時,接觸阻抗是較低的且特性是較佳的。其他結構則相似於第一實施例。
在第四實施例中,由於提供該電洞阻障層31,即使將導通(on)電壓施加至該閘極電極20g時,電洞亦不太可能自該p型覆蓋層17擴散至含有二維電子氣體之通道內;但在第一實施例中,於某些情況下,當將導通電壓施加至該閘極電極20g時,電洞則可能擴散至該通道內。因此,由於該些電洞之擴散,故可抑制導通阻抗之上升與電流路徑之變動,並可在第四實施例中進一步獲得較佳的特性。例如,獲得更多穩定的汲極電流。
當該電洞阻障層31之氮化物半導體之晶格常數小於該電子供給層15時,在該電子傳輸層13附近之二維電子氣體之密度是較高的且導通阻抗是較低的。
下一者,將依據第四實施例中該基於氮化鎵之高電子遷移率電晶體之製造方法予以說明。第8A圖至第8F圖係依據第四實施例依序繪示該基於氮化鎵之高電子遷移率電晶體(化合物半導體裝置)之製造方法之剖視示意圖。
首先,如第8A圖所示,該緩衝層12、電子傳輸層13、間隔層14、電子供給層15、電洞阻障層31、含供體層16與覆蓋層17,可藉由諸如金屬有機氣 相磊晶法(MOVPE)或分子束磊晶法(MBE)之類的長晶製程形成於該基板11上。該電洞阻障層31可不斷地形成於該電子供給層15等上。在這種情況下,例如,將供給用於形成該電子供給層15之三甲基鎵(TMG)氣體與矽甲烷(SiH4 )氣體予以暫停,當供給該三甲基鋁(TMA)與該氨氣予以維持時。在形成該覆蓋層17後,執行退火處理以活化存在p型雜質之鎂。該電洞阻障層31亦可包括於該化合物半導體堆疊結構18內。然後,如第8B圖所示,相似於第一實施例,定義該元素區之元素隔離區19係形成於該化合物半導體堆疊結構18內。隨後,如第8C圖所示,相似於第一實施例,該覆蓋層17與該含供體層16被圖案化,以便保留該閘極電極所形成之區域。
接著,如第8D圖所示,該凹部32s與該凹部32d係形成於在該元素區之電洞阻障層31內。在形成該凹部32s與32d之製程中,例如,光阻圖案係形成於該化合物半導體堆疊結構18上,以便外露出該凹部32s與32d之所形成之區域,且乾式蝕刻可採含氯氣體通過作為蝕刻遮罩用之光阻圖案予以執行。接著,該源極電極20s係形成於該凹部32s內,而該汲極電極20d係形成於該凹部32d內。然後,執行退火處理,例如在氮氣氣壓下於400℃至1000℃(如於550℃),藉以確保該歐姆特性。隨後,如第8E圖所示,該絕緣膜21係形成於整個表面上,而該開口22係形成於該絕緣膜 21內,以便外露出在平面視圖上於該源極電極20s與該汲極電極20d間之位置之覆蓋層17。接著,如第8F圖所示,相似於第一實施例,該閘極電極20g係形成於該開口22內,該絕緣膜23係形成於該絕緣膜21上以便覆蓋該閘極電極20g。
依據第四實施例,該基於氮化鎵之高電子遷移率電晶體將依此製造。
需要注意的是,在該覆蓋層17及該含供體層16之氮化鎵(GaN)與該電洞阻障層31之鋁鎵氮(AlGaN)間,關於乾式蝕刻之蝕刻選擇性是很廣大的。因此,對於蝕刻該覆蓋層17與該含供體層16,一旦該電洞阻障層31之表面出現,它會使蝕刻突然變得難以進行。換言之,該乾式蝕刻於具有作為蝕刻阻擋物(etching stopper)之電洞阻障層下是能夠做到的。因此,該乾式蝕刻可容易地受到控制。
此外,在第一實施例中,雖然有些鎂可能擴散至該通道內以活化鎂作為p型雜質,但第四實施例中,該擴散可以受到抑制。
需要注意的是,該電洞阻障層31並未特別限制為氮化鋁(AlN)層,假使該電洞阻障層31之能帶隙大於該電子供給層15之能帶隙,而例如鋁部分高於電子供給層之鋁鎵氮(AlGaN)層即可用於該電洞阻障層31。另外,例如氮化鋁銦(InAlN)層亦可用於該電洞阻障層31。當鋁鎵氮層用於該電洞阻障層31時, 該電洞阻障層31之組成物可表示為Aly Ga1-y N(x<y1),該電子供給層15之組成物可表示為Alx Ga1-x N(0<x<1)。而當氮化鋁銦層用於該電洞阻障層31時,該電洞阻障層31之組成物可表示為Inz Ai1-z N(0z1),該電子供給層15之組成物可表示為Alx Ga1-x N(0<x<1)。例如假設該電洞阻障層31為氮化鋁層,則該電洞阻障層31之厚度較佳為1 nm或更多、以及3 nm或更少(2 nm);而例如假設該電洞阻障層31為鋁鎵氮層或氮化鋁銦層,則該電洞阻障層31之厚度較佳為3 nm或更多、以及8 nm或更少(5 nm)。當該電洞阻障層31係薄於上述較佳範圍之較低限度,則其電洞阻障特性可能較低。當該電洞阻障層31係厚於上述較佳範圍之較高限度,則其常閉操作可能相對困難。還有,如上所述,當該電洞阻障層31之氮化物半導體之晶格常數小於該電子供給層15時,在該電子傳輸層13附近之二維電子氣體之密度可以是較高的且導通阻抗可以是較低的。
(第五實施例)
下一者,第五實施例將予以說明。第9A圖係依據第五實施例繪示化合物半導體裝置之結構之剖視示意圖。
相較於第二實施例,具有閘極電極20g帶入蕭特基(Schottky)以接觸該化合物半導體堆疊結構18,第五實施例係採用在該閘極電極20g與該覆蓋 層17間之絕緣膜21,以便容許該絕緣膜21充當閘極絕緣膜,相似於第三實施例。總之,該開口22並未形成於該絕緣膜21內,而採用金屬-絕緣層-半導體式(MIS-type)結構。其他結構則相似於第二實施例。
相似於第二實施例,在該含復合中心層26之存在下,如此構成之第五實施例,亦成功地達到抑制該漏電流並改善該崩潰電壓特性之功效。
(第六實施例)
下一者,第六實施例將予以說明。第9B圖係依據第六實施例繪示化合物半導體裝置之結構之剖視示意圖。
在第六實施例中,如第9B圖所示,該電洞阻障層31係形成於該電子供給層15上,而該含復合中心層26、覆蓋層17與閘極電極20g係形成於該電洞阻障層31上。該絕緣膜21與該絕緣膜23亦形成於該電洞阻障層31上。用於源極電極之凹部32s與用於汲極電極之凹部32d係形成於該電洞阻障層31內,該源極電極20s係通過該凹部32s而形成於該電子供給層15上,而該汲極電極20d係通過該凹部32d而形成於該電子供給層15上。該電洞阻障層31可為大約2 nm厚之氮化鋁層。該凹部32s與32d可被省略,而該電洞阻障層31可保留於該電子供給層15、源極電極20s與汲極電極20d之間。當該源極電極20s與該汲極電極20d係直接接觸該電子供給層15時,接觸阻抗是較低的且特性 是較佳的。其他結構則相似於第二實施例。
相似於第二實施例,在該含復合中心層26之存在下,如此構成之第六實施例,亦成功地達到抑制該漏電流並改善該崩潰電壓特性之功效。還有,相似於第四實施例,由於抑制該些電洞之擴散而可進一步獲得較佳的特性。至於第六實施例之製造方法,亦相似於第四實施例,可獲得使蝕刻易於控制之類的功效。
(第七實施例)
第七實施例係關於化合物半導體裝置之離散封裝件(discrete package),其包括基於氮化鎵之高電子遷移率電晶體。第10圖係依據第七實施例繪示該離散封裝件。
在第七實施例中,如第10圖所示,依據第一至第六實施例任一者,該化合物半導體裝置之高電子遷移率電晶體(HEMT)晶片210之背面係使用諸如銲料(solder)之類的晶片黏著劑(die attaching agent)234而固定於平面(晶片接墊)233上。諸如鋁線之類的導線235d之一端係接合至汲極接墊226d以連接該汲極電極20d,而該導線235d之另一端則接合至整合至該平面(land)233之汲極引腳232d。諸如鋁線之類的導線235s之一端係接合至源極接墊226s以連接該汲極電極20s,而該導線235s之另一端則接合至分離自該平面233之源極引腳232s。諸如鋁線之類的導 線235g之一端係接合至閘極接墊226g以連接該閘極電極20g,而該導線235g之另一端則接合至分離自該平面233之閘極引腳232g。該平面233、高電子遷移率電晶體晶片210等等係利用模造樹脂(molding resin)231予以封裝,以便向外突出該閘極引腳232g之一部分、該汲極引腳232d之一部分、以及該源極引腳232s之一部分。
該離散封裝件可藉由例如下列程序予以製造。首先,該高電子遷移率電晶體晶片210係使用諸如銲料之類的晶片黏著劑234而接合至導線架之平面233。接著,藉由導線接合方式,使用該導線235g、235d與235s,分別地將該閘極接墊226g連接至該導線架之閘極引腳232g,並將該汲極接墊226d連接至該導線架之汲極引腳232d,且將該源極接墊226s連接至該導線架之源極引腳232s。具有該模造樹脂231之模造(molding)係藉由轉注成形製程(transfer molding process)予以進行。然後,將該導線架予以切除。
(第八實施例)
下一者,第八實施例將予以說明。第八實施例係關於功率因數校正(PFC)電路,其配置有包括基於氮化鎵之高電子遷移率電晶體之化合物半導體裝置。第11圖係依據第八實施例繪示該功率因數校正電路之線路圖。
該功率因數校正電路250係具有開關元件(電晶體)251、二極體252、扼流線圈(choke coil)253、電容254與255、二極體電橋(diode bridge)256以及交流電源(AC)257。該開關元件251之汲極電極、該二極體252之陽極端與該扼流線圈253之一端係互相連接,該開關元件251之源極電極、該電容254之一端與該電容255之一端係互相連接,該電容254之另一端與該扼流線圈253之另一端係互相連接,該電容255之另一端與該二極體252之陰極端係互相連接。柵極驅動器係連接至該開關元件251之閘極電極。該交流電源257係通過該二極體電橋256而連接於該電容254兩端之間,直流電源(DC)係連接於該電容255兩端之間。在本實施例中,該化合物半導體裝置可依據第一至第六實施例任一者作為該開關元件251。
在製造該功率因數校正電路250之製程中,例如,該開關元件251係利用例如銲料連接至該二極體252、該扼流線圈253…等等。
(第九實施例)
下一者,第九實施例將予以說明。第九實施例係關於電源供應裝置(power supply apparatus),其配置有包括基於氮化鎵之高電子遷移率電晶體之化合物半導體裝置。第12圖係依據第九實施例繪示電源供應裝置之線路圖。
該電源供應裝置包括高電壓、一次側電 路(primary-side circuit)261、低電壓、二次側電路(secondary-side circuit)262、以及設置於該一次側電路261與該二次側電路262間之變壓器263。
該一次側電路261係包括依據第八實施例之功率因數校正電路250、以及可為例如全橋式逆變器電路260且連接於該功率因數校正電路250內之電容255兩端之逆變器電路(inverter circuit)。該全橋式逆變器電路260包括複數個(本實施例為四個)開關元件264a、264b、264與264d。
該二次側電路262係包括複數個(本實施例為三個)開關元件265a、265b與265c。
在本實施例中,依據第一至第六實施例任一者,該化合物半導體裝置係用於該功率因數校正電路250之開關元件251,並用於該全橋式逆變器電路260之開關元件264a、264b、264與264d。該功率因數校正電路250與該全橋式逆變器電路260係為該一次側電路261之組成部分。另一方面,基於矽之通用MIS-FET(金屬-絕緣層-半導體式場效電晶體)係用於該二次側電路262之開關元件265a、265b與265c。
(第十實施例)
下一者,第十實施例將予以說明。第十實施例係關於高頻放大器(high-frequency amplifier),其配置有包括基於氮化鎵之高電子遷移率電晶體之化合物半導體裝置。第13圖係依據第十實 施例繪示該高頻放大器之線路圖。
該高頻放大器係包括數位預失真電路(digital predistortion circuit)271、混合器(mixer)272a與272b、以及功率放大器(power amplifier)273。
該數位預失真電路271係補償輸入訊號之非線性(non-linear)失真。該混合器32a係將具有已補償之非線性失真之輸入訊號予以混合交流訊號。該功率放大器273係包括依據第一至第十實施例任一者之化合物半導體裝置,並放大與交流訊號相混合之輸入訊號。在本實施例之說明例子中,於輸出端之訊號可透過開關而由該混合器272b混合交流訊號,並可傳回該數位預失真電路271。
用於該化合物半導體堆疊結構中之化合物半導體層之組成物並未特別的限制,而氮化鎵(GaN)、氮化鋁(AlN)、氮化銦(InN)…等等均可使用,他們的混合晶體亦可使用。
該閘極電極、源極電極與汲極電極之構造並未限制於上述各實施例中,例如他們可配置為單層。該些電極之形成方法亦沒有限制於該剝離製程。在該源極電極與該汲極電極形成後,該退火處理可以被省略,只要能得到該歐姆特性。該閘極電極可被退火處理。
在該些實施例中,該基板可為碳化矽(silicon carbide;SiC)基板、藍寶石基板(sapphire substrate)、矽基板、氮化鎵基板、砷化鎵基板或類似物。該基板可為導電性、半絕緣性與絕緣性之任一者。該些層每一者之厚度與材料並未限制於上述各實施例中。
依據上述之化合物半導體裝置等,於復合中心阻障層之存在下,當達到常閉操作時,漏電流可予以抑制。
11‧‧‧基板
12‧‧‧緩衝層
13‧‧‧電子傳輸層
14‧‧‧間隔層
15‧‧‧電子供給層
16‧‧‧含供體層
17‧‧‧覆蓋層
18‧‧‧化合物半導體堆疊結構
19‧‧‧元素隔離區
20d‧‧‧汲極電極
20g‧‧‧閘極電極
20s‧‧‧源極電極
21‧‧‧絕緣膜
22‧‧‧開口
23‧‧‧絕緣膜

Claims (20)

  1. 一種化合物半導體裝置,係包括:基板;電子傳輸層與電子供給層,係形成於該基板上;閘極電極、源極電極與汲極電極,係形成於該電子供給層上;p型半導體層,係形成於該電子供給層與該閘極電極之間;以及電洞消除層,係形成於該電子供給層與該p型半導體層之間,該電洞消除層係包括供體或復合中心並消除電洞。
  2. 如申請專利範圍第1項所述之化合物半導體裝置,其中,該p型半導體層係為包括鎂之氮化鎵層。
  3. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,其中,該電洞消除層係包括p型雜質。
  4. 如申請專利範圍第3項所述之化合物半導體裝置,其中,該電洞消除層係包括鎂作為該p型雜質。
  5. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,其中,該電洞消除層係包括矽作為該供體。
  6. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,其中,該電洞消除層係包括選自鐵、鉻、鈷、鎳、鈦、釩與鈧所組成之群組中至少一者作為該復合中心。
  7. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,復包括電洞阻障層,係形成於該電子供給層與該p型半導體層之間,該電洞阻障層之能帶隙係大於該電子供給層之能帶隙。
  8. 如申請專利範圍第7項所述之化合物半導體裝置,其中:該電子供給層之組成物係表示為Alx Ga1-x N(0<x<1),以及該電洞阻障層之組成物係表示為Aly Ga1-y N(x<y1)。
  9. 如申請專利範圍第7項所述之化合物半導體裝置,其中:該電子供給層之組成物係表示為Alx Ga1-x N(0<x<1),以及該電洞阻障層之組成物係表示為Inz Al1-z N(0z1)。
  10. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,復包括閘極絕緣膜,係形成於該閘極電極與該p型半導體層之間。
  11. 如申請專利範圍第1項或第2項所述之化合物半導體裝置,復包括終止膜,係包覆該電子供給層於每一該閘極電極與該源極電極間之區域、以及該閘極電極與該汲極電極間之區域。
  12. 一種電源供應裝置,係包括如申請專利範圍第1項或 第2項所述之化合物半導體裝置。
  13. 一種放大器,係包括如申請專利範圍第1項或第2項所述之化合物半導體裝置。
  14. 一種化合物半導體裝置之製造方法,包括:形成電子傳輸層與電子供給層於基板上;形成閘極電極、源極電極與汲極電極於該電子供給層上;在形成該閘極電極前,形成一位於該電子供給層與該閘極電極間之p型半導體層;以及在形成該p型半導體層前,形成一位於該電子供給層與該p型半導體層間之電洞消除層,該電洞消除層係包括供體或復合中心並消除電洞。
  15. 如申請專利範圍第14項所述之化合物半導體裝置之製造方法,其中,該p型半導體層係為包括鎂之氮化鎵層。
  16. 如申請專利範圍第14項或第15項所述之化合物半導體裝置之製造方法,其中,該電洞消除層係包括p型雜質。
  17. 如申請專利範圍第16項所述之化合物半導體裝置之製造方法,其中,該電洞消除層係包括鎂作為該p型雜質。
  18. 如申請專利範圍第14項或第15項所述之化合物半導體裝置之製造方法,其中,該電洞消除層係包括矽作為該供體。
  19. 如申請專利範圍第14項或第15項所述之化合物半導體裝置之製造方法,其中,該電洞消除層係包括選自鐵、鉻、鈷、鎳、鈦、釩與鈧所組成之群組中至少一者作為該復合中心。
  20. 如申請專利範圍第14項或第15項所述之化合物半導體裝置之製造方法,復包括在該電洞消除層形成前,形成一位於該電子供給層與該p型半導體層間之電洞阻障層,該電洞阻障層之能帶隙係大於該電子供給層之能帶隙。
TW101150053A 2012-03-28 2012-12-26 化合物半導體裝置及其製造方法 TWI491043B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075037A JP2013207107A (ja) 2012-03-28 2012-03-28 化合物半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
TW201340324A TW201340324A (zh) 2013-10-01
TWI491043B true TWI491043B (zh) 2015-07-01

Family

ID=49233688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101150053A TWI491043B (zh) 2012-03-28 2012-12-26 化合物半導體裝置及其製造方法

Country Status (5)

Country Link
US (1) US20130256683A1 (zh)
JP (1) JP2013207107A (zh)
KR (1) KR101458292B1 (zh)
CN (1) CN103367425A (zh)
TW (1) TWI491043B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767219B (zh) * 2020-04-24 2022-06-11 環球晶圓股份有限公司 磊晶結構

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013948B2 (ja) * 2013-03-13 2016-10-25 ルネサスエレクトロニクス株式会社 半導体装置
US9443969B2 (en) * 2013-07-23 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having metal diffusion barrier
US9978844B2 (en) 2013-08-01 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. HEMT-compatible lateral rectifier structure
US9640650B2 (en) * 2014-01-16 2017-05-02 Qorvo Us, Inc. Doped gallium nitride high-electron mobility transistor
US9310285B1 (en) * 2014-09-30 2016-04-12 International Business Machines Corporation Method and integrated device for analyzing liquid flow and liquid-solid interface interaction
US9502435B2 (en) 2015-04-27 2016-11-22 International Business Machines Corporation Hybrid high electron mobility transistor and active matrix structure
JP6493523B2 (ja) * 2015-05-08 2019-04-03 富士通株式会社 半導体装置及び半導体装置の製造方法
JP6234975B2 (ja) 2015-10-02 2017-11-22 株式会社豊田中央研究所 半導体装置
JP6674087B2 (ja) * 2015-10-29 2020-04-01 富士通株式会社 化合物半導体装置及びその製造方法
JP6682391B2 (ja) 2016-07-22 2020-04-15 株式会社東芝 半導体装置、電源回路、及び、コンピュータ
JP6649208B2 (ja) * 2016-08-29 2020-02-19 株式会社東芝 半導体装置
IT201800001693A1 (it) * 2018-01-23 2019-07-23 St Microelectronics Srl Metodo di fabbricazione di un transistore hemt di tipo normalmente spento con ridotta resistenza in stato acceso e transistore hemt
JP6848020B2 (ja) * 2019-08-07 2021-03-24 株式会社東芝 半導体装置、電源回路、及び、コンピュータ
TWI775121B (zh) * 2020-07-27 2022-08-21 世界先進積體電路股份有限公司 高電子遷移率電晶體
US11316040B2 (en) 2020-09-14 2022-04-26 Vanguard International Semiconductor Corporation High electron mobility transistor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037615A (en) * 1997-06-03 2000-03-14 Oki Electric Industry Co., Ltd. Metal semiconductor FET having doped A1GaAs layer between channel layer and A1GaAs buffer layer
US20070063186A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US20070176215A1 (en) * 2006-01-27 2007-08-02 Manabu Yanagihara Transistor
US20080203433A1 (en) * 2007-02-27 2008-08-28 Sanken Electric Co., Ltd. High electron mobility transistor and method of forming the same
US20090121217A1 (en) * 2007-11-08 2009-05-14 Sanken Electric Co., Ltd. Nitride compound semiconductor device including organic semiconductor layer under gate electrode
US20090212326A1 (en) * 2008-02-26 2009-08-27 Sanken Electric Co., Ltd. Hetero Field Effect Transistor and Manufacturing Method Thereof
US20100127781A1 (en) * 2008-11-21 2010-05-27 Masahiko Inamori Radio frequency power amplifier

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705412B2 (ja) * 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP4712459B2 (ja) * 2005-07-08 2011-06-29 パナソニック株式会社 トランジスタ及びその動作方法
JP5260831B2 (ja) * 2006-01-05 2013-08-14 古河機械金属株式会社 Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板の製造方法および半導体装置の製造方法
JP2007220895A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 窒化物半導体装置およびその製造方法
CN101523614B (zh) * 2006-11-20 2011-04-20 松下电器产业株式会社 半导体装置及其驱动方法
JP2009071061A (ja) * 2007-09-13 2009-04-02 Toshiba Corp 半導体装置
KR101660870B1 (ko) * 2009-04-08 2016-09-28 이피션트 파워 컨버젼 코퍼레이션 보상형 게이트 미스페트
CN102365745B (zh) * 2009-04-08 2015-04-08 宜普电源转换公司 反向扩散抑制结构
JP2012004253A (ja) * 2010-06-15 2012-01-05 Panasonic Corp 双方向スイッチ、2線式交流スイッチ、スイッチング電源回路および双方向スイッチの駆動方法
JP5742134B2 (ja) * 2010-08-23 2015-07-01 富士通株式会社 半導体装置の製造方法
JP5874173B2 (ja) * 2011-02-25 2016-03-02 富士通株式会社 化合物半導体装置及びその製造方法
US20130105817A1 (en) * 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037615A (en) * 1997-06-03 2000-03-14 Oki Electric Industry Co., Ltd. Metal semiconductor FET having doped A1GaAs layer between channel layer and A1GaAs buffer layer
US20070063186A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US20070176215A1 (en) * 2006-01-27 2007-08-02 Manabu Yanagihara Transistor
US20080203433A1 (en) * 2007-02-27 2008-08-28 Sanken Electric Co., Ltd. High electron mobility transistor and method of forming the same
US20090121217A1 (en) * 2007-11-08 2009-05-14 Sanken Electric Co., Ltd. Nitride compound semiconductor device including organic semiconductor layer under gate electrode
US20090212326A1 (en) * 2008-02-26 2009-08-27 Sanken Electric Co., Ltd. Hetero Field Effect Transistor and Manufacturing Method Thereof
US20100127781A1 (en) * 2008-11-21 2010-05-27 Masahiko Inamori Radio frequency power amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767219B (zh) * 2020-04-24 2022-06-11 環球晶圓股份有限公司 磊晶結構

Also Published As

Publication number Publication date
CN103367425A (zh) 2013-10-23
KR101458292B1 (ko) 2014-11-04
US20130256683A1 (en) 2013-10-03
KR20130109997A (ko) 2013-10-08
JP2013207107A (ja) 2013-10-07
TW201340324A (zh) 2013-10-01

Similar Documents

Publication Publication Date Title
TWI491043B (zh) 化合物半導體裝置及其製造方法
TWI472036B (zh) 化合物半導體裝置及其製造方法
US8872232B2 (en) Compound semiconductor device and method for manufacturing the same
US8765554B2 (en) Compound semiconductor device and method for manufacturing the same
US8883581B2 (en) Compound semiconductor device and method for manufacturing the same
KR101465306B1 (ko) 화합물 반도체 장치 및 그 제조 방법
JP5896667B2 (ja) 化合物半導体装置及びその製造方法
US20130082336A1 (en) Semiconductor device and method for fabricating the same
US9653569B1 (en) Compound semiconductor device and manufacturing method thereof
US8633517B2 (en) Compound semiconductor device and method of manufacturing the same
US20130062666A1 (en) Compound semiconductor device and method for manufacturing the same
US10276703B2 (en) Compound semiconductor device and method of manufacturing the same
US10600901B2 (en) Compound semiconductor device and manufacturing method thereof
JP2014027187A (ja) 化合物半導体装置及びその製造方法
US8587030B2 (en) Compound semiconductor device and method of manufacturing the same
US10192964B2 (en) Compound semiconductor device and method of manufacturing the same
US9954091B2 (en) Compound semiconductor device and method of manufacturing the same
JP6304304B2 (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees