TWI483569B - 轉換用於無線通訊之預編碼信號 - Google Patents

轉換用於無線通訊之預編碼信號 Download PDF

Info

Publication number
TWI483569B
TWI483569B TW102118678A TW102118678A TWI483569B TW I483569 B TWI483569 B TW I483569B TW 102118678 A TW102118678 A TW 102118678A TW 102118678 A TW102118678 A TW 102118678A TW I483569 B TWI483569 B TW I483569B
Authority
TW
Taiwan
Prior art keywords
array
antenna
antenna array
signals
array configuration
Prior art date
Application number
TW102118678A
Other languages
English (en)
Other versions
TW201409960A (zh
Inventor
Pantelis Monogioudis
Ilya Korisch
Ruoheng Liu
Robert Soni
Original Assignee
Alcatel Lucent Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent Usa Inc filed Critical Alcatel Lucent Usa Inc
Publication of TW201409960A publication Critical patent/TW201409960A/zh
Application granted granted Critical
Publication of TWI483569B publication Critical patent/TWI483569B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Description

轉換用於無線通訊之預編碼信號 〔與相關案的對照參考〕
本案係與2011年5月2日提出的美國專利申請案13/098693相關。
本案是廣泛地關於通訊系統,且更特別的是無線通訊系統。
無線通訊系統典型地使用射頻信號以傳送資訊在發射器及接收器之間的空中介面上。例如,基地台(或eNodeB)可使用基地台所實施的收發器及用戶設備而與用戶設備(UE)連通。最簡單的收發器使用單一天線以發射及接收射頻信號。然而,更先進的收發器可使用一個以上的天線用於傳輸在空中介面上之信號的發射及接收。例如,基地台可利用2、4、8或更多個天線的陣列用於發射及接收在空中介面上方的射頻信號。用戶設備亦可實施一個以上的天線。利用多數天線在接收器側及/或發射器側系統通常稱為多入多出(MIMO)通訊系統。MIMO系 統亦可被實施為單用戶MIMO(SU-MIMO)系統或多用戶MIMO(MU-MIMO)系統。
MIMO系統中之無線通訊通道係由通道矩陣所界定,其決定在接收器側天線所接收的信號作為由發射側天線所發射的信號的函數。該通道矩陣因此係發射器及接收器天線配置以及發射器及接收器之間的散射環境的功能。通道矩陣的大小係由發射器側天線及接收器側天線的數量所決定。交互天線干擾,其係由通道矩陣的非對角元素所表示,理論上可由預編碼的發射信號所移除以使該通道矩陣對角化。例如,使下行鏈路通道矩陣對角化之預編碼矩陣可使用對稱通道矩陣之通道矩陣的一般本徵值/本徵向量分解或不對稱通道矩陣之通道矩陣的奇異值分解對各UE進行判定。然而,界定每一UE之精確的預編碼矩陣需要來自該UE的足夠反饋以精確地決定下行鏈路通道矩陣,以及足夠計算能力以即時計算預編碼器。實際上,上行鏈路通路負擔及收發器設計上之拘束使此變得不可能。
一般MIMO系統因此使用包括預定量化組的預編碼矩陣之碼本。該碼本包括一組預編碼矩陣,其對角化界定用於特定天線組態及非散射環境之理想通道矩陣。發射器然後可基於接收自接收器之反饋來選擇該等預編碼矩陣之一者。例如,UE可反饋通道狀態資訊,其可被使用來選擇預編碼矩陣以應用至傳輸在下行鏈路上至UE之信號。示範性通道狀態資訊(CSI)包括通道品質資訊(CQI)、預編碼矩陣指示(PMI)、等級指示(RI)、預編碼類型 指示(PTI)及類似資訊。CQI典型地代表所建議的調變方式及編碼比率,其應被使用於下行鏈路傳輸,RI提供關於通道的等級之資訊且可被使用來決定應被使用於空間多工系統中的下行鏈路傳輸之層的最佳數量,以及該PMI指示使用例如,閉環空間多工系統中的哪一預編碼矩陣。預編碼碼本的大小係由可用於提供必要反饋之控制信號負擔所限制。
碼本係典型地標準化用於一個採取的天線組態,諸如均勻直線天線陣列(ULA)。例如,在下行鏈路上,用於2、4及8個TX天線的均勻直線陣列之碼本已被標準化用於Rel-10 LTE技術規格以支援SU-MIMO及MU-MIMO。依據該標準操作之eNodeB及UE必須使用這些碼本用於空中介面上的傳輸,不管它們的實際天線組態。再者,DL MIMO之CSI反饋機構設計係基於標準化碼本,以及每一UE採取其已接收的信號係由實施所採取天線組態之eNodeB所產生。至於另一例子,在上行鏈路上,指定給UL SU或MU-MIMO的UE之預編碼向量係基於2及4個TX天線的碼本,其係界定於由第三代合夥專案(3GPP)所建立的規格中。eNodeB將指定來自特定組的碼本至每一UE,不管該UE所使用的實際天線組態。
所揭示標的物係針對發表以上所述的一或多個問題的影響。以下提出所揭示標的物的簡化概要以提供所揭示標 的物的一些態樣的基本了解。此概要不是所揭示標的物的徹底綜述。這不會意圖區別所揭示標的物的重要或關鍵元件,或敘述所揭示標的物的範圍。其唯一目的在於以簡化形式提出一些概念作為對後述的更詳細說明之排除。
於一實施例中,提供一種轉換用於無線通訊的信號之設備。該設備的一實施例包括包含複數第一埠及第二埠之轉換器。每一第一埠係與第一天線陣列配置的模態關聯,以及每一第二埠係可配置成互通地連接至部署於該第一天線陣列配置的第一複數天線的一者。該設備的此實施例亦包括選擇器,可配置成基於隨著方位各模態的變化角度選擇第一天線陣列配置的一支組模態。該設備的此實施例進一步包括映射器,配置成將複數第三埠的每一者映射至與該支組模態的一者關聯之該等第一埠的一者。該等第三埠的每一者係與第二天線陣列配置的模態關聯。
於另一實施例中,基地台被提供。該基地台的一實施例包括引示信號產生器,可配置來產生對應於第一天線陣列配置的天線元件及部署於第二天線陣列配置的複數天線之複數引示信號。該基地台的此實施例亦包括轉換矩陣,其包括複數第一埠及第二埠。每一第一埠係與該第一天線陣列配置的該等天線元件的一者關聯,以及每一第二埠係互通地連接至部署於該第二天線陣列配置的該等天線的一者。該轉換矩陣係可配置成將該等引示信號的每一者映射至該第二天線陣列配置的所選擇支組模態的不同一者用於藉該第二天線陣列配置中的該等天線之傳輸。
於更另一實施例中,提供一種轉換用於無線通訊的信號之方法。該方法的實施例包括基於每一模態隨著方位的變化角度,選擇第一天線陣列配置的一支組模態,以及將複數第一埠的每一者映射至與該支組模態的一者關聯之複數第二埠的一者。該等第一埠的每一者係與第二天線陣列配置的模態關聯。該方法的實施例亦包括轉換傳送於該等第二埠與對應的複數第三埠之間的信號。每一第二埠係與該第一天線陣列配置的該等模態的一者關聯,以及每一第三埠係可配置成互通地連接至部署於該第一天線陣列配置的複數天線的一者。
100‧‧‧無線通訊系統
105‧‧‧基地台
110‧‧‧用戶設備
115‧‧‧引示產生器
120‧‧‧交通信號產生器
125‧‧‧波束形成器
130‧‧‧預編碼器
135‧‧‧天線陣列
140‧‧‧天線
145‧‧‧轉換矩陣
150‧‧‧接收器
155‧‧‧收發器功能性
165‧‧‧通道估計器
200‧‧‧主動天線陣列
205‧‧‧主動天線陣列
210‧‧‧主動天線陣列
215‧‧‧天線元件
300‧‧‧轉換矩陣
305‧‧‧轉換器
310‧‧‧埠
315‧‧‧埠
320‧‧‧選擇器
325‧‧‧映射器
400‧‧‧下行鏈路路徑
405‧‧‧上行鏈路路徑
410‧‧‧均勻圓柱形陣列
415‧‧‧天線元件
420‧‧‧埠
425‧‧‧埠
430‧‧‧交通信號產生器
435‧‧‧波束形成元件
440‧‧‧預編碼元件
445‧‧‧引示信號產生器
450‧‧‧靜態波束形成器
455‧‧‧轉換矩陣
500‧‧‧均勻圓形陣列
505‧‧‧天線元件
510‧‧‧圓
800‧‧‧傳輸鏈、基地台
805‧‧‧預編碼器
810‧‧‧虛擬埠
815‧‧‧轉換器
820‧‧‧埠
825‧‧‧均勻圓形陣列
1100‧‧‧連續圓形陣列
1105‧‧‧平面波
1110‧‧‧平面波
1115‧‧‧直線
1120‧‧‧點
1125‧‧‧點
1800‧‧‧基地台
1805‧‧‧處理器
1810‧‧‧資料儲存
1815‧‧‧輸入/輸出(I/O)介面
1820‧‧‧資訊
1825‧‧‧資訊
1830‧‧‧資訊
所揭示標的物可參照以下說明以及附圖而瞭解,其中相同參考數字辨別相同元件,以及其中:圖1概念上解說無線通訊系統的第一示範性實施例;圖2A、2B及2C描述主動天線陣列的三個示範性實施例;圖3概念上解說轉換矩陣的一個示範性實施例;圖4A及4B概念上分別解說基地台的一個示範性實施例中之下行鏈路路徑及上行鏈路路徑;圖5概念上解說均勻圓形陣列的一個示範性實施例;圖6A及6B分別顯示寬邊及端射角的陣列因素用於具有N=8個理想化同向性天線元件之均勻圓形陣列及均勻直線陣列的示範性實施例; 圖7A顯示均勻圓形陣列回應,其在DFT矩陣的行被使用來提供可能激發重量時而產生,該等重量可被應用於N=8個元件的均勻圓形陣列;圖7B描述均勻直線陣列對圖7A中所示之相同激發重量的回應;圖8概念上解說用於預編碼及轉換傳輸用信號之傳輸鏈的一個示範性實施例;圖9描述不同階的貝色(Bessel)函數;圖10描述陣列圖的一個示範性實施例;圖11概念上解說連續圓形陣列的一個示範性實施例;圖12A及12B描述模態圖的一個示範性實施例;圖13顯示使用偶數的圓形模態之波束形成;圖14顯示形成有圓形模態之方向圖的波束寬度作為所包括交點數的函數;圖15顯示使用來產生特別數量的可用模態之最小數量的元件及陣列直徑;圖16A-C描述用於全向天線之模態圖的示範性實施例;圖17A-C描述用於130°波束寬度天線之模態圖的示範性實施例。
圖18概念上解說基地台的一個示範性實施例;雖然所揭示的標的物容許各種修改及替代形式,其特定實施例已經由圖式中的實例顯示且在文中詳述。應瞭解 到,然而,特定實施例的文中說明不意圖將所揭示的標的物限制至所揭示的特別形式,但相反地,意圖涵蓋屬於附加請求項的範圍內之所有修改、等效物及替代。
以下說明解說性實施例。為清楚起見,不是實際實施的所有特徵都敘述於此說明書中。當然將領會到,於任何此種實際實施例的發展中,許多實施的特定決定應被作到以達到發展者的特別目標,諸如與系統相關及商業相關拘束的符合性,其將自一實施變化至另一實施。再者,將領會到,此發展努力可能是複雜且耗時的,但將仍然是具有此揭示的利益之熟悉此項技術者的常規任務。說明及圖式僅僅解說所請求標的物的原則。因此將領會到,熟悉此項技術者可能能夠設計各種配置,雖然文中未明確地說明或顯示,實施文中所述的原則,且可被包括在所請求的標的物的範圍內。而且,文中所述的所有實例原則上意圖用於教學目的以幫助讀者瞭解所請求標的物的原則及由發明者貢獻於促進此技術之概念,且將理解為無限制對於此特別敘述的實例及條件。
現將參考附圖說明所請求標的物。各種結構、系統及裝置係概要地敘述於圖式中僅為解釋目的,且因此不會以熟悉此項技術者所熟知的細節來混淆說明。然而,附圖被包括以說明及解釋所請求標的物的解說性實例。文中所用的字及詞應被瞭解且詮釋以使含意與熟悉此項技術者所用 之字及詞的瞭解一致。無用語或詞句的特別意義,亦即,與如熟悉此項技術者所瞭解的一般及習慣含意不同的定義,意圖由文中的用語或詞句的一致用法所暗示。在用語或詞句意圖具有特別意義的範圍,亦即,除了熟練匠所瞭解的含意之含意,此種特別定義將以直接且明確地提供用語或詞句的特別定義之定義方式而明確地提出於說明書中。此外,用語“或”,如文中所用的,意指非唯一的“或”,除非另有指示(例如,“否則”或“替代的”)。而且,文中所述之各種實施例不必要是相互排斥的,因為有些實施例可與一或多個其它實施例結合以形成新的實施例。
閉環多入多出(CL-MIMO)系統中之基地台發射引示信號至用戶設備,其可實施測量在所接收的引示信號以產生通道狀態資訊、通道品質資訊及類似資訊。基於這些測量,用戶設備可選擇預編碼矩陣且傳輸包括指示所選預編碼矩陣的資訊之反饋至基地台,以使基地台可應用所選預編碼矩陣至後續下行鏈路傳輸。預編碼矩陣係標準化,以使用戶設備可產生有意義反饋且傳輸使用合理的負擔量之反饋。目前標準指示數組預編碼矩陣或碼本用於均勻直線天線陣列(ULA),其自陣列中的每一天線發射不同引示信號。預編碼矩陣係記得設計有ULA,以及其在應用至ULA時採取等級-1傳輸之行導致幾乎均勻地掃描方位角之正交波束。
新的天線技術,諸如支援不同天線配置的撓性部署之 模組天線,可允許服務提供者部署一些不同配置,諸如均勻圓形陣列或均勻圓柱形陣列。不同天線配置具有不同強度及弱點,且因此,服務提供者可實施依據內文使用各種不同配置之基地台。然而,標準化預編碼矩陣尚未被界定用於每一可能天線部署。再者,除了ULA外,還標準化附加組的天線配置用之預編碼矩陣將增加在用戶設備的計算要求,或需求用戶設備能夠發現正被服務基地台所使用之天線配置的類型。
至少部分地支援不同天線陣列配置的部署,本案說明轉換元件的實施例,其將採取用於標準組的ULA預編碼矩陣之N個直線陣列元件映射至均勻圓形陣列(UCA)的M個圓形模態。於一個實施例中,N<M以及每一直線陣列元件係映射至UCA所支援之圓形模態的總數的支組的一者。該支組的圓形模態可基於每一模態隨著方位的變化角度而選擇。為下行鏈路上之引示信號的傳輸,該引示信號係提供至轉換元件的N個輸入埠(虛擬或真實)。轉換元件應用N×M轉換矩陣以將N個輸入埠上所接收的引示信號映射至互通地連接至UCA中的天線之M個輸入埠。與每一直線陣列元件關聯之引示信號可激發UCA所選圓形模態的一者,以使引示信號係實質地均勻傳輸於方位上,例如,具有隨著小於所選臨界值的方位之變化角度。下行鏈路信號的波束形成,諸如交通信號,可藉由應用不同重量於使用來傳輸引示信號之圓形模態而予以實施。由M個天線所接收的上行鏈路信號係連通至轉換元件的M 個輸入埠,其應用N×M轉換矩陣以將接收在M個輸入埠上之上行鏈路信號映射至連接至接收器之N個輸出埠(虛擬或真實)。雖然文中所述之上行鏈路信號處理的實施例可能涉及下行鏈路的轉換矩陣T,天線信號可被直接處理且因此可能不受矩陣T所拘束。
圖1概念上解說無線通訊系統100的第一示範性實施例。於所解說實施例中,無線通訊系統包括一或多個基地台105,用於提供上行鏈路或下行鏈路無線連接性至一或多個用戶設備110。圖1所示之無線通訊系統100可依據長期演進(LTE)標準或由第三代合夥專案(3GPP,3GPP2)所同意之協定予以操作。無線通訊系統100亦可依據通用移動通信系統(UMTS)的標準或協定予以操作。然而,具有本揭露的利益之熟悉此項技術者應理解到,無線通訊系統100的替代實施例可依據其它標準或協定予以操作。於所解說實施例中,基地台105或用戶設備110可實施閉環多入多出(CL-MIMO)通訊技術在上行鏈路或下行鏈路上,在此如所述。
基地台105所解說實施例包括用於產生傳輸在下行鏈路上的信號之功能性。例如,基地台105可包括引示信號產生器110,其可被配置來產生一或更多引示信號。引示信號產生器110可被配置成藉由部署於所採取天線陣列配置之天線以產生傳輸用之引示信號。例如,引示信號產生器110可產生複數各別正交引示信號,且然後可支援該等信號至與均勻直線陣列的天線中的不同天線所關聯之埠。 於所解說實施例中,基地台105亦包括交通信號產生器120,其可被配置來產生信號用於輸送空中介面上的資料交通。交通信號產生器120可被配置成藉由部署於所採取天線陣列配置之天線以產生傳輸用之資料交通信號。例如,交通信號產生器120可產生資料交通信號,且然後可支援該等信號至與均勻直線陣列的天線中的不同天線所關聯之埠。
波束形成器125亦可被實施於基地台105中。於所解說實施例中,波束形成器125可以是靜態波束形成器125,其產生或應用修改接收在其輸入埠之信號的幅度或相位之重量以產生輸出信號。輸出信號可被提供(或許除預編碼或轉換之外如文中所述)至天線陣列,以使天線陣列所傳輸之信號建設性地或用破壞性地干涉以產生空間選擇性。波束形成技術係眾所周知於此項技術,以及為清楚起見,僅與所請求標的物有關之波束形成器的態樣被敘述於本文中。於所解說實施例中,波束形成器125可被配置成基於諸如均勻直線陣列的天線之採取的天線配置以產生該等重量。例如,波束形成器125可應用重量至所接收引示信號,以使對應於所採取天線配置中的不同天線之波束形成器輸出每一者接收對應於所接收引示信號的一者之信號。至於另一實例,波束形成器125可應用重量至所接收資料交通信號,其將致使資料交通藉由所採取天線配置而優先地傳輸於特殊方向。
將被傳輸之信號的預編碼可由預編碼器130所實施。 於所解說實施例中,預編碼器130使用或存取碼本,其包括預定量化組的預編碼矩陣。碼本可包括一組預編碼矩陣,其使界定用於特定天線配置及非散射環境之理想通道矩陣對角化。基地台105然後可基於接收自用戶設備110之反饋來選擇該等預編碼矩陣的一者。例如,用戶設備110可反饋通道狀態資訊,其可被使用來選擇預編碼矩陣以應用於傳輸在到用戶設備110的下行鏈路上之信號。示範性通道狀態資訊(CSI)包括通道品質資訊(CQI)、預編碼矩陣指示(PMI)、等級指示(RI)、預編碼類型指示(PTI)及類似資訊。於所解說實施例中,碼本可被決定用於採取的天線配置,諸如交叉極化天線陣列或均勻直線天線陣列。預編碼器130可使用這些碼本用於預編碼傳輸在空中介面上之信號,不管基地台110所實施之實際天線配置。再者,DL MIMO的CSI反饋機構設計係基於標準化碼本,以及用戶設備110採取所接收信號係由實施所採取天線配置之基地台105而產生。至於另一實例,在上行鏈路上,指定至UL SU或MU-MIMO的用戶設備110之預編碼向量係基於用於2及4個TX天線之碼本,其係界定於由第三代合夥專案(3GPP)所建立之規格。基地台105因此可自所指定組指定碼本至用戶設備110,不管用戶設備110所使用之實際天線配置。
雖然波束形成器125及預編碼器130兩者係描述於圖1中,具有本揭露的利益之熟悉此項技術者應理解到,於各種替代實施例中,基地台105可實施使用波束形成器 125之波束形成或使用預編碼器130之預編碼。替代地,基地台105可實施波束形成及預編碼兩者。如文中所使用,用辭“波束形成”可意指所傳輸下行鏈路交通信號朝向諸如用戶設備110的位置之位置的共定相,其係使用擷取自上行鏈路上由基地台105所接收之交通及引示信號的相對長期統計資訊予以決定。如文中所述,用辭“預編碼”可意指所傳輸下行鏈路交通信號朝向諸如用戶設備110的位置之位置的共定相,其使用在上行鏈路上由用戶設備110所傳輸之相對短期資訊(例如,包括PMI的反饋)。文中所述之轉換方法的實施例可被應用至短期或長期實施,例如,應用至包括波束形成器125或預編碼器130或二實體之實施例。
基地台105可以是物理地、電子地、或互通地連接至天線陣列135,其包括數個用於發射或接收射頻信號的天線140。雖然基地台105的標準適用元件,諸如波束形成器125或預編碼器130,可採取特殊天線配置,所部署天線陣列135可具有不同配置。例如,標準適用元件可採取的是,天線係部署於均勻直線陣列中,而實際部署可使用部署於各種配置的天線140,包括圓形陣列、圓柱形陣列及類似陣列。再者,具有本揭露的利益之熟悉此項技術者應理解到,天線140的陣列可包括任何數量的天線140。例如,2、4、8及12個天線的的陣列係經常部署於各種配置。用戶設備110亦可實施多天線(未顯示於圖1)用於發射或接收射頻信號。
圖2A、2B及2C描述主動天線陣列200、205、210的三個示範性實施例。所解說的實施例顯示不同配置各別天線元件215。圖2A描述包括16個互連天線元件215之垂直直線陣列200。圖2B描述包括8個互連天線元件215之水平直線陣列200。圖2C描述包括8個互連天線元件215之圓形陣列210。正方形或長方形陣列200、205可特別地適用於建物正面上的部署或於諸如火車站及機場之公共場所。具有全向或定向元件之圓形陣列210或圓柱形陣列(未顯示於圖2A-C)可特別地適用於柱、塔、燈柱或類似物上的安裝。然而,具有本揭露的利益之熟悉此項技術者應理解到,特別陣列結構、天線元件215的數量及圖2A-C中所示的部署情境企圖為解說之用,且未企圖限制除了請求項中所明確提出之外的。
主動天線陣列200、205、210的實施例可被配置來支援不同波束形成能力。例如,主動天線陣列200、205、210的實施例可被配置來支援波束形成能力,諸如數位傾角、每載波的微分傾角/頻帶微分上行鏈路/下行鏈路(UL/DL)傾角、撓性波束成形能力、或具有來自具有多波束間的彈性電源共用之陣列的該等波束之垂直波束形成。由主動天線陣列200、205、210產生的不同波束可形成內及外涵蓋區在習用蜂巢式系統布局。主動天線陣列200、205、210的各種實施例可支援文中所述之波束形成能力的不同組合,以及其它波束形成能力。
回去參照圖1,基地台105可實施轉換矩陣145,其 可被使用來轉換傳輸在下行鏈路上的信號或上行鏈路上所接收的信號。轉換矩陣可基於天線陣列135的實際配置及由諸如波束形成器125或預編碼器130之基地台105的其它元件所使用之採取的天線配置而決定。於所解說實施例中,轉換矩陣145包括一組埠,其係配置來輸送對應於所採取的天線陣列的埠之信號,以及另一組埠,其係配置來傳輸信號至及自天線140。如本文所述,轉換矩陣145可被配置來將下行鏈路信號自對應於所採取天線陣列配置的虛擬埠映射至對應於天線140的埠。例如,轉換矩陣145可配置來將接收自引示產生器115的引示信號映射至用於空中介面上的傳輸之天線陣列135的所選支援組的模態。轉換矩陣145亦可配置來將由天線陣列135所接收之上行鏈路信號映射至基地台105中之接收器150的虛擬埠。
無線通訊系統100的用戶設備110可包括收發器功能性155用於發射或接收空中介面上的信號。於所解說實施例中,用戶設備110亦包括通道估計器165,其可被使用來估計通道品質或通道狀態資訊,例如,使用由基地台105所傳輸之引示信號的測量。用戶設備110可使用所估計通道品質或通道狀態資訊以辨別一或多個可被使用於下行鏈路傳輸之預編碼矩陣。用戶設備110亦可使用所估計通道品質或通道狀態資訊以產生指示估計通道狀態資訊或預編碼矩陣之反饋。該反饋然後可被傳輸至基地台105。
圖3概念上解說轉換矩陣300的一個示範性實施例。於所解說實施例中,轉換矩陣300包括轉換器305,其實 施映射信號於第一組埠310與第二組埠315之間之M×M陣列305,第一組埠310係與第一天線陣列配置的模態關聯,第二組埠315可互通地連接至部署於第一天線陣列配置之天線。埠的數量(M)因此可以是相同如部署於第一天線陣列配置之天線的數量。例如,轉換器305可實施巴特勒(Butler)矩陣轉換,其應用預定相位增量於第一組埠310與第二組埠315之間。巴特勒矩陣轉換的實施例可被配置來激發第一天線陣列配置的模態以回應應用在第一組埠310之信號。
轉換矩陣300所解說實施例亦包括選擇器320,可配置來基於每一模態隨著方位的變化角度以選擇第一天線陣列配置的一支組模態。選擇器320可包括邏輯元件,其允許選擇器320主動地或動態地選擇第一天線陣列模態的支組,例如,以回應諸如連接裝置或天線對轉換矩陣300的動作或連接至轉換矩陣之天線的重新配置。替代地,選擇器320可包括一或多個被動元件(諸如開關、引線、暫存器或指示所選模態之其它元件),其可被配置成基於天線陣列配置例如,由工程師或設計者在操作或部署之前而指示所選的模態。例如,均勻圓形或圓柱形陣列的天線模態可具有隨著方位變化的不同角度,例如,當方位角自0變化至2π時,不同模態可在不同的最大與最小幅度之間的範圍。選擇器320因此可配置來僅選擇具有小於或在預定臨界值的階上之變化的角度之模態。例如,預定臨界值可被設定為諸如2 dB的值。選擇器320可被實施於硬體、 韌性、軟性或其任合組合。
選擇器320可互通地連接至映射器325,其可被配置來映射(回應選擇器320所提供的信號)轉換矩陣300的埠330至與所選支組的模態的一者關聯之埠310的一者。例如,埠330可被映射至矩陣305的埠310(1-N)。於所解說實施例中,埠330(1-N)的數量係小於埠310(1-M)的數量或埠315(1-M)的數量。映射器325可被實施於硬體、韌性、軟性或其任合組合。
圖4A及4B概念上解說下行鏈路路徑400及上行鏈路路徑405於基地台的一個示範性實施例。於所解說實施例中,均勻圓柱形陣列410係使用於發射下行鏈路信號或接收上行鏈路信號在空中介面上。替代地,均勻圓形陣列可被實施於基地台的其它實施例。均勻圓柱形陣列410包括(M)個天線元件415(僅一個由圖4A及4B的數字所指示),分佈在圓的周圍的相等角度間隔。均勻圓柱形陣列410使用互連地連接至對應天線元件415之M個埠420、425而與基地台中的其它元件交換信號。下行鏈路路徑400中的埠420係使用來自基地台傳輸信號至天線元件415,以及上行鏈路路徑405中的埠425係使用來自天線元件415傳輸信號至基地台。
下行鏈路路徑400包括交通信號產生器430,其產生可被分開於N個埠之間(其可以是虛擬埠)之交通信號。波束形成元件435可被使用來產生或應用一組重量(W0)至交通信號,例如,用於旁波瓣控制。波束形成 信號然後可使用預編碼元件440予以預編碼。於所解說實施例中,預編碼元件440可應用離散傅氏(Fourier)轉換(DFT)預編碼矩陣。預編碼向量可使用諸如用戶設備所提供的PMI之反饋予以選擇。下行鏈路路徑400亦包括引示信號產生器445,用於產生在空中介面上的傳輸之引示信號。實例引示信號可包括標準化參考信號,諸如界定於LTE 3GPP R10規格中的CSI-RS。於所解說實施例中,引示信號係產生用於包括N個天線之所採取天線配置,以及因此,N個引示係由引示信號產生器445所產生且接著加至資料流。於所解說實施例中,靜態波束形成器450可被使用來應用引示信號至與所採取天線配置的N個天線(例如,均勻直線陣列)關聯之埠。
下行鏈路路徑400的所解說實施例亦包括轉換矩陣455,其係使用來映射基於所採取天線配置產生之信號至與所部署均勻圓柱形陣列410的天線元件415關聯之埠420。例如,轉換矩陣455可以是N×M轉換矩陣455,其映射N個資料流至圓柱形陣列的M個元件。轉換矩陣455可以是具有2pi/M的相位增量之凡德芒(Vandermonde)矩陣。使用轉換矩陣455允許基地台使用與均勻直線陣列關聯之DFT預編碼矩陣以產生驅動藉由均勻圓柱形陣列410的傳輸之信號。天線的數量M係大於所採取天線配置的埠的數量N,以及比例M/N 係設計參數,典型地接近2。於一實施例中,轉換矩陣455可被設計來支援標準化R8或R10 ULA特定DFT預編碼矩 陣。使用轉換矩陣455亦允許用戶設備使用用於CL MIMO的PMI計算之標準程序。如文中所述,引示信號可被映射至具有方位上大約全向圖形之均勻圓柱形陣列410的模態。
於上行鏈路路徑405中,轉換矩陣455映射對應於天線元件415之M個埠425至基地台中之接收器460的N個虛擬埠。如文中所述,使用於上行鏈路接收之每一埠425具有方位上的全向圖形。基地台因此可實施習知接收操作在N個虛擬埠所接收之所轉換信號上,似乎轉換信號已由所採取天線配置中(例如,均勻直線陣列)的天線所接收。示範性接收操作包括最大比例結合(MRC)、最小均方誤差(MMSE)或其它接收操作。
圖5概念上解說均勻圓形陣列500的一個示範性實施例。於所解說實施例中,陣列500包括N個天線元件505,其係相等間隔在圓510周圍。於所解說實施例中,仰角係自z軸測量以及方位角係自x軸逆時針地測量。N個元件505的每一者係位在,其中,n =0, ...,N -1,係相對於x軸所測量。應用於每一元件之激發重量係以wn 表示,以及每一元件505具有複數增益圖形。平面波的電場,具有波數,在角度所界定的點P由遠場區中的元件505所放射,係由以下表達式給定:
於所解說實施例中,每一天線元件505具有相同圖形。然而,具有本揭露的利益之熟悉此項技術者應理解到,替代實施例可使用不同天線元件505的其它天線圖形。均勻圓形陣列500的導引向量可由以下表達式給定:
相對於涵蓋等效三角形均勻直線陣列結構,諸如均勻圓形陣列500之均勻圓形陣列可能遭受增加的互連,特別是近距離間隔元素,以及增加的旁波瓣位準。例如,圖6A及6B顯示分別用於具有N=8個理想化同向性天線元件之均勻圓形陣列及均勻直線陣列的示範性實施例之寬邊及端射角的陣列因素。這些實例顯示均勻圓形陣列的較大旁波瓣。這些實例亦顯示用於一些角度之由均勻圓形陣列所產生之增加的方向性。
如文中所述,為一採取的天線配置所產生的預編碼向量用於其它採取的天線配置通常不是最佳的。例如,使用來預編碼藉由均勻直線陣列的傳輸之目前的標準化碼本可能與藉由均勻圓形陣列的傳輸或接收不相容。為均勻直線陣列所產生的單一碼本包括碼字,其係DFT矩陣的行:
圖7A顯示均勻圓形陣列回應,其在DFT矩陣的行被使用來提供可能激發重量時而產生,該等重量可被應用於N=8個元件的均勻圓形陣列。相比之下,圖7B描述均勻 直線陣列對圖7A中所示之相同激發重量的回應。圖7A及7B所示之回應的比較清楚地顯示DFT碼本係設計用於均勻直線陣列。均勻圓形陣列的回應係不規則且失序,而均勻直線陣列的回應非常規則且有序。
圖8概念上解說傳輸鏈800的一個示範性實施例,用於預編碼及轉換傳輸用信號。於所解說實施例中,採取均勻直線陣列之傳輸信號被產生且然後提供給預編碼用之預編碼器805。例如,預編碼器805可預編碼使用採取具有Nv 個天線元件之均勻直線陣列所產生的DFT預編碼矩陣之信號。預編碼信號然後可輸出至對應於所採取均勻直線陣列中的所採取Nv 個天線元件之Nv 個虛擬埠810。虛擬埠810提供介面至轉換器815。於所解說實施例中,轉換器815實施大衛斯(Davies)轉換,其係直線轉換方法,該方法將UCA導引向量轉換成具有凡德芒結構之ULA向量。大衛斯轉換可被使用於以目前碼本支援閉環預編碼傳輸,以及使用於長期波束導引傳輸。至於波束導引應用,系統晶片(SoC)基頻計算可能不需適應於UCA幾何,以及ULA DoA估計方法可隨時使用於UE指定波束導引及零導引。
於所解說實施例中,轉換器815在標準化預編碼階段之後實施轉換(T),至少部分地支援CL-MIMO的應用。例如,轉換器815可將虛擬陣列輸入轉換至對應於均勻圓形陣列825中的天線元件之N個物理陣列輸出或埠820。有效的是,均勻圓形陣列825對預編碼器805出現為ULA。實施轉換器815因此可允許供應商提供不具 任何標準改變的UCA MIMO解法,或對目前基地台或預編碼器的改變。用戶設備亦可再利用目前單一碼本,諸如標準化於LTE及UMTS中用於傳送CL-MIMO傳輸模態的通道狀態資訊(CSI)之碼本。
大衛斯轉換(DT)自其傅氏分量應用合成程序至激發重量及對應圖形。UCA孔徑分佈然後可使用稱為相位模態激發的激發重量予以導引。大衛斯轉換的形式取決於天線825的結構。於一實施例中,天線825可具有連續圓形或環形孔徑。連續圓形孔徑的相位模態激發可被界定如下:
大衛斯轉換(DT)
連續圓形孔徑可被界定為位在之“元件”的連續分佈,其中係相對於x軸且係連續角度。於所解說實施例中,連續分佈中的每一元件具有同向性圖形。然而,具有本揭露的利益之熟悉此項技術者應理解到,替代實施例可使用其它天線圖形。
連續圓形孔徑可被使用於波束形成。例如,激發重量可被決定用於朝向位在之目標點的波束形成。所需激發重量可例如,藉由觀測離散UCA的圖形的表示而決定,而由以下表達式給定: 此例的遠場輻射圖形係由以下表達式給定: 零階貝色函數J0 可表示大的旁波瓣特性,如由圖6A及6B所示的實驗式極坐標圖所視。於一實施例中,旁波瓣位準可以幅度衰減予以控制。垂直圖形亦可具有貝色型特性,雖然垂直圖形的波束寬度可非常大於等效水平圖形的波束寬度。
連續圓形孔徑用的激發函數可以是角度隨著周期2π的周期性函數,且因此可被表示為其複合傅氏分量的有限總合:
以上表達式中,變數C m 表示第m空間諧波的複數係 數,以及於所解說實施例中,有2μ+1個諧波,其可表示激發重量。每一空間諧波可被稱為陣列激發的相位模態。m個相位模態相當於具有連續圓形陣列周圍之直線(於角度)相位改變的m個旋迴之恒定幅度,因此用於連續圓形陣列周圍之每度的角度改變,有m度的相位改變用於傳輸自對應“元件”之信號。負相位模態表示相反方向的相位改變。當第m個相位模態正激發陣列時,來自連續圓形陣列之輻射圖形係積分,如與離散元件UCA的例子之總合對比,其可由以下表達式給定:
於以上表達式中,函數J m 係階m的第一類的貝色函數。以上表達式顯示,應用激發重量致使合成圖形承受如由項的存在所示之其方位變化。因此,朝向特別方位方向之期望波束形成圖形可由遠場相位模態予以合成。於一實施例中,連續圓形陣列的輻射圖形可被分解成其傅氏分量,以及每一分量可被分開激發。
通常不是所有模態可提供相同強度於圖形中,每一激發模態可貢獻以幅度C m j m J m (κα sinθ ),其可引入頻率或仰角依賴性於圖形中。於一實施例中,μ 的值可被選擇以滿足以下表達式:
此選擇可藉由檢查在所謂連續圓形陣列的可見區予以調整,其可以是相同如ULA的可見區。連續圓形陣列的 可見區可基於導引向量的相位項以及用於不同值的予以界定。此給予取決於陣列的半徑之[0,κα ]的連續圓形陣列可見區。
用於具有α =λ 的連續圓形陣列的波束導引之相位模態激發的一示範性實施例係由以下表達式表示: 此表達式指示,所有模態係激發至遠場圖形中的相同幅度,及合成圖形可藉由以下表達式表示: 因為陣列的半徑係α =λ ,可見區係[-2π, 2π]以及可激發此特定環形孔徑之最高階相位模態係。如圖9所示,當模態增大時,貝色函數正具有越來越小的衝擊於可見區中。用於實例之相位模態6的第一尖峰出現通過可見區的x=2π上限,而J 6 (x )回到的負值。因此,激發重量致使對圖形中對大的部分角度之可忽略貢獻。陣列圖形表達式係顯示於圖10且類似具有μ個元件之ULA陣列的對應表達式。此例的比較係針對沿著x軸定位的ULA,第一元件係位在座標系統的原點,以及元件間的間距係
於所解說實施例中,減小半徑α導致較小的μ,以及可被激發之相位模態的數量被限制。此可容易地由當m >κα 時之J m (κα )的特性予以解釋,函數回到可忽略值。 於一些實施例中,如果J m (κα )係接近其數個零的一者,具有可看出的半徑之連續圓形陣列可具有有限數量的可用相位模態。例如,當陣列由相位模態所激發時,位在之陣列的無限小弧產生遠場相位,其可由以下表達式表示: 如果目標方向係由給定,則對遠場的最大貢獻來自共相位在目標角度之孔徑的部分。圖11概念上解說連續圓形陣列1100的一個示範性實施例。圓1100上有二個點1120、1125,其中所傳輸平面波1105、1110交叉在界定所傳輸模態(例如,空間諧波)的方向之直線1115。點1120、1125係位在角
於另一實施例中,均勻圓柱形陣列825可使用N個離散天線元件予以形成,例如,如圖5所示。例如,均勻圓柱形陣列825可由N個同向性元件予以形成,於此例中,陣列825可被視為起因於均勻地取樣連續圓形陣列之陣列。相位模態激發原則應用於此實施例,然而可被激發之最大相位模態階μ 可取決於取樣間隔(元件間的間距)對尼氏(Nyquist)間隔的關係。例如,相位模態階μ應為,以及元件的最小者可被選擇。於此例中,圓柱形天線陣列825的元件間之空間可以是。為滿足此要求,元件N的半徑及數量間之關係可由以下表達式給定: 用於
第n元件的第m相位模態激發重量可由以下表達式給定: 於此表達式中,函數係對應至元件座標之單元脈衝函數(例如,狄拉克(Dirac)函數)的序列之取樣函數。取樣函數然後可被表示為其空間頻譜分量的無限總合:
最後表達式的激發重量可由以下表達式給定: UCA激發重量的無限總合表達式可以是以任何取樣函數具有延伸入無限的頻譜分量的相同意義取樣的結果。的天線圖形之遠場圖形表達式然後可由以下表達式給定: 其中g =Nq -m,h =Nq +m 。以上表達式中的第一項表示期望的遠場相位模態圖形。此項係存在於連續圓形陣列的遠場 輻射圖形之表達式中的唯一項。附加項表示較高階的變形模態。出於這些較高階項,開始的第一(q =1)對具有較高衝擊,以及其幅度跟隨階N-|m|的貝色函數。特定的是,所有m中的J N -μ 係最有問題的,因為增大於可見區[0,κα ]上之的特性係明顯的。於一實施例中,保護免於由此項所表式的變形可藉由增加元件N的數量予以提供,以使J N -μ (x )係可忽略的。
如文中所述,圓柱形多模態陣列可由連續電流片模型及形式e jkφ 的圖形模態的總合予以表示。總合可以連續電流片而達成,或其可以離散圓柱形N元件陣列而估計。至於離散陣列,有如許多目前模態可被建立之天線元件。雖然圓柱形陣列的遠場圖形可根據圓柱形模態予以說明: 具有元件間距離(IED)d 之同向性源的直線陣列的遠場圖形可由以下給定:
u =kd sin(φ )
其中A n 係元件nφ 係相對於陣列漏孔之角度。以上方程式顯示圓形電流片及直線陣列的圖形的類似性,具有由圓形陣列中的電流模態所採之直線陣列中的元件的角色。直線陣列元件及圓柱形陣列模態的相位可藉由直線相位進展結合在特別方位角,且其被顯示為,如果適當定相,該二組態產生sin(nX)/sin(X)型遠場圖形。因此,圓柱形模態可與由波束形成及預編碼技術的一些實施例所採 取之虛擬直線陣列元件而等同。圓柱形模態亦可被視為虛擬元件。
傳輸鏈800的實施例可配置來實施如下:
1.具有基地台的埠810及N元件圓柱形天線矩陣825的埠820之間的2π/N的相位增量之N×N巴特勒(Butler)矩陣815激發可用於陣列825之所有圓柱形模態。
2.使用一支組的這些模態(或一支組的巴特勒矩陣埠810),定向波束可被產生於設定方向。
3.應用DFT導引重量至此支組的埠810,我們可連續地導引波束在360°之上,或將其切換至N個位置的任一者在360°之上。
4.如果每一天線引示係應用至所選支組的巴特勒矩陣埠810,用戶設備可使用DFT預編碼矩陣(例如,R8或LTE的R10)以決定有效PMI。
5.引示可被應用至具有相等幅度的巴特勒矩陣埠810以確定可靠通道估計。交通可被逐漸減少用於較佳旁波瓣性能。必需注意以確定可忽略的引示交通失配。陣列825的圓柱形模態可基於這些模態的變化角度予以選擇。至於離散N元件陣列,不是所有圓柱形模態具有符合e jkφ 形式的遠場圖形,以及較高階模態可明顯地偏離外形e jkφ 。例如,於N元件陣列中,最高階模態(偶數N的N/2或奇數N的(N+1)/2))具有等於或接近π的元件對元件相位變化。由於對稱,其圖形必需是多淺裂有N個零 和N個尖峰,且因此,其不可被使用作為均勻模態,因為其具有於幅度隨著方位的相對大變化角度。
不同的圓柱形模態的變化角度可基於陣列825的配置予以決定。於一實施例中,陣列825係半徑R的圓形陣列,具有等間隔在a j =j2π/N之元件,其中j=1,2,...,N。如果元件圖形A e (φ -a j )以及元件上的電流係A j e jψj ,則陣列825的輻射圖形係由以下所給定: 於一實施例中,表示天線元件的導體柱前面之偶極的大約圖形係由以下給定:A 0 (φ )=1/2(1+cos(φ ))且具有130度的3dB波束寬度。於替代實施例中,天線元件圖形可藉由成形元件反射器變得更窄。例如,90°及75°的模擬圖形波束寬度已藉由反射器成形而達成。具有基於原始偶極圖形A0 的適當波束寬度的同屬元素圖形(Generic element pattern)被使用於此評估。例如,A 1 (φ )=A 0 (φ )2 提供90°的波束寬度,以及A 2 (φ )=A 0 (φ )3 提供76°的波束寬度。
陣列825的模態圖形可使用具有90°元件圖形的以上方程式予以計算用於示範性實施例。第K模態的輻射圖形可使用由元件間距離0.5λ及0.4λ的A n =1 ,ψ n =2 πKn/N 所給之電流分佈予以計算: 表1列出在方位上(最大-最小)之模態幅度的絕對變化以dB為單位用於採取90°元件圖形的一實施例:A 1 (φ )=A 0 (φ )2 。呈現具有小於2dB的方位之變化度之均勻模態係突出顯示。
模態圖形的實例係顯示於圖12A及12B。於所解說實施例中,較低階模態具有大約恒定幅度且跟隨e jkφ 圖形,而較高階模態漸近地偏離e jkφ 圖形。具有方位的大變化角度之模態可能不適合波束形成,因為這些模態可能有助於旁波瓣增加。具有方位的大變化角度之模態亦可能不適用閉環方案,其中每一埠參考信號被利用。於所解說實施例中,平均模態幅度保持幾乎恒定作為當d =0.55時的模態數量的函數。較小元件間距離可能導致模態幅度隨著較高模態的模態數量之單調減小。
傳輸鏈800可基於隨著方位的變化角度選擇可用模態。可用模態的數量可與陣列825中之元件的數量成正比,且與陣列825的天線元件間的元件間距離成反比。於 一實施例中,可用模態可以是具有小於2dB的模態變化臨界值之變化角度的模態。使用此臨界值,表1指示具有0.5λ的8元件陣列具有3個均勻模態、具有0.4λ的5個模態等。表1指示,12個元件陣列具有7個0.5λ的有用模態及9個0.4λ元件間距離的有用模態。
波束形成亦可使用傳輸鏈800予以實施。於一實施例中,加入以同相地加在特別角度(以及不同相位地加在其它角度)之方式而相位化之模態可產生定向圖形,其起因模態的建設性及破壞性干涉。形成有不同數量的模態之正規化波束圖形係顯示於圖2上以及其波束寬度在圖3上。用於特殊數量的元件之一完全組的可用模態係奇數〔0,+/-1,+/-2,+/-3...〕。於一實施例中,偶數數量的模態,例如,4及8,可被選擇以符合為產生R8及R10的DFT預編碼組之輸出埠的數量。例如,偶數組的模態可藉由自完全組移除最高負(或正)模態而選擇為完全組的支組,例如,如果完全組的可用模態是〔-3 -2 -1 0 1 2 3〕,則偶數組可以是〔-2 -1 0 1 2 3〕。偶數支組的模態係不對稱,其導致輕微圖形不對稱,當陣列元件的數量係小時,該不對稱可以是更明顯。為相位模態的全向性付出之代價,其使它們成為圓形陣列中的“每一元件”的引示之理想選擇,係相對寬的波束。對應於R8碼本的四個模態可產生80°波束寬度,類似於單元件圖形。八個模態可自包括14-16個元件的陣列825產生40°波束寬度。
圖13顯示使用偶數的圓形模態之波束形成。於所解 說實施例中,使用4、8及16個模態圖形之波束形成係最突出。圖14顯示形成有圓形模態之方向圖形的波束寬度作為所包括模態的數量的函數。圖15顯示最小數量的元件及使用來產生特別數量的可用元件之陣列直徑。
模態特性的另一有限態樣係方位角平面中的相對模態幅度或增益作為模態數量的函數,將令人滿意的是,於圓柱形陣列的CL MIMO應用的內文中,除了方位的低波紋之外,還具有相等幅度的模態。模態幅度可被界定為: 模態幅度係顯示用於圖16A-C及圖17A-C中的不同實施例。圖16A顯示用於0.4 λ及全向元件之模態幅度,圖16B顯示用於0.5 λ及全向元件之模態幅度,以及圖16C顯示用於0.55 λ及全向元件之模態幅度。圖17A顯示用於0.4 λ及130°波束寬度元件之模態幅度,圖17B顯示用於0.5 λ及130°波束寬度元件之模態幅度,以及圖17C顯示用於0.55 λ及130°波束寬度元件之模態幅度。於所解說實施例中,全向天線的例子中不同m的P m 的分佈可以是大的。相反的是,至於窄的波束元件,P m 變化應是小的,除非是較高階模態。
圖18概念上解說基地台800的一個示範性實施例,其可被使用來儲存使用來實施預編碼器、波束形成或轉換器之功能性的部分,諸如文中所述。於所解說實施例中,基地台1800包括處理器1805、資料儲存1810及輸入/輸 出(I/O)介面1815。處理器1805係配置來控制基地台1800的操作,例如,使用儲存於資料儲存1810或在其它位置之資料或指令。可由基地台1800所實施之操作的實施例係與圖1-17一起於文中說明。於一實施例中,資料儲存1810儲存表示或可被使用來實施一或多個預編碼器之資訊1820、表示或可使用來實施一或多個波束形成之資訊1825、或表示或可使用來實施一或多個轉換器之資訊1830。因此,具有本揭露的利益之熟悉此項技術者應理解到,文中所述之技術或裝置的不同實施例可以軟體、韌體、硬體或其組合予以實施。當諸如轉換器1830之處理器可執行程式被實施在處理器1805上時,程式碼段與處理器1805結合以提供與特定邏輯電路類似地操作之獨特裝置。
所揭示標的物的部分及對應詳細說明係根據軟體、或操作的演算法及符號表示法在電腦記憶體內的資料位元上。這些說明及表示法為那些熟悉此項技術者有效地輸送其工作的本質至其它熟悉此項技術者。演算法,如文中所使用的用語,以及一般所使用,係想像為導致所期待結果之步驟的自相容序列。這些步驟需要物理量的物理操作。通常,雖然不是必要,這些量採取能夠儲存、轉移、結合、比較及以不同方式操作之光學、電子或磁性信號的形式。其已證明有時是方便的,主要的為一般用途的理由,意指這些信號為位元、值、元件、符號、字母、用語、數字或類似物。
應記住的是,然而,所有這些及類似用語將與適當物理量相關聯,且僅僅是應用於這些量的方便標記。除非特別說明,否則,或如顯而易見出自討論,諸如“處理”或“運算”或“計算”或“決定”或“顯示”或類似詞的用語意指電腦系統或類似電子計算的動作及程序,其操作且轉換表示為電腦系統的暫存器及記憶體內的物理、電子量之資料成表示為電腦系統記憶體內或暫存器或其它此種資訊儲存、傳輸或顯示裝置的物理量之其它資料類似性。
亦注意的是,所揭示標的物的軟體所實施態樣係典型地編碼在某一形式的程式儲存媒體,或實施在某一類型的傳輸媒體上。程式儲存媒體可以是磁性(例如,軟磁碟或硬碟)或光學(例如,光碟唯讀記憶體或“CD ROM”),且可以是唯讀或隨機存取。類似地,傳輸媒體可以是絞線對、同軸纜線、光纖或此項技術中所熟知的一些其它適合傳輸媒體。所揭示標的物不受任何所給實施的的這些態樣所限制。
上述的特別實施例僅為解說之用,因為所揭示標的物可以具有本揭露的利益之熟悉此項技術者所顯而易知之不同但等效方式予以修改及操作。再者,無限制意圖針對文中所示之架構或設計的細節,除了如以下請求項中所示。因此明顯的是,以上所述的特別實施例可被更改或修正以及所有這種變化及考慮在所揭示標的物的範圍內。因此,文中所追求的保護係如以下請求項中所提出的。
100‧‧‧無線通訊系統
105‧‧‧基地台
110‧‧‧用戶設備
115‧‧‧引示產生器
120‧‧‧交通信號產生器
125‧‧‧波束形成器
130‧‧‧預編碼器
135‧‧‧天線陣列
140‧‧‧天線
145‧‧‧轉換矩陣
150‧‧‧接收器
155‧‧‧收發器功能性
165‧‧‧通道估計器

Claims (9)

  1. 一種轉換用於無線通訊之預編碼信號的方法,包含:基於每一模態隨著方位的變化角度,選擇第一天線陣列配置的一支組模態;將複數第一埠的每一者映射至與該支組模態的一者關聯之複數第二埠的一者,其中該等第一埠的每一者係與第二天線陣列配置的模態關聯;及轉換傳送於該等第二埠與對應的複數第三埠之間的信號,其中每一第二埠係與該第一天線陣列配置的該等模態的一者關聯,以及其中每一第三埠係可配置成互通地連接至部署於該第一天線陣列配置的複數天線的一者。
  2. 如申請專利範圍第1項的方法,其中轉換該等信號包含應用具有該等第二埠與該等第三埠之間的預定相位增量之巴特勒(Butler)矩陣轉換,其中該巴特勒矩陣轉換係可配置成激發該第一天線陣列配置的該等模態,以回應應用在該等第二埠的信號。
  3. 如申請專利範圍第1項的方法,其中該第一天線陣列配置係均勻圓形陣列或均勻圓柱形陣列,以及其中該第二天線陣列配置係均勻直線陣列。
  4. 如申請專利範圍第1項的方法,其中選擇該支組模態包含選擇具有小於隨著方位的變化角度的臨界值之隨著方位的變化角度之該第一天線陣列配置的模態。
  5. 如申請專利範圍第4項的方法,其中選擇該支組 模態包含選擇等於第一埠的該數量之該第一天線陣列配置的模態的數量。
  6. 如申請專利範圍第1項的方法,其中將該複數第一埠的每一者映射至該複數第二埠的一者包含將複數引示信號的每一者映射至與該第一天線陣列配置的該支組模態關聯之該等第二埠的不同一者。
  7. 如申請專利範圍第6項的方法,包含提供信號至部署於該第一天線陣列配置的該複數天線,以使該複數引示信號的每一者係使用該支組模態的其關聯一者予以傳輸。
  8. 如申請專利範圍第1項的方法,其中映射該等信號包含將波束形成或預編碼的信號映射至對應於該第二天線陣列配置的所選擇支組模態之該等第一埠,以由該第二天線陣列配置中之該等天線傳輸。
  9. 如申請專利範圍第1項的方法,包含將由該第二天線陣列配置的該等天線所接收的上行鏈路信號自該等第三埠映射至該等第二埠。
TW102118678A 2012-05-31 2013-05-27 轉換用於無線通訊之預編碼信號 TWI483569B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/485,168 US20130321207A1 (en) 2012-05-31 2012-05-31 Transforming precoded signals for wireless communication

Publications (2)

Publication Number Publication Date
TW201409960A TW201409960A (zh) 2014-03-01
TWI483569B true TWI483569B (zh) 2015-05-01

Family

ID=48626138

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102118678A TWI483569B (zh) 2012-05-31 2013-05-27 轉換用於無線通訊之預編碼信號

Country Status (7)

Country Link
US (1) US20130321207A1 (zh)
EP (1) EP2856556B1 (zh)
JP (1) JP6023315B2 (zh)
KR (1) KR101691281B1 (zh)
CN (1) CN104335419B (zh)
TW (1) TWI483569B (zh)
WO (1) WO2013181131A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8325852B2 (en) * 2007-06-08 2012-12-04 Samsung Electronics Co., Ltd. CDD precoding for open loop SU MIMO
EP2482582B1 (en) * 2011-01-26 2013-01-16 Alcatel Lucent Base station, method of operating a base station, terminal and method of operating a terminal
JP2015073260A (ja) * 2013-09-04 2015-04-16 富士通株式会社 無線通信システム、及び、無線通信方法
US9654264B2 (en) * 2014-05-08 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using a dual polarized antenna arrangement
CN112448747A (zh) 2014-09-12 2021-03-05 索尼公司 无线通信设备和无线通信方法
CN105517108B (zh) * 2014-09-26 2019-03-22 电信科学技术研究院 一种小区接入方法及装置
CN106716896B (zh) * 2014-10-10 2020-01-24 华为技术有限公司 一种预编码信息的获取装置、方法和系统
US10419095B2 (en) * 2015-01-05 2019-09-17 Lg Electronics Inc. Method for configuring channel state information using polarization characteristics of antenna in wireless communication system and device therefor
WO2016129728A1 (ko) * 2015-02-13 2016-08-18 엘지전자 주식회사 밀리미터 웨이브를 지원하는 무선 접속 시스템에서 레이 스캐닝 수행 방법 및 장치
US20160261308A1 (en) * 2015-03-03 2016-09-08 Nec Laboratories America, Inc. Architecture for cancelling self interference and enabling full duplex communications
US10148009B2 (en) * 2015-11-23 2018-12-04 Huawei Technologies Co., Ltd. Sparse phase-mode planar feed for circular arrays
EP3182611A1 (en) * 2015-12-17 2017-06-21 Swisscom AG Mimo communication system for vehicles
US10250309B2 (en) * 2016-03-24 2019-04-02 Huawei Technologies, Co., Ltd. System and method for downlink channel estimation in massive multiple-input-multiple-output (MIMO)
US9961664B2 (en) * 2016-08-10 2018-05-01 Verizon Patent And Licensing Inc. Locating customer premises equipment in a narrow beamwidth based radio access network
US10044423B2 (en) 2016-10-20 2018-08-07 Samsung Electronics Co., Ltd System and method for precoder selection in multiple-input multiple-output (MIMO) systems with discrete fourier transform (DFT)-based codebook
US10686251B2 (en) * 2017-01-23 2020-06-16 The Boeing Company Wideband beam broadening for phased array antenna systems
EP3720008A4 (en) * 2017-11-27 2021-07-07 Tongyu Communication Inc. OMNIDIRECTIONAL NETWORK ANTENNA AND ITS BEAM FORMATION PROCESS
WO2020111624A1 (ko) * 2018-11-26 2020-06-04 엘지전자 주식회사 무선 통신 시스템에서 단말이 채널 상태 정보를 보고하는 방법 및 그 장치
WO2020212739A1 (en) * 2019-04-18 2020-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Virtual beam sweeping for a physical random access channel in new radio and long term evolution active antenna systems
CN111740223B (zh) * 2020-07-06 2021-05-28 中国科学院成都生物研究所 一种合成高轨道角动量模式数的涡旋电磁场的方法
CN113095021B (zh) * 2021-03-15 2023-06-06 南京理工大学 基于矩阵分解的非2n Butler矩阵的设计方法
KR102646770B1 (ko) * 2021-12-29 2024-03-12 금오공과대학교 산학협력단 가상 등간격 원형 어레이기반의 OAM-mMIMO 시스템을 사용한 비직교 다중접속 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160374A1 (en) * 2003-02-13 2004-08-19 Martin Johansson Feed network for simultaneous generation of narrow and wide beams with a rotational-symmetric antenna
US20050085270A1 (en) * 2003-10-17 2005-04-21 Sobczak David M. Wireless antenna traffic matrix
TW201001951A (en) * 2008-06-30 2010-01-01 Interdigital Patent Holdings Method and apparatus to support single user (SU) and multiuser (MU) beamforming with antenna array groups
US20100164784A1 (en) * 2006-01-17 2010-07-01 Filtronic Pty Ltd. Surveillance Apparatus and Method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316192A (en) * 1979-11-01 1982-02-16 The Bendix Corporation Beam forming network for butler matrix fed circular array
FI98171C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottikanavien lähettämiseksi ja solukkoradiojärjestelmä
JPH1093339A (ja) * 1996-09-13 1998-04-10 Nec Corp マルチビームアンテナ
US6070090A (en) * 1997-11-13 2000-05-30 Metawave Communications Corporation Input specific independent sector mapping
JP3798549B2 (ja) * 1998-03-18 2006-07-19 富士通株式会社 無線基地局のマルチビームアンテナシステム
US6178333B1 (en) * 1998-04-15 2001-01-23 Metawave Communications Corporation System and method providing delays for CDMA nulling
GB2376568B (en) * 2001-06-12 2005-06-01 Mobisphere Ltd Improvements in or relating to smart antenna arrays
JP2003069334A (ja) * 2001-08-24 2003-03-07 Nippon Telegr & Teleph Corp <Ntt> 円形アレーアンテナ
EP1430564A1 (en) * 2001-09-13 2004-06-23 Redline Communications Inc. Method and apparatus for beam steering in a wireless communications systems
JP2003168911A (ja) * 2001-12-03 2003-06-13 Sony Corp アレイアンテナ
US7957701B2 (en) * 2007-05-29 2011-06-07 Alcatel-Lucent Usa Inc. Closed-loop multiple-input-multiple-output scheme for wireless communication based on hierarchical feedback
JP5175247B2 (ja) * 2009-06-30 2013-04-03 株式会社エヌ・ティ・ティ・ドコモ 電波伝搬パラメータ推定装置、電波伝搬パラメータ推定方法
EP2296225B1 (en) * 2009-09-10 2018-05-09 Agence Spatiale Européenne Reconfigurable beam-forming-network architecture.
CN102763271B (zh) * 2010-02-25 2015-06-17 瑞典爱立信有限公司 包括变换矩阵的通信系统节点
US8675762B2 (en) * 2011-05-02 2014-03-18 Alcatel Lucent Method of transforming pre-coded signals for multiple-in-multiple-out wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160374A1 (en) * 2003-02-13 2004-08-19 Martin Johansson Feed network for simultaneous generation of narrow and wide beams with a rotational-symmetric antenna
US20050085270A1 (en) * 2003-10-17 2005-04-21 Sobczak David M. Wireless antenna traffic matrix
US20100164784A1 (en) * 2006-01-17 2010-07-01 Filtronic Pty Ltd. Surveillance Apparatus and Method
TW201001951A (en) * 2008-06-30 2010-01-01 Interdigital Patent Holdings Method and apparatus to support single user (SU) and multiuser (MU) beamforming with antenna array groups

Also Published As

Publication number Publication date
CN104335419B (zh) 2016-09-21
EP2856556B1 (en) 2018-05-09
CN104335419A (zh) 2015-02-04
KR101691281B1 (ko) 2016-12-29
JP2015525516A (ja) 2015-09-03
WO2013181131A1 (en) 2013-12-05
EP2856556A1 (en) 2015-04-08
US20130321207A1 (en) 2013-12-05
JP6023315B2 (ja) 2016-11-09
KR20150027129A (ko) 2015-03-11
TW201409960A (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
TWI483569B (zh) 轉換用於無線通訊之預編碼信號
US20200119785A1 (en) Transmitter, Receiver, Wireless Communication Network and Methods for Operating the Same
JP6594443B2 (ja) 基地局及びプリコーディングマトリックス決定方法
CN106063148B (zh) 在无线通信系统中执行混合波束成形的方法及其设备
ES2939705T3 (es) Nodo de red, equipo de usuario y métodos en los mismos para permitir al UE determinar un libro de códigos de precodificador
JP6515128B2 (ja) コードブックを生成する方法
EP2360853B1 (en) Codebook adaptation in MIMO communication systems using multilevel codebooks
Payami et al. Effective RF codebook design and channel estimation for millimeter wave communication systems
CN108702189B (zh) 使用天线阵列进行波束成形
US20160072562A1 (en) Channel state information reporting with basis expansion for advanced wireless communications systems
KR20170044645A (ko) 무선 통신 시스템에서 빔포밍을 위한 가중치 결정 방법 및 이를 위한 장치
Noh et al. Multi-resolution codebook based beamforming sequence design in millimeter-wave systems
JP2016511566A (ja) チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
US20180316398A1 (en) Precoding a Transmission from a One-Dimensional Antenna Array that Includes Co-Polarized Antenna Elements Aligned in the Array&#39;s Only Spatial Dimension
CN110249546B (zh) 用于选择码本的方法
US20190296814A1 (en) Method of constructing codebook and user equipment
US10382110B2 (en) Adaptive user-specific beam forming
KR20210134051A (ko) 부분 상호성에 기반한 멀티-유저 프리코더
CN106160938B (zh) 一种信道信息的获取方法和装置
JP2010166316A (ja) Mimo通信システム
Vook et al. Product codebook feedback for massive MIMO with cross-polarized 2D antenna arrays
US20150003548A1 (en) Vertical Beam Design for UE-Specific Beamforming by Matching to a CB
KR102111855B1 (ko) 그룹배열안테나 기반의 mimo 송수신 방법, mimo 송신기 및 mimo 수신기
Kareem et al. Particle swarm optimization based beamforming in massive MIMO systems
Cella et al. Design of a MIMO geometry for high capacity and full coverage mm-wave system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees