TWI486969B - 複合導電材料的製作方法及其導電薄膜 - Google Patents

複合導電材料的製作方法及其導電薄膜 Download PDF

Info

Publication number
TWI486969B
TWI486969B TW103120205A TW103120205A TWI486969B TW I486969 B TWI486969 B TW I486969B TW 103120205 A TW103120205 A TW 103120205A TW 103120205 A TW103120205 A TW 103120205A TW I486969 B TWI486969 B TW I486969B
Authority
TW
Taiwan
Prior art keywords
composite conductive
conductive film
graphene
silver
conductive material
Prior art date
Application number
TW103120205A
Other languages
English (en)
Other versions
TW201546823A (zh
Inventor
Nyan Hwa Tai
Yi Ting Lai
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW103120205A priority Critical patent/TWI486969B/zh
Priority to US14/473,595 priority patent/US20150364227A1/en
Application granted granted Critical
Publication of TWI486969B publication Critical patent/TWI486969B/zh
Publication of TW201546823A publication Critical patent/TW201546823A/zh
Priority to US15/596,636 priority patent/US10478899B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)
  • Thermal Sciences (AREA)

Description

複合導電材料的製作方法及其導電薄膜
本發明是有關於一種複合導電材料的製作方法,特別是指一種製程簡易之複合導電材料的製作方法,及含有該複合導電材料的導電薄膜。
銦錫氧化物(indium tin oxide,ITO)目前已被廣泛地製作成透明導電薄膜並應用於相關產業中,但仍具有如價格昂貴、缺乏柔韌性、易脆,及厚度太薄時無法降低片電阻(sheet resistance)等缺點。由於上述缺點,使得銦錫氧化物無法應用於輕、薄且可撓的產品中。因此,許多新興材料,例如奈米碳管(carbon nanotubes,CNTs)、石墨烯(graphene),或奈米銀線(silver nanowires,AgNWs)陸續被研發改良,用以取代銦錫氧化物。
其中,又以具有高穿透率(transmittance)、高導電率(conductivity)與製作簡易的奈米銀線備受矚目。然而,以奈米銀線作為導電材料時,其整體薄膜的片電阻較ITO為高。上述奈米銀線導電膜片電阻較高的主要原因有 兩種:其中之一是奈米銀線導電膜形成後,部分奈米銀線之間彼此並無互相接觸,而導致電子的傳輸路徑因奈米銀線間的內部間隙(interspace)而受到阻礙;另一種則是奈米銀線彼此間雖有接觸,但接觸面積非常小,限縮了電子由其中一奈米銀線傳導至其中另一奈米銀線的傳輸路徑。
為了降低上述奈米銀線導電膜的片電阻,常見的方式有:透過物理性方式的機械壓縮(mechanical press),或透過化學性方式的混加金屬粒子或奈米碳管等材料。其中,以物理性的機械壓縮方式,能減少各奈米銀線之間的間隙,使各奈米銀線彼此更為緊密,以增加電子傳輸路徑;而以化學性地混合各種材料,則能用以覆蓋於奈米銀線上,進而增加各奈米銀線間的接觸面積,改善電子傳輸路徑的障礙。藉由上述兩種方式均可用以增進奈米銀線間的導電率;然而,物理性的機械壓縮方式會有破壞薄膜的風險,而化學性混合金屬粒子或奈米碳管的方式,則是因其材料本身仍屬顆粒或線狀的特性,也無法有效降低奈米銀線間電阻的問題。
目前用以改善奈米銀線導電膜片電阻的方式可利用具有二維結構的石墨烯作為奈米銀線間的接觸橋樑,可用以增加奈米銀線間電子傳輸路徑,以降低單純使用奈米銀線時的片電阻,而其製程步驟,是將單獨成長的奈米銀線,及石墨烯(graphene),依序塗佈於基板上而得到一複合導電薄膜,顯然地,前述製程方法不僅需將兩種材料先後製備完成,而且在薄膜製備上,還需以兩次塗佈方式 形成於基板上,製程步驟繁複,且以此方式所形成的複合導電薄膜有附著力不佳的缺點。
另外,如美國專利8466366號所揭示一種透明導電薄膜製造方法,其是利用在以溶膠凝膠(sol-gel)方式形成透明導電膜的過程中,在sol-gel前驅物中加入奈米線(奈米銀線)與石墨烯,以提升最終製得之透明導電膜的導電性。前述方式實質上仍具有將兩種材料(silver nanowires、graphene)相混合之步驟,而由於石墨烯材料特性的關係,於溶劑中的分散差,因此並無法與奈米銀線有效的分散混合,所以會因混合攪拌不完全,或兩者無法有效分散混合,而有團聚(aggregate)、或是比重較大一方產生沉澱、分層的現象,因此,石墨烯與奈米銀線之間仍然無法具有良好混合分散性。
因此,本發明之目的,即在提供一種製程簡易,且分散性佳的複合導電材料的製作方法。
於是本發明複合導電材料的製作方法,包含以下步驟:
(a)準備一混合溶液,該混合溶液包括一還原劑、一包覆劑,及一含銀離子的前驅物,加熱該混合溶液至不小於150℃,令銀離子還原,並利用該包覆劑對還原的銀晶體進行非對稱包覆,以得到多條奈米銀線。
(b)於該步驟(a)的過程中,在不小於150℃,加入一石墨烯氧化物至該混合溶液中,令該還原劑持續還原 銀離子成長奈米銀線,並同時還原該石墨烯氧化物,而得到一具有奈米銀線及石墨烯的複合導電材料。
較佳地,該步驟(a)的混合溶液還包括一緩衝劑(buffer agent),該緩衝劑是由一選自下列所構成之群組的材料所製成:含鹵素的鹽類、含硝酸根離子的鹽類,及硫化物。
較佳地,該步驟(a)包括以下次步驟:
(1)以該還原劑作為溶劑,將該包覆劑,及該緩衝劑加入至該還原劑中,並加熱至150℃~180℃,形成一第一預備溶液。
(2)以該還原劑作為溶劑,將該含銀離子的前驅物分散於該還原劑中,形成一第二預備溶液,將該第二預備溶液加入該第一預備溶液得到該混合溶液。
較佳地,該步驟(b)包括以下次步驟:
(1)以該還原劑作為溶劑,將該石墨烯氧化物分散於該溶劑中,並使用離心方式處理,得到一分散的剝離石墨烯氧化物。
(2)將該經過離心處理的石墨烯氧化物加入該混合溶液中。
較佳地,該步驟(a)的還原劑是由一選自下列構成之群組的材料所製成:乙二醇(ethylene glycol,EG)、丙二醇(propylene glycol)、丙三醇(glycerin)、丁二醇(butylenes glycol)新戊二醇(neopentyl glycol)。
較佳地,該步驟(a)的包覆劑是由一選自下列構 成之群組的材料所製成:聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)、聚乙烯醇(polyvinyl alcohol ,PVA)、聚乙烯醇縮丁醛(Polyvinyl butyral,PVB)、聚二甲基矽氧烷[poly(dimethylsiloxane),PDMS],及聚乙二醇[poly(oxyethylene),PEG]。
較佳地,該步驟(a)的含銀離子的前驅物是由一選自下列構成之群組的材料所製成:硝酸銀(silver nitrate ,AgNO3 )、高氯酸銀(silver perchlorate,AgClO4 ),及氟化銀(silver fluoride,AgF)。
此外,本發明之另一目的,在提供一種複合導電薄膜,包含:一透明基板,及一導電膜。
該導電膜形成於該透明基板上,且該導電膜具有如前述製作方法製得的複合導電材料。
較佳地,該複合導電薄膜的片電阻不大於100Ω/sq,且於550nm波長的穿透率不小於90%。
較佳地,該透明基板具有一經電漿前處理的表面,且該導電膜形成於該表面。
本發明之功效在於,藉由單一製程步驟將該等奈米銀線的成長與氧化石墨烯的還原同時進行,不僅製程簡便,且製得高導電膜所含的複合導電材料可具有高分散性。
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一掃描式電子顯微鏡(scanning electron microscope,SEM)影像圖,說明本發明之一具體例1的複合導電薄膜的表面型態(surface morphology);圖2是一SEM影像圖,輔助說明圖1該具體例1的複合導電薄膜的表面型態;圖3是一拉曼(Raman)譜圖,由於峰值的位移說明本發明該具體例1的石墨烯具有p-type摻雜現象;圖4是一X-射線光電子光譜(X-ray photoelectron spectrum,XPS)圖,說明該具體例1各元素的鍵結能關係;圖5是一圖4的局部放大的XPS圖,輔助說明圖4的碳元素1s軌域與其他元素的鍵結能;圖6是一圖4的局部放大的XPS圖,輔助說明圖4的氯元素2p軌域與其他元素的鍵結能;圖7是一片電阻與穿透率(transmittance)的關係圖,說明該具體例1與比較例1~3的薄膜特性差異;圖8是一片電阻對曲率半徑(radius of curvature)的關係圖,說明該具體例1的複合導電薄膜的彎曲程度對片電阻的影響;圖9是一片電阻改變率對彎曲次數的關係圖,說明該具體例1的複合導電薄膜與該比較例4的奈米銀線薄膜,兩者承受張力與壓縮對片電阻的影響;圖10是一光學顯微鏡(optical microscope,OM)影像圖,說明一比較例4的薄膜附著力(adhesion force);及 圖11是一OM影像圖,說明該具體例1的複合導電薄膜的附著力。
<發明詳細說明>
本發明複合導電薄膜的一較佳實施例,包含一透明基板,及一形成於該基板表面的導電膜。
該透明基板較佳地為具有可撓性,適用於本發明該較佳實施例的基板是選自下列構成之群組的材料所製成:聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN),及聚碳酸酯(polycarbonate,PC)。於本發明該較佳實施例中,該透明基板是以PET基板為例作說明。更佳地,該透明基板所使用的PET基板為經氧電漿表面處理,使PET基板表面較弱的鍵結被電漿活性離子破壞,進而與離子態的反應氣體鍵結,而能增進與該導電膜的緊密連結。
該導電膜形成於於該PET基板表面,包含一具有奈米銀線與石墨烯的複合導電材料,且該複合導電材料是經由一次塗部方式形成於該表面。其中,該複合導電薄膜的片電阻不大於100Ω/sq,且於550nm波長的穿透率不小於90%。
具體的說,前述該複合導電材料的製作方式是由下列步驟(a)及(b)所製備而得。
該步驟(a)是先準備一混合溶液,該混合溶液包 括一還原劑、一包覆劑、一緩衝劑,及一含銀離子的前驅物,加熱該混合溶液至不小於150℃,令該前驅物的銀離子還原,以得到多條奈米銀線。
具體地說,該步驟(a)可再細分為兩個次步驟,首先,以該還原劑作為溶劑,加入該包覆劑、緩衝劑,並加熱至不低於150℃的溫度條件下,形成一第一預備溶液。接著,同樣地,以該還原劑作為溶劑,將該含銀離子的前驅物分散於該還原劑中,形成一第二預備溶液,並在該第一預備溶液維持於前述溫度條件下,將該第二預備溶液緩慢地加入該第一預備溶液中,即得到該混合溶液,此時,該含銀離子的前驅物在此溫度下,可藉由該還原劑與該包覆劑,而將該前驅物的銀離子還原,以得到該奈米銀線。
詳細地說,在本發明該較佳實施例中,是採用化學法的多元醇(polyol)還原方法成長奈米銀線,因此,在還原劑的選擇上只要是例如乙二醇、丙二醇、丙三醇、丁二醇,或新戊二醇等能還原銀離子的醇類均可使用,於本發明該較佳實施例中,該還原劑是選用對環境影響較小的乙二醇為例作說明。要說明的是,加熱範圍的選取主要是取決於銀離子還原成奈米銀線所需要的成長溫度(即不小於150℃),且為了避免還原劑的蒸發,該溫度的上限不適合高於該還原劑的沸點溫度,也就是說,在本發明該較佳實施例中,加熱溫度是介於150℃~180℃(乙二醇的沸點溫度約197℃)。另外,該步驟(a)所選用的含銀離子的前驅 物為可在乙二醇中具有良好溶解度的硝酸銀(AgNO3 ),但不限於此,也可選自高氯酸銀(AgClO4 )或氟化銀(AgF)。於該步驟(a)中加入該包覆劑的主要目的在於,該包覆劑在金屬離子還原後所得到的金屬晶體(銀晶體)的不同結晶面上,會有不同的反應強度,所以具有非對稱地包覆作用,因此,可令銀離子在還原過程中產生非對稱性的成長,進而還原成奈米銀線,在本發明該較佳實施例中,該包覆劑是使用聚乙烯吡咯烷酮(PVP),但不限於此,也可選自聚乙烯醇(PVA)、聚乙烯醇縮丁醛(PVB)、聚二甲基矽氧烷(PDMS),或聚乙二醇(PEG)。
該緩衝劑的目的是用以協助讓銀離子緩慢還原成奈米銀線,避免銀離子還原速度過快,而直接成長為銀粒子,該緩衝劑是由一選自下列所構成之群組的材料所製成:含鹵素的鹽類、含硝酸根離子的鹽類,及硫化物,於本發明該較佳實施例中,該緩衝劑是以溴化鉀(silver bromide,KBr)與氯化銀(silver chloride,AgCl)為例作說明。
於該步驟(a)持續還原過程中,接著進行該步驟(b),將該步驟(a)所得到的該混合溶液持續在150℃~180℃的溫度下加熱,並加入一石墨烯氧化物,令該還原劑持續還原銀離子成長奈米銀線,並同時還原該石墨烯氧化物為石墨烯,而得到一具有奈米銀線及石墨烯的複合導電材料。
具體地說,該步驟(b)也可再細分為兩個次步 驟,首先,以該還原劑作為溶劑,將一乾燥的石墨烯氧化物分散於該還原劑中,且保持濃度在每毫升的還原劑中具有0.5~1.0毫克的石墨烯氧化物(0.5~1.0mg/mL),並使用超聲波(ultrasonication)震盪與離心分離(centrifugation)處理,得到一具高度分散性的剝離(exfoliated)石墨烯氧化物。接著,將該剝離石墨烯氧化物加入該混合溶液中,並保持在150℃~180℃數小時,使銀離子與該石墨烯氧化物分別還原成奈米銀線與石墨烯,進而得到該複合導電材料。前述該石墨烯氧化物的製作是採用習知的Hummer’s方法製備而得,其相關製程步驟與材料的選擇為技術領域所周知,因此不再多加贅述。
由於石墨烯氧化物於溶劑中可具有較佳的分散性,因此,本發明先將石墨烯氧化物加入該混合溶液,讓石墨烯氧化物與該混合溶液中的奈米銀線可得到良好的預分散性;因為乙二醇會持續的還原該混合溶液中的銀離子,使得奈米銀線可持續成長,並同時還原該石墨烯氧化物而得到石墨烯,因此,可得到分散均勻性極佳的奈米銀線-石墨烯複合導電材料。
該導電膜則是利用一次塗佈方式,將該複合導電材料塗佈於該基板表面而得。
本發明利用同步反應,讓氧化石墨烯的還原與該等奈米銀線的成長同時進行,因此,不僅可改善習知須分別製備奈米銀線與石墨烯複合材料時的麻煩,而且還能改善石墨烯與奈米銀線之間分散性不佳的缺點,且因為奈 米銀線於持續成長的過程可再進一步與石墨烯相互分散,並被部份的石墨烯包覆,因此可有效解決奈米銀線之間因為接觸面積小,所導致電阻較高的問題。
此外,值得一提的是,由於該混合溶液中的氯離子於還原過程中對石墨烯會產生摻雜作用,使石墨烯的電洞載子濃度上升,而受包覆劑(PVP)包覆的奈米銀線則具有負電荷(negative charge),因此,該等具高濃度電洞載子的石墨烯不僅可與具有負電荷的奈米銀線產生靜電交互作用,進一步更可提升石墨烯與該等奈米銀線的包覆性,另外還可與經由氧電漿活化後之基板產生更佳的結合性,因而提升石墨烯與該基板的附著性。
為了可更清楚的說明本發明該複合導電材料的製作方法,因此,以一個具體例與四個比較例進行說明,該具體例是根據上述較佳實施例並配合以下流程實施。
<具體例1>
首先,取15mL的乙二醇作為溶劑,加入0.2g的聚乙烯吡咯烷酮(PVP)與0.005g的溴化鉀(KBr),並經由油浴(oil bath)加熱且維持在160℃,形成一預定溶液;接著,再取5mL的乙二醇作為溶劑,將0.025g的氯化銀(AgCl)分散於其中,並緩慢地加入該預定溶液中,形成該第一預備溶液,並將該第一預備溶液維持在160℃。
取15mL的乙二醇作為溶劑,將0.2g的硝酸銀(AgNO3 )溶解於其中,形成一第二預備溶液,將該第二預備溶液緩慢地加入該第一預備溶液中,待反應1小時後, 逐漸產生具有奈米銀線的混合溶液。
緊接著,取石墨烯氧化物,將該石墨烯氧化物分散於乙二醇中(並調配濃度為每1mL的乙二醇具有1mg的石墨烯氧化物),再將該石墨烯氧化物/乙二醇溶液進行超聲波震盪及離心分離4小時,以獲得剝離石墨烯氧化物,隨後,取5mg的剝離石墨烯氧化物的溶液加入該具有奈米銀線的混合溶液中,並維持在160℃且進行48小時的還原反應,此時,該混合溶液中的銀離子會持續還原成奈米銀線,乙二醇與奈米銀線也會使石墨烯氧化物還原成具摻雜效果的石墨烯,即可製得具有奈米銀線與石墨烯的複合導電材料。
最後,將該複合導電材料在室溫下進行冷卻,並再次的以離心方式及去離子水(deionized water)將該複合導電材料於成長時所產生的雜質清洗乾淨,清洗完成後,將該複合導電材料分散於甲醇(methanol)中,即可形成一透明而具有該奈米銀線與石墨烯的膠體(sol gel),隨後將此製備完成的膠體塗佈於一表面經氧電漿處理的PET基板上並將甲醇移除,因而可於該PET基板表面形成一導電膜,即可製成一複合導電薄膜。
<比較例1~3>
本發明所提及的比較例1~3是採用其他相關研究進行比較,且該等比較例1~3均是使用奈米銀線與石墨烯兩種材料進行薄膜的製備。
該比較例1是Ruiyi Chen等人於Advance Functional Materials(2013)一文「Co-percolating graphene-wrapped silver nanowire network for high performance,highly stable,transparent conducting electrodes」提出一種複合導電薄膜的結構,是使用化學氣相沉積(chemical vapor deposition,CVD)法製備單層石墨烯(single-layer graphene,SLG),再將奈米銀線以滲流(percolate)方式與該單層石墨烯製作成一電阻率為22Ω/sq且穿透率為88%的導電薄膜。
該比較例2是Katsuyuki Naito等人於Synthetic Metals(2013)一文「Transparent conducting film composed of graphene and silver nanowire stacked layers」提出以低成本的濕式製程(wet processes)將奈米銀線與石墨烯分別製備完成後,再依序塗佈於基板上,形成一電阻率為4Ω/sq且穿透率為75%的導電薄膜。
該比較例3是Donghwa Lee等人於Nanoscale(2013)一文「Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices」提出先將奈米銀線形成於基板上,再以化學氣相沉積法將石墨烯形成於該奈米銀線上,進而形成一電阻率為34.4Ω/sq且穿透率為92.8%的導電薄膜。
<比較例4>
本發明複合導電材料的製作方法之一比較例4的實施條件大致上是相同於該具體例1,其不同之處在 於,該比較例4不含有石墨烯,也就是說該比較例4是將奈米銀線製備完成後,直接塗佈於PET基板上,而形成一具有奈米銀線的導電薄膜。
<數據分析>
參閱圖1與圖2,本發明該具體例1的複合導電薄膜經製備完成後,透過SEM影像圖觀測其表面型態,由圖1可明顯得知該等奈米銀線是均勻地成長,長度至少為10-20μm,且半徑約為40-70nm。經放大倍率並聚焦於中間處而可更清楚觀察(見圖2),部分的石墨烯是披覆於該等奈米銀線上,因此,在該等奈米銀線彼此相互接觸之處,可藉由該等石墨烯的覆蓋,增加奈米銀線間的接觸面積,以增加電子的傳輸路徑,進而降低奈米銀線間的電阻;另一方面,該等奈米銀線之間或末端彼此未連接之處,也可透過該等石墨烯的覆蓋而實質地連接,進而增加導電路徑。該等奈米銀線與石墨烯具有上述均勻的分布狀態,主要是本發明該具體例1在製作步驟中,是採用單一製程步驟地將該等奈米銀線與石墨烯一同還原。
參閱圖3,圖3顯示以單純還原石墨烯氧化物製得的石墨烯,與本發明該具體例1方式製得的石墨烯的拉曼光譜圖,在鄰近1580cm-1 的一特徵峰稱為拉伸振盪模式(G-mode),由圖3可知,單純還原石墨烯與該具體例1的G-mode特徵訊號峰分別約為1583cm-1 與1589cm-1 ,明顯地,該具體例1之G-mode特徵訊號往右位移約6cm-1 ,此特徵訊號的位移代表該具體例1中的該等石墨烯具有 p-type的摻雜現象。
參閱圖4、圖5與圖6,圖4顯示本發明該具體例1的XPS圖,圖5與圖6分別為圖4的C 1s與Cl 2p的局部放大圖,圖5顯示本發明該具體例1僅有微弱的碳氧鍵結訊號,代表石墨烯氧化物確實已被還原成石墨烯,且亦同時具有C-Cl的訊號(約286.4eV),表示C-Cl的鍵結;而圖6的特徵峰198.3eV與199.9eV是Cl(2p)的自旋軌道分裂(spin-orbit splitting)成Cl(2p 3/2)與Cl(2p 1/2)所產生,特徵峰200.5eV與201.1eV即代表該具體例1的氯離子(Cl- )與石墨烯的碳產生C-Cl的共價鍵結所貢獻。因此,由圖5與圖6可得知,該具體例1中所添加的氯化銀(AgCl),其氯離子與石墨烯的碳原子確實產生共價鍵結,且因氯離子的電負度(electronegativity)大於碳,所以碳的電子雲會朝氯離子方向靠近而被其吸附,而讓石墨烯產生p-摻雜的效果,此時石墨烯的電洞載子濃度即會上升,進而與受包覆劑(PVP)包覆的該等奈米銀線產生靜電交互作用(electrostatic interaction),因而產生較佳的包覆效果。
參閱圖7,一般而言,導電薄膜會藉由增加奈米銀線的密度,或改變其長度與半徑以增加整體導電率,然而,此種方式會使薄膜整體穿透率明顯地下降。圖7為本發明該具體例1與該等比較例1~3各自的片電阻與在550nm波長的穿透率關係圖。由結果可知,該比較例1與2雖具有較低的片電阻,但其整體穿透率均無法高於90%,反觀本發明該具體例1,藉由單一製程共同還原奈米銀線與 石墨烯所製成的薄膜不僅使電阻率維持於約25Ω/sq,且透光率還能達到90%以上(94.68%)。為了可清楚地比較與說明,將本發明該具體例1與該等比較例1~3的薄膜特性簡單地彙整於下方表1中;其中,R與T分別代表薄膜的片電阻與薄膜在550nm波長的穿透率。
參閱圖8,一般銦錫氧化物(ITO)薄膜缺乏柔韌性而不易彎曲,特別是當ITO薄膜稍有彎曲時,其片電阻值就會有明顯的上升,因此,量測本發明該具體例1的複合導電薄膜在不同彎曲程度對片電阻的影響是必要的。該具體例1在未彎曲時,其初始片電阻(R0 )為25Ω/sq,當彎曲程度逐漸變大(即曲率半徑逐漸減小),薄膜的片電阻亦逐漸上升,其中,改變後的片電阻以RS 表示。此處值得注意的是,當該具體例1在曲率半徑小於5mm時,其片電阻才逐漸有明顯的改變,且當曲率半徑接近於0.2mm時,其片電阻也不大於30Ω/sq;進一步地由片電阻相對改變量[(Rs -R0 )/R0 ]來看,該具體例1的最大片電阻相對改變量也僅約為12%,由此可知,本發明該具體例1的複合導電薄膜具有良好的彎曲特性,即使大幅度的彎曲此薄膜,薄膜 的片電阻也不會明顯的上升。
參閱圖9,將該具體例1與該比較例4的導電薄膜進行多次的向外彎曲(即薄膜承受平面方向的張力(tension))與向內彎曲(即薄膜承受平面方向的壓力(compression))後,再量測各自的片電阻改變率,由圖9明顯可知,無論薄膜承受張力或壓力,該具體例1的片電阻改變率均小於該比較例4,尤其是彎曲次數小於300次時,該具體例1均無明顯地改變,而當彎曲次數大於500次時,該具體例1與比較例4的片電阻雖逐漸地上升,但改變幅度則以該比較例4較為明顯。由此可知,該具體例1藉由將石墨烯氧化物的還原與奈米銀線的成長同時進行,因此,所得到複合導電材料為一分散均勻的系統,且於共同還原的過程中,該等石墨烯具有p-type摻雜的現象,因此,當將該複合導電材料塗佈於經氧電漿處理後的PET基板時,石墨烯的電洞會與奈米銀線及經氧電漿處理過後的PET基板的電子產生靜電交互作用,而令石墨烯和奈米銀線均勻分散並緊密貼覆在經氧電漿處理過後的PET基板上;而奈米銀線因為經過石墨烯覆蓋和包覆後,會增加奈米銀線的機械強度,所以,在受到張力拉伸或壓縮時較不容易產生斷裂,另外,奈米銀線間的接觸點也不容易滑移,因此,由圖9結果可看出該具體例1的導電薄膜經多次張力拉伸或壓縮後,其片電阻改變率並無明顯地變化。
參閱圖10與圖11,以簡易的方式進行該具體 例1與比較例4兩者薄膜附著力的比較。測試方法是將市售的3M膠帶分別黏貼於該具體例1與該比較例4的導電薄膜上,再撕下觀察其前後的不同,圖10與圖11分別為該比較例4與該具體例1經測試後的OM影像圖,明顯地,該具體例1的複合導電薄膜的附著力優於該比較例4的奈米銀線薄膜,因此,該等奈米銀線藉由石墨烯的覆蓋,不僅可提升薄膜整體的導電率,還能增強薄膜的附著力。
綜上所述,本發明利用一鍋式反應(one-pot reaction),讓奈米銀線的成長與石墨烯氧化物的還原同時進行,因此可令經還原而得的石墨烯與該等奈米銀線可具有優越的分散性,且因為該等石墨烯可覆蓋於該等奈米銀線,故還可降低奈米銀線間的電阻及增加導電路徑;而利用含有該分散性佳的複合導電材料所製得的導電薄膜,不僅具有高導電率與高穿透率,還藉由石墨烯的添加,而增加整體薄膜的可撓性與附著力,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。

Claims (10)

  1. 一種複合導電材料的製作方法,包含以下步驟:(a)準備一混合溶液,該混合溶液包括一還原劑、一包覆劑,及一含銀離子的前驅物,加熱該混合溶液至不小於150℃,令銀離子還原,並利用該包覆劑對還原的銀晶體的非對稱包覆作用,得到多條奈米銀線;及(b)於該步驟(a)過程中,在不小於150℃,加入一石墨烯氧化物至該混合溶液中,令該還原劑持續還原銀離子成長奈米銀線,並同時還原該石墨烯氧化物,而得到一具有奈米銀線及石墨烯的複合導電材料。
  2. 如請求項1所述的複合導電材料的製作方法,其中,該步驟(a)的混合溶液還包括一緩衝劑,該緩衝劑是由一選自下列所構成之群組的材料所製成:含鹵素的鹽類、含硝酸根離子的鹽類,及硫化物。
  3. 如請求項2所述的複合導電材料的製作方法,其中,該步驟(a)包括以下次步驟:(1)以該還原劑作為溶劑,將該包覆劑,及該緩衝劑加入至該還原劑中,並加熱至150℃~180℃,形成一第一預備溶液;及(2)以該還原劑作為溶劑,將該含銀離子的前驅物分散於該還原劑中,形成一第二預備溶液,將該第二預備溶液加入該第一預備溶液得到該混合溶液。
  4. 如請求項3所述的複合導電材料的製作方法,其中,該 步驟(b)包括以下次步驟:(1)以該還原劑作為溶劑,將一石墨烯氧化物分散於該溶劑中,並使用離心方式處理,得到一分散剝離石墨烯氧化物;及(2)將經過離心處理的該石墨烯氧化物加入該混合溶液中。
  5. 如請求項1所述的複合導電材料的製作方法,其中,該步驟(a)的還原劑是由一選自下列構成之群組的材料所製成:乙二醇、丙二醇、丙三醇、丁二醇,及新戊二醇。
  6. 如請求項1所述的複合導電材料的製作方法,其中,該步驟(a)的包覆劑是由一選自下列構成之群組的材料所製成:聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯醇縮丁醛、聚二甲基矽烷,及聚乙二醇。
  7. 如請求項1所述的複合導電材料的製作方法,其中,該步驟(a)的含銀離子的前驅物是由一選自下列構成之群組的材料所製成:硝酸銀、高氯酸銀,及氟化銀。
  8. 一種複合導電薄膜,包含:一透明基板;及一導電膜,形成於該透明基板表面,且該導電膜具有由前述請求項1之方法製得的複合導電材料。
  9. 如請求項8所述的複合導電薄膜,其中,該複合導電薄膜的片電阻不大於100Ω/sq,且於550nm波長的穿透率不小於90%。
  10. 如請求項8所述的複合導電薄膜,其中,該透明基板具 有一經電漿前處理的表面,且該導電膜形成於該表面。
TW103120205A 2014-06-11 2014-06-11 複合導電材料的製作方法及其導電薄膜 TWI486969B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103120205A TWI486969B (zh) 2014-06-11 2014-06-11 複合導電材料的製作方法及其導電薄膜
US14/473,595 US20150364227A1 (en) 2014-06-11 2014-08-29 Method of making a transparent conductive composite material
US15/596,636 US10478899B2 (en) 2014-06-11 2017-05-16 Method of making a transparent conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103120205A TWI486969B (zh) 2014-06-11 2014-06-11 複合導電材料的製作方法及其導電薄膜

Publications (2)

Publication Number Publication Date
TWI486969B true TWI486969B (zh) 2015-06-01
TW201546823A TW201546823A (zh) 2015-12-16

Family

ID=53937848

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103120205A TWI486969B (zh) 2014-06-11 2014-06-11 複合導電材料的製作方法及其導電薄膜

Country Status (2)

Country Link
US (2) US20150364227A1 (zh)
TW (1) TWI486969B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796592B2 (en) * 2015-03-06 2017-10-24 Hk Graphene Technology Corporation Nanoporous graphene nanowires and producing methods and applications of same
KR102437578B1 (ko) 2015-11-11 2022-08-26 삼성전자주식회사 투명 전극 및 이를 포함하는 소자
KR102522012B1 (ko) * 2015-12-23 2023-04-13 삼성전자주식회사 전도성 소자 및 이를 포함하는 전자 소자
KR102543984B1 (ko) 2016-03-15 2023-06-14 삼성전자주식회사 도전체, 그 제조 방법, 및 이를 포함하는 전자 소자
WO2017210289A1 (en) * 2016-05-31 2017-12-07 Rutgers, The State University Of New Jersey Hollow particles formed from 2-dimensional materials
CN106835082A (zh) * 2017-01-11 2017-06-13 东南大学 金属纳米粒子掺杂的柔性自支撑石墨烯薄膜的制备方法
WO2018140226A1 (en) * 2017-01-24 2018-08-02 The Regents Of The University Of California Conductive core-shell metal nanowires for transparent conductors
CN109294131B (zh) * 2018-08-09 2021-03-19 东华大学 一种聚乙烯醇/石墨烯导电纳米复合材料及其制备和应用
CN109300774B (zh) * 2018-08-30 2021-02-26 中山大学 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN112582105B (zh) * 2020-11-24 2022-08-05 西安交通大学 一种高导电且内部连续的石墨烯杂化膜制备方法
CN112993084A (zh) * 2021-02-04 2021-06-18 合肥工业大学 一种具有优异光电性能Ag-rGO薄膜的制备方法
TWI783404B (zh) * 2021-03-11 2022-11-11 大陸商天材創新材料科技(廈門)有限公司 疊構結構及觸控感應器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201144217A (en) * 2010-03-04 2011-12-16 Guardian Industries Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US20120033367A1 (en) * 2007-04-20 2012-02-09 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
CN102630327A (zh) * 2009-12-28 2012-08-08 东丽株式会社 导电层合体和使用该导电层合体而形成的触控面板
US20140008115A1 (en) * 2011-03-28 2014-01-09 Toray Advanced Film Co., Ltd. Conductive laminate and touch panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5583097B2 (ja) * 2011-09-27 2014-09-03 株式会社東芝 透明電極積層体
KR101324281B1 (ko) * 2012-03-15 2013-11-01 인하대학교 산학협력단 고유연성을 가지는 산화 그라핀/은 나노와이어 하이브리드를 기반으로 하는 투명전도성 필름
US9209136B2 (en) * 2013-04-01 2015-12-08 Intel Corporation Hybrid carbon-metal interconnect structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033367A1 (en) * 2007-04-20 2012-02-09 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
CN102630327A (zh) * 2009-12-28 2012-08-08 东丽株式会社 导电层合体和使用该导电层合体而形成的触控面板
TW201144217A (en) * 2010-03-04 2011-12-16 Guardian Industries Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US20140008115A1 (en) * 2011-03-28 2014-01-09 Toray Advanced Film Co., Ltd. Conductive laminate and touch panel

Also Published As

Publication number Publication date
US20170246691A1 (en) 2017-08-31
TW201546823A (zh) 2015-12-16
US10478899B2 (en) 2019-11-19
US20150364227A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
TWI486969B (zh) 複合導電材料的製作方法及其導電薄膜
Kim et al. Ultrastrong graphene–copper core–shell wires for high-performance electrical cables
Vallés et al. Solutions of negatively charged graphene sheets and ribbons
Chen et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets
US9655252B2 (en) Low haze transparent conductive electrodes and method of making the same
Tokuno et al. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process
CN106941019B (zh) 电导体、其制造方法和包括其的电子装置
KR101388682B1 (ko) 은 나노와이어 및 그라핀을 이용한 하이브리드 전극 및 이의 제조방법
US9873811B2 (en) Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
EP2765582A1 (en) One-dimensional conductive nanomaterial-based conductive film having the conductivity thereof enhanced by a two-dimensional nanomaterial
WO2014021257A1 (ja) グラフェンとカーボンナノチューブからなる複合フィルムの製造方法
JP2016524517A (ja) 結合グラフェン及び導電性ナノフィラメントによる導電性透明フィルムの超音波スプレイコーティング
KR101073853B1 (ko) 기재 상에 나노 구조체로 이루어진 망상 필름의 제조 방법 및 그에 따라 제조된 나노 구조체 망상 필름이 구비된 기재
JP2009001481A (ja) 金属前駆体を含むカーボンナノチューブ組成物、カーボンナノチューブ薄膜およびその製造方法
Sundramoorthy et al. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix [4] arene
Chang et al. Highly foldable transparent conductive films composed of silver nanowire junctions prepared by chemical metal reduction
Naito et al. Transparent conducting films composed of graphene oxide/Ag nanowire/graphene oxide/PET
KR20170067204A (ko) 금속 나노선 전극의 제조 방법
KR20170045669A (ko) 도전체, 그 제조 방법, 및 이를 포함하는 소자
KR101838637B1 (ko) 나노입자-그래핀 산화물 복합체 박막 및 그 제조방법
US20170040089A1 (en) Methods of preparing conductors, conductors prepared therefrom, and electronic devices including the same
US20130130020A1 (en) Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same
KR101598492B1 (ko) 탄소나노튜브-그래핀 하이브리드 박막, 이의 제조방법, 및 이를 포함하는 투명전극 및 전계효과트랜지스터
JP5002778B2 (ja) 透明導電性膜基材の製造方法及び透明積層体の製造方法
Fan et al. A novel method of fabricating flexible transparent conductive large area graphene film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees